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Evaluating Risk-Stratified HPV Catch-up

Vaccination Strategies: Should We Go
beyond Age 26?

Fan Wang , Kristen N. Jozkowski, and Shengfan Zhang

Background. Human papillomavirus (HPV) is the most common sexually transmitted infection in the United States.
HPV can cause genital warts and multiple types of cancers in females. HPV vaccination is recommended to youth
age 11 or 12 years before sexual initiation to prevent onset of HPV-related diseases. For females who have not been
vaccinated previously, catch-up vaccines are recommended through age 26. The extent to which catch-up vaccines
are beneficial in terms of disease prevention and cost-effectiveness is questionable given that some women may have
been exposed to HPV before receiving the catch-up vaccination. This study aims to examine whether the cutoff age
of catch-up vaccination should be determined based on an individual woman’s risk characteristic instead of a one-
size-fits-all age 26. Methods. We developed a microsimulation model to evaluate multiple clinical outcomes of HPV
vaccination for different women based on a number of personal attributes. We modeled the impact of HPV vaccina-
tion at different ages on every woman and tracked her course of life to estimate the clinical outcomes that resulted
from receiving vaccines. As the simulation model is risk stratified, we used extreme gradient boosting to build an
HPV risk model estimating every woman’s dynamic HPV risk over time for the lifetime simulation model. Results.
Our study shows that catch-up vaccines still benefit all women after age 26 from the perspective of clinical outcomes.
Women facing high risk of HPV infection are expected to gain more health benefits compared with women with low
HPV risk. Conclusions. From a cancer prevention perspective, this study suggests that the catch-up vaccine after age
26 should be deliberately considered.
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Human papillomavirus (HPV) is the most common sexu-
ally transmitted disease in the United States. Over 14
million people are newly infected with HPV each year.1

Although most HPV strains are asymptomatic and often
regress spontaneously, some HPV subtypes can cause gen-
ital warts and multiple types of cancers for females, includ-
ing cervical, anal, vaginal, vulvar, and oropharyngeal
cancers. In particular, HPV types 16 and 18 result in 70%
of cervical cancers, which account for the second largest
cause of cancer deaths among women worldwide.2,3

There are 3 major types of HPV vaccinations: biva-
lent, quadrivalent, and 9-valent vaccines. The 9-valent
vaccine, which was recently approved by the US Food
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and Drug Administration (FDA), provides protection
against HPV types of 6, 11, 16, 18, 31, 33, 45, 52, and 58.
Since the end of 2016, only 9-valent vaccine has been
available in the United States, while bivalent and quadri-
valent vaccines continue to be available in other coun-
tries.4 Although the HPV subtypes covered by the 3
vaccines vary, all of them provide strong protection
against HPV 16 and 18, which account for most HPV-
related cancers. The Advisory Committee on Immuniza-
tion Practices (ACIP) recommends that children should
receive HPV vaccination at ages 11 to 12.4 For those
who have not been vaccinated, catch-up HPV vaccina-
tions are also recommended for both females and males
through age 26. According to the latest estimates, 60%
of US teens aged 13 to 17 years received at least 1 dose
of the HPV vaccine.5 Although the guidelines proposed
do not recommend vaccination for women over age 26,
recent studies indicated that these women still bear sig-
nificant HPV risk.6 Previous clinical trials also found
that the peak antibody titers and 4-month follow-up pla-
teaus of HPV vaccines for women over 26 were noninfer-
ior to those induced at ages 16 to 26.7 In Australia, HPV
vaccines are approved for use by females up to 45 years
old.8 Thus, being vaccinated after age 26 may be benefi-
cial.9–11 In 2018, the FDA approved a supplemental
application for Gardasil 9 (9-valent vaccine Merck &
Co., NJ, USA), expanding the use of the vaccine to include
ages 27 through 45 in the United States.12 The FDA’s
approval of the new age range suggests the potential neces-
sity and possibility of extending HPV vaccination above
age 26 years in the future national vaccination guidelines.

Previous studies evaluated HPV vaccination programs
at the population level. Most of these studies assessed the
cost-effectiveness and clinical outcomes of HPV vaccina-
tion programs based on simulation models.13–17 In par-
ticular, a recent study by Brisson and Laprise18 discussed
the cost-effectiveness of extending the established HPV
vaccine program in the United States to both women
and men aged 27 to 45 years. The study found extending
vaccination to middle-aged adults only produced small
additional reductions in predicted cases of genital warts,
cervical intraepithelial neoplasia, and cervical cancers
compared with the current vaccination program. Van de
Velde et al.19 concluded that differences in the elements
of model design, such as natural immunity, partnership
duration, HPV types, and waning of vaccine protection,
resulted in significant differences in the estimated effec-
tiveness of the vaccine. It is reasonable to expect that
people with different levels of HPV risk, based on indi-
vidual characteristics, have different clinical postvaccina-
tion outcomes. To our knowledge, there are relatively
few studies quantifying the effect of HPV vaccination at

the individual level, especially from the cancer prevention
perspective. However, a number of individual-level risk
factors that determine the level of HPV risk on different
women, including demographic attributes such as age,
personal lifestyle, and sexual behavior, have been identi-
fied.20–22 Thus, a risk-stratified evaluation model incor-
porating individual HPV risk could more precisely reveal
the different impacts of HPV vaccination on different
people.

This study aims to provide a risk-stratified evaluation
model of HPV vaccination strategy and examine the clin-
ical outcomes of HPV vaccination for women older than
26. We seek to investigate the cutoff age of an HPV
catch-up vaccine based on every single woman’s risk
characteristics. We developed a microsimulation model
to evaluate multiple clinical consequences after a woman
receives the vaccines based on a number of personal
attributes. We estimated the following patient-specific
clinical consequences: 1) lifetime risk of developing
HPV-related cancers, 2) life expectancy, and 3) life years
saved by vaccines. While the prior cost-effectiveness
study on HPV vaccination showed a relatively small
population-level health benefit of extending the HPV
vaccination up to age 45,18 we expect those clinical out-
comes to differentiate at the individual level obviously.
As previous population-level studies of male HPV vacci-
nation suggested that male vaccination was likely not
cost-effective if the vaccine coverage of females was high
(.80%),16 we focus this study on females’ HPV vaccina-
tion. Specifically, we choose the clinical outcomes related
to female cancers as the metrics evaluated in the simula-
tion. The contribution of our study is 2-fold. First, this is
the only patient-specific simulation model for the evalua-
tion of HPV vaccination that provides more practical
and accurate decision support for both individual women
and care providers. Second, our study considers vaccina-
tion after age 26, which exceeds the recommended age of
catch-up vaccines in the United States. The results of the
study would be instrumental for medical decision makers
to rationally determine the catch-up vaccination and
potentially amplify the public health benefits of HPV
vaccines.

Methods

The proposed HPV vaccination evaluation model con-
sists of 2 submodels. The main body of the model is a
microsimulation model that keeps track of every individ-
ual woman’s course of life, which involves multiple
deterministic events and probabilistic events. An HPV
risk model dynamically estimates the patient-specific
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high-risk HPV (i.e., HPV 16/18) risk of every simulated
woman’s life course so as to update the likelihood of
probabilistic events in the simulation.

Estimation of Clinical Consequences Using
Microsimulation

We model every woman’s life course in different vaccina-
tion scenarios (i.e., varying age at vaccination). The
model simulates every woman’s life course with the given
risk characteristic repeatedly over a planning horizon
from a certain starting age to her death, which does not
exceed age 100. The system clock is incremented by a
fixed amount of time (1 year) at each step of the simula-
tion. We use t to represent the current time epoch (i.e., a
woman’s age). Five main states are used to represent a
woman’s health status (Table 1):

� Susceptible (S): the woman has no immunity against
HPV and therefore is susceptible.

� Immune (I): the woman has been vaccinated or natu-
rally acquired immunity and therefore is immune to
the specific high-risk HPV.

� HPV infection (H): the woman without immunity is
infected with high-risk HPV.

� Cancer (C): the woman has developed an HPV-
related cancer.

� Death (D): the woman dies from HPV-related cancers
or other causes.

A woman’s state at time t is denoted by st, where
st 2 S, I,H,C,Df g. During the course of a woman’s
simulated life, her health status will switch between the 5
states until she enters death or reaches age 100. Table 1
summarizes the main deterministic events and probabilis-
tic events in a woman’s simulated life course. Figure 1
shows the 5 states and the specific events resulting in the
transitions between these states. In particular, we assume
all women complete 3-dose HPV vaccines and acquire

full immunity against HPV. As long-term clinical trials
examining protection duration for HPV vaccines are still
ongoing and have reported almost persistent efficacy
during the whole follow-up period,23 we also assume that
the vaccines provide women with full lifetime immunity
against HPV infection in the base case analysis. How-
ever, as the HPV attack rate and associated high-grade
precancerous outcomes are relatively low after age of 25
years,24 the long-term effectiveness of HPV vaccination
in mid-adult women remains unclear. Previous trials
showed that 96% of women had anti-HPV 16 seroposi-
tivity, while 84% of women expressed anti-HPV 18 sero-
positivity at 10 years after receiving bivalent vaccines.7

In contrast, loss of seropositivity over years for anti-
HPV 18 remains problematic regardless of age of receiv-
ing quadrivalent vaccines. There are no trials of 9-valent
vaccines in mid-adult-aged women. Thus, we set multiple
sensitivity analysis scenarios by considering different lev-
els of vaccine efficacy against persistent HPV infections

Table 1 Main Events in the Simulation Model

Deterministic Events Probabilistic Events

n The woman will get vaccinated at a specific age. n The woman may be infected with the high-risk human papillomavirus (HPV).
n She will die at age 100 if not

dying at an earlier age.
n After the woman is infected with the high-risk HPV, HPV may clear

spontaneously with or without naturally acquired immunity.
n After the woman is infected with the high-risk HPV, HPV may progress

to cancer.
n If the woman develops an HPV-related cancer, the cancer may result

in death or be successfully cured.
n The woman may die at any age.

HPV clears spontaneously with naturally acquired immunity

The 
woman is 
infected 

with HPV

HPV clears 
spontaneously 

without naturally 
acquired 
immunity

HPV progresses to cancer

Cancer regresses and HPV persists

The woman is vaccinated

Cancer 
regresses 
and HPV 
clears 

The woman loses HPV immunity

S
Susceptible

H
HPV infection

I
Immune

C
Cancer

D
Death

Figure 1 The main structure of the simulation model.
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after age 26. In addition, when a woman’s HPV clears
spontaneously, she may obtain naturally acquired immu-
nity, which is possibly waning over time.25 Thus, a
woman with protection against HPV may still enter
‘‘HPV infection’’ or ‘‘susceptible’’ states under the sce-
narios of nonlifetime vaccine protection or naturally
acquired immunity. At each step of the simulation, the
system determines the occurrences of the events based on
the woman’s current state and the corresponding likeli-
hoods of probabilistic events. The woman stays in one of
the states until an event occurs and changes her state.

Let Pt(st + 1jst) denote the transition probability from
state st to state st + 1 for a woman at age t. Table 2 sum-
marizes the major transition probabilities used in the
simulation. The HPVs involved in the states all refer to
high-risk HPV 16/18. We separate HPV 16 and 18 and
simulate the 2 HPV subtypes’ trajectories independently.
The states denoted by H include HPV 16 infection, HPV
18 infection, and HPV 16/18 coinfection. Thus, some
transitions in Table 2 correspond to multiple actual tran-
sitions in the simulation (e.g., Pt(HjS)).

Different from the other 4 states, ‘‘cancer’’ is a com-
plex state that consists of several subsequent processes,
which represent the development, diagnosis, and treat-
ment of an HPV-related cancer. Figure 2 illustrates sub-
sequent processes that may take place after HPV
develops into cancer. We use multiple substates to differ-
entiate detected and undetected HPV-related cancers as

well as different stages of the cancers, as they have differ-
ent death rates. The simulation clock is still incremented
by 1 year at each step after a woman enters the substates
of the ‘‘cancer’’ state. When a woman completes the tran-
sitions from ‘‘HPV infection’’ state to ‘‘cancer’’ state, she
will be immediately assigned to the ‘‘precancer/in situ
cancer’’ state. Then the woman’s precancer or in situ can-
cer may progress to an invasive cancer or be diagnosed.
The state transitions in the substructure are similar to the
transitions in the main structure of the simulation model.

HPV has been identified as an important cause of at
least 5 cancers experienced by women, including cervical
cancer, anal cancer, vaginal cancer, vulvar cancer, and
oropharyngeal cancer.26 The simulation model takes
these 5 HPV-related cancers into account. As an exam-
ple, cervical cancer development and prognosis are
explained in detail to demonstrate the simulation pro-
cesses after a woman’s HPV progresses to cancer. Every
year, an HPV 16/18 infection may naturally progress to
an HPV-related cancer with a certain probability. The
first status after the progression is the precancer or in
situ cancer stage. For cervical cancer, this status includes
3 states: cervical intraepithelial neoplasia (CIN) 1, CIN
2, and CIN 3, which are nonmalignant precancer stages
of cervical cancer with the propensities of regression and
progression.27 These precancer stages may be detected
by routine cervical cancer screening (i.e., Pap test) with a
certain probability every year. Once detected, the CINs

Table 2 States Transitions in the Simulation Model

Probability Transition Value

Pt(HjS) A woman is infected with human papillomavirus
(HPV).

Individual annual HPV incidence rate

Pt(SjH) HPV regresses spontaneously without naturally
acquired immunity.

One-year regression rate of HPV adjusted for the
possibility of no HPV immunity

Pt(IjH) HPV regresses spontaneously with naturally acquired
immunity.

One-year regression rate of HPV adjusted for the
possibility of acquiring HPV immunity

Pt(DjH) The infected woman dies from reasons other than
HPV-related cancers.

One-year death rate (excluding HPV-related
cancers)

Pt(CjH) HPV progresses to an HPV-related cancer. Cancer-specific 1-year progression rate of HPV
Pt(DjC) The woman dies from any reasons, including HPV-

related cancer.
Cancer-specific 1-year death rate (including other
reasons)

Pt(DjI) The uninfected woman dies from reasons other than
HPV-related cancers.

One-year death rate (excluding HPV-related
cancers)

Pt(SjI) The woman loses the HPV immunity. One-year waning rate of HPV immunity
Pt(DjS) The uninfected woman dies from reasons other than

HPV-related cancers.
One-year death rate (excluding HPV-related
cancers)

Pt(IjS) The woman gets vaccinated. 100% at a specified age
0% at other ages

Pt(HjC) The HPV-related cancer regresses. HPV persists. HPV persistent rate after cancer treatment or cancer
regression

Pt(IjC) The HPV-related cancer regresses. HPV clears. 1�HPV persistent rate (excluding death in 1 year)
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will be treated. Then the simulated woman will reenter
the ‘‘HPV infection’’ state or the ‘‘immune’’ state in Fig-
ure 1, depending upon whether the HPV infection per-
sists or not. During the year, the woman may also die
from a cause other than cervical cancer. If the CINs are
not detected, the woman’s status may stay the same,
regress to ‘‘HPV infection,’’ regress to ‘‘immune,’’ or
progress to a local cervical cancer. When the woman
enters the ‘‘undetected local cancer’’ state, similarly, the
local cancer has the potential of evolving to a regional
cervical cancer and being detected. Since the woman has
cervical cancer, there is a certain possibility for her to
develop cancer-related symptoms, which finally result in
diagnosis and treatment of the cancer. The combination
of the symptom development rate and cervical cancer
screening rate is the transition probability from unde-
tected local cancer to detected local or regional cancer. If
the cancer is detected, the woman will enter the ‘‘detected
local cancer’’ state and end up with ‘‘survivor.’’ The ‘‘sur-
vivor’’ state makes the simulated woman quit the simula-
tion and be assigned with a lump-sum life expectancy
based on her specific cancer stage.

We assume that a woman will never develop multiple
HPV-related cancers simultaneously, as the incidences of
synchronous primary cancers of the female genital tract
are very rare.28 Once a woman develops an HPV-related
cancer in the simulation, she is temporarily free from the
other cancers.

The goal of the simulation is to estimate patient-
specific clinical consequences in different vaccination sce-
narios (i.e., different ages at vaccination) with given indi-
vidual HPV risk characteristics. A woman’s life course is
simulated multiple times to derive the average values of
lifetime risk of developing HPV-related cancers and life
expectancy. By changing the age at vaccination and
HPV risk, we expect to observe dramatically different
outcomes of these metrics.

HPV Risk Model

In the simulation model, individual HPV risk is embo-
died in the transition possibility Pt(HjS), which is the
transition from ‘‘susceptible’’ to ‘‘HPV infection.’’ Differ-
ent women’s possibilities of being infected with HPV at
every age are estimated based on their personal risk char-
acteristics. Previous studies have identified several beha-
vioral and demographic risk factors of HPV.20–22,29,30

We use a number of identified risk factors associated
with HPV or HPV-related cancers to build a penalized
regression model to estimate the personal HPV risk for
every individual, including demographic attributes, per-
sonal lifestyle, and sexual behaviors.

Table 3 summarizes the 14 candidate risk factors con-
sidered in the HPV risk model. The risk factors are
employed as predictors to estimate the HPV risk. Since
HPV 16 and 18 are responsible for most HPV-related

Death 

Detected local 
cancer

Detected regional 
cancer

Detected distant 
cancer

Undetected 
regional cancer

Undetected local 
cancer

Undetected distant 
cancer

Survivor 

Pre-cancer/ in 
situ cancer 

Detected pre-
cancer/ in situ 

cancer 

Figure 2 The sub-structure of the ‘‘cancer’’ state.
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cancers and preventable by the 3 approved vaccines, we
only take these 2 HPV subtypes into account and treat
the incidences of HPV 16 and 18 as binary variables.
Two separate risk models are built for HPV 16 and 18,
respectively. The response variable is whether a woman
has HPV (16 or 18) at her current age.

There are numerous regression and classification
approaches to build risk models for a problem with a bin-
ary response variable, such as logistic regression, support
vector machine, and various decision tree–based models.
Among all the decision tree–based models, the extreme
gradient boosting (XGBoost) has received extensive
attention in the machine learning community since it was
proposed in 2014.31 XGBoost is an ensemble algorithm
for decision trees. The algorithm trains new decision
trees, adding to the pool in a sequential way, which uses
the optimization steps to improve the classification or the
loss functions of regression models as every new tree is
generated. XGBoost is well known for its superior pre-
diction performance and has been a leading algorithm in
machine learning competitions such as Kaggle and KDD
Cup.31,32 We choose this particular algorithm to build
the HPV risk model, not only due to its generally excel-
lent prediction performance for binary classification
problems but also because of its significant advantages in
some special problem settings. First, XGBoost is able to
optimally handle missing values by finding the best direc-
tion to split, which is exactly the case we encounter in our
HPV risk data. Second, XGBoost is fully compatible
with L1 and L2 regularizations, making it efficient to per-
form feature selection based on a number of candidate
predictors. Primarily, we want to build a parsimonious
model—some risk factors are dynamic and therefore dif-
ficult to be tracked over time, such as number of sex part-
ners. A simple model with as few predictors as possible
would greatly reduce the effort put into data preparation.
In addition, multicollinearity may exist in the model, as
many variables are inherently correlated, such as marital
status and number of sex partners. Additionally, incor-
porating too many variables may result in overfitting,

which leads to the model’s poor out-of-sample perfor-
mance when being applied to the new data. As such, we
use XGBoost with optimally tuned L1 regularization to
build the risk model. The optimal tuning penalty para-
meter (lambda) is determined by a 5-fold cross-validation
with the area under curve (AUC) as the performance
metric, since the HPV risk data are highly imbalanced.

Once the HPV risk models are built, we use the esti-
mated HPV risk as the input for the transition probabil-
ity Pt(HjS), which represents the change from the
‘‘susceptible’’ state to the ‘‘HPV infection’’ state. Then
the simulation is individualized for different women and
generates patient-specific clinical outcomes.

Numerical Experiments

Since the incidences of the HPV-related cancers among
teenagers are very low,33 we assume women do not have
HPV-related cancer before age 20. With the proposed
simulation framework, we simulate the life courses of
women with different HPV risk characteristics from age
20 to their deaths. The simulation estimates the average
values of the gain in life expectancy, lifetime risk of
developing cervical cancer, and lifetime risk of HPV-
related cancers after 100,000 replications. The gain in life
expectancy is defined as the difference of life expectancy
between a woman receiving vaccines at a specific age and
the same woman who never receives HPV vaccines.

Parameter Estimation for the Simulation Model

Table 4 summarizes the values or major data sources
used to estimate the transition probabilities between the
main states in the simulation model. It is worth mention-
ing that our HPV risk model actually estimates the pre-
valence of HPV associated with people having specific
risk characteristics, which is equivalent to the initial state
distribution at the beginning of the simulation. Each
simulated woman is randomly assigned to either ‘‘suscep-
tible’’ or ‘‘HPV infection’’ states according to the

Table 3 Candidate Human Papillomavirus Risk Factors

Demographic Attributes Personal Lifestyle Sexual Behaviors

Age Alcohol use Age at first sex
Marital status Smoking Lifetime number of sex partners
Education level Number of recent sex partners
Ratio of family income to poverty Sexual orientation
Race Ever had sex
Age at first menarche
Parity history

6 Medical Decision Making 00(0)



estimated prevalence. The epidemiologic equation
Prevalence=Incidence3Duration35 is used to calculate
Pt(HjS), which is the incidence associated with a specific
risk characteristic. The 1.2-year duration of oncogenic
HPV 16/18 infection is adopted.14

As mentioned above, we assume that women will not
develop multiple HPV-related cancers at the same time.
An HPV carrier may develop 1 of the 5 HPV-related can-
cers with a certain incidence rate every year. The inci-
dence rates of the 5 cancers on HPV-infected women are
estimated through multiplying the percentage of a cancer
attributable to HPV 16/18 by the corresponding cancer’s
population-level incidence rate.15 For cervical cancer, the
annual progression rates, annual regression rates, annual
symptom development probabilities, annual screening
rate, and stage-specific annual death rates from cervical
cancer, we use the data reported by Sanders and Taira13

as well as Elbasha et al.14 The stage-specific lump-sum
life expectancy of the absorbing state ‘‘survivor’’ is esti-
mated by the DEALE method with the 5-year survival of
invasive cervical cancer.33,36 However, unlike cervical
cancer, there are relatively limited epidemiological data
on the natural history, diagnosis, and prognosis of anal
cancer, vaginal cancer, vulvar cancer, and oropharyngeal
cancer, which do not sufficiently support the complex
substructures of ‘‘cancer’’ state. In addition, many prior
studies on HPV vaccination evaluation only took cervi-
cal cancer into consideration due to the low incidences
rates of these 4 cancers.13,14 Hence, our study simplifies
the impacts of the 4 HPV-related cancers on women’s life
expectancy by deducting the loss of life years associated
with different cancers reported by Chesson et al.15 rather
than modeling their full substructures of ‘‘cancer’’ state
to simulate these cancers.

Parameter Estimation for the HPV Risk Model

We use the National Health and Nutrition Examination
Survey (NHANES) 2015–2016 data37 to build the indi-
vidual HPV risk model. These publicly available data
sets include data for people (n = 15,327 from 30 differ-
ent study locations across the United States) aged 18 to
59 years. The NHANES data report a large number of
personal information of participants, including demo-
graphic, socioeconomic, dietary, and health-related
information as well as medical laboratory exam results,
which cover all the variables summarized in Table 3. Par-
ticularly, the NHANES 2015–2016 data include exam
results of multiple HPV subtypes.

Although 15,327 people were included in the survey,
only 1,872 observations were from females and reported
HPV 16/18 data. Among the 1,872 observations, only
1,516 subjects were age 20 or older. As we set age 20 as
the starting point of the simulation, we use the 1,516
observations to build the risk model. However, a critical
issue of the NHANES data is its large number of missing
data. Only 373 subjects have complete data in all the 15
candidate variables. As mentioned above, thanks to
XGBoost’s exceptional feature of finding the best direc-
tion to split for missing or unknown values, we are able
to leverage both complete and incomplete data to train
the risk models.

Ten of the 14 candidate risk factors are dynamic and
change over time, including age, marital status, educa-
tion level, ratio of family income to poverty, birth his-
tory, pregnancy history, alcohol use, smoking, lifetime
number of sex partners, and number of recent sex part-
ners. Age is simply increased by 1 with every increment
of the system clock. For the remaining 9 dynamic vari-
ables, longitudinal data tracking their changes over time

Table 4 Sources of Input Data for Transition Probabilities

Transition Probability Value or Source for Parameter Estimation

Pt(HjS) Refer to the HPV Risk Model section
Pt(SjH) Sanders and Taira,13 Matthijsse et al.25

Pt(IjH) Sanders and Taira,13 Matthijsse et al.25

Pt(DjH) Arias et al.34

Pt(CjH) Elbasha et al.14

Pt(DjC) Elbasha et al.14

Pt(DjI) Arias et al.34

Pt(DjS) Arias et al.34

Pt(IjS) 100% at specified vaccination age and 0% at other ages
Pt(SjI) 100% (80% or 50% in the scenarios of sensitivity analysis)
Pt(HjC) Sanders and Taira,13 Elbasha et al.,14 Matthijsse et al.25

Pt(IjC) Sanders and Taira,13 Elbasha et al.,14 Matthijsse et al.25

Wang et al. 7



are needed for the lifetime simulation model. To simplify
the tracking process, we convert all numerical dynamic
variables to categorical variables.

As many of the risk factors, such as lifetime number
of sex partners and number of recent sex partners, are
inherently correlated, we fit the XGBoost model along
with optimally tuned L1 regularization to control the
number of selected risk factors. The L1 regularization
makes the model as parsimonious as possible to save the
effort in collecting data for dynamic risk factors. We per-
form the entire analysis in R 3.5.2. The final models for
HPV 16 and 18 selected 10 risk factors in total (Table 5).
Except for age, race, and age at first sex, the remaining 7
selected variables dynamically fluctuate over years and
have to be modeled throughout every woman’s whole
life. During the simulation, if the values of these vari-
ables have any changes, the HPV risk is also updated
accordingly. We use a variety of data sources to model
these dynamic variables as follows.

Marital status. We model women’s changes in marital
status based on the method proposed by Ley-Chavez.38

Five statuses are considered in the model, including first
marriage, first divorce, second marriage, second divorce,
and never married. The duration of each status is mod-
eled by a discrete distribution depending on age. The
simulation randomly assigns an age of first marriage to
women based on the probability distribution estimated
from the Survey of Income and Program Participation.39

The durations of marriage and divorce last for a certain
amount of time or a lifetime, based on the probability
distributions estimated using the Survey of Income and

Program Participation36 and the National Survey of
Family Growth.37

Ratio of family income to poverty. Ratio of family
income to poverty is encoded as a binary variable repre-
senting ratio lower or not lower than 1. The variable’s
transitions are modeled as a distribution stratified by
marital status using data from the US Census Bureau.39

Parity. The parity in this study is defined by a binary
variable indicating if a woman has had a live birth, which
is the probability of already having a first birth. The
probability is stratified by 3 factors: age, marital status,
and race. We assume the probability of already having a
first birth is equally distributed in the 5 years of each 5-
year age group to get age-specific probabilities.

Alcohol use. Women’s alcohol use is defined by 3 types
of drinking behavior: nondrinker, moderate drinker, and
heavy drinker (i.e., ever have 4 or more drinks every
day). The shifts between the 3 types of drinking behavior
are modeled based on data reported in the longitudinal
analysis by Molander et al.40 We assume the probability
of a transition from one behavior to another behavior is
equally distributed in the 5 years to get yearly transition
rates.

Smoking. For smoking behavior, women are classified
into 2 groups: smokers or nonsmokers. The likelihood of
a nonsmoker turning into a smoker is directly estimated
using the NHANES data, which also report participants’

Table 5 Model Selection Result

Candidate Variable Original Data Type Property Selected

Age Numerical Dynamic Yes
Marital status Categorical Dynamic Yes
Education level Categorical Dynamic
Ratio of family income to poverty Numerical Dynamic Yes
Race Categorical Fixed Yes
Age at first menarche Numerical Fixed Yes
Parity history Numerical Dynamic Yes
Alcohol use Numerical Dynamic Yes
Smoking Numerical Dynamic Yes
Age at first sex Numerical Fixed Yes
Ever had sex Categorical Dynamic
Lifetime number of sex partners Numerical Dynamic Yes
Number of recent sex partners Numerical Dynamic
Sexual orientation Categorical Fixed
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ages when they started smoking cigarettes regularly. We
use the recent smoking cessation rate reported by the
Centers for Disease Control and Prevention41 to evaluate
the yearly likelihood of a smoker to quit smoking.

Lifetime number of sex partners. Lifetime number of sex
partners is encoded as a categorical variable with 6 levels:
0, 1, 2 to 4, 5 to 7, 8 to 10, and 11 or more. A 2-stage
model is built to model the yearly new sex partners acqui-
sition of women. As the NHANES 2015–2016 data also
reported if every woman had sex with a new person, we
fit an XGboost model to predict a woman’s possibility of
having sex with new partners in the current year using
the same data for the HPV risk model. For those who are
predicted to have new partners, the numbers of their new
sex partners are then estimated based on the method pro-
posed by Ley-Chavez.38 The number of new sex partners
a woman acquires annually is categorized into the follow-
ing groups: 0, 1, 2, and 3 or more. The probability of
women having 0 to 3 or more new partners each year is
determined by an age-specific discrete distribution. The
category ‘‘3 or more’’ actually assigns 3 new partners to
women in the simulation. Thus, a woman with new sex
partners is randomly assigned to 1 of the 4 categories
according to the discrete distribution based on her age
group.

The detailed distributions and parameter values are
provided in the Appendix.

Design of Numerical Experiments

Based on the HPV risk models, 2 typical risk characteris-
tics, a typical 20-year-old high-risk woman and a typical
20-year-old low-risk woman, are made up using the
selected variables (Table 6). As we assume no woman
has HPV-related cancer before age 20, the first

vaccination scenario is that the 2 women are both vacci-
nated at age 20. We also examine the outcomes of vacci-
nation at age 26, which is the current age limit of catch-
up HPV vaccination. Then the 4 ages beyond the limit
are investigated: ages 30, 35, 40, and 45. The simulation
is run for the 2 women under each of the vaccination sce-
narios for 100,000 times. Then the average values of the
3 metrics are reported for each woman under different
scenarios, including average gain in life expectancy, life-
time risk of developing cervical cancer, and lifetime risk
of developing HPV-related cancers. The average gain in
life expectancy is derived by calculating the difference of
expected life years between an unvaccinated woman and
a vaccinated woman, both of whom have the same risk
characteristics.

As a validation, we also use the HPV incidences of the
general female population to simulate average women’s
life courses under the same 6 scenarios. The simulation
results of average women are expected to lie between
high- and low-risk women’s clinical outcomes. The 3
groups’ HPV 16/18 incidences in the simulation are
directly using the HPV risk models and NHANES data.
Table 7 shows the incidences of 3 groups at the 6 vaccina-
tion ages (the actual incidence of high-risk and low-risk
in the simulation may vary due to the dynamic changes
in their risk characteristics).

Results

Table 8 presents the clinical outcomes of vaccinations at
different ages. The clinical outcomes show dramatic dif-
ferences among the women with different levels of HPV
risk. The gain in life expectancy of the high-risk woman
is over 14 times higher than that of the low-risk woman.
However, no matter what the risk, receiving catch-up
vaccines almost always benefits a woman. The high-risk

Table 6 Simulation Scenarios

Variable High-Risk Woman Low-Risk Woman

Age at vaccination 20, 26, 30, 35, 40, 45 20, 26, 30, 35, 40, 45
Age 20 20
Marital status Unmarried Married
Ratio of family income to poverty \1 �1
Race African American Asian American
Age at first menarche 7 to 9 13 to 15
Parity history No Yes
Alcohol use Heavy drinker Nondrinker
Smoking Yes No
Age at first sex � 12 20–24
Lifetime number of sex partners �11 1
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woman has the highest gain in life expectancy when
receiving vaccines at age 20, which amounts to 304 days
(0.833 years) on average. The effect of vaccination on an
average-risk woman falls in between a high-risk woman
and a low-risk woman. When getting vaccinated at age
20, an average-risk US woman improves her life expec-
tancy by 147 days (0.403 years), while the low-risk
woman only gains 20 additional days (0.056 years) in her
life expectancy. The current HPV vaccination policy only
recommends catch-up vaccines for women up to age 26,
but we still see significant improvements in life expec-
tancy on women older than 26, especially those bearing a
high HPV risk. At age 30, the high-risk woman is
expected to gain 273 days (0.748 year) by getting vacci-
nated, while an average-risk woman also gets a 133-day
(0.364 years) gain in life expectancy. Even at age 45, the
vaccination still shows a considerable value on high-risk
women—a 0.491 life-year gain, which is equivalent to
179 days. For an average woman, getting vaccinated at
age 45 generates a 0.189 life-year gain on average. In
addition, it would result in a lifetime cervical cancer risk
of 0.41% for her, which is a slight but significant reduc-
tion from the current US female population’s lifetime
risk of developing cervical cancer (i.e., 0.62%).42 These
results suggest that catch-up vaccines after age 26 should
be deliberately considered.

Sensitivity Analysis

The base case analysis assumes that the vaccines provide
women with lifetime full immunity against HPV infec-
tion. However, as we mentioned above, the HPV attack
rate and associated high-grade precancerous outcomes
are relatively low after age 25.24 The long-term effective-
ness of HPV vaccination in mid-adult women remains
debated. We perform a sensitivity analysis to examine
the impacts of different vaccine protection rates on the
outcomes (Table 9). Four different scenarios considering
age-dependent and time-dependent partial protections
against HPV are investigated. Figure 3 presents varying

average gain in life expectancy as a metric to test under
different scenarios. The results show that lowering vac-
cine protection after age 25 in the simulation has signifi-
cant impacts on the high-risk and average-risk women.
A partial protection of 50% after age 25 drastically low-
ers the high-risk and average-risk women’s life-year gains
from receiving catch-up vaccines to a level similar to that
of the low-risk woman (scenario 2). In contrast, the dif-
ference of life-year gains between the full and partial pro-
tection assumptions is less obvious for low-risk women.
In general, varying vaccine protection rates does not pro-
duce unexpected outcomes.

Discussion

In this study, we estimate the clinical outcomes that
women from typical risk-stratified groups are expected to
have under different vaccination scenarios. Although the
average gain in life expectancy from receiving catch-up
vaccines after age 26 is numerically modest even for the
high-risk individual, the potentially averted HPV-related
cancer cases can aggregate to substantially large numbers
on a group of women with the same risk characteristics.
For instance, the high-risk woman vaccinated at age 30
has a lifetime risk of developing cervical cancer equal to
0.24%. If the catch-up vaccine is delayed to age 45, the
risk rises to 0.68%. The increased risk (i.e., 0.44%) is
equivalent to a significant number of cancer cases when
applying to the population with the same high-risk char-
acteristics. Assuming there are 100,000 women having
the high-risk profile, if we consider the vaccination at age
45 as a baseline, the catch-up vaccination at age 26 would
prevent additional 577 cancer cases compared with the
vaccination at age 45. However, the vaccination as late as
age 30 could still prevent 480 cervical cancer cases com-
pared with the baseline age 45. In contrast, the increased
risk of cancer on low-risk woman is relatively low, imply-
ing the necessity of a risk-stratified catch-up vaccination
policy.

Table 7 Human Papillomavirus (HPV) Incidences of 3 Risk Groupsa

Age High-Risk Woman, % Low-Risk Woman, % Average-Risk Woman, %

20 4.0 0.2 1.3
26 8.2 0.4 5.0
30 7.6 0.3 4.2
35 6.9 0.7 3.5
40 6.3 0.7 3.6
45 9.4 0.3 2.6

aThe annual incidences are combined incidence of HPV 16 and HPV 18.
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In short, this study proposes a novel vaccination eva-
luation framework, which combines a microsimulation
with a dynamically updated risk model. Specifically, we
show how to address dynamic risk factors and model
these factors over every woman’s life course. The model-
ing process involves data from a variety of sources, but
the results can be validated. The same approach can be
applied to a clinical outcome evaluation or cost-
effectiveness study on the vaccination of another disease
such as herpes simplex virus.

Our findings are aligned with the well-established pub-
lic health recommendations of HPV catch-up vaccination
and confirm that the earlier a woman gets vaccinated,
the less HPV-related cancer risk she would be exposed
to. However, our study differs from most of the previous
studies in that the model works at the individual level
rather than the population level. We evaluate the impact
of HPV vaccines on different women and reveal that the

catch-up vaccines after age 26 are still very beneficial to
US women, especially those with high HPV risk. We also
confirm that Australia’s HPV vaccination policy, which
provides vaccines to women up to 45 years old, is also
rational for some US women. Our results are consistent
with many previous arguments that support providing
catch-up HPV vaccines to older women.8–10 Although
this study demonstrates the significant health benefits of
customizing the cutoff age for different women, whether
the current one-size-fits-all HPV vaccination catch-up
policy has to be individualized or risk stratified still relies
on a comprehensive cost-effectiveness study. This study
also creates a new perspective on the cost-effectiveness of
HPV vaccination for the countries that still use bivalent
or quadrivalent HPV vaccines. As the bivalent and quad-
rivalent vaccines provide a considerable level of protec-
tion against the HPV-related cancers at a much lower
cost compared to the 9-valent vaccine, vaccinating older

Table 8 Clinical Outcomes of Human Papillomavirus (HPV) Vaccination at Different Ages

Age at Vaccination High-Risk Woman Low-Risk Woman Average-Risk Woman

Average gain in life expectancy (95% confidence interval)
20 0.833 (0.820, 0.845) 0.056 (0.044, 0.068) 0.403 (0.153, 0.155)
26 0.789 (0.776, 0.802) 0.056 (0.044, 0.068) 0.390 (0.080, 0.080)
30 0.748 (0.736, 0.761) 0.054 (0.042, 0.066) 0.364 (0.057, 0.057)
35 0.710 (0.698, 0.723) 0.051 (0.039, 0.063) 0.338 (0.326, 0.030)
40 0.608 (0.596, 0.621) 0.037 (0.002, 0.002) 0.277 (0.265, 0.290)
45 0.491 (0.478, 0.504) 0.014 (0.002, 0.027) 0.189 (0.176, 0.202)

Lifetime risk of developing cervical cancer, %
20 0.04 0.00 0.01
26 0.11 0.00 0.03
30 0.20 0.01 0.09
35 0.30 0.01 0.16
40 0.49 0.04 0.27
45 0.68 0.07 0.41

Lifetime risk of developing HPV-related cancer, %
20 0.05 0.00 0.01
26 0.14 0.00 0.04
30 0.24 0.01 0.10
35 0.34 0.01 0.17
40 0.57 0.05 0.30
45 0.81 0.09 0.48

Table 9 Vaccine Protection Scenarios in the Sensitivity Analysis

Scenario Protection Scenario

1 Protection rate decreases to 80% for women over age 25.
2 Protection rate decreases to 50% for women over age 25.
3 Protection rate decreases to 80% after 10 years of vaccination for women.
4 Protection rate decreases to 50% after 10 years of vaccination for women.
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women with bivalent or quadrivalent vaccines may
exempt some low-risk women at older ages from HPV-
related cancer screening (e.g., the Pap test), which is
eventually more cost-effective from a systematic point of
view.

Our analysis also has some limitations. First, due to
the data scarcity, the diagnosis and prognosis of the
HPV-related cancers other than cervical cancer are not
sufficiently modeled. The simplified method may result
in inaccuracy in the final outcomes. Second, we use
annual cycles in the simulation as most of the raw data
for parameter estimations were reported as annual rates.
The model is highly complicated and involves a wide
range of parameter estimation, including the dynamic

change of various risk-related personal behaviors, the
natural history of HPV, and the development, diagnosis,
and progression of HPV-related cancers in every cycle. It
is difficult to accurately quantify most of these para-
meters at an interval of less than 1 year. However, the
annual update is potentially inadequate to reflect the
subtle changes in patients’ personal conditions, such as
some repeated cancer screenings at intervals of less than
1 year. Third, we make several assumptions in the para-
meter estimation. For instance, we assume the duration
of protection against HPV is lifelong, as the current
long-term clinical trials that follow up the protection
duration from HPV vaccines are still ongoing and have
only reported 10 years’ effective duration.23 Fourth, it is

Figure 3 The average gains in life expectancy associated with different protection rates.
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difficult to find comparable data to validate the results
produced by our simulation model. Most of the empiri-
cal data and previous studies were focused on the vacci-
nation policy for the entire population and usually put a
wide range of ages at vaccination (e.g., 11 to 26 years
old) in the same pool to obtain the population-level esti-
mates, while this study only investigates the catch-up
vaccination for females at the individual level. Last, prior
studies suggested that the 9-valent vaccine targeting
HPV 31/33/45/52/58 may prevent an additional 4.2% to
18.3% of cancers on top of the cancers caused by HPV
16/18.43 Our study focuses on the cancers attributable to
HPV 16/18, which potentially underestimates the impact
of 9-valent vaccines on cancer prevention. As a future
research direction, we can incorporate all HPV-related
cancers and noncancer diseases (e.g., genital warts) tar-
geted by 9-valent HPV vaccines in a simulation study to
evaluate catch-up vaccination policies.
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burden of cervical cancer in 2008. Ann Oncol. 2011;22(12):

2675–86.
3. Lowy DR, Schiller JT. Reducing HPV-associated cancer

globally. Cancer Prev Res. 2012;5(1):18–23.
4. Meites E, Szilagyi PG, Chesson HW, Unger ER, Romero

JR, Markowitz LE. Human papillomavirus vaccination

for adults: updated recommendations of the Advisory

Committee on Immunization Practices. MMWR Morb

Mortal Wkly Rep. 2019;68(32):698–702.

5. Walker TY, Elam-Evans LD, Singleton JA, et al.

National, regional, state, and selected local area vaccina-

tion coverage among adolescents aged 13–17 years—

United States, 2016. MMWR Morb Mortal Wkly Rep.

2017;66(33):874.
6. Velentzis LS, Sitas F, O’Connell DL, et al. Human papillo-

mavirus 16/18 seroprevalence in unvaccinated women over

30 years with normal cytology and with high grade cervical

abnormalities in Australia: results from an observational

study. BMC Infect Dis. 2014;14(1):3861.

7. Harper DM, DeMars LR. HPV vaccines: a review of the

first decade. Gynecol Oncol. 2017;146(1):196–204.
8. Australian Government Department of Health. The Aus-

tralian Immunisation Handbook. Department of Health

and Ageing; 2013. Canberra.
9. Schwarz TF, Spaczynski M, Schneider A, et al. Immuno-

genicity and tolerability of an HPV-16/18 AS04-adju-

vanted prophylactic cervical cancer vaccine in women aged

15–55 years. Vaccine. 2009;27(4):581–7.
10. Westra TA, Rozenbaum MH, Rogoza RM, et al. Until

which age should women be vaccinated against HPV infec-

tion? Recommendation based on cost-effectiveness analy-

ses. J Infect Dis. 2011;204(3):377–84.
11. Mazza D, Petrovic K, Grech C, Harris N. HPV vaccina-

tion in women aged 27 to 45 years: what do general practi-

tioners think? BMC Womens Health. 2014;14(1):91.
12. U.S. Food and Drug Administration. FDA Approves

Expanded Use of Gardasil 9 to Include Individuals 27

through 45 Years Old. 2018. Available from: https://

www.fda.gov/news-events/press-announcements/fda-appro

ves-expanded-use-gardasil-9-include-individuals-27-through-

45-years-old
13. Sanders GD, Taira AV. Cost effectiveness of a potential

vaccine for human papillomavirus. Emerg Infect Dis.

2003;9(1):37–48.
14. Elbasha EH, Dasbach EJ, Insinga RP. Model for assessing

human papillomavirus vaccination strategies. Emerg Infect

Dis. 2007;13(1):28.
15. Chesson HW, Ekwueme DU, Saraiya M, Markowitz LE.

Cost-effectiveness of human papillomavirus vaccination in

the United States. Emerg Infect Dis. 2008;14(2):244–51.
16. Chesson HW, Ekwueme DU, Saraiya M, Dunne EF, Mar-

kowitz LE. The cost-effectiveness of male HPV vaccination

in the United States. Vaccine. 2011;29(46):8443–50.
17. Guzzetta G, Faustini L, Panatto D, Gasparini R, Manfredi

P. The impact of HPV female immunization in Italy: model

based predictions. PLoS One. 2014;9(3):e91698.
18. Brisson M, Laprise J. Cost-effectiveness of extending HPV

vaccination above age 26 years in the U.S. 2019. Available

from: https://stacks.cdc.gov/view/cdc/78081/cdc_78081_DS1

.pdf
19. Van de Velde N, Brisson M, Boily MC. Understanding dif-

ferences in predictions of HPV vaccine effectiveness: a

comparative model-based analysis. Vaccine. 2010;28(33):

5473–84.
20. Winer RL, Lee SK, Hughes JP, Adam DE, Kiviat NB,

Koutsky LA. Genital human papillomavirus infection:

incidence and risk factors in a cohort of female university

students. Am J Epidemiol. 2003;157(3):218–26.
21. Dempsey AF. Human papillomavirus: the usefulness of

risk factors in determining who should get vaccinated. Rev

Obstet Gynecol. 2008;1(3):122.
22. Shi R, Devarakonda S, Liu L, Taylor H, Mills G. Factors

associated with genital human papillomavirus infection

among adult females in the United States, NHANES 2007–

2010. BMC Res Notes. 2014;7(1):544.

Wang et al. 13

https://orcid.org/0000-0001-8860-2150
http://journals.sagepub.com/home/mdm
http://journals.sagepub.com/home/mdm
https://stacks.cdc.gov/view/cdc/78081/cdc_78081_DS1.pdf
https://stacks.cdc.gov/view/cdc/78081/cdc_78081_DS1.pdf


23. Romanowski B, Schwarz TF, Ferguson L, et al. Sustained
immunogenicity of the HPV-16/18 AS04-adjuvanted vac-
cine administered as a two-dose schedule in adolescent
girls: five-year clinical data and modeling predictions from
a randomized study. Hum Vaccines Immunother. 2016;
12(1):20–9.

24. Wheeler CM, Skinner SR, Del Rosario-Raymundo MR, et
al. Efficacy, safety, and immunogenicity of the human
papillomavirus 16/18 AS04-adjuvanted vaccine in women
older than 25 years: 7-year follow-up of the phase 3, dou-
ble-blind, randomised controlled VIVIANE study. Lancet
Infect Dis. 2016;16(10):1154–68.

25. Matthijsse SM, van Rosmalen J, Hontelez JA, et al. The
role of acquired immunity in the spread of human papillo-
mavirus (HPV): explorations with a microsimulation
model. PLoS One. 2015;10(2):e0116618.

26. Chaturvedi AK. Beyond cervical cancer: burden of other

HPV-related cancers among men and women. J Adolesc

Health. 2010;46(4):S20–6.
27. Schiffman MH, Bauer HM, Hoover RN, et al. Epidemiolo-

gic evidence showing that human papillomavirus infection
causes most cervical intraepithelial neoplasia. J Natl Cancer

Inst. 1993;85(12):958–64.
28. Tong SY, Lee YS, Park JS, Bae SN, Lee JM, Namkoong

SE. Clinical analysis of synchronous primary neoplasms of
the female reproductive tract. Eur J Obstet Gynecol Reprod

Biol. 2008;136(1):78–82.
29. Moscicki A-B, Palefsky J, Gonzales J, Schoolnik GK.

Human papillomavirus infection in sexually active adoles-
cent females: prevalence and risk factors. Pediatr Res.
1990;28(5):507–13.

30. Reiter PL, McRee AL. HPV infection among sexual minor-
ity women: does it matter how sexual orientation is mea-
sured? Cancer Epidemiol Prevent Biomarkers. 2016;25(3):
559–60.

31. Chen T, Guestrin C. 2016. Xgboost: a scalable tree boost-
ing system. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, edited by Balaji Krishnapuram, 785–94. San Fran-
cisco: Association for Computing Machinery.

32. Nielsen D. Tree boosting with XGBoost: why does
XGBoost win ‘‘every’’ machine learning competition? Mas-
ter’s thesis, NTNU, 2016.

33. Howlader N, Noone AM, Krapcho M, et al. SEER Cancer

Statistics Review, 1975–2010. Bethesda, MD: National

Cancer Institute; 2013.
34. Arias E, Heron M, Xu J. United States life tables, 2012.

National vital statistics reports: from the Centers for Dis-

ease Control and Prevention, National Center for Health

Statistics, National Vital Statistics Report. 2016;65(8):1.
35. Aschengrau A, Seage GR. Essentials of Epidemiology in

Public Health. Burlington, MA: Jones & Bartlett; 2013.
36. Beck JR, Pauker SG, Gottlieb JE, Klein K, Kassirer JP. A

convenient approximation of life expectancy (the

‘‘DEALE’’): II. Use in medical decision-making. Am J

Med. 1982;73(6):889–97.
37. Centers for Disease Control and Prevention (CDC),

National Center for Health Statistics (NCHS). National

Health and Nutrition Examination Survey Data 2011–2012.

Hyattsville, MD: US Department of Health and Human

Services, Centers for Disease Control and Prevention;

2016. Available from: https://www.cdc.gov/nchs/nhanes/

nhanes2011-2012/overview_g.htm.
38. Ley-Chavez A. Quantitative models to design and evaluate

risk-specific screening strategies for cervical cancer preven-

tion. Doctoral dissertation, The Ohio State University, 2012.
39. U.S. Census Bureau: Survey of income and program partic-

ipation. Washington, DC: U.S. Department of Commerce;

2014 Available from: https://www.census.gov/programs-

surveys/sipp/data/datasets.html

40. Molander RC, Yonker JA, Krahn DD. Age-related

changes in drinking patterns from mid-to older age: results

from the Wisconsin longitudinal study. Alcoholism.

2010;34(7):1182–92.
41. Centers for Disease Control and Prevention. Quitting

smoking among adults—United States, 2001–2010.

MMWR Morb Mortal Wkly Rep. 2011;60:1513–9.
42. Dunne EF, Markowitz LE, Saraiya M, et al. CDC grand

rounds: reducing the burden of HPV-associated cancer and

disease. MMWR Morb Mortal Wkly Rep. 2014;63(4):

69–72.
43. Saraiya M, Unger ER, Thompson TD, et al. US assess-

ment of HPV types in cancers: implications for current and

9-valent HPV vaccines. J Natl Cancer Inst. 2015;107(6):

djv086.

14 Medical Decision Making 00(0)

https://www.cdc.gov/nchs/nhanes/nhanes2011-2012/overview_g.htm
https://www.cdc.gov/nchs/nhanes/nhanes2011-2012/overview_g.htm

