Invariance of immersed Floer cohomology
under Maslov flows

JOSEPH PALMER AND CHRIS WOODWARD

We show that immersed Lagrangian Floer cohomology in compact rational sym-
plectic manifolds is invariant under Maslov flow; this includes coupled mean
curvature/Kéhler-Ricci flow in the sense of Smoczyk [52]. In particular, we show
invariance when a pair of self-intersection points is born or dies at a self-tangency,
using results of Ekholm-Etnyre-Sullivan [23]. Using this we prove a lower bound
on the time for which the immersed Floer theory is invariant under the flow, if it
exists. This proves part of a conjecture of Joyce [38].

Contents

1 Introduction

2 Maslov flows of Lagrangian immersions

3 Holomorphic disks with self-transverse boundary condition
4 Transversality and compactness

5 Holomorphic disks with self-tangent boundary condition

6 Morse model for immersed Floer cohomology

7 Invariance for transverse self-intersection

8 Curve shrinking and gluing at a tangency

9 Invariance for birth-death singularities

20

30

46

53

63

70

85


http://www.ams.org/mathscinet/search/mscdoc.html?code=\@secclass 

2 Joseph Palmer and Chris Woodward

Bibliography 93

1 Introduction

Lagrangian Floer theory is a cohomology theory whose differential counts pseudo-
holomorphic disks in a symplectic manifold with Lagrangian boundary conditions.
For many purposes one wants to consider Floer theory of not only embedded but also
immersed Lagrangians as introduced by Akaho-Joyce [2]. In Calabi-Yau manifolds,
one expects special Lagrangians to play a special role as in the Thomas-Yau conjecture
[57], namely, they should split-generate the Fukaya category. In order to obtain special
Lagrangians, one may hope to start with an arbitrary Lagrangian and minimize the
volume by evolving under the mean curvature flow. Unfortunately, there is no reason
to expect mean curvature flow of submanifolds of codimension greater than one to pre-
serve embeddedness. In addition, although short-time solutions to the mean curvature
flow exist [7], in general surgery is required to continue the flow beyond singular times,
as in Colding-Minicozzi [19] and for the Lagrangian torus case Chen-Ma [17].

From the point of view of mirror symmetry, mean curvature flow for Lagrangian
branes is expected to be mirror to a (deformed version of) Yang-Mills flow for vector
bundles or coherent sheaves. Since Yang-Mills flow for vector bundles is achieved by
a complex gauge transformation, one expects the isomorphism class of a Lagrangian
brane to be invariant under the mean curvature flow. In this paper, we prove several
results in this direction. We consider any flow whose deformation class at any time is
equal to the Maslov class, and call such flows Maslov flows; a mean curvature flow,
if it exists, is a special case. We prove invariance of Floer cohomology until the first
singularity occurs or until the weakly bounding cochain hits a wall of zero valuation;
in particular we show invariance of the Floer cohomology in the case that the (coupled,
forward or reverse) mean curvature flow exists and passes through a self-tangency.
We have in mind an application to the existence of Floer non-trivial Lagrangians (and
generators for the Fukaya category) in Kéhler surfaces that we will discuss elsewhere.
In particular this proves “step zero” in the conjectures of Joyce [37], [38] for the
existence of Lagrangian mean curvature flow with surgery for weakly unobstructed
Lagrangians. To explain the terminology, recall from Akaho-Joyce [2] that associated
to a self-transverse immersion ¢ : L — X of a compact Lagrangian in a compact
symplectic manifold X is a Fukaya A~ algebra CF(¢) additively generated over a
Novikov ring by chains on the Lagrangian plus two copies of each self-intersection;
for each d > 0 the composition maps

pia : CF(¢)*? — CF(¢)
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Figure 1: An immersed curve flowing under the mean curvature flow.

count holomorphic disks with boundary in the Lagrangian. Via the homotopy units
construction in [31, (3.3.5.2)], [16, Section 2.2] one may furnish CF(¢) with a strict
unit 14 € CF(¢). A bounding cochain (resp. weakly bounding cochain) is a solution
b € CF(¢) to the Maurer-Cartan equation (resp. weak Maurer-Cartan equation)

po(1) + p1(b) + p2(b,b) + ... = 0 (resp. = W(b)1).

The space of solutions to the weak Maurer-Cartan equation is denoted MC(¢) and is
equipped with a potential function

MC(¢p) — A, b — W(b).
For any b € MC(¢), the operator

i CF(@) = CF(¢), ¢ > pi_suo1(b,....bc,b,....b)
S—— ==

k_>0ky>0 P P

squares to zero. Non-vanishing of the Floer cohomology for some weakly bounding
cochain obstructs the Hamiltonian displaceability of the Lagrangian. That is, if there
exists a Hamiltonian diffeomorphism v : X — X such that ¥(¢(L)) N ¢(L) is empty
then the Floer cohomology HF(¢, b) vanishes for any b € MC(¢), or MC(¢) is empty.

We study the behavior of immersed Floer cohomology under flows that in a coho-
mological sense are equivalent to forward or reverse mean curvature flow coupled
with Kdhler-Ricci flow on the symplectic manifold. Consider a one-parameter family
¢; : L — X of Lagrangian immersions for a family of symplectic forms w, such that
the deformation class Def(¢;) = [ét, —wy] as defined in Equation (7) satisfies

(1) Def(¢,) = +ci1(dr) € H* (),

where ci(¢;) is the Maslov (relative Chern) class ci(¢;) in the relative de Rham
cohomology H?(¢,) defined in (6) below. We call such a flow a Maslov flow (without
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surgery) as in Lotay-Pacini [42] (up to a sign). In particular, this implies that
[wi] = £c1(X)

with ¢ (X) € H*(X) the first Chern class, as in a Kihler-Ricci flow. It is an observation
of Smoczyk [52] that the combined mean curvature and Kihler-Ricci flow preserves the
Lagrangian condition. A result of Lotay-Pacini [42, Section 7] (using a technique of
Hamilton) says that such coupled mean-curvature flows ¢, : L — X, w, exist for short
time. All symplectic manifolds X will be assumed to be compact and Lagrangians L
will be assumed to be compact, oriented, and equipped with relative spin structures and
local systems. In order to apply Cieliebak-Mohnke perturbations [15] we furthermore
assume that X is simply-connected and the relative symplectic class [0, w] € H*(¢, Q)
is rational (which will hold for rational times in the flow).

At times when the number of self-intersection points changes, we find a correction to
the weakly bounding cochain so that the Floer cohomology and potential is preserved.
Suppose that under a flow ¢; two new self-intersection points xi s, X2 ; € ¢(L;) are born
at t = 0, leading to four ordered self-intersection points v; 4+, Vv, + € L Xy, L.' Inour
conventions, V; + is connected by a Floer trajectory to v, + as in Figure 2 by Theorem
8.1.

Theorem 1.1 (Invariance for self-tangencies) Let (¢;);c[—e,] be a (forward or reverse)
Maslov flow (as in Definition 2.2) of Lagrangian immersions developing a tangency
Do(T;_L) N D¢(T; L) # {0} at t = 0 with two additional self-intersections xi ;,x2
for t > 0. For any family

bi,— € MC(¢y), te€[—¢,0]
of Maurer-Cartan solutions for CF(¢,),t < 0 with val,(bg) > 0, there exists a family
by € MC(dy), 1€ [0,€]
of Maurer-Cartan solutions for CF(¢;) for t € (0, €) such that
lim W(¢r,bs) = lim W(ey, by, _)
t—0t t—0—
and there is an isomorphism of Floer cohomologies for —e < t_ <0 <ty <€

HF(¢;_,b;_ ) — HF (¢, , by, ).

"We use a bar over an ordered intersection point if the orientation induced by the splitting
into tangent spaces of the branches of the Lagrangian disagrees with the symplectic orientation,
and no bar otherwise.
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Figure 2: Small strips created by intersection points

A very similar argument for the invariance of Legendrian contact homology appears in
Ekholm-Etnyre-Sullivan [23], and our proof uses the same basic idea although its real-
ization in the language of Lagrangian Floer theory is somewhat different. In particular
Ekholm-Etnyre-Sullivan [23, Lemma 4.6] describes the behavior of holomorphic disks
with boundary in a Lagrangian immersion under the development of a self-tangency.
As in that paper, we work in a local model in which the self-tangency is “of standard
form”, justified in Lemma 2.8. We consider families

bi+ € CF(¢y), 1 € [+e€,0]
which on either side of the tangency are connected by a correction formula

2 b4 = E;tbt,— + Z q_A(t)#M(¢t+abt,—; Vi)V E
+

where Eﬁf is an operator acting by multiplication by some power of ¢ in each graded
piece (see Definition 54) A(z) is the area of the small strip connecting v; + with v, +
and, as usual, the count is a signed count weighted by the areas of the disks. In the
case that the immersion stays self-transverse, we identify the Maurer-Cartan solution
spaces and the Floer cohomology for small times.

Theorem 1.2 (Invariance for self-transverse families) Let (X, wg) be a compact, ra-
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tional, simply-connected symplectic manifold as above and
w € MWX), ¢:L—X, te€][0,T]

a Maslov flow of symplectic forms and self-transverse Lagrangian immersions. Given
by € MC(¢o) with val,(by) > (dim(L) — 1)T there exists by € MC(¢r) such that

3) W(ér, br) = ¢*" W(go, bo), HF(ér,br) = HF (¢, bo)

where = denotes group isomorphism. Similarly, given by € MC(¢7) with val,(br) >
2T there exists by € MC(¢g) such that (3) holds.

In the monotone case, invariance of Floer cohomology in this setting is a result of
Alston-Bao [3]. The reason for the asymmetry in the two cases in the Theorem (that
is, the difference between the bounds (dim(L) — 1)T versus 27) lies in the fact that
the necessary modification changes the weakly bounding cochain in degree d by a
multiple of +(d — 1)T'; that is, there is a symmetry of the factors around degree 1
weakly bounding cochains which roughly correspond to local systems and so require
no modification under the flow.

Combining Theorems 1.1 and 1.2 above, consider a situation in which a Maslov flow
of Lagrangian immersions ¢, : L — X exists on some time interval [0, 7]. After
perturbation (see Lemma 2.8 below) we may assume that ¢, is self-transverse except
for a finite collection of times ¢y, ..., € [0, T] at which self-tangencies occur. Let

Ai = Valq(bt,.’+ - bt“_)
be the g-valuation of the correction term b;, + — b;, — in (2) at the self-tangency f;, for

i=1,...,k and define Ay = val,(bo).

Theorem 1.3 Let (X,wy) be a compact, rational, simply-connected symplectic man-
ifold as above and
w e PX), ¢:L—X, tel0,T]

a Maslov flow of symplectic forms and Lagrangian immersions that are self-transverse
fort € {0,T}. Given [bo] € MC(¢o) with

Hlkl(gl (A; — (dim(L) — I)(T —1;)) > 0
resp. [br] € MC(¢7) with

min <Valq(bT) _or, m"l{lA,- T — t,-)) >0
=



Immersed Floer theory and Maslov flows 7

there exists [br] € MC(¢7) resp. [by] € MC(¢o) such that
W(or,br) = ¢* W(do, bo) HF(¢r,br) = HF ¢y, bo)

where = denotes group isomorphism.

Example 1.4 The following example shows that Floer theory can be initially unob-
structed but become obstructed under mean curvature flow. Let the symplectic manifold
X be the two-sphere S?, thought of as the one-point compactification of a plane R?,
equipped with a metric that is flat on a large open subset U C R? containing the image
&(L) of the immersion ¢ : L = S' — X. A “movie” showing a family of circles
¢; : L — X under the mean curvature flow ¢, = —Hy, is shown in Figure 3.2 Indeed,
initially the area of the middle bigon is smaller than the areas of the teardrops; we
will see when we analyze this example in more detail later (Example 6.5) that there
exists a weakly bounding cochain b, € MC(¢;). On the other hand, once the area of
the bigon becomes larger than the combined area of the teardrops then no choice of
weakly bounding cochain b, can cancel the teardrop contributions to po(1) € CF(¢y).
By rescaling this example one sees that similarly, Floer cohomology HF(¢;, b,) can
not be invariant under arbitrary exact isotopy, that is, deformations ¢, generated by
exact one-forms o, € QN(L). In higher dimension, we show in [48] that one can
continue the flow by performing a surgery at one of the intersection points, at least in
high dimensions. This ends the example.

Mean curvature flow for curves is also known as the curve-shortening flow. In this
case, for embedded curves in the plane ¢o : L — X = R? Grayson [34] proved that
the curve ¢,(L) eventually becomes convex and then collapses to a point in finite time.
For immersed curves ¢g : L — X Angenent-Veldzquez [4] studied the development of
cusps. Angenent [5] studied further the curve-shortening flow on arbitrary surfaces X.
Even for curves in the Euclidean plane, Theorem 1.3 includes a statement that is not
obvious to the authors:

Corollary 1.5 Suppose ¢ : S' — R? is an immersion such that the Maurer-Cartan
moduli space MC(¢) is empty. Then the curve-shortening flow of ¢ encounters a
singularity, that is, does not flow to a round point in the sense of Grayson [34].

Non-emptiness of the Maurer-Cartan space does not imply convergence to a point, by
Example (1.4). Joyce’s conjecture [38] also makes sense for the curve-shortening flow
for immersed curves in the two-sphere S2, and is open even in that case. Work of

Produced using the curve-shortening software by A. Carapetis [10] and Inkscape.
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Figure 3: A flow in which the Floer cohomology becomes obstructed, with areas indicated

Angenent and others [5] describes the formation of singularities but note that Joyce’s
suggested surgery should be performed before the singularities arise, see Remark 9.8
and the sequel to this paper [48].

The intended application of these results is to the Lagrangian minimal model program
as explained in Charest-Woodward [16]. The conjecture in [16] describes an orthog-
onal decomposition of the split-closed derived Fukaya category D™ F(X) of a Kihler
manifold X corresponding to singularities in the Kéhler-Ricci flow-with-surgery; that
is, a family of Kéhler manifolds (X;,w;) satisfying w; = —R,, except at finitely many
times where flips, divisorial contractions, or a fibration occur. Floer non-trivial La-
grangians associated to the singularities in the flow were described in [16]; the results
of this paper imply the invariance of the Floer cohomology as these Lagrangians are
“flowed backwards” under the Kéhler-Ricci flow. We address in [48] the invariance of
Floer cohomology under simplest kind of surgery. We close the paper with Remark 9.8,
which lists some related open questions.

2 Maslov flows of Lagrangian immersions

Recall basic definitions regarding Lagrangian immersions following, for example,
Weinstein [61]. Let (X,w) be a symplectic manifold. A Lagrangian immersion is a
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smooth map ¢ : L — X from a smooth manifold L to X satisfying
¢:L—X, diml)=dimX)/2, ¢*'w=0, ker(Dyp)={0},VxeL.
The set of ordered self-intersection points is
@)=L xyL— AL

where Ay : L — L x L is the diagonal embedding. A Lagrangian immersion ¢ :
L — X from a compact manifold L is a Lagrangian embedding if ¢ is injective, or
equivalently if Z%(¢) is empty. Lagrangian immersions are closed under the disjoint
union construction: If ¢¢ : Ly — X and ¢ : L} — X are Lagrangian immersions then
so is the disjoint union

Po(x) x € Lo

poU ) LoUL — X, x+—> .
p1(x) x €L

Locally any Lagrangian immersion is the disjoint union of Lagrangian embeddings,
so that the self-intersections of the union ¢y LI ¢; include the intersections between
different components ¢o(Lg), ¢1(L1). Similarly, the product of Lagrangian immersions
oo : Lo — Xp and ¢ : Ly — X is a Lagrangian immersion to Xy X Xj.

A natural equivalence on the set of Lagrangian immersions is given by Lagrangian
isotopy. Two Lagrangian immersions ¢g, ¢; : L — X are isotopic if there exists a
family

¢ L—X,te[0,1]

of Lagrangian immersions connecting them, smooth in the parameter ¢. The derivative
of an isotopy of Lagrangian immersions ¢; : L — X at any time ¢ € [0, 1] may be
identified with a closed one-form on the domain as follows: The quotient ¢;TX/TL is
the normal bundle of the immersion. Consider the normal vector field

d
viiL = 6TX/TL, i) = = 6,() mod D(TLL).

The pairing ¢(v,)¢;w is well-defined since ¢, is Lagrangian. The derivative of the
pull-back of the symplectic form satisfies

d .
) E(df w) = de; + vy dw

where
b1 := w(DG(-), v) € QN(L).

This follows locally from the Cartan homotopy formula and the fact that in the embed-
ded case w(D¢y(+), v¢) = ¢; u(V)w where ¥; is an extension of v, to a neighborhood of
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¢«(L). Since ¢;w and dw are both zero, QSI is closed for all # € [0, 1]. Its cohomology
class is the deformation class of the isotopy

Def(¢;) = [¢r] € H'(L).

If ¥, : X — X,t € [0,1] is a smooth family of symplectomorphisms then ), o ¢g :
L — X provides an isotopy from ¢q to 1 o ¢g. If ¢, : X — X, t € [0, T] is a family
of Hamiltonian symplectomorphisms then we say that the immersions ¢, = 1, o ¢g
are Hamiltonian isotopic and we write ¢y ~ ¢;. In this case, the deformation class is
trivial. The Gromov-Lees h-principle [41], [36] classifies isotopy classes of Lagrangian
immersions by the homotopy classes of their tangent maps D¢ : TL — TX:

o ~ ¢1 <= D¢y ~ D¢y.

So in particular, immersions of a circle S! into the plane R? are classified up to isotopy
by the winding numbers of their Gauss map, while there are two isotopy classes of
immersions of a circle S' into the two-sphere S2.

To study further Lagrangian isotopies of immersions we recall the definition of the
relative de Rham complex as in Bott-Tu [9, Section 6]. For k > 0 denote the space of
relative forms

Okp) = Q1) @ O X).

Equip Q%(¢) with the relative de Rham differential the operator of order 1 given by
d: Q¢p) — Up), (Br, Bx) — (—=dBL + ¢* Bx, dBx).

The relative de Rham cohomology is

m(X,L)

H($) = P H'@), H' )=

k=0

ker(d) N Q(¢)
im(d) N Qk(¢)

m(X,L) = max(dim(X),dim(L)). The relative cohomology fits into a long exact
sequence
... = HY¢) —» H*X) — HYL) — H'(¢) — .. ..

Relative cocycles integrate naturally over any relative cycle. Such a cycle is a pair of
maps from a manifold and its boundary:

u:S—X, Ou:08S—L, ¢oodulz)=u(z),vze dSs.

Integration of a cocycle (8, 8x) € Qk(gb) where k = dim(S) is given by

5) / (Br. ) = / u*(By) — / Q) (By).
u N oS
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By Stokes’ theorem, the integral (5) depends only on the cohomology class [3z, Bx] €
H(¢).

In particular the relative symplectic form defines a map on relative second homology
of the immersion. Let ¢ : L — X be a Lagrangian immersion. The pair (0, w) € Q%(¢)
is a relative de Rham cocycle since

o'w=0, dw=0.
Denote the unit disk in the complex plane
S={zeC||g <1}

A disk with boundary ¢ is a pair consisting of a map u : § — X and a lift of the
restriction to the boundary u|ys to a map to L:

u:S—X, ou:08S—L, ¢odu=ulys.

The homomorphisms associated to the symplectic and Maslov classes are denoted as
follows. Given a disk u : (§,0S) — (X, L) the symplectic area A(u) is the pairing of
[w] with the class of [S, 0S] and induces a map

A Hy¢p) >R, [u]l— / uw.
D

The Maslov (or relative Chern) index measures the winding of the Lagrangian boundary
condition. To explain the definition (6) let dim(X) = 2n for some positive integer .
Let U(n) resp. SO(n) denote the space of unitary resp. special orthogonal n X n
matrices and let

Lag(C") = U(n)/SO(n)

denote the Grassmannian of oriented Lagrangian subspaces of C". Since the disk S is
contractible, there exists a trivialization of symplectic vector bundles u*7X = § x C",
unique up to isomorphism. Let

(Ou)*TL : 0S — Lag(C")

denote the family of Lagrangian, or equivalently, totally real subspaces on the boundary
of the disk dS. The determinant det : U(n) — U(1) factors through U(n)/SO(n) and
induces a loop whose winding number is by definition half the Maslov index:

6) [:Hy(¢) = Z, [u] — 2[det((Qu)*TL)] € m(S") = Z.

In [43, Appendix C] Robbin shows that the Maslov index for bundles is the unique
invariant that is additive under direct sum, additive under sewing boundaries and
suitably normalized for line bundles over the disk. It follows that the Maslov index
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map [u] — I([u]) is the relative Chern class of TX (as pointed out by T. Perutz)
and defines a cohomology class denoted c|(¢) € H*(¢). Alternatively, the explicit
differential form representing the Maslov class [47] implies that the Maslov class is a
relative cohomology class.

In the case of isotopies in which the symplectic form varies, the deformation of the
Lagrangian and symplectic form combine to a relative cocycle. Let

w € Q*(X), 1 €[0,1], resp. ¢ : L — X

be a family of symplectic forms resp. a family of Lagrangian immersions for w;. The
derivative of the pullback symplectic form satisfies

d * . ED
0= E(d)t wt) = d¢t + d)z Wy

by an argument similar to that of (4). The deformation class of the isotopy is an element
in the relative de Rham cohomology

(7 Def(¢,) = ¢, —wi] € H (¢y).

If the class (7) vanishes, then the isotopy is an exact isotopy. The notions of immersed
Lagrangian isotopy resp. exact Lagrangian isotopy ¢¢ ~ ¢r are easily shown to
be equivalence relations; concatenation of isotopies can be taken to be smooth by
deforming so that the isotopies are constant near the starting and ending times t = 0, 7.

Deformations of Lagrangian isotopies by the Maslov class arise from a choice of
connection one-form on the anti-canonical bundle. Recall that the tangent bundle 7X
to the symplectic manifold X has a complex structure well-defined up to isotopy. The
top exterior power of the dual TVX of TX

K™ = AZN(TVX)

is the anticanonical bundle. By definition the first Chern class of K~! is the first Chern
class of X. Assume that L is oriented by a section of the orientation bundle

op: L — ARP(TVL).
Since TL is a totally real sub-bundle of ¢*7X one has an isomorphism
¢*TX = TL ®R |C.
This isomorphism of bundles induces an isomorphism of top exterior powers
(8) ARP(TYL) @R C — AP (¢ TVX).
In this way the orientation oz on L induces a trivialization

K ' 5 LxC
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of the pull-back of the anticanonical bundle K~!. Let ay be a connection one-form
on K~!. By definition,

ay € UKTH,  ax(0/06) =1
is an S' -invariant one-form on the unit circle bundle K fl C K~ with the property that

the contraction with the rotational vector field 9/96 € Vect(K~!) is 1. The curvature
is defined by

9) curv(ay) € Q*(X), 7 curv(ay) = day
where 7 : Kl_1 — X is the projection.

On the other hand, the given trivialization of ¢*K~! defines a flat connection we denote
ay . The difference between the two connection one-forms ¢*ay and ¢y is a one-form
on the base that we write ¢*ax — oy € Q!(L). The derivative of the difference one-
form is the difference between the curvatures, which since oy, has trivial curvature is
the pull-back of the curvature on X:

d(¢*ax — ar) = ¢*(curv(ax)).
We include the following result of Cieliebak-Goldstein [18], see also Lotay-Pacini [42,
Section 7] for convenience.

Lemma 2.1 For any Lagrangian immersion ¢ : L — X, the pair
(10) (¢*ax — ar,curv(K ™, o)) € Q*(9)

is a relative cocycle representing the Maslov class.

Proof The cocycle property is a consequence of the definition of the curvature (9)
and flatness of «y. We show that the pair (10) represents the Maslov class. Let
u: (S,08) — (X,L) be a relative cycle. A trivialization »*K~' = § x C induces a
connection one-form denoted g on u*K~!. The Maslov index I(x) is the integral of
the difference of this connection with the connection one-form (Ou)*«y induced by
the trivialization (Qu)*K~! = 0§ x C: Let ¢ : S — S denote the inclusion. The
difference between any two connection one-forms (Ju)*ay, t*as on (Qu)*K~! is the
pull-back of a one-form on the base 9S =2 ST, which we write (abusing notation) as
oy, — t*ag. The Maslov index is

Ow*ar —t*as = / (Ou)*ayp — (Ou)* o*ax + / Ou)* ¢ ax — " ag
oS oS oS

= —/ ((8u)*¢>*ax—(au)*aL)+/curV(Kl,ozX)
a5s s

using Stokes’ theorem and the fact that the curvature of ag vanishes. This gives a
special case of the pairing in (5). a
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Maslov flows are isotopies of Lagrangians given by the above relative cocycle. Let w;
be a family of symplectic forms and «; be a family of connections on K~! satisfying

Wy = curV(K*I,a,).
Consider a family of immersions ¢, : L — X satisfying
(1 G = diwi (v, ) = ¢ oy —

where
vi: L — ¢;TX/TL

is the vector field determined by %(ﬁ,. The family ¢, is Lagrangian if ¢ is. In order to
give ourselves a bit more freedom, we allow ourselves a finite number of Hamiltonian
isotopies in addition to the flow:

Definition 2.2 A Maslov flow for a family of symplectic forms w;,t € (0,7) is a
family of Lagrangian immersions

Gri: L — Xt €[t ti1]
satisfying (11), except for a finite number of times
t,....tr €0,7)
for which ¢, ; and ¢;, ;11 are Hamiltonian isotopic:
Grit1 = Qi © Y

where H : [0, 1] x X is a time-dependent smooth function and ¥y : X — X its
Hamiltonian flow.

Example 2.3 (a) (Mean-curvature flow) Suppose that the symplectic manifold
(X, w) is equipped with a Kéhler structure J, that is, an integrable almost com-
plex structure J : TX — TX so that w(-,J-) is a Riemannian metric. The mean
curvature one-form is the unique one-form

Hy € QYD)

satisfying the following: Given a closed one-form 3 € Q'(L), let ¢, : L —
X,t € (—€,¢€) be a variation of ¢ : L — X corresponding to the one-form
and denote by Vol(L, ¢;) > 0 its volume with respect to the metric induced by
pull-back of the Kéhler metric on X. Then

4 Vol(L, ¢;) = /(6,H¢>dVolL
dS L
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(b)

(©)

where (-, -) is the pairing between one-forms induced by the metric. In particular
an immersion ¢ : L — X represents a critical point of the volume if and only if
the mean curvature one-form vanishes. The mean curvature one form Hy is not
closed but rather its derivative is the Ricci curvature R,, € Q*(X):

dHy = ¢*R,,

by an observation of Smoczyk [52, Section 1.7] using the traced Codazzi equa-
tion.

Several other papers comment on the resulting coupled flow. By Cieliebak-
Goldstein [18], Lotay-Pacini [42, Proposition 4.3], with respect to the trivial-
ization of the anticanonical bundle over the Lagrangian, the mean curvature
one-form is related to the difference of connections by

Hy = (—1/m)(¢*ax — ar) € Q'(D).

Hence any coupled mean-curvature/Kéhler-Ricci flow is a reverse Maslov flow
up to a rescaling of the time parameter by 1/7. The same paper [42, Section 7]
proves short-time existence of the coupled flow.

(Unions) Let ¢,0 : Lo — X and ¢;; : L1 — X be Maslov flows. Then the
disjoint union

GroU iyt LoUL — X
is also a Maslov flow. Indeed, the mean curvature on the union restricts to Hy, ,
on Ly, k € {0,1}.

(Products) Let ¢, : Lo — Xo and ¢, : L1 — X; be Maslov flows. Then the
product
G0 X ¢yt Lo X Ly — Xo X X

is also a Maslov flow. Indeed, the mean curvature on the product Hy, ,x¢,, €
QY (Ly x L)) is the sum of pull-backs of Hy, , on Ly, k € {0, 1}.

The following are elementary examples of Maslov flow:

Example 2.4 (a) (Linear case) Let X = R?" and L = R" with immersion | —

(1,0). Then the constant isotopy
¢s: L—X, q—(q,0)

is a Maslov flow. Indeed the standard trivialization K—' = X x C agrees with the
trivialization ¢*K~! = L x C, and so the connection one-form o € Ql(Kf )
(and the mean curvature) vanishes.
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(b) (Circle case) Consider the embedding of the circle of radius 1
p:L={@+p*=1} >R =X

Let @ : L — S! denote the angular coordinate. The trivialization of ¢*K~!
induced by the Lagrangian is that induced by the section ¢??9, and so is related
to the standard trivialization by multiplication by ¢. Thus the connection
one-form of the connection with respect to the trivialization of ¢*K ! is

d*ax —ap =do € QY(L).

Writing the standard symplectic form w = dg Adp on X as w = rdr A df,
the corresponding vector field is the outward normal v, = 9,/r € Vect(L)
(corresponding to the fact that the mean curvature Hy of a circle ¢ : S I R?
is inversely proportional to its radius). Thus a Maslov flow ¢, : L — X is given
by outward flow at speed 1/r with r =1 at t = 0:

¢ L= X, (q,p)— Qt+1"(q,p).
Thus in particular the area enclosed by the immersion is (1 4 2¢) and increases
linearly with ¢.

(¢) (Local model for self-tangencies) Let L denote the union of § I iR*™ ! and
{1} x R, By the disjoint union and product axioms (b) and (c) above, a
Maslov flow is given by

(14+20"221,20, ..., z0) 71 €S

¢(Zl,---,Z): .
t " (ZI)Z27”~7Zn) 21 S 1+1R

In order to obtain the invariance of Floer cohomology we will assume that our flow is
in some sense generic.

Definition 2.5 By a generic Maslov flow we mean a flow ¢, defined by a generic choice
of connection one forms a, with respect to the C* topology. For H € C([0, T] x X)
a change in the connection one-form o, on K~! by the pull-back of dH, changes the
Maslov flow equation to

(12) G = oy — ¢jaL + ¢ dH,.
Thus a generic change in the connection one-form is essentially the same as a generic

Hamiltonian perturbation.

The following is standard from properties of generic homotopies of functions in Cerf
[11], see also Sullivan [56, 3.12].
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Theorem 2.6 Let ¢, : L — X,t € [0,1] be a Maslov flow such that ¢y has only
transverse self-intersections. There exists an open dense set of Hamiltonian pertur-
bations C*°([0,T] x X)™8 with the property that for H € C*°([0,T] x X)™®, the
H -perturbed flows ¢; : L — X, t € [0, 1] have the property that the self-intersections
(¢ x d)"W(AL) — Ap of ¢ are transverse except for all but finitely many values of t
for which there is a single self-intersection (x_,xy) € L, ¢,(x_) = ¢;(x4) that has a
non-degenerate quadratic tangency.

Proof The proof is a Sard-Smale argument applied to a universal moduli space of
intersection points. Let Cl([O, T] x X) denote the space of time-dependent functions
of class C'. Let

Lag(L, X); := { ¢ € Map([0,T] x L,X), ker(D¢) = {0}, ¢o = ¢(0) }

b*w =0V €[0,T]

denote the space of time-dependent Lagrangian immersions from L to X of class C.
Consider the universal space of self-intersections

(13)
univasi { (x1,%2,10,H, ) € L x L x [0, 1] x C'([0,T] x X) x Lag(L, X), }

G = +ddFH,,  dry(x1) = By (x2)

The universal moduli space (13) is a smooth Banach manifold by an application of
the implicit function theorem, as follows. First, variations in H; near t = 0,x = x|
span the space of normal vector fields to ¢¢ near x;. Indeed, let H € C°°(X) and
»x € C*([0, T]) supported and equal to 1 near O a cutoff function. The Maslov flow
¢} : L — X defined by the connection

a+7*(1/e)dH(et) € Ql(Kl_l)

converges as € — 0 to the composition of the restriction to L of the Hamiltonian flow
¥y : X — X of H with the original Maslov flow ¢, : L — X. It follows that the
linearization of the condition ¢;,(x1) = ¢, (x2) is surjective.

From the universal moduli space we obtain a comeager set of regular values for the
projection. By the Sard-Smale theorem for / > 1 the projection

m s MU ([0, T] % X)

has a comeager set of regular values C!([0, T]1 x X)™¢. For such regular H € Cl([0, T] x
X)™2, the projection of m—!(H) onto the fiber [0, 1] has open and comeager set of
regular values [0, 1]™8. Since L is compact, the set of irregular values [0, 1]\[0, 1]*¢
is discrete, hence finite. Thus for regular H the set of times ¢ for which the intersection
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L x4, L is not transverse is finite. Since the space of smooth elements of this comeager
set is also open and dense, the claim follows.

Next we show that for generic Hamiltonian perturbations the non-transverse intersec-
tions are non-degenerate. Consider the universal space of tangencies

(v1,v2, H,¢) € TL x TL x [0, 1] x C!([0,T] x X) x Lag(L, X),| }
b1 = oy + Ao} Hy, Dy (vi) = Dbyy(v2) # 0

is cut out transversally, since the linearization of D¢, is the second derivative of ¢, and

Muniv,t — {

a Hamiltonian variation at xy, x, attime O produces an arbitrary variation this derivative
at time fy. Let C'([0, T] x X)®" denote the set of regular values for the projection 7
onto C/([0, T] x X) For H € C!([0, T] x X)&" the intersection D;¢(Ty, L) N D;(Ty,L)
is trivial except for finitely many times ¢ = #1,...,# at which the intersection is
one-dimensional. So there is a point of tangency (x; —,x; +) € L X4, L and for these
intersections the tangency is quadratic.

A final argument using a universal space of simultaneous self-tangencies

. (}/17V2,V37V47f7H7 ¢) € TL* x [0, 1] x C'([0,T] x X) x Lag(L, X),|
MUST = O =y + dgb;‘H,,qu,(vl) = D¢y(v2), Dg(v3) = Dy(vs)
{Rvy, Rvy, Rvs, Rvys} distinct, non-zero

guarantees that at most one tangency occurs at each non-transverse time. m|

Definition 2.7 (a) (Self-tangency moves) A Maslov flow ¢, : L — X undergoes a
self-tangency move at p € X and time ¢ = 0 if the following holds: There exist
Darboux coordinates (x1, yy, . . ., Xu, ¥») on a contractible open neighborhood U
of p such that the intersection U N ¢4(L) is the union of Lagrangians L; and
L>(t) where

(14) Ly =Ly x LY, L) = Ly(t) x Ly
for some Lagrangians
LWLy cc, L Lfcc!
where
Ly c{y =0}, Loc{g+0o—17"=0+20}

are subarcs of the straight line and the circle in the z; plane, respectively, and
the factors L7 and L are linear Lagrangians in C"~! = {z; = 0} intersecting
transversally at 0. The mean curvature to a circle Ly(¢)’ is the outward normal
while the mean curvatures for the linear spaces are trivial. Hence the isotopy ¢,
is a Maslov flow as in Example 2.4.
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(b) (Admissible flows) Let ¢, : L — X be a Maslov flow of Lagrangian immersions
with self-tangency instants #;,...,#% € (0,7T) at points x1,...,x; € X. Say that
¢ - L — X, s € [0,T] is an admissible family of immersions if there exist small
disjoint intervals (¢; — d,¢ 4+ d) C [0, T] such that all self-tangency instants ¢;
are standard in the sense that ¢, near #; is given by the local model (14), and in
addition any self-tangency occurs at a rational time z € (0, 7) N Q.

The rationality of the time will be used in Section 9 to define the Floer theory in a
neighborhood of the singular time.

Lemma 2.8 (Similar to Lemma 3.6 of [23]) Let ¢, : L — X,t € [tg, t1] be a Maslov
flow of Lagrangian immersions connecting ¢;, to ¢, . Then for any e there is an
admissible Maslov flow ¢, of Lagrangian immersions e-close to ¢, connecting ¢y, to

G, -

Proof First we perturb to make the flow generic. Locally the family of immersions
¢; : L — X is given by a family of closed one-forms a; € QL) as in (7). For each
self-tangency instant f;, there exist points x;,xf € L with gb(xj*) = qb(x;) = x;j such
that

Déy (3 (T, L) N Dy () )T+ L) # {0},

Using the Sard-Smale theorem one checks that for a dense open subset of Hamiltonian
perturbations H, as in (12), the equation cuts out the solutions (xj’,xjr) transversally.
Equivalently,

dimf; =1, I := Dey(x; XT,- L) N D¢,j(xj+)(rxj+L)

and the tangency of the components of gf)tj_.l(lj) is quadratic.

Having achieved a quadratic tangency, we apply a Hamiltonian isotopy to make the
Lagrangians of standard form just before the isotopy. We suppose that the self-tangency
represents the death of two self-intersection points; the birth case is easier. By changing
the cubic and higher order terms in the generating functions for the Lagrangians locally
we obtain an isotopy Li(r) between L;(tj — ) U L(tj — 0) and L' U L3 (r) where LS(r)
is a circle of radius r(¢) depending on ¢. As in Moser’s proof of the Darboux lemma,
there exists a diffeomorphism v between neighborhoods Up, U; of 0 in C" taking
Li(1) U Ly(r) to L' U L;‘(t). Let wy € Q*(Up) be the standard symplectic form, and
wi = P*wy € Q*(Uy) the pull-back. Let

w = (1 — Hwo + twy € QXUY).
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In order to correct v to a symplectomorphism note that %wt is exact if %A, = 0 where
A= g W wy is the area of the disk u : § — C" whose boundary from 1 to —1 resp.
—1 to 1 lies in L resp. LY connecting the two self-intersection points. By choosing
the parameter () and the isotopy suitably, we may ensure that this area A, is constant
in the isotopy L1,(#); then Moser’s argument produces the desired symplectomorphism
equal to the identity on L' U L5\(7).

The flows of the original Lagrangian immersion and the flow in the standard model may
be combined using a cutoff function. In the local model, the flow of L;(¢) is given by
the graph of the differential dH(¢) of a time-dependent Hamiltonian H(¢) : L?t — R,
while Ly(¢) is the graph of dH,(¢) for some function H, : L§(t) — R. Finally, by
choosing a generic complement to 7oL}, we may assume that L§(¢) is the graph of
dH,(t) for some Hi»(?) : LT — R, By choosing U sufficiently small, we may assume
that dH(¢), dH,(¢) are small in comparison with dH,(¢), since dH»(?) has at worst
quadratic vanishing at (g,p) = 0 and t = 0, and dH,(¢), dH(¢) vanish to third order.
Let » be a cutoff function vanishing in a neighborhood of 0. The flow ¢} : L — X
obtained by replacing L (¥), L>(¢) by the graphs of d(»cH|(¥)), d(3cH,(¢)) have the same
self-intersections, and are equal to the standard flow in a neighborhood of 0. By (12),
¢} is also a Maslov flow, and is of standard form near the tangency.

At the end time of the combined flow, the two nearby self-intersection points have
disappeared, and so the resulting Lagrangians are disjoint and equal outside of a small
ball. In particular, the flow produces an exact deformation from L] (t+0)U L’z(tj +9)
to Li(#; + 0) U Ly(t; + 0) that is the identity outside of a small ball, and a standard
argument implies that this isotopy is achievable by a Hamiltonian flow. Thus, changing
the flow by a Hamiltonian isotopy at #; + § produces a piece-wise smooth flow that
matches up with the original flow for r > #; + 4.

Finally, the time of the self-tangency can be perturbed an arbitrary small amount
using a Hamiltonian isotopy, so that the times #; of the self-tangencies D¢y, (Tx, L) N
D¢ (Ty,L) # {0} become rational. |

3 Holomorphic disks with self-transverse boundary condi-
tion

The Morse model of Floer theory counts treed pseudoholomorphic disks with La-
grangian boundary condition. First we recall basic terminology regarding stable disks.
A disk will mean a 2-manifold-with-boundary S, equipped with a complex struc-
ture js, : TS, — TS, so that the surface S, is biholomorphic to the closed unit disk
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Figure 4: A stable disk with boundary and interior markings

{z€ C||z] < 1}. A sphere will mean a complex one-manifold S, biholomorphic to
the complex projective line P! = {[(o : (11| ¢o,¢1 € C}. A nodal disk S is a union

s = (U So,,) U (U S.,,) / ~

of a finite number of disks S.;,i = 1,...,n, and spheres So;,i = 1, ..., n, identified
at pairs of distinct points called nodes wy, . .., w,,. Each node

wk =W, W) € Si_ X Sip

is a pair of distinct points wff € S;, ) where S; () are the (disk or sphere) components
of S adjacent to the node wy; the resulting topological space S is required to be simply-
connected, see Figure 3 (produced using Inkscape and [62].) The complex structures
on the disks and spheres induce a complex structure on the tangent bundle 7S (which
is a vector bundle except at the nodal points) denoted j : TS — TS. A boundary
resp. interior marking of a nodal disk § is an ordered collection of non-nodal points
2= (20,---,22) € 08T  resp. 7 = (Z},...,2)) € int(S)° on the boundary resp.
interior, whose ordering is compatible with the orientation on the boundary 0S in the
case of boundary markings. The combinatorial type is the graph

['(S) = (Vert(T'(S)), Edge(T'(S) : (h x 1) : Edge(I'(S)) — Vert(I'(S)) U {0}

obtained by setting Vert(I'(S)) to be the set of disk and sphere components in S and
Edge(I'(S)) the set of nodes wy, ..., w, (each connected to the vertices corresponding
to the disks or spheres they connect) and markings z;e,z;- (each connecting the
corresponding vertex to infinity); the graph I'(S) is required to be a tree, that is,
connected with no cycles among the combinatorially finite edges. The set of edges is
naturally equipped with a partition into subsets

Edge(I'(S)) = Edge,(I'(5)) U Edge,(I'(S))
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corresponding to interior resp. boundary markings and nodes, respectively. The set of
boundary edges R oyurovn Edge (I'(S)) meeting some vertex v € Vert(I'(S)) is
naturally equipped with a cyclic ordering giving I'(S) the partial structure of a ribbon
graph. The set of boundary and interior semi-infinite leaves

Edge, ,(I'(S)) := Edge,(I'(S)) N Edge_,(I'(S)),
Edge, ,(I'(S)) := Edge,(I'(5)) N Edge_,(I'(S)),
Edge ,(I'(S)) = h '(co)Ur !(c0)

is each equipped with an ordering; these orderings will be omitted from the notation
to save space. We call the leaves corresponding to interior resp. boundary markings
bulk resp. boundary leaves, for lack of better terminology. A marked disk (S, z,7) is
stable if it admits no automorphisms preserving the markings. The moduli space of
stable disks with fixed number of boundary markings and no interior markings admits
a natural structure of a cell complex which identifies the moduli space with Stasheff’s
associahedron.

Treed disks are defined by replacing nodes with broken segments as in the pearly
trajectories of Cornea-Lalonde [20], Biran-Cornea [8], and also Seidel [55]. By a
segment we will mean an oriented connected Riemannian manifold 7, necessarily
isometric with a closed sub-interval of the real line [7_, 71 ]NR, t+ € {—oco}URU{c0}.
A broken segment T is obtained from a finite collection of segments 7,7, with an
infinite positive resp. negative end by 7= Ty U{oo} UT, where {oo} = T1 NT5 is the
point of breaking, with the topology that makes T also a closed interval. The metrics
on the open subsets 77, T, are given as part of the data; that is, any broken segment
is equipped with a metric on the complement of the finite set of breaking points. A
treed disk is a space C obtained from a nodal disk S by replacing each boundary node
or boundary marking corresponding to an edge e € I'(S) with a broken segment 7;
we also allow the case C = R with a single edge infinite in both directions in which
case the underlying “disk” is empty. > Each broken line is obtained from a sequence
of possibly infinite closed real intervals by gluing together endpoints, and is equipped
with a length and number of breakings

Ue) € 0,00], b(e) € Z>o

where the length £(e) is equal to infinity by assumption if the segment 7, replaces a
marking z, € S. For the combinatorially finite edges, ¢(¢) = oo if and only if the
number of breakings b(e) > 0. Denote by T C C the union of (finite or infinite length)

*More generally one could also replace interior nodes and markings with segments, but since
in this case we will rule out sphere bubbling there is no need for the most general construction.
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Figure 5: A treed disk with d = 2 incoming edges

segments so produced. Then C = S U T where the one-dimensional part 7 is joined
to the two-dimensional part S at a finite set of points on the boundary of S, which we
call the nodes of the treed disk (as they correspond to the nodes in the underlying nodal
disk.) The semi-infinite edges in the one-dimensional part 7" are oriented by requiring
that the first boundary marking is outgoing while the remaining semi-infinite edges
are incoming; the outgoing semi-infinite edge is referred to as the root while the other
semi-infinite edges are leaves. On each segment T, C T corresponding to an edge
Edge(I'(S)) we assume the existence of a coordinate s that identifies 7, with the interval
[0, £(e)]; this coordinate will be used in the construction of gradient trees below. The
combinatorial type I'(C) = (Vert(C), Edge(C)) of a broken tree C is defined similarly
to that for broken disks but now the set of edges Edge(C) is equipped with a partition
Edge(C) = Edge(C) UEdge(Ojoo)(C) UEdge_(C) corresponding to whether the length
is zero, finite and non-zero, or infinite, and equipped with a labelling by the number
of breakings. A treed disk is stable if the underlying disk is stable, each combinatorial
finite edge has at most one breaking, and each semi-infinite edge is unbroken. An
example of a treed disk with one broken edge (indicated by a small hash through the
edge) is shown in Figure 3.

The stability condition gives a compact, Hausdorff moduli space with a universal curve.
For a given combinatorial type I" denote by M the moduli space of treed disks of
combinatorial type I" and M, = Ur Mr the union over combinatorial types I" with d
incoming semi-infinite edges. The moduli space M is compact with a universal curve
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Figure 6: Boundary of a treed disk with d = 2 incoming edges

U, given as the space of isomorphism classes of pairs [C, z] where C is a holomorphic
treed disk and z € C is a point in the one or two dimensional locus. Depending on
which is the case one has a splitting

(15) Usg=8aUTy

of the universal treed disk into one-dimensional and two-dimensional parts 74 resp.
Sy. Thatis, Uy = T4 U S, where the fibers of T4 — My resp. Sq — My are
one resp. two-dimensional. We denote by S, 7 the parts of the universal treed disk
living over M.

Holomorphic treed disks for immersed Lagrangians are defined as in the embedded
case, but requiring a double cover of the tree parts to obtain the boundary lift. Given
a treed disk C we define a one-manifold C by gluing together the boundary of each
disk S,, v € Vert(I') minus the points 7, NS, e € Edge(I') where edges attach with two
copies of each edge T, as in Figure 6.

To define holomorphic treed disks, we make a choice of almost complex structure and
Morse function.

(a) Let J :TX — TX be an almost complex structure taming the symplectic form
w € Q*(X); such a choice is unique up to isotopy. Later, for the purposes of
constructing Donaldson hypersurfaces we will assume that J is compatible with
w in the sense that w(-,J-) is a Riemannian metric.
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(b) Let m: L — R be a Morse function. Given a metric on L we obtain a gradient

vector field and time ¢ flow
grad(m) € Vect(L), 1, € Diff(L).

For any critical point x € crit(m) we have stable and unstable manifolds

Wxi—{yeL ‘ lim ¢,(y)—x}.
t—+oo

We assume that the Morse function and metric are Morse-Smale in the sense that
the unstable and stable manifolds intersect transversally:

W Wy, Vx,y € crit(m).
Thus in particular the moduli space of Morse trajectories
M(x,y) = (W 0 Wy)/R

is smooth for any x,y € crit(m); these are special cases of moduli spaces
of holomorphic treed disks, namely the case that the number of disks in the
configuration is zero. Choose coordinates s on each segment of T so that each
segment has the given length. We extend m to the space of self-intersection points
L x 4 L by extension by zero, so that any gradient trajectory u : T? — L X L in
L x4 L is constant.

Definition 3.1 A holomorphic treed disk with boundary in ¢ : L — X consists of a
treed disk C = S U T and a pair of continuous maps

u:C—X, 0u:0C—L

satisfying the conditions that the map is a pseudoholomorphic map on the surface part,
gradient trajectory on the tree parts, and the map Ju is a lift to L of the restriction of
u to the boundary of S:

(16)
A7
(18)

Jdg(uls) = du(uls)i
d
— grad(m)(Qu|r) = a(&th)
ul0C = ¢odu

where dgu = du — H(u).

Note that the one-dimensional part T of the domain C is equipped with a decomposition
T = T, UTy, so that u|T, takes values in the finite set of self-intersections

L><¢L—AL, AL:{(Z,I) |IEL}
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and u|T) is a map to L. We call T| resp. T, the unbranched resp. branched
one-dimensional locus.

The combinatorial data of a treed holomorphic disk is packaged into a labelled graph
called the combinatorial type: for a pseudoholomorphic treed disks u# : C — X is
the type is the combinatorial type I' of the underlying treed disk C together with
the labelling of vertices v € Vert(I') corresponding to sphere and disk components
Sy, v € Vert(I') by their (relative) homology classes

d(v) € Hx(X) U Hy(¢)

and the labelling
te) € {1,2}

of edges by their branch type (whether they map to Ay or to L X4 L), and the labelling
of the semi-infinite edges by the limits xg,...,x; € L.

A compactified moduli space for any type is obtained after imposing a stability condi-
tion. A holomorphic tree disk u : C = SUT — X is stable if it has no automorphisms,
or equivalently

(a) each disk component S, , C § on which the map u is constant (that is, a ghost
disk bubble) has at least one interior node S, N Ty # (0 or has at least three
boundary nodes #(S,, N T,) > 3, where T, resp. T, denotes the union of
segments e corresponding to e € Edge_ resp. e € Edge,;

(b) each sphere component S, o C S on which the map u is constant (that is, a ghost
sphere bubble) has at least three nodes #(S, o N Ty) > 3;

(c) each broken segment T, ; C T, on which the map u is constant has at most one
infinite end, that is, one of the ends of T, ; is an attaching point to a sphere or
disk S, C S.

Note that the case C = R equipped with a non-constant Morse trajectory u : C — L
is allowed under this stability condition. The energy of a treed disk is the sum of the
energies of the surface components,

En(u) = / (1/2)|dyu|3d Volg
S

and for holomorphic treed disks with H = 0 is equal to the symplectic area

Au) = /(us)*w.
s
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For any combinatorial type I' denote by Mr(¢) the moduli space of finite energy
stable treed holomorphic disks of type I'. Denote by

Ma(d) = JMr ()
r
the union over combinatorial types with d incoming edges.

Proposition 3.2 In a neighborhood of any holomorphic treed disk u : C — X of
type I' with stable domain the moduli space Mr(¢) is cut out by a Fredholm map of
Banach spaces.

Proof The proof is standard combination of various Banach spaces of maps and
Sobolev multiplication theorems. Let C = S U T be the domain of # and denote by
S° the surface obtained by removing the nodes ¢; that map to self-intersection points
¢(L x¢ L — L). Fix a metric on S° with strip-like ends near those self-intersection
points. For kp > 2 let Map,, ,(S°, X) resp. Mapy (T, L) denote the space of continuous
maps with finite W*”-norm with respect to suitably chosen covariant derivatives on
the domains and target. The base of the required bundle is the space

19)

Mapy (5%, X) x M 8S°, L
(C, Ms’auS’uT“uTz) e ( MP X apk7p( ) )X apk—l/p,p( , ) > ’

X Map]gp(Tl’L) X Mapk,p(T2’ L X¢ L)

u|0S° = ¢ o Ou, ¢ o ur,|sonr, = uslosenr,

Br =

Note that by the Sobolev trace theorem the boundary map Map, ,(S°, X) takes values
in Map,_ , ,(05°,X), so the boundary condition u|0S° = ¢ o Ju is well-defined.
Local charts for Br can be constructed using geodesic exponentiation exp : 7X — X
for some metric for which L is totally geodesic; such a metric exists as long as the
self-intersections of L are self-transverse. Given such a metric we have compatible
maps

(20) QS°, uw* TX)x, — Mapy (5%, X)  QUOS°, u*TL)_1,, — Map;_y , ,(0S°, L)

providing the local charts for Br. The fiber of the bundle £ over some map u is the
vector space

QD Eru= Q0N S uSTX k-1, © QT uf TD—1,p ® Q' (Do, TL 1 -
Local charts are provided by almost complex parallel transport

(22) IS - Q%1(S, exp, ()5TX k-1, — QVN(S, Wi TX)i—1,
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along exp,,(s§) for s € [0, 1]. However, in general & — Br is only a C°-Banach man-
ifold, because the transition maps between the local trivializations involve reparametriz-
ing the domains S in C = S U T and these reparametrization actions are not smooth
on Sobolev spaces WEP(S).

However, in any local trivialization of the universal curve one can obtain Banach
bundles with arbitrarily high regularity. Let Ul — ML x C be a collection of local
trivializations of the universal curve. Let Bil denote the inverse image of M’F in Br
and 511; its preimage in of £r. For integers k, p determining the Sobolev class as above
the Fredholm map cutting out the moduli space over /\/l’F is

S . d d
(23) JFr By — &pyu— (Gus, Rl + grad(m(ur,)), dsuT2> .

In other words, u is J-holomorphic on the surface parts S C C, a gradient trajectory
of —m on the unbranched segments 7, C 7' and constant on the branched segments
T, C T?. Indeed, in local charts and after restricting to a sheet of the immersion
¢ : L — X, the condition u|0S° = ¢ o Ju simply imposes Lagrangian boundary
conditions. After imposing a finite energy condition each strip-like end limiting to
such a node has a well-defined limit u(g;+) € L x4 L. The zero set of ]-'{Q need
not satisfy the matching conditions u(g; —) = u(gj 4+ ) on the nodes of § mapping to
self-intersection points. The matching condition may be imposed a posteriori, that is,
Mr(¢) is the subset of Fp- 1(O) such that for each node u(qg; —) = u(g; +). Since the set
of self-intersection points L x4 L — Ay is finite, this identifies Mr(¢) as a connected
component of the zero set F 1(0). Elliptic regularity for pseudoholomorphic curves
in [43, Theorem B.4.1] (note that the boundary condition is embedded locally) imply
that the solution space consists of smooth maps. O

The linearization of the map (23) cutting out the moduli space is a combination of the
standard linearization of the Cauchy-Riemann operator with additional terms arising
from the gradient operator and variation of conformal structure. With k, p integers
determining the Sobolev class as above let

Dy, : Q%S uiTX, (Qus)* TL) ), — QON(S, i TX -1,
(24) o1, 1
f — VH’ 5— E(Vg]).]@ybts

denote the linearization of the Cauchy-Riemann operator, c.f. McDuff-Salamon [43,
p. 258]; here Oyus = (1/2)(dpus — Jdyugj) and V'€ is the 0, 1-projection of
Vil = V& — VeH, where H € QL(S, Vect,(X)) is the Hamiltonian vector field.
Denote by D, the operator given by combining the linearization of the Cauchy-Riemann
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operator with the linearized gradient operator and the variation of conformal structure
and metrics on the domain:

(25) Dy : TiepMr & QO(S°, u§TX)ip & QUTy, u{TL)yp ® QT2 u3 TL )y
— QUM u TX )1, © QT u* TLYi—1 p & QN (T, u* TL* )1, ®Map(SN T, u*TX),

D,&s + (1/2)Jdu¢, V& + V¢ grad(m(u)), V&, )
&slsnr — (D@t 1,ns U D& | 1,ns) '

Here the last factor Map(S N (T, T2), u*TX) enforces the matching condition for the
sections &g, &1, &, at the finite set of nodes SN (77 UT,) C C. A holomorphic treed disk
u : C — X with stable domain C is regular if the linearized operator D, is surjective,
and rigid if it is regular and D, is an isomorphism, or more generally, if C is unstable,
if D, is surjective and the kernel of D, is generated by the infinitesimal automorphism
aut(C) of C.

(C?SS?€1552) = (

A standard application of the implicit function theorem in Banach spaces implies that
the moduli space of rigid regular disks is invariant under small perturbations of the
boundary condition or almost complex structure:

Corollary 3.3 Let up : C — X be a rigid regular holomorphic treed disk with
boundary in a Lagrangian immersion ¢g : L — X with respect to a symplectic form
wop. Suppose that ¢, : L — X is a family of Lagrangian immersions with respect to a
family of symplectic forms w; fort € [T, T], agreeing with the given immersion and
formatt = 0. Let D C X a Donaldson hypersurface symplectic for all w; and Pr; a
family of perturbation data for adapted holomorphic treed disks for combinatorial type
T'o. Then

(a) (Existence) there exists an € > 0 such that there exists a family u, : C — X for
|t| < € of holomorphic treed disks with boundary in the Lagrangian immersion
¢ L —X;

(b) (Uniqueness) the solution u, is unique in the following sense: There exists
a § > 0 such that u, is the unique such map up to isomorphism in an open
neighborhood of ug in the Gromov topology.

(¢) (Uniformity) The sizes of 6 and ¢ depend on uniform estimates for the distance
from ¢ to ¢; and from Pr to Pr in C! norm and a lower bound for the right
inverse of the linearized operator D, .

The moduli space of holomorphic treed disks admits a natural version of the Gromov
topology which allows bubbling off spheres, disks, and Morse trajectories. Given
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a sequence u, : C, = S, UT, — X,0u, : 9C, — L of treed holomorphic disks
with boundary in ¢ with bounded energy Gromov compactness of pseudoholomorphic
curves with Lagrangian boundary conditions as in, for example, Frauenfelder-Zemisch
[30] implies that there exist stable limits limu, S, — X on the surface parts, while
limits on the tree parts lim du, |0C,, — L are a consequence of convergence for gradient
trajectories up to breaking. Thus for any fixed energy bound E, the subset

— E [—
M (@) = {ueMug) | Eu) <E}
satisfying the given energy bound is compact.

The moduli space further decomposes according to the limits at infinity and the expected
dimension. For eachend ¢ = 0,...,d let ¢, : [0,00) — C denote a local coordinate
on the e-th end. Define the sets of possible limits

I°(¢p) = crit(m) = {x € L|dm(x) = 0}
TNP) = {(—,xp) €L | p(x_) = Plxp), x_ # x4}
The set of self-intersections ISi(qS) has a natural involution
TV(P) = @), x = (x—,x4) = X = (ry,x).

Given
x = (x0, .- -,%1) € I(¢) UTY(¢)

denote by
Mo, = { [u: € > X) € My(60) | lim u(ee(s) = x,, Ye =0,....d |
the locus with limits x. For any integer p denote by
Ma(@)p = {[u: C — X1| Ind(D,) — dim(aut(C)) = p}

the locus with expected dimension p, where D, is the operator of (25). In the next
section, we construct perturbed moduli spaces using Cieliebak-Mohnke perturbations
[15] and show that they are still compact.

4 Transversality and compactness

In this section we construct perturbations of the moduli spaces of treed holomorphic
disks with immersed Lagrangian boundary conditions so that the perturbed moduli
spaces are transversally cut out and compact. To achieve transversality, we combine
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the approach in Akaho-Joyce [2] with Biran-Cornea [8], Charest [12], and Charest-
Woodward [13] which uses Donaldson hypersurfaces to stabilize the domains of the
holomorphic treed disks; once the domains are stabilized, one may choose generic
domain-dependent almost complex structures and Morse functions to achieve regular-
ity, except for the following trivial case: To achieve transversality for constant maps
to self-intersections of the Lagrangian immersion domain-dependent Hamiltonian per-
turbations are required.

The existence of suitable Donaldson hypersurfaces uses auxiliary line bundles whose
curvature is the symplectic form, and so requires rationality assumptions. Say that ¢ is
weakly rational if the pairing of [w] € H?(¢) with any relative cycle is rational. That
is, the class [w] lies in the image of the natural map from singular cohomology with
rational coefficients:

[0,w] € Im(H*(¢, Q) — H*(¢, R)).

In particular, [w] € H*(X , Q) so that for some integer k, k[w] = c1(X) for some line
bundle X — X. By Stokes’ theorem the pairings of [w] with disk classes u.[S] € Hy(¢)
are related to the holonomies of the connection around the boundary by

exp(2mi(u[S], k[w])) = Hol((9u)*X)

and so trivial. The immersion ¢ is strongly rational if there exists a line bundle X — X
with connection whose curvature equals k(27 /i)w for some integer k > 0 such that the
restriction of X to ¢(L) is trivial as a line bundle with connection. That is, there exists
an isomorphism of line bundles with connection ¢ : ¢*L — L x C (where L x C is
equipped with the trivial connection) such that ¢(x1) = ¢(xz) implies that 1),, agrees
with 1)y, using the canonical identification Lg,) = Le(x,)-

Strong rationality implies the existence of Donaldson hypersurfaces in the complement
of the image of the Lagrangian immersion, similar to the construction in Charest-
Woodward [13]. Let X — X be a line-bundle with connection o over X whose
curvature two-form curv(c) satisfies curv(e) = (27 /i)w; since our symplectic man-
ifold (X,w) has rational symplectic class [w] we may always assume such X after
taking a suitable integer multiple of the symplectic form w. Let (o4)i>0 be a sequence
of sections of X* — X. The sequence (ok)k>0 is asymptotically holomorphic if there
exists a constant C and integer ko such that for k > ko,

(26) lox| + |Vou| + | V20| < C,  |Boy| + |Vor| < Ck /2.

The sequence (ox)i>0 is uniformly transverse to O if there exists a constant 7 in-
dependent of k such that for any x € X with |ox(x)| < 7, the derivative of oy is
surjective and satisfies |Voy(x)| > 7. In both definitions the norms of the derivatives
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are evaluated using the metric gy = kw(+,J-). Donaldson’s construction [22] produces
from an asymptotically holomorphic sequence of sections a nearby sequence that is
uniformly transverse, so that the zero section D = o, ! (0) is a symplectic submanifold
of codimension two representing k[w], called a Donaldson hypersurface.

Lemma 4.1 Suppose that ¢ : L — X is a strongly rational Lagrangian immersion
with only transverse self-intersections or non-degenerate tangencies. There exists a
Donaldson hypersurface D C X with the property that ¢(L) is exact in X — D. That
is, there exists a one-form

aEQI(X—D), doa=w

and a function
B:L—R, df=¢"a

such that for any xi,x; € L, equality ¢(x1) = ¢(x2) implies B(x;) = [(x2). In
particular, any disk with boundary in L with non-zero area intersects D.

Proof The first step is to choose an asymptotically holomorphic sequence of sec-
tions concentrated on the image of the immersion. By the Auroux-Gayet-Mohsen
[6] prescription, there exists a Gaussian asymptotically holomorphic sequence of sec-
tions oy : X — X* concentrated on ¢(L). At least locally we may model X in a
neighborhood U of the image of L as the cotangent bundle 7VL with coordinates
q1,---,4n, D1, - - - ,Pn. Parallel transport along geodesics exp, (sv), v € T,X normal to
L defines a local trivialization of X near the image of ¢(L), depending on the choice
of branch. An asymptotically-holomorphic sequence of sections oy joc : U — X|U is
then given by

Tktoc(q1s - -+ s Gus P1s - - - s Pn) = exp(—k(p} + ... + p2)).

The sequence oy joc can be extended to a globally defined sequence of sections oy
on X by multiplying by a cutoff function s : X — R supported in U and equal
to 1 in neighborhood of each branch of ¢(L). Near a transverse self-intersection or
admissible self-tangent intersection x € L x4 L — Ay, the section oy is the sum of
the contributions oy | + oy > from the branches. The sum oy is non-vanishing on each
branch of ¢(L), since the maximum of the norm of oy, occurs on the branch ¢(L),,.
Since oy, m € {1,2} restricts to a section on Ly, (with m mod 2) of norm strictly
less than one, the sum (o, + 0p+1)|Ly is homotopic to o,,|L,, and so the Maslov
computation still implies that the intersection number with o~!(0) is the symplectic
area.
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In the second step one applies Donaldson’s perturbation procedure [22] to obtain
asymptotically holomorphic sections o} : X — X* uniformly transverse to the zero
section X C X*. This gives a symplectic hypersurface Dy := (07)~(0) in the
complement of the Lagrangian. Because the section o is homotopic to a covariant
constant section of X* on the Lagrangian L, on the complement of D; we have

kw = dayg, ax|L = dfy

where oy is the connection one-form corresponding to the section o;. Thus the
Lagrangian L is exact in the complement X — D; of the Donaldson hypersurface
D, C X. O

Given a weakly rational immersion one may choose a small perturbation of the sym-
plectic form and connection to obtain a strongly rational immersion with respect to a
slightly different symplectic form:

Lemma 4.2 Let ¢ : L — X be a weakly rational immersion with only isolated

self-intersections ¢(xx ) = ¢(xx,—) for k = 1,...,m. There exists a collection of
paths
27 {1+ 10,11 = L | (k£,1£) € O}

where 7y ; + + is a path from x; + to x; + in L that are disjoint except for the endpoints
and © C 7I%(¢) is an indexing set such that all distinct pairs of self-intersection points
are connected by a concatenation of such paths. For a generic perturbation of the
connection one-form «, that is closed on L, the parallel transports along 7y + + are
rational and so ¢ : L — X is strongly rational with respect to the resulting symplectic
form w'.

Proof The strategy of proof is to introduce a variation of connection and symplectic
form on each branch individually, which preserves the Lagrangian condition. The proof
is slightly different in the case of surface target. If dim(X) > 2 then © can be chosen
to connect all self-intersection points, and if dim(X) = 2 then © can be chosen to
connect adjacent self-intersection points. By assumption the self-intersections ¢(x +)
are isolated, so that at any self-intersection point ¢(x; +) there are two branches Lo, L;
of ¢(L) in any sufficiently small neighborhood of a self-intersection point ¢(xy ).

To produce the variation in connection, let f : R>o — [0, 1] be a smooth bump function
supported in [0,2] and equal to 1 on [0, 1]. Let x € L be a point on which ¢ is not
injective, that is, ¢(x) = ¢(y) for some y # x € L. Choose local Darboux coordinates
Pls---sPnsq1,---,qn on X centered at ¢(x) so that the given branch of ¢(L) is equal
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<

>

Figure 7: Support of the perturbation of the connection one-form

near x to the locus defined by p; = ... = p, = 0. Consider perturbations o’ of the
connection « by multiples of the one-forms

as.e = f(elpDdf(SlqD;

the supportis shown in Figure 7. In the Figure, the branch ¢(L) on which the connection
is modified is the top branch. Since the non-injective points are assumed isolated, for
sufficiently small d, € the support of a5 does not intersect any other branch of ¢(L).
The effect of adding as, to the connection one-form on X is to modify the parallel
transport in the fibers of X along any path + to or from x by a small amount 64 € S,
without changing the parallel transports to x along other branches of ¢(L), at the cost of
a small change dw in the symplectic form w which keeps the immersion ¢ Lagrangian,
that is, ¢*(w + dw) = 0. Thus we ensure that there is a path between each pair of
self-intersection points which has rational holonomy. Since this perturbation preserves
the holonomy of each loop we still have that each v : S' — L has rational holonomy
for ¢*X, all paths i+ 4 from (27) between self-intersection points xi,x; have the
property that the loops ‘b(Vki'Vl,_ii) have rational holonomy. After taking a suitable
tensor power X®* k >> 0 of the bundle X, all paths between intersection points have
the same parallel transport. It follows that the bundle X admits a trivialization over

O(L). o

Remark 4.3 Given Lemma 4.2, we may assume that the Lagrangian immersions
¢s : L — X for rational times s are strongly rational. Indeed, suppose that L is
exact in X — D with respect to some perturbed symplectic form w’. The number
of intersection points u~Y(D) of u with D is k times the pairing of u,[C] with
[w']; the number #u~ (D) is necessarily positive for any almost complex structure
J € J-(X,w)NJ(X,w') taming both symplectic forms w,w’ which exists as long as
w' is sufficiently close to w.

Domain-dependent perturbations as in Cieliebak-Mohnke [15] are chosen using the
Donaldson hypersurfaces above. For sufficiently large degree and a generic almost
complex structure Jp € J-(X) making D an almost complex submanifold, the Don-
aldson hypersurface D contains no pseudoholomorphic spheres v : P! — D and any
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pseudoholomorphic sphere v : P! — X intersects the hypersurface D C X in at least
three but finitely many points v—!(D) [15, Proposition 8.11]. The additional intersec-
tion points of a holomorphic treed disk « : C — X with a Donaldson hypersurface D
may be used to stabilize the domains C of holomorphic disks. Then domain-dependent
almost complex structures achieve transversality, as we now explain. Call a holomor-
phic treed disk u : C = SUT — X adapted to the Donaldson hypersurface D C X if
each bulk leaf 7, (with terminology from Section 3) lies in #~!(D) and each connected
component of u~ (D) contains an bulk leaf T,,e € Edge.7 _(I"); in the absence of
sphere bubbles S,,v € Verts(I') mapping to the hypersurface D this means that the
bulk leaves are the intersection points with D, that is,

u YD) = U T,.
ecEdgeg _,(I")
Let
TX)={J:TX—>TX |  =-1, w(J)>0}

denote the space of tame almost complex structures on X. As in Cieliebak-Mohnke
[15, Section 8], there exist an open subset J-(X,Jp, ") in the space of such domain-
dependent almost complex structures J near Jp with the property that each J-
holomorphic sphere u|S, : S, — X,v € Verte(I') intersects D in finitely many but
at least three points. For each combinatorial type I', a domain-dependent almost
complex structure is a map

Jr:Sr = Jr(X,Jp,T)

(notation from (15)) agreeing with the given almost complex structure Jp on the
hypersurface D and in a neighborhood of the nodes g; € S and boundary S for any
fiber S C Sr. We also choose a domain-dependent Hamiltonian perturbation: Let
Vect,(X) C Vect(X) denote the space of Hamiltonian vector fields and Vect,(X, D)
the space of vector fields v : X — TX that vanish on an open neighborhood of the
Donaldson hypersurface D C X. A domain-dependent Hamiltonian perturbation is a
one-form on S with values in Vect;,(X, D)

Hr € QYSr, Vecty(X, D))

vanishing on an open neighborhood of the boundary of Sy. A domain-dependent
Morse function is a map
mr 7-F xL—R

agreeing with the given Morse function m : L — R in a neighborhood of the endpoints
of each segment T; C T for any fiber T C Tr. A perturbation datum is a triple
Pr = (Jr, Hr,mr). The space of perturbation data of class C! is denoted P’F ={Pr}.
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The combinatorial type of an adapted map is that of the map with the additional data of
alabelling d(e), e € Edge(I") of any interior node by intersection multiplicity d(e) with
the hypersurface D; we let d(e) = 0 if the map is constant with values in the hypersur-
face D near the node. We denote the moduli space of adapted treed holomorphic disks
of type I by Mr(¢, D). Denote by M(¢, D) the union over combinatorial types. The
requirement that the intersections with the Donaldson hypersurface are the bulk leaves
means that the energy of a given combinatorial type of map to X is determined by the
bulk leaves as well as the set of ghost bubbles. Thus in particular, for any combinatorial
type I' of holomorphic treed disk there exist finitely many combinatorial types I'y with
domain of type I' (allowing any combination of stable sphere components to be ghost
bubbles.) Thus for each type I" of domain the union

Mr(¢,D) = | ] Mr(¢,D)

F*)Fx

is a finite union of types I'y of maps.

In order to obtain good compactness properties, we assume the following coherence
properties of the perturbations. For each vertex v € Vert(I"), let I'(v) denote the subtree
of I' consisting of the vertex v and all edges of I' meeting v. There is natural inclusion
T Urwy — Ur and we assume that the perturbations P = (Pr) satisfy the following
axioms:

e (Locality) The next axiom prevents ghost bubbles from forming when intersec-
tion points with divisors come together. For each vertex v € Vert(I'), let

['(v) = Uesye

denote the subtree of I' consisting of the vertex v and all edges e of I' meeting
v. Let T', denote the subgraph of I whose vertices are v € Vert,(I'). Let

71'=7T1><7T2:U1“—>M1“OXU1“(V)

be the product of the maps where 7 is given by projection followed by forgetful
morphism and 7 is the map C — S,, equipped with its special points. The
perturbations Pr are local for v if and only if Pr restricts on S, to the pull-
back under 7 of a family of perturbation data Pr, on Mrp, x Urq) to Ur.
(The dependence on Mt is necessary to allow compatibility with the (Cutting
Edges) axiom; we thank Guangbo Xu for pointing this out.)

(Cutting-edges axiom) If I" is obtained from types I'{,'; by gluing along semi-
infinite edges then Pr is the product of the perturbations Pr , Pr, under the
isomorphism Ur = 7{Ur; U m3Ur, .
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(Collapsing-edges axiom) If I is obtained from I' by setting a length equal to
zero or infinity or collapsing an edge then the restriction of P to Up | Mp = U
is equal to Prv.

The origins of the axioms is rather different: the (Cutting-edges) and (Collapsing-
edges) axioms in particular imply that the moduli space Mr(¢, D) over the image of
the inclusion Mp, x Mp, — M is a product of moduli spaces over Mr, (¢, D)
and Mr,(¢,D); this implies that the terms in the A, axiom are associated to the
boundary points on the moduli space of holomorphic tree disks. On the other hand,
in principle one could also have sphere bubbling: Cieliebak-Mohnke perturbations
P = (Pr) [15] do not make all strata Mr(¢, D) expected dimension in the case of
ghost bubbles. Without the (Locality axiom), this fact could cause additional terms
in the boundary of the one-dimensional component M(¢, D); of the moduli space
of treed holomorphic maps M(¢, D). The (Locality axiom) implies that if at least
one ghost sphere bubble u : S, — X, u.[S,] = 0 appears then forgetting all but one
marking z; € S, on each ghost bubble S, C S,d(v) = 0, one obtains a configuration
of lower expected dimension «’ : § — X, 7' C z at least two lower. However, there is
no recursive constraint on such perturbations Pr , .

Obtaining strict units requires the addition of weightings to the combinatorial types as
in Ganatra [33] and Charest-Woodward [16]. A weighting for a type I' is a map
from the space Edge_ (I") of semi-infinite edges of I' to [0, oc]. The set of generators
of the space of Floer cochains CF(¢) is enlarged by adding two new elements x”, x¥ of
degree 0 resp. —1, with the constraint that if the weight s¢(e) is non-zero then the only
allowable labels of the edge e are x” (if the weight is infinite) x¥ (for any weighting).
One then requires that the perturbation system satisfies a forgetful axiom:

(Forgetful axiom) For any semi-infinite edge e with infinite weighting s(e) =
00, the perturbation datum Pr is pulled back from the perturbation datum Pr»
under the forgetful map Ur — U+ obtained by forgetting that semi-infinite edge
and stabilizing.

In particular, this axiom implies that the resulting moduli spaces admit forgetful mor-
phisms Mr(¢, D) — My (¢, D) whenever there is a semi-infinite edge with infinite
weighting. See [16] for more details on the allowable weightings.

In order to apply the Sard-Smale theorem we construct a suitable Banach manifold of
perturbation data for each type. We assume perturbation data Pr matches that obtained
by gluing perturbation data P+ on strata U contained in U on a fixed neighborhood
of the boundary. The space ’Plﬂ of perturbation data of class C' taking values in Jr(Jp)
is a Banach manifold and the space Pr of perturbation data of class C*° and fixed to
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be the given almost complex structure Jp and Morse function m on the complement
of a compact subset is a Baire space, by the usual combination of C* norms into a
non-linear metric:

dist(Pr,1, Pr,) = Y 2 *min(1, |Pr,; — Pral|c):
k>0

see for example Royden [49, Chapter 7.8].

Given a relative spin structure for the immersion, orientations on the moduli spaces
may be constructed following Fukaya-Oh-Ohta-Ono [31, Orientation chapter], [59].
We may ignore the constraints at the interior nodes zi,...,z, € int(S), since the
tangent spaces to these markings and the linearized constraints du(z;) € T,)D are
even dimensional and oriented by the given complex structures. At any regular element
(u: C — X) € M(¢,D) the tangent space to the moduli space of treed disks is the
kernel of the linearized operator

T.M(¢, D) = ker(D,).

The operator D, is canonically homotopic via family of operators D!, t € [0,1] to
the operator 0 ¢ D,, & % on the direct sum in (25). For any vector spaces V, W we
have isomorphism det(V & W) = det(V) ® det(W). The deformation D!t € [0, 1]
of operators induces a family of determinant lines det(D’) over the interval [0, 1],
necessarily trivial, and so (by taking a connection on this family) an identification of
determinant lines

(28) det(T, M(¢, D)) — det(TcMr) @ det(D,)

well-defined up to isomorphism. (Here D,, denotes the linearized operator subject to the
constraints that require the attaching points of edges mapping to critical points to map
to the corresponding unstable manifolds of the Morse function.) In the case of nodes
of S mapping to self-intersection points x € Z%(¢) the determinant line det(D,) is
oriented by “bubbling off one-pointed disks”, see [31, Theorem 44.1] or [59, Equation
(36)]. That is, for each self-intersection point (x_ # x,) € L?, ¢(x_) = ¢(x,) choose
a path of Lagrangian subspaces

(29)

Y 010,11 = Lag(Tyie )=px)X);  1x(0) = Dx_ (T L) (1) = Dy ¢(Tx, L).

Let S be the unit disk with a single boundary marking 1 € 9S. The path -, defines a
totally real boundary condition on S on the trivial bundle with fiber 7,.X. Let det(D,)

denote the determinant line for the Cauchy-Riemann operator D, with boundary con-
ditions -y, as in [59]. Denote by

i(x) = dim(ker(D,)) — dim(coker(D,)) € Z
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Figure 8: Bubbling off the strip-like ends

the index of the operator D,. Let ]D)xt,l = det(D;;l) and let ]D);k’l be the tensor product
of the determinant line det(D; ) for the once-marked disk with det(T,L). Because
the once-marked disks with boundary conditions v,, and 75 glue together to a trivial
problem on the disk with index T, L, there is a canonical isomorphism

(30) D, DI, - R.

X, 1 Xy, 1
A choice of orientations Oy, € ]D)xih
the isomorphisms (30) are orientation preserving with respect to the standard orientation
on R. Similarly for each critical point x € crit(m) let W C L denote the stable and
unstable manifolds of x under the flow of — grad(m) € Vect(L). Choices of orientations
O, on the determinant lines of the stable resp. unstable manifolds det(TWf) are

coherent if the natural maps

det(TW,) @ det(TW,") — det(TL)

| for the self-intersection points x; are coherent if

are orientation preserving. Set
Dy 5 = det(Tu W (x)), Dy , = det(Ty W™ (%)) @ det(Ty, L)

so that their tensor product is canonically trivial. Given a relative spin structure for
¢ : L — X the orientation at u is determined by an isomorphism

31) det(D,) = Dt

X04J0

RD_ . ®...0D_

X141 XdiJd’
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where each j; € {1,2} depending on the type of end associated to x;. The isomorphism
(31) is determined by degenerating the surface with strip-like ends to a nodal surface.
Thus each end ¢.,e € £(S,) of a component S, with a node g; mapping to a self-
intersection point is replaced by a disk S+, with one end attached to the rest of
the surface by a node qki. After combining the orientations on the determinant lines
on S+ with coherent orientations on the tangent spaces to the stable manifolds
Wﬁ: in the case of broken edges or semi-infinite edges e € Edge(I'), {(¢) = oo, one
obtains an orientation on the determinant line of the parameterized operator det(D,)
and so orientations on the regularized moduli spaces Mr(¢, D). In particular the
rigid component M(¢, D), of the moduli space (that it, the component of expected
dimension zero) inherits an orientation map

e: M(¢,D), — {+1,—-1}
comparing the constructed orientation to the canonical orientation of a point.

In general, Cieliebak-Mohnke perturbations [15] are not sufficient for achieving transver-
sality if there are multiple markings on ghost bubbles. Indeed, if there exists a sphere
component S, C S,v € Verty(I') on which the map ulg, is constant and maps to the
divisor so that u(S,) C D, the domain S, may meet any number of interior leaves
T, C T. Adding an bulk leaf T,/ to the tree meeting S, increases the dimension of
a stratum dim Mr(¢, D), but leaves the expected dimension Ind(D,),u € Mr(¢, D)
unchanged so Mr(¢, D) is not of expected dimension for some types I'. A similar
phenomenon occurs in the immersed case for constant disks «|S, : Sy — X mapping to
the self-intersection points x, x of the Lagrangian ¢ : L — X. We call a holomorphic
treed disk u : C — X uncrowded if each such ghost component S, C S meets at most
one bulk leaf, T, NS, # (). Cieliebak-Mohnke perturbations P = (Pr) suffice to make
strata for uncrowded types of expected dimension at most one regular. On the other
hand, the perturbations Pr are chosen to satisfying the (Locality Axiom) so that for any
crowded component Mp(¢) there exists a non-empty uncrowded component M (¢)
of the moduli space obtained by forgetting all but one of the interior markings on such
ghost bubbles S,. Since combinatorial types I with sphere bubbles are codimension
two, such configurations u : C — X do not appear in the components of the moduli
space M (¢, D) of expected dimension at most one.

The construction of regular perturbations now proceeds inductively by combinatorial
type. More precisely, suppose that d, e > 0 are integers. Let I be an uncrowded type of
stable treed disk of expected dimension at most one with d incoming edges and e edges
in total, and suppose that regular, stabilizing perturbation data Pr+ have been chosen
for all uncrowded boundary strata with d’ < d incoming edges and ¢’ > e total edges,
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with (d’,€') # (d, e). In particular, perturbations have been chosen for any boundary
stratum U C Ut . By the gluing construction, we obtain regular perturbation data on
a neighborhood Vr of the boundary of Ur. Denote by Pr = {Pr} the Baire space of
perturbations that agree with the given perturbations on Vr.

Theorem 4.4 Let I' be a combinatorial type of adapted holomorphic treed disk of
expected dimension at most one. There exists a comeager subset P}eg of the space Pr

such that for Pr € PR¢,

(a) (Transversality) every element of Mp(¢, D) is regular;

(b) (Compactness) the closure Mr(¢, D) is compact and contained in the adapted,
uncrowded locus;

(c) (Boundary description) The boundary of Mr(¢,D) is a union of components
Mri(¢, D) where either T is a type with an edge of a length zero, a broken edge
connecting two disk components, or a broken semi-infinite edge corresponding
to bubbling off a Morse trajectory;

(d) (Tubular neighborhoods) each uncrowded stratum My (¢, D) of dimension zero
has a tubular neighborhood of dimension one in any adjoining uncrowded strata
of one higher dimension;

(e) (Orientations) the uncrowded strata Mr (¢, D) of formal dimension one or two
are equipped with orientations satisfying the standard gluing signs for inclusions
of boundary components; in particular denote by e(u) € {1} the orientation
sign associated to the zero-dimensional moduli spaces M(¢, D), .

We will not give a complete proof, since the arguments are very similar to those for
the embedded case as in [15], [16], but rather sketch the arguments. The transversality
for generic perturbations is a consequence of the Sard-Smale theorem. Given integers
k,p determining the Sobolev class as in the proof of Proposition 3.2 and some local
trivialization of the universal curve L{f' — /\/l’F denote by M%niv’i(gi), D) the universal
moduli space

(32) M4, D) = {(C,u, du,uy, uz, Pr)
€ M x Map(S°, X)i, x Map(9S°, L), x Map(T}, L)k
X Map(Ta,L x4 L — Ap)e, X PRX, D)|(x)}
where [ > k, (%) includes the conditions (16) together with the requirement that the

interior edges T, map to the Donaldson hypersurface D; in the case with tangencies with
the Donaldson hypersurface there are additional conditions at the nodes w, requiring
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given order of vanishing at D as explained in [15], [16]. On a point p in any non-
constant component S, C S, du|S, # 0, orthogonality of any element 7 of the cokernel
ker(D}) to variations of the almost complex structure K € Ty Jr(Jp) implies that the
cokernel element n vanishes in an open neighborhood of p, and so everywhere on
S, by unique continuation. Constant spheres S,, du|S, = 0 have surjective linearized
operators D,s, since the trivial Cauchy-Riemann operator on the sphere is surjective.
Finally constant disks u|S, : Sy — X mapping with corners alternating x, X for some
ordered self-intersection point x € X have surjective universal linearized operator
since any cokernel element n must be orthogonal to a variation of the Hamiltonian
perturbation on an open subset, and so vanish again by unique continuation. The
Sard-Smale theorem implies that the set Pllireg’i of regular values of the projection onto
Pllii is comeager; we denote by

Pit — 0, PRe

so that if Pr € Pr then every element of the moduli space Mr(¢, D) is regular. A
standard argument due to Taubes implies that for a comeager subset of the space of
smooth perturbations the moduli space is transversally cut out. In particular, let I' be a
type of expected dimension at most one and I" the type obtained by adding a tangency
requirement at a marking or node. Then the moduli space M (¢, D) is empty. On
the other hand, T and T have the same underlying tree so by taking Pr € Pr we
may assume that every element of Mrp(¢, D) meets the Donaldson hypersurface D
transversally.

We sketch the proof of the compactness statement (b). The (Locality axiom) ensures
that the moduli spaces Mt (¢, D) corresponding to types I with more than one interior
marking z/,z, on a ghost bubble S, C S,u,[S,] = 0 admit forgetful maps to moduli
space Mt (¢, D) with at most one ghost marking on each sphere bubble. Suppose the
boundary of Mr(¢, D) contains a configuration in a stratum My (¢, D) containing
a sphere bubble. If the sphere bubble is non-trivial, then the expected dimension of
Mri (¢, D) is at most —1, and so empty. Thus all sphere bubbles occurring in the
limiting configuration are ghost bubbles. On the other hand, any configuration of ghost
bubbles has at least two markings to be stable, and so the configuration M/ (¢, D)
has intersection multiplicity d(z) at least two with the Donaldson hypersurface at at
least one point z € S. But then Mt (¢, D) is of negative expected dimension, and so
empty. Thus the boundary of the locus of expected dimension at most one is the union
of strata M (¢, D) where I is a stable type or a Morse trajectory has bubbled off.

To prove (d), each stratum for combinatorial type representing a breaking has a tubular
neighborhood given by a gluing construction. In the case of immersed Floer theory
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with treed disks there are now three kinds of gluing constructions necessary for the
construction of tubular neighborhoods. A detailed exposition of the necessary estimates
may be found in Schwarz [53] for the Morse gluing, Abouzaid [1] for the disk gluing
estimates; also see Schmischke [50]. First, if two disks S,,, v € Vert(I"), k € {1,2}
are joined at a node corresponding to an edge e € Edge(I") of length ¢(¢) = 0 in a
treed holomorphic disk u : C — X at which the branch of L is unchanged then a
gluing procedure for holomorphic disks produces a one-dimensional family of treed
holomorphic disks u,, : C,, — X depending on a gluing parameter s € [0, €) for some
small € > 0. The gluing u,, converges to the given configuration u as » — 0, and
C,, is obtained from C by replacing the adjacent disks S,/,S,» with a single disk S, .
Second, if the branch of L changes at the node g; so that ¢; maps to a self-intersection
point x; € Z%(¢) then a gluing construction for holomorphic strips with transversely
intersecting Lagrangian boundary conditions produces a family u,, : C,, — X where
again C,, is obtained from C by replacing adjacent disks S/, S,~» with a single disk
S'.. Finally, for edges e with infinite length ¢(¢) = oo the gluing construction for
Morse trajectories produces a family u,, : C,, — X converging to infinity, where C,,
is obtained from C by replacing a broken segment T, = T, 1 U T, > with an unbroken
one T,.

The boundary description in Theorem 4.4 (c) follows from the description of the tubular
neighborhoods (d) implies a description for the topological boundary of the union of
one-dimensional strata. Any top-dimensional stratum Mp(¢) has boundary strata
Mri(¢) corresponding (potentially) to Morse trajectories of length zero or broken
Morse trajectories u : T, — L of length ¢(e) infinity. The former strata M (¢, D)
are called fake boundary components since there are two ways of desingularizing a
configuration u € Mrp/(¢,D): either by gluing the two adjacent holomorphic disks
up :Si — X,ux : S — X or by deforming a zero length Morse trajectory so that
u;, uy are connected by a segment 7, of length ¢ > 0 instead of a node. On the other
hand, the strata with a broken segment u : T, — L,{(e) = oo are true boundary
components of the one-dimensional component of the moduli space Ule Mr.(¢, D)y
since in this case there is a single way of moving into the interior, by making the
length #(e) of that segment T, finite, see Figures 10 and 9. Because we chose the
trajectories on the branched edges to be constant, for the unperturbed almost complex
structure Jp and Morse function m, once one has a fake boundary component Mr(¢)
where a holomorphic disk breaks at a self-transverse intersection, it also contains a true
boundary component Mt (¢) with an infinite edge mapping to the same self-transverse
intersection, since configurations with every possible edge length at the self-intersection
occur. However, for the perturbed almost complex structure and Morse function Jr, mr
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Figure 9: Fake boundary components with an unbranched resp. branched node

\ \@<

Figure 10: True boundary components with an unbranched resp. branched segment
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the perturbation depends on the length ¢(e) of this trajectory, and so the existence of
a non-empty stratum Mr(¢) of a branched node with zero length ¢(¢) = 0 does not
necessarily imply the existence of a non-empty stratum Mt (¢) with infinite length.

Remark 4.5 (The exact case) An alternative construction of moduli spaces in the
case of exact symplectic manifolds gives a definition of immersed Fukaya algebras
over the integers. Let I' be a stable combinatorial type of nodal marked disks S with
no sphere components, with ordered boundary markings zp,...,zz € S in coun-
terclockwise order around the boundary and unordered, possibly coinciding interior
markings z{,...,z.. That is, two such disks S;,S, are isomorphic if there exists
a biholomorphism S; — S, preserving the boundary marking z and preserving the
interior markings z' up to reordering. Let M denote the moduli space of isomor-
phism classes of such disks, and ﬂznco " the union over combinatorial types I' with d
incoming leaves and c¢ interior markings:

——unord . unord
My = Jmprer,
r

Each moduli space ./\/l'fnord is contractible, being identifiable with a subset of increasing
elements 0 = z; < ... < zz—; = 1 of the boundary markings and a subset z’l, A A<
int(H) of the half-plane corresponding to the interior markings. The union ﬂunord has
a natural topology, similar to the moduli space of stable nodal disks M, with interior
markings; in fact the latter admits a natural map to ﬂznco " obtained by collapsing all
sphere components. Each moduli space /\/l‘ll“‘)rd is a smooth manifold equipped with a

universal disk bundle

u#nord N M%nord )

Charts for M'Iinord near points (C, z) where some of the markings coincide are produced
using the algebra isomorphism C[zy, ... ,Zn]z” = Clpi,...,pn] where ¥, denotes
the symmetric group on {1,...,n} and p;,...,p, are the elementary symmetric
polynomials; taking spectra produces local charts for (C")/Z,. Since each Mo is
contractible, the bundles U are trivial. Fix a trivialization C x M%""rd. (The existence
of a global trivialization is not necessary; if the bundle were only locally trivial we
could perform the construction in each local trivialization and take the intersection
of the comeager sets of perturbations.) Given a domain-dependent almost complex
structure and Morse function Pr = (Jr,mr), let Jp(C),mpr(C) denote the induced
domain-dependent almost complex structure and Morse function on S, 7 C C. Denote
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the moduli space of adapted treed disks by

C,z,us:S — X,0ug: 0S — L,

ur, : T, —>L,uT2 T, — L X¢L

Oypmptts = 0, (4 + grad(mr)) ur, = 0, u='(D) =z
(Ous)osnt, = dur, |lasnr,, (Qus)asnr, = dur, |asnt,

(33) Mg, D) =

The same arguments that prove Theorem 4.4 show that for a comeager subset of

perturbations Pr the moduli space M%“"rd(qb, D) is cut out transversally; for recursively
defined perturbation data the locus of the moduli space Munord’<E(¢, D) of energy at

most E is compact. This ends the Remark.

S Holomorphic disks with self-tangent boundary condition

In this section we construct moduli spaces of holomorphic curves for an immersed
Lagrangian with a non-degenerate self-tangency. For simplicity we suppose that we
are given a Lagrangian immersion ¢ : L — X such that self-intersection points
L x4 L — Ay are transverse except for a single (up to reordering) self-intersection

(x0,x1) EL XL, ¢(x0) = d(x1) = x

that has a non-degenerate self-tangency. In particular the dimension of the intersection
of tangent spaces satisfies

dim((Dx,¢(Ty, L)) N (Dx, ¢(T, L)) = 1.
We assume that there exist local coordinates qi,...,q,,p1,..-,Pn on X near the
self-intersection point x with x as the origin:
q1(x) = ... = g,(x) =p1(¥) = ... = pp(x) = 0.

We also assume that the branches L, L, of ¢(L) meeting x are a plane and the product
of a circular arc with a plane:

GH Li={pi=...=ps=0} Li={pi=0-¢D)"*+1,0=...=q, =0}

Lemma 2.8 shows that we may assume these conditions in any generic Maslov flow.
We say that x is a standard self-tangency if there exist such local coordinates and the
almost complex structure J is chosen to be the standard complex structure in these
coordinates in a neighborhood of the self-tangency.

Once self-tangencies are allowed, one loses the exponential decay property at the self-
intersections. Let I be a combinatorial type of treed disk with immersed Lagrangian
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boundary condition and let w € C be a point at which a branched segment in 7> meets
the surface part, sothat w € 7, N S. Let

€w 1 [0,£00) X [0,1] — §
be a holomorphic local coordinate on S (with sign depending on whether the end is
incoming or outgoing) with limit

lim e, (r,0)=w, Vrelo,1].
==

T

Denote by E,, C S the image of [1,00) X [0, 1] under ¢,,. Denote by
Ey[70] := €w((10,00) x [0,1]) C §

the part of the end with 7 > 7.

Lemma 5.1 (Exponential decay at self-intersections, similar to Proposition 4.6 in
[23]) Let u : C — X be a holomorphic disk with boundary on a Lagrangian immersion
¢ : L — X such that a point z € C maps to a self-intersection x = ¢(xg) =
P(x1), (x0,x1) € L?.

(a) Ifthe selfintersection x is transverse then there exists a local coordinate €,,(T+it)
near z so that if T > 7y then (omitting €,,) for some 6 > 0,

lu(r + in)| = 0™,
(b) If the self-intersection x is a standard self-tangency then either
u(T + in)| = O(e™7)

as in the previous item or there exists a real number cq such that if T > 7¢ then
up to involution

2

(35) M(T + lt) = <C0—|—T—|—lt7

0,... ,0) + 0(e797)

where O(e~%7) indicates exponential decay as in the first item.

Proof The first item is Floer’s exponential decay estimate [29, Proof of Theorem 4],
see also [28]. The second is also considered in Floer [29, Lemma 4.2], in the context of a
study of the Fredholm index of the linearized operator; see also Ekholm-Etnyre-Sullivan
[23, Lemma 4.6]. The proof of the statement here is, as in Floer [29], simpler than
the treatment in Ekholm-Etnyre-Sullivan [23], since we do not perturb the boundary
condition ¢(L) near the self-tangency x. The self-tangent boundary conditions in
C given in the first coordinate in (34) may be transformed to affine linear boundary
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conditions via the conformal transformation « +— 1/u. That is, the map v(z) = 1/u;(z)
is holomorphic and has boundary conditions given by Im(v)(7) = 0, Im(v)(7+i) = 1/2.
Composing with the holomorphic map v +— exp(—27v) we obtain a finite energy
holomorphic map with boundary conditions R. By definition v(z) has a limitas 7 — 0
in the local coordinate z = exp(w(7 + it)), and must be given by a map of the form

exp(—2mv(z)) = % exp(2co)z + O2).
Assuming the positive sign we have

wit,7) = v(t, )"
= +(In(exp((co + 1+ i1)/2 4+ O ")) !

2
1) = (————,0,...,0) + 0"

(where 6 depends on the Kihler angles of the transverse components) defines a holo-
morphic map from a neighborhood of 0 in the half plane Im(z) > 0 to C with boundary
in R and has the claimed expansion. a

Proposition 5.2 If ¢ : L — X has only non-degenerate tangencies then near any
u : C — X of combinatorial type I' the moduli space Mr(¢) is cut out locally by a
Fredholm map.

Proof The statement of the proposition is essentially that in Floer [29, Theorem 4a],
who studies non-degenerate tangencies as a method for developing an index theorem
for the transverse case, or Ekholm-Etnyre-Sullivan [23, Corollary 7.14]. For simplicity
assume a unique self-tangent point at y € X. Let C be a tree disk of type given by I'
and let g1, ...,gn € C be the set of nodes corresponding to maps to the self-tangent
point. We assume that the universal curve Ur — Mr is equipped with a smooth
varying system of local coordinates ¢ : [0, 1] Xx R — S near the nodes g for any fiber
C C Ur. Given ¢ = (cy,...,cp) € R™, fix a smooth reference map of the form

(36) Upe: V=X, 2 (—2z+c)',0,...,0)

near the node g;. Choose a time-dependent exponential map on the ends exp,, :
T.X — X so that

eXPy =0 : Txl1 — L1, exp, ,—; : Tela(0) — L2(0)

in a neighborhood of the points xg,x; € L mappingtox € X. Forp > 2,k > 1,kp > 2
and real number A let Q(C, u*TX)y; ,, » be the Sobolev space of k, p maps defined using
the measure e” on the strip-like end in the coordinates z = 7 4+ it. Denote by
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Mapk pA(C,X) be the space of maps u of combinatorial type I' of Sobolev class Wﬁ)g
of the form exp,e¢ (5) for ¢ € QOC, u*TX); p,» for some reference map uref The
class of maps that exponentlally decay to one of these reference maps is independent of
choice of reference map and local coordinates on the ends. Locally in a neighborhood of
amap (u, du) : (C,0C) — (X, L) the moduli space Mr(¢, D) is cut out by a Fredholm
section of a Banach vector bundle. Given some local trivialization Z/lli — M’F x C of
the universal treed disk there is a bundle with base

(37)

b XM 5°,X) x M 9s°, L
(C7 u, (‘)u, uTlauTz) S ( MF % aka)’)\( ’ ) X apkvp,)\( ’ ) )
x Mapy ,(T1, L) x Mapy (T2, L)

¢ o Ous = uslas, Oulpsent, = ur,|snry,  Oulasenr, = ur,|snr,

B =

of maps of Sobolev class k,p with Sobolev weight A together with a treed disk of
type I'. Local charts for Br can be constructed using geodesic exponentiation for
some metric for which L is totally geodesic; such a metric exists as long as the self-
intersections of L are self-transverse. We suppose for simplicity of notation that there
is a single self-tangent node g with u(gx) = x. Consider the map

(38) TR x QU TX, (Qu"*TL)) px — Mapy, 1(S, X)
(0¢, &) = expyesrac(le8)
where
Mse + Qe TX, Q™ TL)px = QL erpse s TX, QU TL))p

denotes parallel transport along the path of reference maps u¢t"%¢. The fiber of the
bundle £ over some map u is the vector space

5f,u 1= Q0N (S, Ui TX )1 © QN(TY, ur, TL)k—1, ® QNT>, u”}QTLz)k_Lp.

Local trivializations may be constructed using Hermitian parallel transport using the
metric used to construct the charts for the base. The Fredholm map cutting out the
moduli space locally is then

‘ ~ : d d
(39) ]:11" . Bi—‘ — gll—‘a (MS, ury, uTz) — (auSa —ur, + grad(m(uTl)), > 5

Here we use the assumption that the complex structure Jr : Ur — J-(X) is the standard
one Jo(z) = iz in a neighborhood of the self-tangency xy in the given local coordinates.
This assumption implies that the one-form Oug has the required exponential decay
independent of the choice of reference map. The choice of Sobolev weight A # 0
smaller than any of the angles in (53) guarantees that the linearized operator D, is
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Fredholm. As before, after imposing a finite energy condition E(u«), E any holomorphic
treed disk u : C — X has a well-defined limit lim;_,oo u(ex(s, 7)) along any strip-like
end ¢ converging to anode g; mapping to a self-intersection point xo € ¢(Lx4L—Ap).
The required moduli space Mr(¢) is then the subset of the zero set .7:15_1(0) of the
resulting Fredholm map satisfying the matching condition at the nodes (quotiented by
the group of automorphisms of C, if the domain C is unstable.) |

The moduli spaces with self-tangent boundary can be regularized as before using
stabilizing divisors. Using Lemma 4.1 choose a Donaldson hypersurface D C X so
that ¢(L) C X is exact in X — D. Requiring the bulk leaves 7, to map to D, and any
component of #~!(D) containing an bulk leaf, we may assume that the domains have
stable surface part S C T and use domain-dependent almost complex structures and
Morse functions. As in Theorem 4.4, for a comeager subset P 5 of domain-dependent
perturbations the moduli space of treed holomorphic disks u : C = Xis transversally
cut out for fibers C C U in a local trivialization L{li — ./\/l’F of the universal curve;
taking the finite intersection Pr.* = N;P;{¥ of these comeager sets produces the desired
comeager subset of regular perturbationé.

There is also a moduli space denoted MY.(¢) with “exponential decay” at the self-
tangency, which will be empty for regular perturbations. The moduli space M{.(¢)
is constructed in the same way, but using a constant reference function u™f(z) = ¢(y)
near the self-tangency nodes g; instead of the reference function in (36). For generic
choices of perturbation data Pr, the exponential decay moduli spaces Mf.(¢) are,
by construction, of lower dimension than the moduli spaces Mr(¢) that allow the
reference function (36). Thus,

Proposition 5.3 (Similar to [23, Remark 9.20]) Let I'® denote a combinatorial type
of treed adapted holomorphic disk with exponential decay at a tangency. Let I' be the
corresponding combinatorial type of treed holomorphic disk without the self-tangency
requirement. If Mrp(¢, D) has expected dimension zero, then for regular perturbation
data the moduli space M..(¢, D) is empty.

Given a relative spin structure for the self-tangent immersion, orientations for the
moduli spaces M(¢, D) may be constructed as in Fukaya-Oh-Ohta-Ono [31], see also
Wehrheim-Woodward [59], by bubbling off boundary value problems on disks with
given paths ~, : [0,1] — Lag(7,X). For x = y € X the self-tangent intersection
point of ¢ : L — X, the natural gluing of the boundary value problems associated
to the once-punctured disk with marking y and boundary condition v, and a marking
v with boundary condition +; produces a boundary value problem on the disk with
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index one (since the Sobolev spaces are defined using a small negative Sobolev weight
and so (after stabilization) kernel isomorphic to 7,L & R. For the self-tangent self-
intersection, we require as part of the coherence axiom for orientations that o, €
det(Dy), oy € det(Dy) should be defined so that the natural gluing map

(40) D}, D], - R

produces the standard orientation on the determinant of the one-dimensional index
of the boundary condition where ID);C , = det(D, ) and ]D); ) = det(D; ,) @ det(T,L).
The determinant line in (40) is an odd determinant line in the language of Deligne-
Freed [21], so that permuting it with other determinant lines produces signs that will
contribute to the gluing sign for deformation of the Lagrangian boundary condition.

Compactness results follow from the discussion in Etnyre-Ekholm-Sullivan [23]. In
particular [23, Theorem 11.2] construct compactified parametrized moduli spaces of
holomorphic curves as the Lagrangian boundary condition develops a self-tangency in
an isotopy ¢y,t € [—¢, €]. Energy quantization holds uniformly in ¢ in the following
sense:

Lemma 5.4 There h > 0 such that any non-constant holomorphic polygon u : § — X
with boundary in ¢, except for those contained in a small neighborhood of the selt-
tangency, so that any such holomorphic polygon not contained in a small neighborhood
U of y has energy at least E(u) > h.

Proof For holomorphic spheres or disks, the standard argument using the mean value
inequality applies, see [43, Proposition 4.1.4]. On the other hand, since the distance
between the branches of the Lagrangian is bounded from below away from the self-
intersections, there exists a constant ¢ > 0 so that holomorphic polygons with a corner
not contained in a neighborhood of the self-tangency contain a sub-domain of the form
u: [0,00] x [0,1] — X with the property that d(u(T, 0), u(T, o0)) > c¢. By the mean
value inequality again, this is impossible if the energy is sufficiently small, since the
derivative d,u(T, t) is bounded by a constant times the energy. O

The lack of energy quantization for holomorphic strips in a neighborhood of the self-
tangency invalidates the argument in Gromov compactness [43, Proposition 4.7.1] used
to prevent energy loss, see especially Step 2 in the proof in [43] which uses energy
quantization. However, in the neighbourhood U the branches Ly, L; of ¢(L) are exact:

(/JU:dOé, 06|L0 :dCO, ar, :dQ.
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Energy loss can be ruled out using Stokes’ theorem: For a sequence of holomorphic
polygons u, : S, — X Gromov converging to u# : S — X in the complement of
the self-tangency y, let V,, = u;l(U) and (0V,); resp. (0V,)> = U ,[0,1] the
intersection of 9V,, with OS resp. the closure of complement of dS in 9V,. Write
the intersection (OV,)1 N (OV,), as a sequence 20,1,21,1,- - -,20,,21,e corresponding
to the endpoints of the intervals in I_Il?;1 [0,1]. Since u, converges to u, the number
of ends e, converges to some e for v sufficiently large. The energy E(u,|u;, ! (U)) is
determined by

€y
/ urw = / ua+ Z C1(z1,) — Go(z0,i)
u; '(U) OV i=1

which limits to fu u*w. It follows that there is no energy loss at the self-tangency

y either.

()

Once one has excluded holomorphic maps with exponential decay to a self-tangency
point, the moduli space of maps with a node mapping to a self-tangency splits as a
disjoint union depending on whether the map approaches the tangency from the x|
negative or positive, according to the sign in (35). We introduce two new symbols vt
and let

(@) = (L xy L—Ar) — {yU{vy,v_1}.

Then for x C Z°(¢) U Z%(¢)) we denote by M(¢, D, x) the subset of the moduli space
Mr(¢, D, x) with the given limits x, which distinguishes between holomorphic maps
approaching from x; negative or positive in the local model.

We define a moduli space of holomorphic treed disks by imposing the following
condition at nodes: If e € Edge(I') is an edge corresponding to a segment 7, of T
that maps to the self-tangency in ¢q, then the limits of the disks on either end of T,
are opposite, that is, if z1 are the endpoints of the segment limg,,,, u(z) = v (that
is, u(z) approaches y from the left in the local model) then lim,,, u(z) = v_ and
similarly if lim, ., u(z) = v_ (that is, u(z) approaches y from the left in the local
model) then limg,, u(z) = v4. Thus, the holomorphic treed disk “passes through”
the self-tangency. We also allow the tangency points v as input or output. In the case
that ¢, : L — X is a Maslov flow with a self-tangency at ¢+ = 0 generating two new
self-intersection points, the labels specifying the limits at infinity are

@) @) = TG U {v_,vi}, Tpe) = T(d—) U {vy, Vs, v_,v_}.

In other words, each direction of the self-tangency evolves into two ordered self-
tangencies.
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6 Morse model for immersed Floer cohomology

In this section we apply the transversality results of the previous section to construct
immersed Floer theory in the Morse model. The generators of the immersed Floer
space are critical points of a Morse function on the Lagrangian together with ordered
self-intersection points of the immersion: Let

m:L—R
be a Morse function. Define
(42) I%(¢) = crit(m) = {x € L|dm(x) = 0}
(43) ) = {(x,x) € L] ¢(x) = ¢p(x2), x1 # 12}
(44) (@) = IUPUI(P)U{x",x"}.

The set of self-intersections Z%(¢) has a natural involution obtained by reversing the
ordered pair:
% (d) = I%(P), x = (x1,x2) — X = (x2,X1).

Thus Z(¢) consists of the critical points of the Morse function together with two
copies of each self-intersection point, plus two extra generators x”, x* € Z(¢) used to
construct strict units for the Fukaya algebra. We assume for simplicity L is connected
and m : L — R has a single maximum x; € Z°(¢). The degrees are determined by

deg(xy) = deg(x”) =0, deg(x’) = —1.

Example 6.1 We consider an example of an immersion of the circle in the two-sphere
with a pair of self-intersection points. Let X = $? = R? U {co}. Consider the
immersion of a circle L = S' as in Figure 11. Let m : L — R be a Morse function
with two critical points given by the maximum x; and minimum x_; the highest
self-intersection point contributes two elements vy, v, to Z(¢) where the ordering of
the points in the self-intersection L x4 L is given by the direction of the arrow in the
Figure. The second self-intersection point contributes elements v_, v_ similarly. Thus

(45) I(¢) = ISI(QZ)) U Ic(gb) U {xvvxv} = {x+,x,, VJraerav*a V*axv7xv}‘

This ends the example.

In order to obtain graded Floer cohomology groups a grading on the set of generators
is defined as follows. Let N be an even integer and LagN (X) — Lag(X) an N-fold
Maslov cover of the bundle of Lagrangian subspaces as in Seidel [54]; we always
assume that the induced 2-fold cover Lagz(X) — Lag(X) is the bundle of oriented
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X4

Figure 11: Generators for immersed Floer cohomology

Lagrangian subspaces. A grading of ¢ : L — X is a lift ¢ to Lag"(X) of the natural
map L — Lag(X),x — Im(D,¢). Given such a grading, there is a natural Zy -valued
map

() = Zn, x> |x]|

obtained by assigning to any critical point the index mod N and to any self-intersection
point (x_,x;) € L the Maslov index of the image of any path from ¢"(x_) to ¢"(x,)
in Lag (X). Denote by Z¥(¢) the subset of x € Z(¢) with |x| = k.

The moduli space of holomorphic disks is non-compact, and to remedy this the structure
maps of the Fukaya algebra are defined over Novikov rings in a formal variable. Let

o0
A= { Z c,-qdi
i=1
denote the universal Novikov field. The valuation by powers of ¢

¢ € C,d; € R, lim d,':OO}
i—00

o0
l,: A —{0} =R g% — min(d;
valg { } ’ ;Clq gl;é%( )
is well-defined and the Novikov ring

(46) A>o = {f € A|valy(f) >0}, resp. Aso={f € A|val,(f) > 0},
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is the subspace with non-negative resp. positive g-valuation. Let A* C A be the
subset with zero g-valuation.

The Floer cochain space is the free module over generators given by Morse critical
points, self-intersection points, and the two additional generators from (44) necessary
to achieve strict units. Let

CF(¢)= P Ax.

x€Z(¢)

The space of Floer cochains is naturally Zy-graded by

CF(¢) = @ CF @), CF$)= P Ax.

kE€Zn XETk(P)
Put
Iy = x’ € CF(¢).
The g-valuation on A extends naturally to CF(¢):

val, : CF(¢) — {0} = R, Z c(x)x — min(valy(c(x)).

We suppose that L is equipped with a local system y : 7;(L) — A*, and denote for
any holomorphic treed disk # : C — X the holonomy of the local system around the
boundary of the disks components in C by y(u) € A*. For regular perturbations define
higher composition maps

pa : CF(@)®! = CF(¢)[2 — d]
on generators by

paCen,x) = Y (=D (@) ywg" e
x0,uEMrp($,D,%),

where o(u) is the number of bulk leaves, e(u) € {£1} was defined in Theorem 4.4,
and

d
(47) =Y ixil.
i=1

Theorem 6.2 For any regular, coherent perturbation system P = (Pr) the maps
(uh)g>0 satisty the axioms of a (possibly curved) Ao, algebra CF(¢) with strict unit
ly =x" € CF(¢).
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In particular, ug satisfy the Ao, -associativity equations

d
(48) 0= Z (_l)dl+zi;1 |Xi‘,ud7d2+l(-x17 < Xdy

dy,dr >0
d\+dr<d
Mm(Xd]+1, s 7xd1+d2)7xd1+dz+la ey Xd)
for any x1,...,xs € Z(¢). Up to sign the relation (48) follows from the description of

the boundary in Theorem 4.4 of the one-dimensional components, while the sign com-
putation in [16] is independent of whether the Lagrangian is immersed or embedded.
The element

ro(l) € CF()

is the curvature of the Fukaya algebra and has positive g-valuation val,(p0(1)). The
Fukaya algebra CF(¢) is flat if ug(1) vanishes and projectively flat if po(1) is a
multiple of the identity 1,. Consider the sub-space of CF(¢) consisting of elements
with positive g-valuation with notation from (46):

CF(@)y = @D Asox.

x€L(¢)

Define the Maurer-Cartan map
p: CF(@)+ — CF(p), b po(l) + pi(b) + pa(b,b) + .. ..
Let MC(¢) denote the space of weak solutions to the Maurer-Cartan space
MC(¢) = {b € CF*(¢) | w(b) = W(b)1y, W(b) € A}.
The value W(b) of w(b) for b € MC(¢) defines the disk potential

W : MC(¢) — A.
For b € CF(¢) define
phay, ... ag) = Z fativttigp(bs - boar,b, ... b,as,b, ... ,bagb, ... b)
ilw-yid-H i i id+1

For b € MC(¢), the maps ,uZ, d > 1 form a flat A, algebra.

Remark 6.3 (Homotopy invariance) The homotopy type of the the immersed Fukaya
algebra CF(¢) is independent of the choices of J, m, D and P = (Pr) up to A, homo-
topy equivalences, by the immersed version of [16, Corollary 3.10] whose details we
leave to the reader. The homotopy equivalences between A, algebras for perturbations
P, P’ induce maps between the Maurer-Cartan moduli spaces MC(¢, P) — MC(¢, P)
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so that Floer cohomology (as a collection of vector spaces HF (¢, b) over the Maurer-
Cartan space b € MC(¢)) is an invariant of the Lagrangian immersion ¢.

The homotopy type of the immersed Fukaya algebra is also invariant under Hamiltonian
diffeomorphism, but not exact isotopy. Given a Hamiltonian diffeomorphism v : X —
X any Donaldson hypersurface D C X in the complement of 1 (¢(L)) pulls back to
a Donaldson hypersurface ¢~!(D) C X in the complement of ¢(L). The domain-
dependent almost complex structure Jr and Morse functions mr also pull back giving
a bijection between treed holomorphic disks in the definition of the structure maps,
so that CF(¢) ~ CF(v) o ¢). The immersed Fukaya algebra CF(¢) is not invariant
under arbitrary exact isotopy ¢, : L — X (even if the number of intersection points is
preserved) since the areas of the holomorphic disks u : C — X with boundary in ¢,
may change, destroying a solution to the Maurer-Cartan equation. See Example 6.7.
This ends the Remark.

Example 6.4 We remind the reader of a basic computation of Floer cohomology in
the Morse model for circles embedded in the two-sphere, which is a special case of the
results of, for example, [32]: Let the symplectic manifold X be the unit two-sphere S in
R? with its standard symplectic form with volume 47 . The only embedded Lagrangian
with non-trivial Floer cohomology is the equator, up to Hamiltonian isotopy. Indeed,
consider an embedding ¢ : L = S' — X = §? such that ¢(L) separates X into regions
of areas A_,A,. To compute the embedded Floer theory let m : S — R denote a
Morse function on L with a pair of critical points x4 resp. x_ the maximum resp.
minimum of m. We have

po() = ¢+ xy +q*xy, ) =q"x — g xp
If the geometric unit was the same as the strict unit, » = 0 would give a weak Maurer-
Cartan solution and the Floer cohomology of ¢g would be non-trivial if and only if
Ay =A_.

We explain why the distinction between strict and geometric units is immaterial in this
case. The Floer theory has a weakly bounding cochain

b= (" +q" .
For reasons of dimension ,(b, . . ., b) vanishes for b > 1 while
i (x¥) =x7 — x4
The graphs with a single edge and no vertex and weighting zero or infinity give the two

terms on the right, while there are no terms with pseudoholomorphic disks since these
are negative index. Hence

g (1) = po() + m®) = (¢ + ¢ Hxy + (@ + ¢*HE7 —xp) = (@ + ¢



58 Joseph Palmer and Chris Woodward

Figure 12: Teardrops obstructing Floer cohomology

With this choice of b the Floer cohomology is again non-trivial iff Ay = A_.

Example 6.5 We consider an immersion of the circle in the two-sphere with a pair
of self-intersection points. Let X be again the symplectic two-sphere S? and L the
circle §' with immersion ¢ : L — X as shown in Figure 11. For the example shown
in 6.1, recall that v,V and v_,v_ are the generators of the Floer cochains created
by the new self-intersection points while x;,x_ are the maximum, resp. minimum
of the Morse function, and x”,x¥ are the additional generators added to obtain strict
units. The self-intersection points divide ¢(L) into regions of areas Aj,A;, A3 while
the exterior has area Ag. The curvature of the Fukaya algebra is, for some choices of
trivializations of the determinant lines,

po(1) = ¢ vy + gty + g0y

from contributions of the regions shown in Figure 12, with the final term the contribution
from the “outside” of the circle. Thus b = 0 is not a solution to the weak Maurer-Cartan
equation.

We look for a weakly bounding cochain that “’kills the teardrops”. Working with the
trivial local system y € R(L) the first composition map has vanishing terms

pi(v=) =0, wmv4) =0, wmkx4)=0
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while

) =—q"v_+¢¥xr, o) =—g"v,  uGo) =gty + g0

the last term arises from the holomorphic bigon u : R x [0, 1] — X including the
exterior that overlaps with itself in the region with area A,. The negative signs depend
on the choice of relative spin structures; here we take the determinant lines to be
oriented by the tangent direction; then the relative spin structure on completion of the
middle region A, is non-trivial and contributes a sign in the above formulas involving
Aj. There are no other regions contributing to the A, structure maps involving v4,v_.
If min(A1,A3) > A, then in particular the element

bo = "5, +
has positive g-valuation and solves the Maurer-Cartan-like equation

g’ (1) € span(xy).
Indeed,

pee(1) = po(1) 4 pi(bo) + pabo, bo) + . ..
= "y g+ v+ TR + ¢ TG
_ qu-l—ZAszr + qu-&-A}—Aszr'

Ignoring the difference between the geometric and strict units the element above gives
a weak Maurer-Cartan solution. To obtain an honest Maurer-Cartan solution as in the
previous example we shift so that the zero-th composition map is a multiple of the strict
unit:

b=bo+wx", w:i= (g0t 4 ghithAy

We claim that
ug( 1) = wx".

In case all the incoming leaves are labelled by elements x € Z(¢) not equal to the
minimum x_, then any configuration u : C — X involving these elements with at least
one vertex survives perturbation of the Morse function, almost complex structure, and
metric. Indeed, the holomorphic disks u : S — X with boundary in ¢(L) are invariant
under perturbation of the almost complex structure, since the complex structure on
the disk is unique up to diffeomorphism, and the condition on semi-infinite gradient
trajectories on the leaves is that they flow up to the maximum. It follows that the only
contributions to ,u?“ (wxY) are those with at most one vertex in the corresponding graph,
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since otherwise the weighting parameter s« is free to vary and the configuration cannot
be rigid. So as in the previous example,
o) = g (D) + i (wx”)
wxg + u(l)(wx')
wxy +wx’ —xy)

= W)CV .

Hence
b € MC(¢p).

We compute the Floer cohomology for this bounding cochain. For the same reason as
in previous paragraph, we have u}]’ 0 = ,u? and so we may ignore the difference between
geometric and strict unit. The first composition map (that is, the differential) satisfies

M?(x+) =0, M?(x_ + qAa—Azg_) — (qu+2Az _ qA3_A2+A1)X+.

Since ,ull’ squares to zero, we must have

M@ v+ ¢ ) = ¢l =0, pi(d*ve) = ¢ i) =0,
So pb(v_) = pb(v4) = 0. Computing the cohomology of 1% we have

A®2 Ag+ 34, = A3z + A

49 HF(¢,b) =
9 ,5) {{0} otherwise.

We check that the computation is compatible with Hamiltonian displaceability. Note
that the condition (49) implies

Ay = A +Ay+A; 44

A = Ap+Ar+ A3+ (242 — 2A3)

Ay = Ap+ A1 +A3—2A0— 24,

Az = Ap+AI+Ar+ (24, —2A)).

These equalities preclude any equality
(50) A; > Aj+Ar+ A, 1,k [ distinct.

Equation (50) is equivalent to displaceability by Moser’s theorem [46] since if one area
A; is larger than the sum of the other three A; + Ay + A, then there exists a Hamiltonian
diffeomorphism v : X — X that moves the exterior of the largest region X — A; into its
interior int(A;). Thus the non-triviality of the Floer cohomology HF (¢, b) is consistent
with non-displaceability.
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Figure 13: An example with vanishing Floer cohomology

Example 6.6 Consider an embedded circle with a single intersection point, dividing
the sphere into regions Ry (“‘outside”), R; and R, as in Figure 13, with areas Ag, A1, Aj.
Let x; be the maximum, v, v the generators associated to the self-intersection points
and x_ the minimum. The two lobes of the figure eight contribute to po(l) =
(¢*" 4 ¢*?)v with the same sign by invariance of the picture (up to deformation) under
rotation by 7. The first Ao, map for b = 0 is given by

pe) =0, =0, umE) =g xy, pmx)=q".

Indeed a configuration with an input x; can never be rigid; there are two possible
strips with input v but these can be seen to cancel by the A, relations, or an explicit
sign computation; the lobe with area A, contributes a holomorphic strip causing
pi(x—) = ¢**v. The higher composition maps involving x_ depend on a choice of
perturbations. There is a choice for which one has a version of the divisor equation

pae—, . x2) = @) o) = @)~

explained in [48, Section 4.4]. The higher composition maps involving v as input are
trivial. A weakly bounding cochain (albeit) with zero g-valuation must have for some
constant ¢

b= ln(—qu*Az)x_ +cv=—mix_ +cv

and therefore exists only if A; = A, in which case
o) = exy.

The reader who is uncomfortable with the assertion on the divisor equation may take a
local system whose holonomy around the lower lobe is —1 and take b = 0. The Floer
operator has

) =0, phm =0, e =q"xr, pmeo)=—q".
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Figure 14: An exact isotopy of the zero section with obstructed Floer theory

Thus the Floer cohomology vanishes. On the other hand, ¢(L) is non-displaceable if
A; > Aj + Ay for some distinct i,j, k. We remark that Grayson [35] has conjectured
that the mean curvature flow of ¢ converges to a pointif A} = A,.

Example 6.7 The following is an example of Weinstein [61] of an exact isotopy
of maps from the circle S! to the cylinder 7*S'. The family includes immersions
with both obstructed and unobstructed Floer cohomology. It also shows that non-
triviality of immersed Floer cohomology is not an obstruction to displaceability by
exact deformation. Let ¢, : S' — T*S' be an immersion of the form shown in Figure
14. If the areas satisfy the equality A; + Az = A;, then ¢;(L) is an exact isotopy of
¢o(L) by standard Moser arguments. Let v_,v_ resp. vy, v be the generators of the
Floer complex corresponding to the lower resp. higher self-intersection point (with bar
if the ordered intersection point is odd)

po() = gve, ) =q"vy.
For unobstructedness the weakly bounding cochain is forced to equal
b= gbv_ e MC(¢)
as long as A3 > A, since the Maurer-Cartan space requires positive g-valuation
valy(b) > 0. This is impossible if Ay = A; + A3.

On the other hand, consider an exact isotopy of ¢;(L) with the property that A; is
negative, so that Az > A,. In this case, b is well-defined and the Floer cohomology is
non-trivial. This ends the example.
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7 Invariance for transverse self-intersection

In this section we prove that Maslov flows not changing the number of self-intersection
points leave the Floer cohomology invariant. This generalizes an argument in Alston-
Bau [3] which assumed a monotonicity condition on the Lagrangian. Since the structure
maps in our setting are weighted by areas, we study how the areas of the disks con-
tributing to the Fukaya algebra change as we deform the immersion under a Maslov
flow, similar to the study in Angenent [5]. We show that immersed Lagrangian Floer
theory possesses a canonical R-grading, similar to the Q-grading of the twisted sec-
tors on orbifold quantum cohomology as in Chen-Ruan [14], (which is preserved only
to leading order by the differential) which determines the change in the areas of the
holomorphic polygons under Maslov flow.

First, we explain that for small times there exists a bijection between pseudoholomor-
phic disks with the given boundary condition.

Lemma 7.1 Let ¢, : L — X,t € [0,T] be an isotopy of Lagrangians with only
self-transverse intersections and no triple intersections. For t, sufficiently close to
t1, there exists a diffeomorphism 1pflz of X mapping ¢,,(L) to ¢ (L) and for which
for any combinatorial type I' of treed disk the almost complex structure wﬁfjp,,l is
admissible. This diffeomorphism induces a bijection between moduli spaces Mr(¢y,)
and Mr(¢y,), defined using Jr,, resp. w;lz7*.][‘7[2.

Proof As in Alston-Bao [3], the fact that there are only self-transverse intersections
means that there exists a family of diffeomorphisms w,’f mapping ¢, (L) to ¢, (L).
The assumption of transverse self-intersections and no triple self-intersections implies
that Usepo,7)(¢:(L X4, L — Ap)) x {t} is an embedded submanifold of the product X x
[0, T]. Standard arguments imply that there exists a tubular neighborhood B, (0, R?") x
[0,7] — X x [0,T] of {x;,¢# € [0,T]} so that the branches of ¢,(L) near any self-
intersection are the images of B.(0, R" x {0}) resp B.(0, {0} x R"). The family w,tlz is
defined as the restriction of the flow of a vector field v; on X x [0, T] to X x {¢#;}, with
v; defined so that (a) D7y, = %, where 7 : X x [0, T] — [0, T7] is the projection (b) v,
is tangent to the submanifold of self-intersections Uscjo,7(¢:(L x4, L — Ap)) x {t} (c)
v; is tangent to ¢,(L) away from the self-intersections ¢;(L X, L — Ar). Such a vector
field may be defined in stages, first in the tubular neighborhood of the self-intersections
and then extended to ¢,(L) and X. Since tameness is an open condition, ¢;f’*fmz is
also tamed for ¢#; sufficiently close to t,, and similar for the stabilizing condition. The
map 1/1,? induces the claimed bijection of moduli spaces of pseudoholomorphic treed
disks. O
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We give two definitions of the R-grading. The first definition of the grading is an
action-index difference.
Definition 7.2 Let
(o, xp) el? ux)=ux)=xeX
be a self-intersection point. Choose a path
Yot [=1, 1] = Lag(TkX), (£1) = Doy (Ti L)
as in (29). Consider the determinant map
det : Lag(7, X)) — Lag(Kx_l) ~ !

given by the top exterior product. Let
do € Q'(sh, / do =27
S

denote the standard angular form that is circle-invariant. Define the action of the path

1

5D a(x) = / (detv,)*do/m

-1
obtained by integrating the pull-back of the angular form. If X = (x;,x_) is the
reversed self-intersection point denote by ~x the opposite of the path v, so that

ax)+a(x) =0, ix)+ix) =n.
Define
(52) 0(x) = i(x) — a(x)
independent of the choice of path ~,.
Alternatively, the R-grading may be given in terms of the sum of the Kihler angles of
intersection of the Lagrangians.
Definition 7.3 Define an angle
01 = min{6 € (0, 1) | " DH(T, L) N DH(T, L) # {0} }.

Replacing D¢(T,_ L) with their orthogonal complements in 7,.X and applying the
construction iteratively to the complements, one obtains a basis

{yi,... 3} C DHT, L)

and angles
0 <...<6,€(0,1)
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so that bases for the Lagrangian tangent spaces are given by
(53) D)(T, L) = span{yi,...,ya}, DT, _L)= span{eielyl, . 7e"e”yn}.
Then as in [3, Equation (3)]

0x)=n—">Y 0 € O,n).

i=1

We these definitions in place we prove a variational formula for the areas under
Maslov flow. As in (11) suppose that the anticanonical bundle K~ is equipped with a
connection «; so that the infinitesimal variation -¢; is given by the corresponding one-
form ¢*a, representing the connection on ¢*K~!. The following is a generalization
of a formula of Angenent [5, bottom of page 1214] for holomorphic polygons with a
single corner in the dimension two case, to arbitrary dimensions and polygons.

Lemma7.4 The rate of change in the area of any family of rigid treed disks u, : C — X

with boundary in ¢,(L) and with vertices at infinity zy, . . . , zg (With only z outgoing)
mapping to intersection points xo, . . ., Xq € L(¢,) is

d

= /ufw, = 00q) —d+2— 0(xp)

dt Js k>0

with 0(xy) = i(xy) if xx € Z(¢y).

Remark 7.5 If there are no self-intersections at the corners z; and no incoming
markings d = 0 the right-hand side is simply 2 — i(xp). For example, in the case of a
single outgoing marking with output xo so that i(xp) = 0 each disk in the equation is
Maslov index I(u;) = 2, while if only Maslov index two disks appear then the Fukaya
algebra is projectively flat, that is, po(1) € span(lg,).

Proof of Lemma We wish to put ourselves in the situation where there are no branch
changes in the boundary condition, by adding additional disks at each of the branch
changes. For simplicity we consider a configuration C = S U T with a single disk §
with d 4+ 1 leaves T = Ty U ... T, with points at infinity zo,...,zs € C mapping to
self-intersection points xo, . . ., xg € Z%(4). Let S be the disk equipped with complex
bundle E with totally real Lagrangian boundary condition F obtained by gluing together
S equipped with the bundle pair (u*TX, (Qu)*TL) with the disks Sy, ..., Ss equipped
with bundles T4,,X and boundary conditions corresponding to the paths

Vg ©0,1) — Lag(T¢(xk)X), j=0,....d
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So

%

S3

Figure 15: Gluing a polygon with once-punctured disks

See Figure 15; note that the capping disks So, ..., S; are not mapped to X but rather
are only equipped with bundle pairs. First assume that all vertices of S map to self-
intersections of ¢. The bundle u*K~! extends to a bundle on S obtained by taking
top exterior powers. The one-form u;« extends to a one-form @; on the extension;
via the given trivialization of the anticanonical bundle ¢?K~! over the Lagrangian
these connection one-forms become ordinary one-forms still denoted @; € QL(S) on
the base. Since the Maslov index of the glued problem (£, F) is the winding number

of the boundary condition,
/ a; =I(E,F).
oD

Since pg4 is a map of degree 2 — d, the Maslov index of any rigid disk contributing to
g must be the shifted difference in degrees

d
I(E,F) = —i(xo) + Y _i(x)) —d +2.

i=1
On the other hand, the integral of &; around the boundary of any of the disks S; is by
(51) equal to £as(x;), with a minus sign for the self-intersection point that is outgoing.
Putting everything together the integral of the connection one-form « around the
boundary OS of the disk is

d

d
;F = oy + a; - t\Xi
;/&gua /aDa, a,(xg) Za(x)

i=1

d d
= —i(x0) + Y i) —d + 2+ alxo) — Y arlx)

i=1 i=1

d
= > 60ix) = Oi(xo) —d + 2.

i=1
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The case that some of the points at infinity map to critical points Z°(¢) is similar, using
the fact that each element x; € Z(¢) of index i(x) that is not a self-intersection point
cuts down the dimension of the moduli space by dimension i(x). For the case that the
configuration C has several disk components, the computation follows by considering
each disk separately and taking the sum. O

The following Euler flow on Floer cochains cancels out the change in the areas of
the disks under mean curvature flow of the immersion. Combine the R-gradings on
self-intersection points and critical points by

0(x) x € %)

7z R =
@R,z {dim(W;) x € I%¢)

where W is the unstable manifold of grad(m) at x.

Definition 7.6 The Euler vector field

er € Vect(CF(¢r), e = Y (1 — |x[)k.
x€Z(¢)

Identify CF(¢;) = CF(¢y,) forall t € [t1, 1] and let
E? : CF(¢y,) — CF(¢y,)

denote the flow of the Euler vector field e, from time #; to time #,. On generators we
have

gm0y x e T¢¢) U {x7,x7}

(54) EPixes {7 | .
" gy x e Ti(g)

Theorem 7.7 Let ¢; : L — X be a Maslov flow of Lagrangian immersions with only
transverse self-intersections and no triple intersections. Suppose that t, is sufficiently
close to t; so that the bijection between the moduli spaces M(¢;,) and M(¢y,) is
induced by a family of diffeomorphisms 1[},? : X — X mapping ¢,,(L) to ¢,,(L). Then
the A-infinity structure maps ,uii‘ for ¢, and ug for ¢,, are related by

(55 " ER(l (1, . .. x0)) = pHEPRX, . . EPxg),
Vd >0, x1,...,Xq € I((bn) = I(d)tz)
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Proof Since y, is defined by counting holomorphic disks, we have for all x;’s self-
intersection points

d ._ N
(56) Eq(’ "(E )T Y(EL X1, .. ELxa)

__f{qn4,q£ﬁl—9OhDM& (qﬁ‘l—QQl»xh.‘"qﬁﬁl—eﬁunxd)

dt
= (Z 0(re) — d + 2 — 0(x0) + (O(x0) — 1) — > () — 1))
k>0 k>0

In(g)(E} )~ Wy(EL x1, ..., Ej xg) = 0

by Lemma 7.4. The claim in the Lemma holds when ¢ = #; since Ef]] is the identity. By
(56) the claim holds for all 7. The general case (when some x; € Z°(¢,)) is similar. O

Because of the signs in the Euler flow above, the flow may not preserve the space of
Maurer-Cartan solutions which are required to have positive g-valuation. Let

MC7E(¢) = {b € MC(¢,) | val,(b) > E}
be the subset of solutions to the weak Maurer-Cartan equation having g-valuation at

least E.

Corollary 7.8 Let ¢; : L — X be a Maslov flow of Lagrangian immersions with
transverse self-intersections for t € [ti,t;]. The Euler flow Eff : CF(¢y,) — CF(¢y,)
(resp. its inverse) maps

El? . MC>E(¢II ) SN Mc>E7(diIn(L)fl)(t27t| )((blz)

resp.
MCZE(¢y,) — MCEH0=1)(g, ).

The potentials are preserved up to an overall power of ¢, that is,
(EE)* le — q(tZ*tl)th
and the Euler flow lifts to an isomorphism

HF(¢I1 ) btl) — HF(¢tza btz)'

Proof We have
pg()  +  pR(ERb) + p3(ERb,Egb) + . ..
= q@TERUE ) + g VER P2 (b) + ¢ VER u (b, b) + ..
g TVER (g (D) + () + p5 b, b) + ).
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X1

Figure 16: Behavior under a triple intersection

Since the real-grading on CF(¢,) takes values between 0 and n = dim(L), the Euler
flow Eﬁf : CF(¢y,) — CF(¢y,) satisfies

%Valq((Efl)_l(x)) = |x| — 1 € [-2,dim(L) — 1]
for self-intersection points x € Z(¢;) by (54). Hence the forward flow maps MC>% (¢4,
to MC>E-(=t)(=dim) (g ) and preserves the potentials up to an overall power of
g. Similarly, the reverse Euler flow maps MC~E(¢,,) to MC>E~22=")(¢, ), and
preserves the potentials up to an overall power of ¢. Taking the directional derivative
of ,uf’)(l) in the direction of a class ¢ implies that HF (¢, , b;,) is mapped to HF (¢, b;,)
isomorphically. O

In order to complete the proof of Theorem 1.2, it remains to deal with triple intersec-
tions, that is, triples x1, x2,x3 € L with ¢(x1) = d(x2) = P(x3).

Lemma 7.9 (Triple intersection lemma)

(a) (Dimension greater than two) Suppose that dim(X) > 4. Let ¢9 : L — X be a
Lagrangian immersion without triple intersections and with only transverse self-
intersections L X 4 L — Ayp. Then for any [ > 2, there exists an open C!-dense
set of Maslov flows ¢, : L — X, t € [0, T] between ¢ and ¢ for which there
are no triple self-intersection points;

(b) (Dimension two) In dimension dim(X) = 2, immersed Lagrangian Floer theory
HF(¢;, by) is invariant under a Maslov flow ¢, : L — X, t € [0,2] that develops
a triple intersection (but no quadruple intersections).
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Proof First we give the proof of (a), which uses a Sard-Smale argument and a di-
mension count. Suppose that dim(X) > 4. Consider the universal space of triple
points

X1, X, x3 distinct
(57) MU = & (g, ¢, Hox1, %2, 33) | iy (1) = g (02) = oy (x3)
o = ¢F(dH; + oy — ap)}
C [0, 1] x Lag(L, X); x C'([0, 1] x X) x L.

By assumption the self-intersections of ¢q are transverse. As in Theorem 2.6, Hamil-
tonian variations generated by H; € Cl(X) together with (D,¢)(TL) span the tangent
space TyL at any point x € L. It follows that the locus (57) is cut out transversally.
By the Sard-Smale theorem, regular values of the projection

m o MUV ([0, 1] x X)

are comeager. For regular values H, the submanifold of triple intersections 7' (H) is
of expected dimension —1, hence empty.

The argument for (b) is rather different, since triple intersections cannot be avoided in
families; instead we must examine the holomorphic triangles more carefully. Suppose
that dim(X) = 2. For a triple intersection point of ¢g, denote the intersection points
X1, Xx2,x3 € L with ¢o(x1) = ¢o(x2) = ¢o(x3). If a holomorphic polygon u : § — X
with boundary in ¢ has only one of these points x;,k € {1,2,3} as a vertex, then
that u extends in a continuous family #, with boundary in ¢; for all ¢ past the triple
intersection time 0. On the other hand, b, € MC(¢,) for ¢+ < O implies that if the
coefficient of two or more X;,x;j,7,j € {1,2,3} of the odd generators X1, x>, X3 in the
element b; € CF(¢;) are non-zero, then the triangle in Figure 16 implies that the Floer
cohomology is obstructed. Indeed, if say the coefficients b(x;), b(x;) are non-zero
and the triangle has area A, smaller than the area of any other holomorphic polygon
contributing to ,ug(l) then we would have

(58) 15(1) = pa(b, b) = b(x)b(%2)q" x3 + higher order in g.

So at most one element of x|, x»,x3 has non-zero coefficient in b,. It follows that the
disks u; : C — X that meet two or more of the generators xp, xs,x3 do not contribute
to the maps MZ’(I). O

8 Curve shrinking and gluing at a tangency

In this section we modify estimates of Ekholm-Etnyre-Sullivan [23] to show invariance
under the birth or death of a pair of self-intersection points. The Floer differential
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contains a term of small g-valuation that connects the two new generators. This makes
the Floer cohomology invariant under the birth or death, while the modification of
the curvature of the Fukaya algebra can be cancelled by a suitable weakly bounding
cochain.

The main result of this section is a description of how the holomorphic disks change
as the immersion passes through a self-tangency, and is a modification of the results of
[23, Chapter 10] to the setting of treed disks. Let (¢; : L — X);e[—e,] be a family of
Lagrangian immersions with a single value r = O for which there is a birth of a pair of
self-intersection points at v € ¢g(L). Let

Vi, V4, Vo Vo € ISl(qu)

denote the additional generators in the Floer cochains for ¢, in relation to ¢_. depicted
in the local model in Figure 11, where v, v_ are distinguished as the generators that
are the incoming corners of the small strip in Figure 2; that is, with the curved branch
L, in (34) ordered before the flat branch L; for the intersection with negative g
coordinate, and the reverse for the intersection with positive g; coordinate. We say
that x, C Z%(¢,) is an admissible family of generators if and only if

d(Xig) = v, Xip € X,,1 > 0 resp. i = 0 implies x;; ¢ {vy,v_} resp. x;; € {vy,v_};

that is, the generators v, v_ are excluded as outputs and v, v_ are excluded as inputs.
In the following the reference to the Donaldson hypersurface D may be dropped to
simplify notation so that the moduli spaces of holomorphic treed disks will be denoted

M(¢n).

Theorem 8.1 Let ¢, : L — X,t € [—T,T] be an admissible family of Lagrangian
immersions with a self-tangency at t = 0 at y € X. Suppose that admissible pertur-
bations P = (Pr) have been chosen for ¢y using some Donaldson hypersurface D.
Then the same hypersurface D and collection P = (Pr) of perturbations are regular
for adapted holomorphic disks with boundary in ¢, t € [—¢, €] for € sufficiently small
and

(a) (Small strips, similar to Lemma 2.14 in [23]) There exists ¢ > 0 such that for
any t € (0, €) there exist holomorphic strips of index one

[M+(l) C— X] € M((blav-i-v V_)7 [l/t_(t) :C— X] € M(d)l‘vv—av-f-)a

connecting vy to v_ resp. v_ to v, with area A(ur(t)) — 0 ast — 0, as in
Figure 2, and any strip u : C — X with boundary in ¢; between v and v_ of
sufficiently small energy E(u) is equal to u(t) or u_(t).
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(b)
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Joseph Palmer and Chris Woodward
Figure 17: Shrinking a holomorphic curve at a tangency

h 4 b

Figure 18: Gluing a holomorphic curve at a tangency

(Curve shrinking, similar to Proposition 2.16 in [23]) Let x, € Z(¢y) for s €
[0, 6] be a admissible family of self-intersection points/critical points. There
exist » > 0 such that for any s € (—1/,0) there exists an orientation-
preserving bijection

G;: MF0(¢O7EO)p — U C MFS(QZ)s:&g)p - {ui}

where uy are the strips from the previous item, U, is a C° neighborhood of
Mry (9o, X9)p in Mr(¢5,x,),, with the property that limg_,o Gy(u) = u. See
Figure 17.

(Gluing at a tangency, similar to Proposition 2.17 in [23]) Let I'y be a combina-
torial type of tree disk Ey C Edge(I") a subset of the finite edges corresponding
to nodes q, C C mapping to the self-tangency point x, and no semi-infinite
edges T, C T map to the self-tangency x. Let I'; denote the combinatorial type
obtained by collapsing the edges Ey. Suppose that the almost complex structure
J is in standard form near the self-tangency. Then there exists » > 0 such that
for s € (0, 1/5c) there exists a bijection

Gs : MFO((ﬁO)p — Us C MFS(¢S)p

where Uy is a Gromov neighborhood of Mr,(¢o,xy) in Mr (¢s,x,), , with the
property that limg_,o0 Gs(u) = u. See Figure 18. After multiplying the given
orientations by the sign (47) in the definition of the structure maps the map G; is
orientation preserving. Furthermore, given any sequence u,, € Mr,(¢y), there
exists a subsequence converging to some u € Mr,(¢o),.

Proof of Theorem 8.1 (a) The proof is essentially that of Lemma 2.14 in [23], but we
reproduce a proof for completeness. See also [40] for similar gluing estimates.
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Note first that the Lagrangians in the local model (14) are products. Hence any
holomorphic curve of u : C — X may be written in a neighborhood of y as a product
of maps u; : C — X and up : C — X with boundary in L}, L} and Ly(s)’, L2(s)”. Let
ui : R x [0, 1] — C denote the holomorphic strip with boundary on L/, L>(s)” whose

image is the region
¥4+ —lxne [0,\/1 x%] .

This is the shaded region in Figure 2, which exists by the Riemann Mapping Theorem,
see [58]. Let uy,...,u, be the constant maps in the other components. Then u =
(uy1, . ..,uy) is the desired map.

We claim that there are no other maps of equally small energy. By energy quantization
Lemma 5.4 there exists i so that any non-trivial holomorphic polygon mapping a
corner to an element x € Z(¢,;) not equal to y has energy at least /. Fix e sufficiently
small so that A(u(e)) < h/2. Any other map u’ : C' — X of area at most, say, 2A(u(¢))
must be such that each component of the surface part 1, meets the given neighborhood
of y. The surface part u, is contained in a small neighborhood of the intersection
point, by a diameter estimate involving the mean value inequality explained in Sikorav
[51, 4.4.1] (for the closed case; the case with Lagrangian boundary is the same). Then

the components u), . . . , u,, must be constant by the maximum principle, while the first
component is, up to translation, the map u given above up to an automorphism of
R x [0, 1]. |

The proofs of the shrinking and gluing parts Theorem 8.1 are generalizations of results
of Ekholm-Etnyre-Sullivan [23] that rely on a local model for the tangency. We prove
parts (b) and (c) of Theorem 8.1 in the remainder of this section. As for similar gluing
results for pseudoholomorphic curves, the results depend on a quantitative version of
the implicit function theorem used by Floer to prove gluing of trajectories:

Lemma 8.2 (Floer’s Picard Lemma, [27, Proposition 24]) Let f : Vi — V, be a
smooth map between Banach spaces that admits a Taylor expansion f(v) = f(0) +
df(0)v+ N(v) where df(0) : Vi — V, is Fredholm and has a right inverse G : Vo — V|
satistying the uniform bound

IGN(u) — GNW)|| < C([[ul| + [[vD]|u — v

for some constant C. Let B(0, ¢) denote the e-ball centered at 0 € V| and assume that

1
G| < —.
16Ol < 5o
Then for € < % , the zero-set of f~1(0)NB(0, €) is a smooth submanifold of dimension
dim(Ker(df(0))) diffeomorphic to the e-ball in Ker(df(0)).
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We review the Sobolev spaces and estimates from Etnyre-Ekholm-Sullivan [23] neces-
sary to prove shrinking. Given a curve u : C — X with boundary in du : 9C — L. In
the local model of a self-tangency move (14) u is a product of components u, . . ., u,
to C with the given Lagrangian boundary conditions. By the local model, we may
assume that L is locally the union ¢(L) N U = L; U L, of components L, L, with
Ly C C"linear and L, C C" the product of a part of a circle of radius one with a linear
space, whose center will move down as one performs the isotopy. Up to rescaling this
is a mean curvature flow.

Definition 8.3 (Pre-shrinking) We first define a simplified family of immersions devel-
oping a self-tangency. Let U be a ball of radius (R + %R")_1 around the self-tangency
point v, the origin in local coordinates, where a € (0, 1) iscloseto 1. Let b € C*(R)
be a non-decreasing function with support in [0, R~!) and

br(r) = (R+RH2, Vre {0, (R + ;R“)—‘>

and

sup [DFbg| < ORM*~k+Day f < 3,
Let

hg:C" = R, 7z Re(z1)br(|z)).
For s > 0 let

Up: X —X

denote the time s Hamiltonian flow of /g. Thus W% is a translation by (R + R 2s in
a small ball of radius (R + %R“)_1 around the origin, and the identity outside a ball of
radius R~!. Let

L5(s) = Ui(Ly),

and let
gbls"c L — X

denote the immersion obtained by patching together ¢ outside of the ball around x
with the immersions with images Ly, L5(s). The family ¢! is a Maslov flow up to
rescaling locally, by Example 2.4, since the change in radius in the circle is equivalent
up to dilation centered at a point on the branch L; to a translation.

We now define an approximately holomorphic disk ending at one of the self-intersection
points near the tangency. Let 8 : [0, 1] — [0, 1] be a smooth surjective map which is
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constant in a small neighborhood of {0,1}. Let u : C — X be a treed holomorphic
disk and ug the deformation of u in a neighborhood of the self-tangency given by

ug 1R x [0,11 = X, ug(r + it) = Ui (u(r + ir))
so that ug has the deformed Lagrangian boundary conditions.

The pre-shrunk map is defined by cutting off the variation of the local model of
the previous paragraph near the intersection point. Let s = (R) be such that the
intersection points of L; and Lg(%)(s) are

Ly N LR (s) = {+(Ge 4+ 5971,0,...,0)}.

Choose a family of metrics g(R, s, ¢) such that the Lagrangian L, is totally geodesic for
t =0 and Ll;(”) is totally geodesic for ¢+ = 1. Locally near each node g; mapping to
the self-tangency the map ug may be written as the geodesic exponential of a section
of the tangent bundle

€ Ep(—30) = €', exp™ (Era(r +in) = up(r + it), V.
Define a treed disk w,, : C — X by patching as follows:

u(¢) ¢ € C\ Ug Ex(5)
w(Q) = § exp®(Eri(Q) ¢ € Ex(50)
v(C) ¢ € UrEr(—s — )

This ends the definition.

We claim that there is a unique holomorphic treed disk near the approximately-
holomorphic disk defined in the previous paragraph. Since the almost complex structure
Jr in a neighborhood U of the self-tangency v is assumed to be standard Jr|y = Jcn,
and so invariant under rescaling, it will suffice to prove Theorem 8.1 (b) for the fam-
ily ¢!°°. The Sobolev spaces used for shrinking are defined using a weight function
constant on the ends.

Definition 8.4 (Weighted Sobolev spaces) Let A > 0 be a small weightand e,, : C —
R a function with

e re (0, »)

e N T >

(59) e, (T +it) = {

Let B, _) ;. denote the Banach manifold of treed disks u : C — X,0u : 0C — L
bounding ¢ such that on each component, u and Ju are of finite e, -weighted W>?
norm as in the proof of Proposition 3.2. Let &£ _) ;. be the corresponding bundle of
one-forms as in (21).
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The following are the necessary ingredients in the Picard lemma:

Proposition 8.5 (Zeroth, first, and second order estimates for shrinking)

(a) There exists a constant Cy > 0 such that for all A > 0 sufficiently small and
» > 0 sufficiently large, the pre-glued section w,, defined above has norm

| Fw, O)|[1,=x,5 < Coe 3~ 179/2,

(b) There exists a constant C1 > 0 such that the linearized operator at the pre-glued
solution satisfies the uniform estimate

(60) [€]l2,—x,c < C13¢'T°||Dy,. €

‘1,7/\,%'

(c) There exists a constant C, > 0 such that the non-linear term in the map F,,,
satisfies

INCED) — N1 —ase < C2e™ (€12, + [1€2]12—2001€1 — E2ll2.— 2

Sketch of proof We sketch the arguments, without going into full detail as in Ekholm-
Etnyre-Sullivan [23, Chapter 8]. The exponential decay factor in the zero-th order
estimate (a) arises from the choice of Sobolev weighting function and the second factor
arises from the cutoff used to define the map w,,, see [23, Lemma 8.10]. The first
order estimate is similar to [23, Lemma 8.11]. Suppose otherwise so that there exists a
sequence &, v € Zs( with norm one such that the right-hand-side of (60) approaches
zero for some sequence of gluing parameters s¢,,. Let o) : C — R be a cutoff function
equal to 0 in a neighborhood of the markings mapping to the self-intersection and with
first and second derivatives of order »~%; then

lar&ulla,—ae < Cl@a)éullt —xs + laDuw, &1~ se-

The first term is order >~ ¢ because of the estimates on the cutoff function while the
second is order 2~ '~% by assumption on &,. On the other hand, let o, : C — R be
a cutoff function equal to 1 on the strip-like ends, with first and second derivatives of
order s~ ¢. Let ¢ : (—oo, —sc+ ) — R be the function that equals the difference of
angles 6(sc) — 6(7) between the tangent line L7 (1) and the real line. The function ¢
extends to a cutoff function

@ (=00, —x+ ") x[0,1] - C
with
0 = @(r+ir), (1,0 € (—o0,—sx+ ") x {0}
P(r) = @(r+in), (1,1) € (—00, =3 + ") x {1}
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with the same derivative estimates. Let

p = diag(p, 1,...,1).

Then we have

Clle azpiéyll2,sa,

loapéullz,—xpm <
< Col|leM Donp),

e e a2, 1D |1 s,

The first coefficient of &, arises from the fixed angle 6(s¢,) which is approximately
1/, for s, large. Thus we obtain that ||§,||2 ., converges to zero as v — 0o
which is a contradiction. Finally the estimate for the non-linear term is similar to [23,
Lemma 8.17] and follows from

sup [£(2)| < e|¢
zeC

2,— A, O

Floer’s version of the Picard Lemma 8.2 and Proposition 8.5 produce the desired family
of holomorphic treed disks with Lagrangian boundary condition in ¢!°. The map ¢!°
is related to ¢y by an isotopy of self-transverse Lagrangians of X, and so ¢'°° and
¢y are related by a family of diffeomorphisms of X which approaches the identity as
» — 00. As in Corollary 3.3, in such a setting the spaces of holomorphic curves are
in bijection. This proves the gluing part in (b) of Theorem 8.1, that is, the existence of
the map. The Gromov convergence

lim Gy(u) = u
s—0

follows since E(Gg(u)) — E(u) as s — 0 and each component of the limit is obtained
by a suitable rescaling sequence, by construction.

The existence of an inverse (that is, surjectivity of the above construction onto the
space of nearby solutions) follows from the exponential decay estimates in Lemma 5.1
(a). We break the region bounded by Re(u, ;) € {1,2/R} the branches L;, Ly(s) into
regions €, Q, Q. On the region Q" on which Re(uy;) > 1 we have uniform
convergence in all derivatives. So

s = exp,, (£(s)), for some £(s),  [|€(s)]| < Cexp(—A»).

~

On the region Q7 = [—T(s), T(s)] x [0,1] we write us1 in terms of its Fourier
coefficients

(61) Oyo0ug (T +it) = (1 — 19(s)) + it + Z cn(8) exprn(t — T(s)) + it)
n>0

+ ) eals) expQrn(r + T(s)) + it).
n<0
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Uniform convergence at Re(u;) = 1 implies the Fourier constants c,(s),n > 0
converge to the Fourier constants ¢,(0) of up,; as s — 0, while the Fourier coefficients
cn(s),n < 0 converge to zero by exponential decay of u ;. It follows that

sup |(us,1 — ws, (T + i) [P + |(dug,1 — dwy ) )(T +in)|P < Cexp(—p|T —T(s)|) on QF.
Thus for any e, there exists so > 0 such that for s < sg,

(s = ws)lat,ll1,p,-x < €exp(—3eA).

Finally the restriction of us 1 — wy, 1| to Q = [—T(s), T(s)] x [0, 1] converges to
zero uniformly, as well as its derivative. Thus for any € > 0, there exists 5o > 0 such
that if s < so then

sup |(us,1 — ws, (T + )P + |(dug,1 — dws 1)(T + it)|P < eexp(—s)).

It follows that
||“s - WS|QSHI,[),7)\ < GGXP(—%A)-

Putting everything together we find that for any € > 0, there exists so > 0 such that if
s < so then

g = exp,,,(£(s)), for some £(s) with [[&(5)][1,p1 < €exp(—2N).

Since this quantity is less than the quantity 1/4C in Floer’s Picard Lemma 8.2, for e
sufficiently small, the map u; is the solution given by the Picard iteration.

The gluing at a tangency part (c) of Theorem 8.1 follows from a similar application
of Floer’s Picard Lemma 8.2. Similar to the set-up for shrinking, for R > 0 let
ag : [0,00] — R be a smooth non-increasing function with support in [0, R~!/2) with
the properties

ag(r) = 1/R, re[0,1/R*; sup|D,ag| = O(1); sup|D?ag| = O(R).

Let
hg : C" = R, hg(z) = Re(z1)ar(|z1])-

For s > 0 let ®% denote the time s Hamiltonian flow of h,. Let L§(s) denote the
Lagrangian submanifold obtained by applying ®% to L, and let v!(s), 72(s) be paths
tracing out L; and LR(s). Let ¢! : L — X be the family of immersions obtained
by gluing in the local family to the immersion ¢ : L — X. Letu : C — X be a
rigid holomorphic tree disk with boundary on ¢ and I C {0,...,n} such that the
points z;,i € I on the boundaries of the disk map to the self-intersection points. Let
s = (K»)~! as below or in [23, Lemma 10.18] and let =,, denote the neck region
bounded by the curves v2(s), v'(s) and u+® (¢ + ir) for t € [0, 1]. By the Riemann
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mapping theorem for a unique A(sr) there exists a biholomorphic map from the interior
of rectangle

(62) ©set [AG0),A(30)] x [0,1] =: Q,, —» C
with a continuous extension with the properties
P ([—A(3),A(0)] x {0}) C Im(y)
Ps([—A(0), Al x {1})  C  Im(72(5))
0, (0410,1]) < {Re(z;) =0}.

The pre-glued map is defined as follows. Let ul.l . (v denote the first components of the
maps u;, ) meeting the tangency at nodes g, contained in components C; k). By
gluing Ci, &) — Eq4[—((1 + a)s] with €2, one obtains a treed holomorphic disk on
which the maps u}( . glue together in a neighborhood of the node g;. Let ufﬂ 4 denote
the remaining components of u in the local model. Using the standard metric on C"~!
define maps u; , to C"~! by

Uy (1 + it) = exp(& (1 + i)
where in this setting the geodesic exponentiation exp is the identity map since the
metric is constant. Let E,, 4 denote the image of the local coordinate near g on the
component C;_ adjacent to the node gx. Pick a cutoff function o equal to 1 on
C — Uk +Ey, +[—2 + 5] with support in the complement of Uy +E,, 4[— + 3], with
derivatives uniformly bounded for s >> 0. Define w’, : C,, — C"~! by

g 1+ (C) C € Cippry — Egx[—5+ 5]
W (0) = € exphy({)éxj(Q)  Egprl—s+ 51— Eyp +[—]
0 ¢ e,

Combining the components we define w,, = (wl,, w’ ).

A treed holomorphic disk nearby the preglued solution above is found using the Picard
lemma. For a function f : C,, — R and for each component C; ) adjacent to
a node g; mapping to the self-tangency we denote by f;, ) the restriction of f to
Cipy — Ex[—(1 4 a)s]. Let fi denote the restriction to the region (s¢) near the
node gi. For A > 0 let ei)\i(k) denote the weight function on C;, ) which equals 1
on Cit — UE,, and equals )l in E,,. Let || - ||;.»,; denote the Sobolev norm on
distributions with k square-integrable derivatives obtained from the weight function
ei\i(k). Let e’;\ denote the weight function which equals e*/™l on Qy and || - ||, the
resulting Sobolev norm. Define

(63) llias= > If

iit (k)

k2 + Z Wfillkx iz + Z fillkng-
J J
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Let
fu . TMBF — SF,u

denote the map from (39) obtained from the given local trivializations of Br and &r
near u. Let § > X be the smallest non-zero Kihler angle of the intersection where the
angles are described in (53); see also [23, Lemma 8.13].

Proposition 8.6 (Zeroth, first, and second order estimates for gluing)

(a) There exists Cop > O such that for all »c > 0 sufficiently large the pre-glued
solution w,, satisfies

[ (O] 1,0, < Coel~0F2KN~

(b) There exists Cy such that for all » sufficiently large the linearization D,,, of
F,, satisfies [23, Equation (8.74), (8.90)]

€120, < CtllDy,.&[1,7,5--

(c) There exists Co > 0 such that for all s¢ sufficiently large the non-linear part of
the map F,,, satisfies a uniform estimate [23, Lemma 8.18]

IN1) — NED 1., < Ca(l[&nllon + 1€2]l20, 0161 — &

‘2,)\,%-

Proof The first is similar to [23, Lemma 8.13], the second similar to [23, Lemma
8.15], and the third to [23, Lemma 8.16]. All estimates are local and so apply to
holomorphic treed disks with almost complex structure standard in a neighborhood of
the tangency. |

Floer’s version of the Picard Lemma 8.2 and Proposition 8.6 produce the claimed
family of holomorphic treed disks u; : C; — X with boundary in ¢! converging
to u as » — 0. As before, ¢! and ¢, are related by a family of diffeomorphisms
of X which approaches the identity in all derivatives as s — 0. The existence of
an inverse to Gy (that is, “surjectivity of gluing”) follows from exponential decay for
pseudoholomorphic curves of small energy. Suppose that u;, Gromov converges to u;
we must show that for s sufficiently small the solution u; is the one produced by the
Picard iteration, up to equivalence. Because the almost complex structure is constant
and split near the self-tangency, it suffices to consider each component u;,i = 1,...,n
of u, separately. For the components u,; with i # 1, the Lagrangian boundary
conditions are transverse and the Lagrangian version of the annulus lemma (see for
example, Frauenfelder-Zemisch [30, Lemma 3.1]) implies that for s sufficiently large,
uy; is arbitrarily close to the approximate solution wy ; in the Sobolev norm defined by
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(63). For the first coordinate, we identify the region 2, bounded by Re(z) € {—1,1}
and ¢s(L) with arectangle [—T(s), T(s)] x [0, 1] of length 27T(s) by a biholomorphism
O;. Write O; o uy, in Fourier coefficients on the neck region [—7'(s), T(s)] x [0, 1]

(64) Oyo0u (T +it) = (T — 19(s)) + it + Z cn(s) exprn(t — T(s)) + it)
n>0
+ Z cn(s) expRmn(T + T(s)) + it).
n<0

Let ¢,(0) be the similar Fourier coefficients of the derivative of ©50wy |, where wy 1 is
the approximate solution, and 79(0) the translation factor of the leading order term of
O o wy,1. Convergence of u, 1 to up,; on compact subsets and agreement of ©; o ug |
with ©; o wo 1 on a neighborhood of 7 = £T(s) (where both are defined) implies
that ¢,(s) — ¢,(0) for all n. After a conformal variation that eliminates the difference
T0(s) — 70(0) (that is, a small variation in length of the neck) the difference satisfies

|©5 0 us 1 (T +it) — Oy 0w 1 (T +it)| < Clexp(—2m(T(s) — 7)) +exp(—2m(T — T(s)))).

and similarly for the first derivatives. We break (2. into three regions separated by
the curves Re(ug 1) = s: The region € with s = 1/5¢ and the regions Qﬁc between
Re(z)(uo,1(s)) € {—s,s} and Re(z)(up1(s)) € {—1,1}. Since up(z) ~ 1/z, the
conformal modulus of O is order 1/z on Qsi while ©; has conformal modulus
bounded by s on ). It follows that for any ¢ > 0, there exists so > 0 such that for
s < 8o

(65) / (Jus 1 (7 + it) — wy 1 (T + it)|P
[=T(),T()]x[0,1]

+ |du 1 (7 + it) — dwg 1 (T + it)[P)e, (T + it)dtdT
< Cie+ Cre + Czef(a — N)

where the first term Cje arises from the contribution of the complement of 2, where
uy converges uniformly in all derivatives, the second Che from the integrals over
QF, which have exponentially decaying integrand, and the third C3e/(a — \) from
the integral over €2, on which the integrand is also exponentially decaying at a rate
depending on the minimum non-zero angle a between the branches of the Lagrangian.
Combining the results for the various components implies that for ¢ sufficiently large,
u, is arbitrarily close to the approximate solution w; in the Sobolev norm defined by
(63). This proves part (c) of Theorem 8.1 up to sign.

The statement on regularity in Theorem 8.1 follows from Lemmas 8.5 (b) and 8.6 (b).
Indeed, for s sufficiently small, the linearized operators are surjectivity so all rigid
holomorphic disks with boundary on ¢, are regular.
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Finally we show that the gluing map in Theorem 8.1 (c) is orientation preserving. The
sign computation for the gluing map is similar to that for the A, associativity relation
(48), but in this case the determinant lines associated to the nodes g, € S mapping
to the self-tangency v € X have index shifted by one, which creates additional signs.
For the purpose of computing orientations it suffices to consider the case that there is
a single node g; mapping to a tangency. Recall that for any self-intersection point
Xj € ISi(¢,) the notation D)j;’z denotes the determinant line associated to x; in the
Fredholm operator on the once-punctured disk associated to a choice of path from ;.

By assumption in (30), the orientations on ]D)xij’2 are defined so that the tensor products
ID);/ 2® ]D);z = R with the standard orientation on the trivial vector space, in the case
of a self-transverse boundary condition, or a one-dimensional vector space, in the case
of self-tangent boundary condition x; = v; to simplify notation we assume that each
vertex maps to a self-intersection point; otherwise the following discussion holds by
the same argument replacing D, » with D, in the notation for each vertex mapping
to a Morse unstable manifold. By deforming the parametrized linear operator D,, of
(25) to the linearized operator D,, plus a trivial operator, one obtains an isomorphism
of determinant lines

(66) det(TMy(xo, - - . ,x2)) — det(TMHDT D=, ... D

X0,27x1,2 77 T xg, 20

The gluing map for a single node takes the form (omitting tensor products from the
notation to save space)

(67) det(TMm)Dj’zD;an DL det(TMd,mH,z)D;’zD;’z Dy, Dy,
To determine the sign of this map, first note that the gluing map

0,6) x My X Mag_pmyp1 — My

on the associahedra My is given in coordinates (using the automorphisms to fix the
location of the first and second point in M,, to equal O resp. 1 and My_,,11) by

(68) (0,(z3,---,2m), W3, ..., Wa—mt1))
= W3y Wy 1, Wil + 0, Wyl + 023, -+ o, Wil 4 02y Wnt 2y -+« s Wa—im)-
The map (68) acts on orientations by a sign of —1 to the power
(69) (m—1Dm—1).
These signs combine with the contributions

n d m
T0) Y kbl + @+ DM+ D+ Y k—mt Dl + > k=)

k=1 k=n+m+1 k=n+1
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in the definition of the structure maps, and a contribution

(71) d—m+Dmtm [+ |l

i>n
from permuting the determinant lines Dx_,- 2 J =n+1,... ntm, ]D):r2 with det(T M y—m+1)
and permuting these determinant lines with the D ,,i < n,DD ;. The extra factor of

R created by the gluing at the self-tangency point can be moved to the first position at
the cost of creating signs in the number of

(72) > bl +d— 1.
k=0

Combining the signs (69), (70), (71), (72) one obtains mod 2
(73)

n+m

n d
(mn+n+ m)+ (Zk\xk +n+ D(v|+ 1D+ Z (k—m~+ Vx| + Z (k — n)|xx|

k=1 k=n+m+1 k=n+1

n
+@d—m+Dmtm |+ |l | > bl +d+1

i<n k=1
d d n+m
=(mn+m+n+Y kal+@+D([+D+ Y m—Dxl+ Y nlx
k=1 k=n—+m-+2 k=n+1

n
td=m+Dm+m|d+ > |xl |+ |ul+d+1

i>n+m+1 k=0
(74)
d d n
Emn—|—m—|—Zk|xk|—|—|V|—|- Z |xk|-|-nm+(d—m—|—1)m—|—md+2\xk!
k=1 k=n+m+2 k=0
d n+m d n
Em—l—Zk\ka- Z |xXk| +m + Z !Xk’—i-Z\xk\-
k=1 k=n+1 k=n+m-+2 k=0

After incorporating the sign (47) the number of signs is congruent mod 2 to

d
(75) >l +d=o0.
k=0

This completes the proof of Theorem 8.1.

)
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Figure 19: Disks on an immersion developing self-tangent boundary

Corollary 8.7 Let ¢; : L — X be an admissible Maslov flow with a self-tangency at
s = 0 as above. For any E > 0 and x = (xo,...,Xq) there exists an €y so that for
€ < € there is an orientation-preserving bijection

(76) {u€ Mu¢p-e,x), | Ew) <E}

— { uc M(qﬁalo)p XZ(pe) H M(@e, VEia-Ei)p E(w) <E }

i=1

where x, = (x0,v_x,)i_, with k; € {£1} and x = x; U ... U x,, where r runs over
non-negative integers; see Figure 19.

Proof We combine the different parts of Theorem 8.1 : Given a family u, € M<E(p,),
we obtain in the limit ¢ — 0 an element u € M<E(¢y). Removing the preimages
u! (x;) of the tangency points in ¢o(L) we obtain a disconnected domain C— {u‘l (x)}.
Define ug to be the closure of the component of C — {u‘l(xj)} containing the outgoing
edge eg, and let uy, ..., u, be the components of u attached to the component g at
the self-tangency points. By Theorem 8.1 again, each of these shrinks to a component
mapping to v, for € < 0, and these are connected by small strips connecting v,
with v.,,. The bijection (76) follows. O
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9 Invariance for birth-death singularities

In this section we use the correspondence between holomorphic curves with Lagrangian
boundary condition evolving under Maslov flow in Theorem 8.1 to construct the claimed
map in Theorem 1.1 between Maurer-Cartan moduli spaces as the immersion develops
(or loses) a pair of self-intersection points.

We first introduce some notation for counting curves in the immersion with self-
tangency. Let M(¢o) denote the moduli space of treed holomorphic disks with
boundary condition on ¢ and let M(¢g)o denote the part of the moduli space of
expected dimension zero with the property that any combinatorially-finite edge 7, C
T,e € Edge_ (I') mapping to the self-tangency v has length zero:

w(Te) =v) = (l(e) =0).

(Without this condition, treed disks splitting at the tangency cannot be rigid, since
one could add an edge of arbitrary length.) Theorem 8.1 implies that for any energy
bound E, the subset of rigid holomorphic treed disks ME(qbo)p of energy at most
E is compact, since the correspondence in Theorem 8.1 is energy preserving up to a
small constant determined by the change in action at the self-intersection points. Each
element u : C — X of M(¢), has underlying combinatorial type a treed nodal disk C
where the nodes of C map to the self-tangency point v € X. For any such map let E(u)
denote the energy, o(u) the number of interior markings, and y(x) the monodromy of
the local system.

Definition 9.1 (Composition maps for self-tangent immersions) Define maps similar
to the A, structure maps

(77)  pa(@o) : CF(¢o)* — CF(gh),
pa(doix,..x) = Y (=D(@) ywg" e

UEM(P03x0,---Xd) p

where Q is as in (47).

Remark 9.2 The maps (77) fail to satisfy the A, axiom. Suppose that the orientations
on the determinant lines at the self-tangency points det(Df{) are chosen so that the
natural maps det(DxiO) — det(Dfo{) induced by the deformation of boundary condition
is orientation preserving. If we preclude the tangencies as inputs or outputs then the
maps ug(¢o) capture the limit of the Fukaya composition maps for ¢, as t — 07 : Let
x xe€{v,v}

(78) IT: CF(¢9) — CF(¢o), x> { )
0 otherwise
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denote projection onto span{v, v} so that (1 — II) is the projection of CF(¢y) onto the
image of CF(¢;). Under the natural inclusion CF(¢;) — CF(¢g) we have

lim p1q(é0) = (1 = Mypa(go)(1 — Imy“.

In particular, the maps (1 — ID)ug(po)(1 — )¢ satisfy the A, associativity axiom, by
Theorem 8.1 (b).

However, because of the failure of gluing at a self-tangency without moving the
Lagrangian, one cannot expect the maps tq(¢) to satisfy the A, axiom if some of the
semi-infinite edges map to the self-tangent point v. For b € CF(¢y) define b-deformed
maps
(79) ng(dosar,...,aq)
= Y faritotion(@0,b, .. byar,b,.. bay,b,... b agb,....Db).
~—— — ~——

[ yenesl, A N .
1yeeosld+1 i n Ld+1

Definition 9.3 (Curve counts at the tangencies) Define two new maps composing resp.
precomposing with projection onto the span of the self-tangency points: Define

vh oo CF(¢0)® — CF(¢o), v, =Topuh, vh_ =phom

The maps yfi . count holomorphic tree disks with boundary insertion such that the
only allowed outputs resp. inputs are the self-tangency points. Define

t: CF(¢o) — CF(¢1), Vo4 > €4V;x

where e € {1} are the signs of the small strips in Theorem 8.1. Let A, denote the
area of the small strip in Theorem 8.1. Since

limA, =0, limval,(2_. (1 0
JmA ) tg%vaq(VO,i( ) >

we have positive g-valuation
val (g4l (1)) > 0
q q 07+ :
We assume that the orientations for the determinant lines at the self-intersection points

are chosen so that the contribution of the small strip connecting the self-intersection
points is negative.

Definition 9.4 The correction map between Floer cochain spaces is the map

80) ¢ CF(¢_0) = CF($e), b bei=b_c+q " Ou(wy (1)
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A6+(A3—A1)+(A2—A1)—A5

—-q

Figure 20: Two weakly bounding cochains related by v

The informal version of this definition was described in the introduction in (2). The
derivative of the map (80) is the identity plus corrections from holomorphic tree disks
with output on the tangency and inputs the Maurer-Cartan element, except for a single
input with the given tangent vector x € Z(¢_.):

(81) Dy th(x) = x + 101 (2).

We show below that (81) gives an isomorphism of Floer cohomologies.

Example 9.5 Two weakly bounding cochains b_. (left) and b, (right) related by ¢ are
shown in Figure 20, with areas shown in the limit ¢ — 0 (that is, without any Maslov
flow). In this case the area of the small strip A(e) between the new self-intersection
points is equal to the area labelled As. The original weakly bounding cochain b_. is
supported at the two self-intersection points V. + in the boundary of the region with
area A, and so the correction in this case is

L(I/gj:(l)) — qA6+(A3_A1)+(A2_A])§€7+ + qA4§€77_
This ends the example.
In preparation for the proof of Theorem 1.1, we suppose without loss of generality that

¢, undergoes a birth of two new self-intersection points at t = 0; the case of a death is
similar.
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Lemma 9.6 The equality holds

. b :
82 1 (p—c; 1) =1 (e 1
(82) lim 41 (p—e: 1) lim 41 (9e; 1)

using the inclusion CF(¢_¢) — CF(¢¢).

Proof By definition
H @) = Y pa(eibe, - bo)

d>0

= Y a(@e(be —b-)+b ey, (be —b_) + o)
>0

= Y (beibe—b ... be—b o).
r>0

By Definition 9.4, this is equal to
e b_. b_e
peGe 1) = (e (1), g (D).

r>0

Step 1: The coefficient of any generators not equal to v, v+  in (82) are equal.
Corollary 8.7 implies that, accounting for both curves that degenerate to curves passing
through the self-tangency as well as the change in bounding cochain, the coefficient
of any x € Z(¢e) — {V+,e, v+, } are equal. Indeed, any configuration contributing to
ug‘e(l) transforms into a collection of holomorphic treed disks with output at v4 .,
a collection of small strips connecting to V4 ., and holomorphic treed disks with the
original output. The difference in areas and holonomies are accounted for by the
definition of (80). An example of a configuration counted for € > 0 and the matching
configuration for € < 0 is given in Figure 19 where the contribution for € > 0 is of the
form p(vo 4, 10,4 ); disks with boundary in the given immersion are lightly shaded
while the contributions from 1  are darkly shaded. The signs agree by Theorem 8.1.

Step 2: The coefficient of v+ ¢ in (82) vanishes on both sides. Recall that the generators
v+ . are the outputs of the small strip in Theorem 8.1. If there are configurations
contributing to ,ugf(qbe; 1) with output v+ . with positive coefficient, then the definition
of v in (80) implies that these configurations are cancelled by ul(q_A(e)L(ugf(l)).

Furthermore, there are no other composition maps p,,» > 1 containing L(Vg (1)) as
an input, since any polygon projects to a polygon in the first coordinate and so the only
polygon with input v . is the small strip.
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Figure 21: Part of a disk with output at v, .

Step 3: The coefficient of V4  in (82) vanishes on both sides. Suppose otherwise, so
that without loss of generality the coefficient of v, . is equal to ¢ € A. The Bianchi
Ao relation for ¢, reads

pe e (1) = 0.

Contributions to this identity include once-broken treed disks with no inputs and output
at v_ ., as in the larger shaded region in Figure 21 only a part of whose boundary is
shown.

The contribution from configurations with breaking at v . is equal to cq™©, since the
only holomorphic treed disk from v . to v_  is the small strip discussed above, shown
darkly shaded in Figure 21. To see this, note that the projection on the first coordinate
is holomorphic and the only holomorphic polygon in the two-dimensional picture is the
bigon in Theorem 8.1, shown in Figure 21. Contributions also include configurations
with breaking at some other generator x € Z(¢.), not equal to v+, V+ . and so
corresponding to a generator of Z(¢_.). However, by assumption, b_. is a solution
the projective Maurer-Cartan equation, and so the coefficient of x in ,ug’e(qb,e; 1)
vanishes. But then by Step 1, the coefficient of x in vanishes as well. Hence the
coefficient of v . vanishes. |

Proof of Theorem 1.1 By Lemma 9.6
b €MC(¢p_) = pup<(1)€span(ly_)
= ,ugf(l) € span(ly,)
= b € MC(¢e)
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with the same value of the potential.

To prove the claim on Floer cohomology first note that the Floer differential ulfie is
the derivative of ugie , which implies by Lemma 9.6 that Dt is a chain map, where 1)
is as in Definition 9.4. Indeed we have

lim DY) = lim = (D)

- hmg Y(b_)+tDYy,__(x)
e—0 dt 0

= lim 1" (DYy_, ).
e—0

)

To show that D induces an isomorphism, we apply the spectral sequence for the
cohomology induced by the filtration by powers of ¢°, for § larger than € but smaller
than the area of any other non-constant holomorphic treed disk. The differential for
the first page of the spectral sequence is the Morse differential, together with the
map Ve+ — qA(E)vQ:F induced by the small strip, and any cohomology class for this
differential has a representative supported in the image of CF(¢_.) in CF(¢¢). In
particular, Dt is an isomorphism on the first page, and it follows that D is an
isomorphism HF(¢_.) — HF(¢.) on the limits of the spectral sequence (see [60,
5.2.12])

Conversely we claim that the limit of any family of Maurer-Cartan solutions is obtained
by the correction formula in (80). Given b, € MC(¢.) write

be =b_. + b, b= > (8b, x)x.
xe{vp vy v_pv_}

Consider the equations
. . b_
1 ‘H=1 “(6b,...,0b) € Aly,.
Egr(l)lu()() egr(l)zlud ( ) 75)6 b1
Re-write this equation as

(83)  — 1 ({8b,v_Yv_ + (b, v )V.))
=" 1y @b, 6b) — pn({6b,F_)_ + (6b,5,)7)) mod span(ly)
d>0

The terms in §b mod ¢"¢ determine the terms in 6b mod ¢"t" for some energy
quantization constant i and any integer n. Therefore this equation has a unique
solution b, necessarily equal to the one given above in (80).
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Remark 9.7 In Etnyre-Ekholm-Sullivan [25] the authors give a second proof of
invariance of Legendrian contact homology under a self-tangency move by using a
“bifurcation analysis”. It would be interesting to know whether a stabilization or
cobordism argument would remove the need for explicit gluing results used above.

Proof of Theorem 1.3 Theorem 1.3 follows from Theorems 1.2 and 1.1 by breaking
up the domain of the isotopy [0, T'] into sub-intervals [0, (], [t1, 2], . .., [#x—1, T]. By
induction, we may assume that the theorem holds for any Maslov flow ¢, on the interval
t € [t1, T]. Suppose that [bg] € MC(¢g) with

I_Ilkl(r)lAi — (dim(L) — 1T — 1;) > 0.

Since Ag = valy(bp), Theorem 1.2 implies that there exists a family b, = Ef)(bo), t e
[0,#] and an identification HF(¢g, bg) = HF(¢,, b,) for all t. Theorem 1.1 implies
that the family b, continues as a family b, . € MC(¢,) for t € [t1,1; + €] for € small
with a g-valuation

valy(by 4) = valg((by,,-))
= min(valy(b;,—),A1) > min(val,(bg) — t;(dim(L) — 1),Ay).

Now b, 4 satisfies the assumption of Theorem 1.3 for the interval [z, T] since, letting
A = valy(b, ), we have

min <A'1 — (dim(L) — 1)(T — 1), nllcl%lA,- — (dim(L) — 1T — t,-))

v

min (min(val,(bo) — T(dim(L) — 1), A — (dim(L) — 1X(T — 11)),
min A; — (dim(L) — (T~ n))
- rl_n_kl(I)lA,- — (dim(L) — 1)(T — #;) > 0.
By the inductive hypothesis, there exists by € MC(¢r) with
W(¢r,br) = ¢T"VW(gy,, b)) = g7 W(do, bo)

HF(¢r,br) = HF (¢, byy) = HF(¢o, bo).

The statement of the Theorem for the forward direction follows. The result for the
reverse Maslov flow (mean curvature flow) is similar, using inverse Euler flow. a

We end the paper with further open questions:
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Remark 9.8 (a) The first question concerns existence of non-trivial objects in the

(b)

(©)

(d)

(e)

(®)

Fukaya category. We conjecture that any rational compact Kéhler manifold
(X,w) contains a Floer non-trivial Lagrangian ¢ : L — X, HF(¢) # {0}, that
is, a non-trivial object [¢] in the immersed Fukaya category F(X), and the
definition of Lagrangian is taken to be sufficiently general. This paper shows
that this property is preserved under (at least small) Kéhler-Ricci flows (X, wy),
while the paper [16] shows that sufficiently nice surgeries in the flow generate
non-trivial objects.

The next question concerns the existence of mean curvature flows. Joyce’s
conjecture [38] predicts that after allowing certain singular Lagrangians and
surgeries, mean curvature flow ¢, : L, — X,t € [0,00) exists and preserves
Floer cohomology HF(¢;, b;) if by € MC(¢g). Note that this approach requires
surgery at times #; € (0,7) that are not singular times of the mean curvature
flow. This conjecture is open even for immersed curves ¢ : L — X on surfaces
X, dim(X) = 2. Some analytic results relevant to the surgeries necessary when
the g-valuation of the weakly bounding cochain become zero are contained in
the manuscript [31, Chapter 10].

To what extent is non-displaceability equivalent to Floer non-triviality? In the
case of immersions in the two-sphere ¢ : L = §' — X = §2, non-vanishing
of Floer cohomology HF(¢,b) seems to be stronger than non-displaceability
v X — X, Y(p(L)) N ¢(L) empty. Is there a version of Floer theory (such as
bulk deformations) that detects non-displaceability?

The structure of the space of Maurer-Cartan solutions MC(¢) seems poorly
understood, even in the case of immersions ¢ : L = S' — X = §? in two-
sphere. For example, what is the dimension of MC(¢)?

Immersed Lagrangian Floer theory is somewhat limited in applicability by the
requirement that the transverse self-intersection condition: HF(¢, b) is defined
only for immersions ¢ : L — X with self-transverse, or at least clean, self-
intersection L x4 L — Ap. Of course, one can perturb ¢ to achieve a self-
transverse immersion ¢. How does the Maurer-Cartan moduli space MC(¢)
depend on the choice of perturbation ¢? In particular, is there a “good lo-
cus” MC(¢) of weakly bounding cochains b so that the Floer cohomology
HF (gE, b),b € MC (gz;) is independent of the choice of perturbation?

As a special case of the previous question, does there exist a good Floer theory
for Lagrangian immersions that are finite covers of their image? Let ¢ : L — X
be a Lagrangian embedding and let ¢ : L — X be the immersion obtained
by composing ¢ with a finite cover m : L — L. Is the immersed Lagrangian
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(2

Floer theory of a self-transverse perturbation of the composition ) o ¢ : L — X
independent of the choice of perturbation ¢ : X — X?

What is the sub-category of immersed Fukaya category F(X) generated by em-
bedded Lagrangians ¢ : L — X ? The mapping cone construction in Fukaya-Oh-
Ohta-Ono [31, Chapter 10] implies that, at least in some cases, self-intersection
points x € Lx 4L may be replaced with mapping cones Cone(x),x € Hom(¢, ¢);
see also Mak-Wu [44] and Fang [26].
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