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Abstract
Discovering causal structure from temporal data is an important

problem in many fields in science. Existing methods usually suf-

fer from several limitations such as assuming linear dependencies

among features, limiting to discrete time series, and/or assuming

stationarity, i.e., causal dependencies are repeated with the same

time lag and strength at all time points. In this paper, we propose

an algorithm called the 𝜇-PC that addresses these limitations. It is

based on the theory of 𝜇-separation and extends the well-known PC

algorithm to the time domain. To be applicable to both discrete and

continuous time series, we develop a conditional independence test-

ing technique for time series by leveraging the Recurrent Marked

Temporal Point Process (RMTPP) model. Experiments using both

synthetic and real-world datasets demonstrate the effectiveness of

the proposed algorithm.
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1 Introduction
Discovering causal relationships among a set of variables is a fun-

damental problem in many fields in science. The gold standard of

causal discovery is randomized controlled trials, which is usually

not feasible due to ethical issues or unacceptably high costs. In the

past decades, many research works have been conducted on discov-

ering causal relationships from observational data. However, the

majority of these works are based on static settings [11]. In many

applications, the data is temporal in nature. Incorporating temporal

information is an important extension to the causal discovery field.
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The classic definition of temporal causality is the Granger causal-

ity [12]. It states that one time series is the cause of the other time

series if the former’s past values can predict the latter’s future

values. Modern theories of causal discovery and inference often

rely on a more robust mathematical framework called structural

causal models [21] and are conceptually visualized by a graphical

model. Under the causal Markov and faithfulness assumptions, a

causal graph encodes all conditional relations contained in the data,

by using graphical criteria such as 𝑑-separation. Since in practice,

only statistical properties of observational data can be analyzed,

constraint-based search algorithms (e.g., the PC algorithm) try to

search for causal graphs that most closely entail conditional inde-

pendence relations held in the data [26]. In [23], Runge proposes

the PCMCI algorithm that is extended from the classic PC algo-

rithm. The PCMCI builds time-lagged causal graphs from time

series datasets, where each variable in a time series is represented

as one node in the graph. However, it applies to discrete time se-

ries only and it assumes stationarity, i.e., causal dependencies are

repeated with the same time lag at all time points, which may not

hold in many applications.

In this paper, we propose a method to build a time-invariant

causal graph where each node in the graph represents a whole

time series. Different from the static setting where a causal graph

is a directed acyclic graph, a time-invariant causal graph for time

series is a directed graph where circles and self-loops may exist.

Previous works on building directed graphs for time series are

mainly extended from the Granger causality to multivariate pro-

cesses using linear or nonlinear autoregression models [10, 22]. In

our work, we follow the logic of constraint-based search algorithms

to find directed graphs that agree most closely with conditional

independence relations held in time series data. We leverage the

𝜇-separation which is an extension of 𝑑-separation to the time-

dependent domain [19]. The theory of 𝜇-separation provides a

formal graphical representation of conditional independence rela-

tions in time series with rigorous analysis of the equivalence class

of graphs. It does not assume stationarity in causal dependencies,

i.e., the time lags and strength of causal relationships may vary

with time. In addition, different from the Granger causality that

always assumes there is a dependence of each process on its own

past, the 𝜇-separation can also detect if there exists confounding

for a time series with itself.

Based on the 𝜇-separation, we develop the 𝜇-PC algorithm, a

constraint-based algorithm for building directed graphs from time

series data following similar logic to the PC algorithm. Inspired

by [3], we modify the classic PC algorithm as two phases, where

Phase-1 is a pre-processing stage that selects the candidate parental

set for each node, and Phase-2 continues to prune the graph based

on the 𝜇-separation. To handle both discrete and continuous time
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series, we leverage the Recurrent Marked Temporal Point Process

(RMTPP) model proposed in [9] for Conditional Independence (CI)

testing since the marked temporal point process is a commonly

used mathematical framework for modeling dynamic events with

both event timings and markers. We apply the likelihood ratio test

to examine if the latter is significantly better than the former. We

conduct experiments using both synthetic and real-world climate

datasets. The results show that the proposed algorithm is capable of

recovering directed graphs with circles and self-loops, and outper-

form the PCMCI when the stationary assumption is not satisfied.

Related Work. The classic causal notion for time series is the

Granger causality, based on which various methods were proposed

that differ in how to measure the predictability (e.g., [2, 16, 17, 27]).

Modern causal inference methods extend the Granger causality

based on structural causal models and associated graphical repre-

sentations [3, 4, 8, 18]. A summary of relevant background and a

comprehensive review of different approaches to causal discovery

is provided in [20, 29]. Machine learning and deep learning based

methods have been proposed in recent years to handle complex

data. [6] proposes to replace regression models with classifiers by

formulating a feature representation that could capture the causal

relationship. Tank et al. [28] claims to extract the nonlinear Granger

causality in time series using regularized neural network models

like Multi-Layer Perceptron (MLP) and Recurrent Neural Network

(RNN). Recently in [30], the authors propose an encoder-decoder

architecture for Neural Point Process (NPP) that can learn event

inter-dependencies, followed by an attribution method to learn the

Granger causality among multi-type event sequences. [1] utilizes

generalized linear models for fitting the data and uses the mini-

mum description length principle to determine causal directions. A

similar approach based on mutual information has been proposed

by Jangyodsuk et al. [13] where the authors claim that causality in

time series can be determined using mutual information between

an effect and a cause. Another line of work is the PCMCI algorithm

proposed by Runge [23–25] which extends the classic PC algorithm

to time series. However, it assumes stationarity which may not

hold in practice. Moreover, most of the above works only apply to

discrete time series. In this paper, we propose a theoretically sound

constraint-based algorithm based on the 𝜇-separation and RMTPP

model so that we do not assume stationarity and the algorithm

works for both discrete and continuous time series.

2 Preliminaries

Consider a set of time series X = (X1,X2, . . . ,X𝑛) where X𝑖 =

{𝑋 𝑖
𝑡 : 𝑡 ∈ [0,𝑇 ]}. For continuous time series, 𝑡 is a real value

variable in a compact time interval; and for discrete time series, 𝑡 is

a discrete time index. We also use a set of indices V = {1, 2, . . . , 𝑛}
to refer to time series inX (as well as the nodes in a graph as shown

later). Conditional (local) independence between two time series

𝛼, 𝛽 given a subset of time series C is defined as follows [19].

Definition 1 (Conditional independence). Let 𝛼, 𝛽 ∈ V, C ⊆
V\{𝛼}. We say that 𝛽 is conditionally independent of 𝛼 given C if
for any time point 𝑡 , the past of XC until time 𝑡 gives us the same
predictable information about𝑋 𝛽

𝑡 as the past of bothX𝛼 andXC until
time 𝑡 , denoted by CI (𝛼, 𝛽 |C).

α γ β

Figure 1: A directed graph.

Note that, the conditional independence relation for time series is

asymmetric, i.e., CI (𝛼, 𝛽 |C) does not necessarily imply CI (𝛽, 𝛼 |C).
A causal graph for time series is a directed graph G = (V, E)

where V is a set of nodes and E is a set of directed edges. For each

pair of connected nodes 𝛼 −→ 𝛽 , it is called a loop if 𝛼 = 𝛽 . For

each node 𝛼 , we denote its parents by 𝑃𝑎(𝛼). A walk from 𝛼 to 𝛽 is

a sequence of connected nodes including 𝛼 and 𝛽 as two end points,

together with the edges connecting them. A route from 𝛼 to 𝛽 is

a walk from 𝛼 to 𝛽 such that no node other than 𝛽 occurs more

than once, and 𝛽 occurs at most twice. For example, in the directed

graph shown in Fig. 1, 𝛼 −→ 𝛼 −→ 𝛾 ←− 𝛽 is a walk from 𝛼 to 𝛽 ,

and 𝛼 −→ 𝛾 ←− 𝛽 −→ 𝛽 is a route from 𝛼 to 𝛽 . For any walk or

route 𝜔 from 𝛼 to 𝛽 , if a node 𝛾 other than the end points is on 𝜔

and both edges have heads at it, i.e., −→ 𝛾 ←−, then 𝛾 is called a

collider on 𝜔 ; otherwise, it is a noncollider. Then, the 𝜇-connecting

walk/route and 𝜇-separation are defined as follows [19].

Definition 2 (𝜇-connecting walk/route). A walk/route 𝜔 is
said to be 𝜇-connecting from 𝛼 to 𝛽 given C if 𝛼 ∉ C, every collider
on 𝜔 is in C ∪𝐴𝑛(C), no noncollider is in C, and the last edge has a
head at 𝛽 . When a walk/route is not 𝜇-connecting given C, it is said
to be blocked by C

Definition 3 (𝜇-separation). Let 𝛼, 𝛽 ∈ V, C ⊆ V. We say that
𝛽 is 𝜇-separated from 𝛼 given C if there is no 𝜇-connecting route from
𝛼 to 𝛽 given C.

3 𝜇-PC Algorithm
We propose a constraint-based search algorithm called the 𝜇-PC

algorithm for time series. The target is to build a directed graph

such that all 𝜇-separations holding in the graph follow correspond-

ing conditional independence relations in the data. We make the

Causal Markov and Faithfulness assumptions which are routinely

employed in independence-based causal discovery. Inspired by [3],

our algorithm consists of two phases for improving efficiency and

strengthening reliability. The pseudocode of the 𝜇-PC Algorithm is

shown in Algorithm 1.

Phase-1 is to pre-process the data to select the candidate parental

set for each node. The algorithm starts with an empty parent set

𝑃𝑎(𝛽) for each node 𝛽 . It performs conditional independence testing

between the current node 𝛽 and every node𝛼 in the graph, including

itself (to check for self-loops). Line 8 calls a subroutine 𝑠𝑐𝑜𝑟𝑒 (·)
to conduct this conditional independence testing and returns the

likelihood ratio test (LRT) score which will be discussed in the

next section. For each node in the graph that has not been already

added to 𝑃𝑎(𝛽), the LRT score is computed and stored in a set U
along with its corresponding node name if the score is greater than

zero. Afterward, the node with the highest score in U is added to

𝑃𝑎(𝛽). Given the most recently updated parental set, conditional

independence testing is conducted for each remaining node again.

The entire process is repeated until there is no node left to be added

to 𝑃𝑎(𝛽) that has a score greater than zero.

In Phase-2, the algorithm proceeds with the graph formed with

the parental sets in Phase-1. It then prunes the graph according to
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the 𝜇-separation criterion: for 𝛼, 𝛽 ∈ V, if there exists C ⊆ V\{𝛼}
such that CI (𝛼, 𝛽 |C) holds, then there is no edge pointing from 𝛼 to

𝛽 in the graph. We can further restrict C to the sets such that there

exists a 𝜇-connecting route from 𝛼 to 𝛽 that is blocked by C. The
algorithm starts from all pairs of time series 𝛼, 𝛽 (𝛼 can be same as

𝛽) with an empty condition set, i.e., |C| = 0. If 𝛽 is independent of

𝛼 , it removes the edge pointing from 𝛼 to 𝛽 . Then, it proceeds to

condition sets with one element except 𝛼 , i.e., |C| = 1, and continues

to do so until |C| = 𝑛. The algorithm conducts the test only when

currently there exists a 𝜇-connecting route from 𝛼 to 𝛽 blocked

by C. Different from the Granger causality that always assumes

self-dependence for each time series, for each time series, the 𝜇-PC

Algorithm always examines whether it is self-independent, and if

not, whether such dependence could be 𝜇-separated by other time

series. Finally, the theory of 𝜇-separation ensures that everyMarkov

equivalent class is a singleton that can be uniquely identified from

the data [19].

Algorithm 1: 𝜇-PC Algorithm

1 Phase-1
2 foreach 𝛽 ∈ V do
3 𝑃𝑎 (𝛽) = ∅ ;
4 repeat
5 U = ∅ ;
6 foreach 𝛼 ∈ V such that 𝛼 ∉ U do
7 if 𝑠𝑐𝑜𝑟𝑒 (𝛼, 𝛽,U) > 0 then
8 U ∪ 𝑠𝑐𝑜𝑟𝑒 (𝛼, 𝛽,U) ;

9 𝛾 = argmax(U) ;
10 𝑃𝑎 (𝛽) = 𝑃𝑎 (𝛽) ∪ {𝛾 } ;
11 until |U | > 0;

12 Phase-2
13 Start from the graph of Phase-1;

14 for 𝑖 = 0 to 𝑛 − 1 do
15 foreach C ⊆ V, |C | = 𝑖 do
16 foreach 𝛼 ∈ V such that 𝛼 ∉ C do
17 foreach 𝛽 ∈ V such that 𝛼 → 𝛽 do
18 if there exists a 𝜇-connecting route from 𝛼 to 𝛽 that

is blocked by C then
19 if 𝑠𝑐𝑜𝑟𝑒 (𝛼, 𝛽,C) = 0 then
20 Remove edge from 𝛼 to 𝛽 ;

For the time complexity, the number of conditional indepen-

dence tests required by the algorithm is 𝑂 ( |V|)3 in Phase-1 and

exponential to the number of nodes in the worst case in Phase-2

similarly to the PC algorithm. For the latter, many techniques have

been proposed for improving efficiency (e.g., [7, 14]). In addition, in

practice, conditional independence testing is conducted only when

there exists a corresponding 𝜇-connecting route. A subroutine for

finding all 𝜇-connecting routes based on the depth first search has

a 𝑂 ( |V| + |E|) time complexity.

4 RMTPP-based CI Testing
The Conditional Independence (CI) testing for time series is the

key component of the 𝜇-PC algorithm. In order to handle both

continuous and discrete time series, we leverage the Recurrent

Marked Temporal Point Process (RMTPP) [9], which is a unified

model capable of modeling general nonlinear dependency among

time series for both variables values and timings. The RMTPPmodel

is an RNN that takes the history of the time series as inputs to

predict both the value and timing of the next observation. The

hidden state h learns a representation of the influence from the

history of the time series and is updated each time after reading

in the next observation. Given the learned representation h, the
likelihood that the next observation will occur at time 𝑡∗ relative to
the timing of the latest observation 𝑡 ′, denoted by 𝑓 (𝑡∗ |h), as well
as the likelihood that the marker value of the next observation is

𝑥∗, denoted by 𝑃 (𝑥∗ |h), are computed. Consequently, the RMTPP

model is trained by maximizing the log-likelihood over the entire

time series dataset.

For CI testing, we make use of the RMTPP model to capture the

predictable information contained in the time series. According to

the definition of conditional independence, given any triple 𝛼, 𝛽,C,
we fit two RMTPP models, referred to as𝑚0 and𝑚1. Conceptually,

in𝑚0 we feed time series inXC
into the model as inputs and predict

time series X𝛽
; while in𝑚1, we use both X𝛼

and XC
to predict X𝛽

.

If the performance of the two models is the same, it means that

XC
contains the same predictable information about X𝛽

as X𝛼
and

XC
. In the implementation, we actually use the same inputs X𝛼

and XC
for both models but restrict the parameters associated with

X𝛼
in𝑚0 to be zeros. This allows us to employ the likelihood ratio

test for measuring predictability, which is a statistical test of the

goodness-of-fit between two models, a more complex one with

more parameters and a simpler one with fewer parameters.

Different from the original RMTPP model where the inputs and

outputs are the same time series, in our context the inputs and

outputs can be different time series. To deal with this change, we

align all the time series on the same temporal dimension and feed

the observations into the model according to the temporal order.

If the current observation is for input, i.e., 𝑋𝛼
𝑡 or 𝑋C

𝑡 , we update

the hidden state h; otherwise, we compute the likelihood of 𝑋
𝛽
𝑡 for

the cost function. Symbolically, for the triple 𝛼, 𝛽,C, the unified
formula for updating h at time 𝑡 is given by

h𝑛𝑒𝑤 =max


∑

𝑖∈𝐶∪{𝛼 }
𝐼 𝑖
(
W𝑖X𝑖

𝑡 +V𝑖𝑡
)
+Wℎh + bℎ, 0

 , (1)

where X𝑖
𝑡 is the embedding of 𝑋 𝑖

𝑡 , and W𝑖 ,V𝑖 are parameters as-

sociated with the input marker and timing respectively. 𝐼 𝑖 is an

indicator parameter that is restricted to zero if 𝑖 = 𝛼 in𝑚0. Thus,

we consider there is one parameter difference between𝑚0 and𝑚1.

Denoting by 𝑡 = {𝑡1, . . . , 𝑡 𝑗 , . . . , 𝑡𝑚} the timings of X𝛽
, the cost

function is given by

𝑙 =

𝑚∑
𝑗=1

(
log 𝑃 (𝑋 𝛽

𝑡 𝑗
|h𝑗− ) + log 𝑓 (𝑡 𝑗 |h𝑗− )

)
, (2)

where h𝑗− denotes the latest updated hidden state prior to 𝑡 𝑗 . Finally,
the network architecture of our CI testing model is shown in Fig. 2.

Denoted by 𝑙0 and 𝑙1 are the maximized log-likelihood obtained

by𝑚0 and𝑚1 respectively. The likelihood ratio test is conducted

upon the ratio 𝜆 = 𝑙0/𝑙1. The null hypothesis is that the more

complex model𝑚1 is not significantly better than the simpler model

𝑚0. Thus, the conditional independence relation holds if the null
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Figure 2: Network architecture of RMTPP-based CI testing.
For each triple 𝛼, 𝛽,C, we input the timings and values of X𝛼

and X𝛽 into the RMTPP for updating hidden state h, while
treating X𝛽 as the output for computing the cost.
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Figure 3: (a) Results of 𝜇-PC on continuous time series. (b)
Causal graph of climate data in Montana.
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Figure 4: Time-lagged causal graphs for data generation. The
value of X𝛾 at each time is generated by randomly selecting
either one of the causal dependencies.

hypothesis is not rejected. The subroutine 𝑠𝑐𝑜𝑟𝑒 (𝛼, 𝛽,C) is hence
computed as 𝑠𝑐𝑜𝑟𝑒 = max((𝜒2−𝜏), 0) where 𝜒2 = −2 log 𝜆 and 𝜏 is a
threshold obtained from the 1% percentile point of Chi-distribution

with 1 degree of freedom.

Remark. For discrete time series, there are no timings and the

values are simply indexed in time order. In this case, we can use a

simplified version of the model by removing parameter matrices

and log-likelihood terms associated with the time from Eq. (1) and

Eq. (2) respectively. The CI testing procedure remains the same.

5 Experiments
We conduct experiments on synthetic and real-world datasets to

evaluate the performance of the 𝜇-PC algorithm. We compare our

method with PCMCI [23], ITGH [1], and CUTE [5]. For PCMCI,

we convert its time-lagged causal graph to a directed graph such

that if there is an edge from one variable to another with any lag

in the time-lagged causal graph, then there is an edge between

corresponding nodes in the directed graph.

Synthetic Data. We utilize the directed graph with three nodes

𝛼, 𝛽,𝛾 as shown in Fig. 1. Then, we define two mechanisms for

Accuracy Precision Recall F-Measure

𝜇-PC 0.900 0.895 0.900 0.888

ITGH 0.667 0.667 0.500 0.572

PCMCI 0.867 0.897 0.850 0.862

CUTE 0.355 0.350 0.525 0.420

Table 1: Results on discrete time series w/o stationarity.

generating both timings and marker values of each time series

based on the graph. In Setting 1, to evaluate the 𝜇-PC algorithm

for continuous time series, we generate the timings as Hawkes

processes and marker values with multinomial distribution. The

results of the 10 runs are shown in Fig. 3(a). As we can see, in

general, the 𝜇-PC algorithm could correctly identify the causal

dependencies as well as directions. However, the performance is

not quite stable. This may be due to the randomness in the training

process and the imperfect fitting to the observational distribution.

Particularly, our current algorithm is based on the traditional RNN

which is not able to keep track of long-term dependencies. We

will study if adopting modern versions of RNN such as LSTM or

GRU could improve the performance of our algorithm. In Setting

2, we generate discrete time series by generating marker values

for each time index. To investigate the effect of non-stationarity

causal dependencies, we consider two types of causal dependencies

with different time-lags and strengths that are used randomly in the

generation as shown in Fig. 4. The performance of our method and

baselines is shown in Table 1. We see that our method significantly

outperforms ITGH and CUTE, and slightly outperforms PCMCI,

showing the improvement of our method relative to PCMCI in

nonstationary settings.

Climate Data. Finally, we conduct experiments on the climate data

used in [1, 15]. The dataset contains monthly measures of 9 fea-

tures over 13 years taken in Montana including temperature (TMP),

frost days (FRS), greenhouse gases including Methane (CH4), car-

bon dioxide (CO2), solar radiation including global extraterrestrial

(GLO), precipitation (PRE), vapor (VAP), cloud cover (CLD), and

wet days (WET). The causal graph built by our method is shown

in Fig. 3(b). We see that our method can discover edges that have

reasonable explanations in climate science. For example, the causal

graph shows that the vapor does not directly influence the num-

ber of frost days but the effect is indirect through cloud cover and

temperature. However, there are some edges that do not have clear

explanations. Possible reasons for these edges include insufficient

data and hidden variables.

6 Conclusions
In this paper, we proposed an algorithm called the 𝜇-PC for building

causal graphs for time series. The algorithm is based on the theory

of 𝜇-separation so it does not assume stationarity. We proposed an

RMTPP-based CI testing technique so that the algorithm works for

both discrete and continuous time series. Experiments using both

synthetic and real-world datasets showed that the 𝜇-PC algorithm

could recover causal relationships from time series more accurately

than existing methods. Our work established a general framework

for designing constraint-based search algorithms for time series.
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