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Abstract

Discovering causal structure from temporal data is an important
problem in many fields in science. Existing methods usually suf-
fer from several limitations such as assuming linear dependencies
among features, limiting to discrete time series, and/or assuming
stationarity, i.e., causal dependencies are repeated with the same
time lag and strength at all time points. In this paper, we propose
an algorithm called the p-PC that addresses these limitations. It is
based on the theory of p-separation and extends the well-known PC
algorithm to the time domain. To be applicable to both discrete and
continuous time series, we develop a conditional independence test-
ing technique for time series by leveraging the Recurrent Marked
Temporal Point Process (RMTPP) model. Experiments using both
synthetic and real-world datasets demonstrate the effectiveness of
the proposed algorithm.
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1 Introduction

Discovering causal relationships among a set of variables is a fun-
damental problem in many fields in science. The gold standard of
causal discovery is randomized controlled trials, which is usually
not feasible due to ethical issues or unacceptably high costs. In the
past decades, many research works have been conducted on discov-
ering causal relationships from observational data. However, the
majority of these works are based on static settings [11]. In many
applications, the data is temporal in nature. Incorporating temporal
information is an important extension to the causal discovery field.
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The classic definition of temporal causality is the Granger causal-
ity [12]. It states that one time series is the cause of the other time
series if the former’s past values can predict the latter’s future
values. Modern theories of causal discovery and inference often
rely on a more robust mathematical framework called structural
causal models [21] and are conceptually visualized by a graphical
model. Under the causal Markov and faithfulness assumptions, a
causal graph encodes all conditional relations contained in the data,
by using graphical criteria such as d-separation. Since in practice,
only statistical properties of observational data can be analyzed,
constraint-based search algorithms (e.g., the PC algorithm) try to
search for causal graphs that most closely entail conditional inde-
pendence relations held in the data [26]. In [23], Runge proposes
the PCMCI algorithm that is extended from the classic PC algo-
rithm. The PCMCI builds time-lagged causal graphs from time
series datasets, where each variable in a time series is represented
as one node in the graph. However, it applies to discrete time se-
ries only and it assumes stationarity, i.e., causal dependencies are
repeated with the same time lag at all time points, which may not
hold in many applications.

In this paper, we propose a method to build a time-invariant
causal graph where each node in the graph represents a whole
time series. Different from the static setting where a causal graph
is a directed acyclic graph, a time-invariant causal graph for time
series is a directed graph where circles and self-loops may exist.
Previous works on building directed graphs for time series are
mainly extended from the Granger causality to multivariate pro-
cesses using linear or nonlinear autoregression models [10, 22]. In
our work, we follow the logic of constraint-based search algorithms
to find directed graphs that agree most closely with conditional
independence relations held in time series data. We leverage the
pi-separation which is an extension of d-separation to the time-
dependent domain [19]. The theory of y-separation provides a
formal graphical representation of conditional independence rela-
tions in time series with rigorous analysis of the equivalence class
of graphs. It does not assume stationarity in causal dependencies,
i.e., the time lags and strength of causal relationships may vary
with time. In addition, different from the Granger causality that
always assumes there is a dependence of each process on its own
past, the p-separation can also detect if there exists confounding
for a time series with itself.

Based on the p-separation, we develop the y-PC algorithm, a
constraint-based algorithm for building directed graphs from time
series data following similar logic to the PC algorithm. Inspired
by [3], we modify the classic PC algorithm as two phases, where
Phase-1 is a pre-processing stage that selects the candidate parental
set for each node, and Phase-2 continues to prune the graph based
on the p-separation. To handle both discrete and continuous time
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series, we leverage the Recurrent Marked Temporal Point Process
(RMTPP) model proposed in [9] for Conditional Independence (CI)
testing since the marked temporal point process is a commonly
used mathematical framework for modeling dynamic events with
both event timings and markers. We apply the likelihood ratio test
to examine if the latter is significantly better than the former. We
conduct experiments using both synthetic and real-world climate
datasets. The results show that the proposed algorithm is capable of
recovering directed graphs with circles and self-loops, and outper-
form the PCMCI when the stationary assumption is not satisfied.
Related Work. The classic causal notion for time series is the
Granger causality, based on which various methods were proposed
that differ in how to measure the predictability (e.g., [2, 16, 17, 27]).
Modern causal inference methods extend the Granger causality
based on structural causal models and associated graphical repre-
sentations [3, 4, 8, 18]. A summary of relevant background and a
comprehensive review of different approaches to causal discovery
is provided in [20, 29]. Machine learning and deep learning based
methods have been proposed in recent years to handle complex
data. [6] proposes to replace regression models with classifiers by
formulating a feature representation that could capture the causal
relationship. Tank et al. [28] claims to extract the nonlinear Granger
causality in time series using regularized neural network models
like Multi-Layer Perceptron (MLP) and Recurrent Neural Network
(RNN). Recently in [30], the authors propose an encoder-decoder
architecture for Neural Point Process (NPP) that can learn event
inter-dependencies, followed by an attribution method to learn the
Granger causality among multi-type event sequences. [1] utilizes
generalized linear models for fitting the data and uses the mini-
mum description length principle to determine causal directions. A
similar approach based on mutual information has been proposed
by Jangyodsuk et al. [13] where the authors claim that causality in
time series can be determined using mutual information between
an effect and a cause. Another line of work is the PCMCI algorithm
proposed by Runge [23-25] which extends the classic PC algorithm
to time series. However, it assumes stationarity which may not
hold in practice. Moreover, most of the above works only apply to
discrete time series. In this paper, we propose a theoretically sound
constraint-based algorithm based on the y-separation and RMTPP
model so that we do not assume stationarity and the algorithm
works for both discrete and continuous time series.

2 Preliminaries

Consider a set of time series X = (X!, X?,...,X") where X!
{Xti : t € [0,T]}. For continuous time series, t is a real value
variable in a compact time interval; and for discrete time series, ¢ is
a discrete time index. We also use a set of indices V = {1,2,...,n}
to refer to time series in X (as well as the nodes in a graph as shown
later). Conditional (local) independence between two time series
a, f given a subset of time series C is defined as follows [19].

DEFINITION 1 (CONDITIONAL INDEPENDENCE). Leta, f € V,C C
V\{a}. We say that § is conditionally independent of a given C if
for any time point t, the past of XC until time t gives us the same
predictable information aboutXf as the past of both X% and XC until
time t, denoted by CI(a, f|C).
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Figure 1: A directed graph.

Note that, the conditional independence relation for time series is
asymmetric, i.e., CI(a, f|C) does not necessarily imply CI(f, ¢|C).

A causal graph for time series is a directed graph G = (V,E)
where V is a set of nodes and E is a set of directed edges. For each
pair of connected nodes @ — p, it is called a loop if @ = f. For
each node a, we denote its parents by Pa(a). A walk from « to f is
a sequence of connected nodes including & and f as two end points,
together with the edges connecting them. A route from « to f§ is
a walk from « to f such that no node other than f occurs more
than once, and f occurs at most twice. For example, in the directed
graph shown in Fig. 1, « — a — y «— f is a walk from a to 3,
and @ — y «— ff — P is a route from « to . For any walk or
route w from « to f, if a node y other than the end points is on w
and both edges have heads at it, i.e., — y «—, then y is called a
collider on w; otherwise, it is a noncollider. Then, the y-connecting
walk/route and p-separation are defined as follows [19].

DEFINITION 2 ({-CONNECTING WALK/ROUTE). A walk/route w is
said to be pi-connecting from « to p given C if a ¢ C, every collider
on w is in C U An(C), no noncollider is in C, and the last edge has a
head at f. When a walk/route is not yi-connecting given C, it is said
to be blocked by C

DEFINITION 3 (u-SEPARATION). Leta, f € V,C C V. We say that
B is u-separated from a given C if there is no p-connecting route from
a to f given C.

3 p-PC Algorithm

We propose a constraint-based search algorithm called the p-PC
algorithm for time series. The target is to build a directed graph
such that all p-separations holding in the graph follow correspond-
ing conditional independence relations in the data. We make the
Causal Markov and Faithfulness assumptions which are routinely
employed in independence-based causal discovery. Inspired by [3],
our algorithm consists of two phases for improving efficiency and
strengthening reliability. The pseudocode of the p-PC Algorithm is
shown in Algorithm 1.

Phase-1 is to pre-process the data to select the candidate parental
set for each node. The algorithm starts with an empty parent set
Pa(p) for each node f. It performs conditional independence testing
between the current node ff and every node « in the graph, including
itself (to check for self-loops). Line 8 calls a subroutine score(-)
to conduct this conditional independence testing and returns the
likelihood ratio test (LRT) score which will be discussed in the
next section. For each node in the graph that has not been already
added to Pa(p), the LRT score is computed and stored in a set U
along with its corresponding node name if the score is greater than
zero. Afterward, the node with the highest score in U is added to
Pa(p). Given the most recently updated parental set, conditional
independence testing is conducted for each remaining node again.
The entire process is repeated until there is no node left to be added
to Pa(f) that has a score greater than zero.

In Phase-2, the algorithm proceeds with the graph formed with
the parental sets in Phase-1. It then prunes the graph according to
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the p-separation criterion: for , § € V, if there exists C C V\{a}
such that CI(a, |C) holds, then there is no edge pointing from « to
B in the graph. We can further restrict C to the sets such that there
exists a y-connecting route from « to f that is blocked by C. The
algorithm starts from all pairs of time series «, f (& can be same as
p) with an empty condition set, i.e., |C| = 0. If § is independent of
a, it removes the edge pointing from a to f. Then, it proceeds to
condition sets with one element except ¢, i.e., |C| = 1, and continues
to do so until |C| = n. The algorithm conducts the test only when
currently there exists a p-connecting route from « to f blocked
by C. Different from the Granger causality that always assumes
self-dependence for each time series, for each time series, the y-PC
Algorithm always examines whether it is self-independent, and if
not, whether such dependence could be y-separated by other time
series. Finally, the theory of y-separation ensures that every Markov
equivalent class is a singleton that can be uniquely identified from
the data [19].

Algorithm 1: 4-PC Algorithm

1 Phase-1

2 foreach € Vdo

3 Pa(p)=0;

4 repeat

5 U=0;

6 foreach o € V such that « ¢ U do

if score(a, p,U) > 0 then
L UUscore(a, ,U);

L

9 y = argmax(U);

10 Pa(p) =Pa(p) U {y};
1 | until [U]>0;

12 Phase-2

13 Start from the graph of Phase-1;
14 fori=0ton—-1do
foreachC C V, |C| =ido
foreach o € V such that a ¢ C do
foreach f € V such that ¢ — f do
if there exists a p-connecting route from o to f§ that
is blocked by C then
L if score(a, f,C) = 0 then

L Remove edge from a to f ;

For the time complexity, the number of conditional indepen-
dence tests required by the algorithm is O(|V|)? in Phase-1 and
exponential to the number of nodes in the worst case in Phase-2
similarly to the PC algorithm. For the latter, many techniques have
been proposed for improving efficiency (e.g., [7, 14]). In addition, in
practice, conditional independence testing is conducted only when
there exists a corresponding p-connecting route. A subroutine for
finding all p-connecting routes based on the depth first search has
a O(|V| + |E|) time complexity.

4 RMTPP-based CI Testing

The Conditional Independence (CI) testing for time series is the
key component of the y-PC algorithm. In order to handle both
continuous and discrete time series, we leverage the Recurrent
Marked Temporal Point Process (RMTPP) [9], which is a unified
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model capable of modeling general nonlinear dependency among
time series for both variables values and timings. The RMTPP model
is an RNN that takes the history of the time series as inputs to
predict both the value and timing of the next observation. The
hidden state h learns a representation of the influence from the
history of the time series and is updated each time after reading
in the next observation. Given the learned representation h, the
likelihood that the next observation will occur at time t* relative to
the timing of the latest observation t’, denoted by f(¢*|h), as well
as the likelihood that the marker value of the next observation is
x*, denoted by P(x*|h), are computed. Consequently, the RMTPP
model is trained by maximizing the log-likelihood over the entire
time series dataset.

For CI testing, we make use of the RMTPP model to capture the
predictable information contained in the time series. According to
the definition of conditional independence, given any triple «, §, C,
we fit two RMTPP models, referred to as mg and m;. Conceptually,
in mg we feed time series in X€ into the model as inputs and predict
time series X/ ; while in m1, we use both X% and X€ to predict x5,
If the performance of the two models is the same, it means that
X€ contains the same predictable information about XA as X¥ and
XC. In the implementation, we actually use the same inputs X%
and XC for both models but restrict the parameters associated with
X% in my to be zeros. This allows us to employ the likelihood ratio
test for measuring predictability, which is a statistical test of the
goodness-of-fit between two models, a more complex one with
more parameters and a simpler one with fewer parameters.

Different from the original RMTPP model where the inputs and
outputs are the same time series, in our context the inputs and
outputs can be different time series. To deal with this change, we
align all the time series on the same temporal dimension and feed
the observations into the model according to the temporal order.
If the current observation is for input, i.e., Xt“ or Xtc, we update

the hidden state h; otherwise, we compute the likelihood of Xtﬁ for
the cost function. Symbolically, for the triple , f, C, the unified
formula for updating h at time ¢ is given by

hpery = max I (Wix§+vft) + Wbt o}, (1)

ieCU{a}

where Xi is the embedding of X!, and W¥, V/ are parameters as-
sociated with the input marker and timing respectively. I’ is an
indicator parameter that is restricted to zero if i = a in mg. Thus,
we consider there is one parameter difference between mg and mj.

Denoting by t = {t1,...,t},..., tm} the timings ofXﬂ, the cost
function is given by

1= )" (1og PCX] ) +1og £ ;)

Jj=1

()

where hj- denotes the latest updated hidden state prior to t;. Finally,
the network architecture of our CI testing model is shown in Fig. 2.

Denoted by [y and [; are the maximized log-likelihood obtained
by mg and my respectively. The likelihood ratio test is conducted
upon the ratio A = ly/l;. The null hypothesis is that the more
complex model m is not significantly better than the simpler model
my. Thus, the conditional independence relation holds if the null
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Figure 2: Network architecture of RMTPP-based CI testing,.
For each triple ¢, §, C, we input the timings and values of X*
and X into the RMTPP for updating hidden state h, while
treating X? as the output for computing the cost.
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Figure 3: (a) Results of y-PC on continuous time series. (b)
Causal graph of climate data in Montana.
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Figure 4: Time-lagged causal graphs for data generation. The
value of X¥ at each time is generated by randomly selecting
either one of the causal dependencies.

hypothesis is not rejected. The subroutine score(a, §, C) is hence
computed as score = max(( y?—r), 0) where y? = —2log Aand risa
threshold obtained from the 1% percentile point of Chi-distribution
with 1 degree of freedom.

Remark. For discrete time series, there are no timings and the
values are simply indexed in time order. In this case, we can use a
simplified version of the model by removing parameter matrices
and log-likelihood terms associated with the time from Eq. (1) and
Eq. (2) respectively. The CI testing procedure remains the same.

5 Experiments

We conduct experiments on synthetic and real-world datasets to
evaluate the performance of the y-PC algorithm. We compare our
method with PCMCI [23], ITGH [1], and CUTE [5]. For PCMCI,
we convert its time-lagged causal graph to a directed graph such
that if there is an edge from one variable to another with any lag
in the time-lagged causal graph, then there is an edge between
corresponding nodes in the directed graph.

Synthetic Data. We utilize the directed graph with three nodes
a, P,y as shown in Fig. 1. Then, we define two mechanisms for
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Accuracy Precision Recall F-Measure
p-PC 0.900 0.895 0.900 0.888
ITGH 0.667 0.667 0.500 0.572
PCMCI 0.867 0.897 0.850 0.862
CUTE 0.355 0.350 0.525 0.420

Table 1: Results on discrete time series w/o stationarity.

generating both timings and marker values of each time series
based on the graph. In Setting 1, to evaluate the p-PC algorithm
for continuous time series, we generate the timings as Hawkes
processes and marker values with multinomial distribution. The
results of the 10 runs are shown in Fig. 3(a). As we can see, in
general, the p-PC algorithm could correctly identify the causal
dependencies as well as directions. However, the performance is
not quite stable. This may be due to the randomness in the training
process and the imperfect fitting to the observational distribution.
Particularly, our current algorithm is based on the traditional RNN
which is not able to keep track of long-term dependencies. We
will study if adopting modern versions of RNN such as LSTM or
GRU could improve the performance of our algorithm. In Setting
2, we generate discrete time series by generating marker values
for each time index. To investigate the effect of non-stationarity
causal dependencies, we consider two types of causal dependencies
with different time-lags and strengths that are used randomly in the
generation as shown in Fig. 4. The performance of our method and
baselines is shown in Table 1. We see that our method significantly
outperforms ITGH and CUTE, and slightly outperforms PCMCI,
showing the improvement of our method relative to PCMCI in
nonstationary settings.

Climate Data. Finally, we conduct experiments on the climate data
used in [1, 15]. The dataset contains monthly measures of 9 fea-
tures over 13 years taken in Montana including temperature (TMP),
frost days (FRS), greenhouse gases including Methane (CH4), car-
bon dioxide (CO2), solar radiation including global extraterrestrial
(GLO), precipitation (PRE), vapor (VAP), cloud cover (CLD), and
wet days (WET). The causal graph built by our method is shown
in Fig. 3(b). We see that our method can discover edges that have
reasonable explanations in climate science. For example, the causal
graph shows that the vapor does not directly influence the num-
ber of frost days but the effect is indirect through cloud cover and
temperature. However, there are some edges that do not have clear
explanations. Possible reasons for these edges include insufficient
data and hidden variables.

6 Conclusions

In this paper, we proposed an algorithm called the p-PC for building
causal graphs for time series. The algorithm is based on the theory
of p-separation so it does not assume stationarity. We proposed an
RMTPP-based CI testing technique so that the algorithm works for
both discrete and continuous time series. Experiments using both
synthetic and real-world datasets showed that the p-PC algorithm
could recover causal relationships from time series more accurately
than existing methods. Our work established a general framework
for designing constraint-based search algorithms for time series.
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