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Abstract
We introduce a class of parity-time symmetric elastodynamic metamaterials (Ed-MetaMater)
whose Hermitian counterpart exhibits unfolding (fractal) spectral symmetries. Our study reveals a
scale-free formation of exceptional points in those Ed-MetaMaters whose density is dictated by the
fractal dimension of their Hermitian spectra. We demonstrate this scale-free EP-formation in a
quasi-periodic Aubry-Harper Ed-MetaMater, a geometric H-tree-fractal Ed-MetaMater, and an
aperiodic Fibonacci Ed-MetaMater—each having a specific fractal spectrum—using finite element
models and establish a universal route for EP-formation via a coupled mode theory model with
controllable fractal spectrum. This universality may enable the rational design of novel
Ed-MetaMater for hypersensitive sensing and elastic wave control.

1. Introduction

Distinct from common geometric symmetries of phononic crystals and metamaterials, the parity-time
(PT)-symmetric materials [1–5] utilize hidden symmetries that are encoded in the governing dynamical
equations and are consequences of judicious spatially-distributed attenuation and amplification
mechanisms. The PT-symmetric systems have been shown to exhibit novel transport phenomena in various
application domains such as optics [6–10], microwaves and radiofrequency waves [11–14], and acoustics
[4, 15–20]. Unidirectional invisibility [17, 18], shadow-free sensing [16], asymmetric switching [4, 12], and
non-reciprocal transport [21, 22] are some of those exotic wave phenomena that have been demonstrated
both theoretically and experimentally. On the other hand, very few works have been focused on the
implementation of PT-symmetry in the realm of elastodynamics concerning the elastic wave dynamics in
solids [5, 23].

A PT-symmetric elastodynamic metamaterial (Ed-MetaMater) has recently been realized by embedding
a gain and a lossy mechanical resonators in an elastic medium that facilitates coupling between them [5].
When the intensity of the equal gain and loss and/or the elastic coupling strength between the two
resonators of such an Ed-MetaMater are varied, a branch-point singularity forms where the eigenvalues as
well as the corresponding eigenmodes of the system coalesce. Such degeneracy is known as an exceptional
point (EP) and it is the most intriguing feature of PT-symmetric systems: it signifies a transition from a
parameter domain where the eigenfrequencies are real and the corresponding eigenmodes of the system
respect the PT-symmetry (exact PT-symmetric phase) to a domain where the eigenfrequencies are complex
conjugate pairs and the normal modes violate the PT-symmetry (broken PT-symmetric phase) [24, 25]. The
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Figure 1. (a) Illustration of a generation-7 (Gen-7) Aubry-Harper Ed-MetaMater; red/blue represents energy gain/loss. For the
right half (blue) of the Ed-MetaMater, 8 vertical beams (length: 6 cm; radius: 0.5 cm) are coupled by a horizontal rod with the
beam positions given by xs = sa + R sin(sθ), where s ∈ Z is the rod index, a (5 cm) is the distance between the centers of
neighboring projection circles, and R (2 cm < a/2) is the radius of the circle. The left half of the Ed-MetaMater (red) is a mirror
reflection of the right one. The metamaterial is made of aluminum (Young’s modulus: 68.9 GPa, Poisson’s ratio: 0.33, density:
2700 kg m−3) to which the gain/loss is introduced by structural anti-damping/damping. (b) Self-similarity of the modes as the
generation is increased from Gen-9 to Gen-11.

EPs can also be realized in a more general class of non-Hermitian systems with differential loss and without
any gain [26, 27]. However, in the absence of gain, the signal quality may be affected when the overall
damping in the structure is very high. In the vicinity of an EP, the degenerate eigenfrequencies can be
expanded in a fractional (Puiseux–Newton) power series whose importance in sensing applications has
been recognized only recently [28–31]. The EP degeneracies have so far been implemented using coupled
resonators in zero (e.g. pair of coupled resonators) or one-dimensional geometries (e.g. one-dimensional
arrays of coupled resonators). Developing methods that allow the implementation of EPs in more complex
geometries will provide exciting opportunities to engineer mechanical wave dynamics.

The quasi-periodic, aperiodic, and geometric fractal architectures offer new ways of engineering
metamaterials across multiple length scales and response time scales because of their intriguing frequency
spectrum demonstrating unfolding (fractal) symmetries [15, 32–36]. For example, figure 1 shows the
response of an Aubry-Harper Ed-MetaMater in which the resonance modes emerge in a self-similar manner
as the generation of the Ed-MetaMater is increased from 9 to 11 (figure 1(b)). The embodiment of fractality
in PT-symmetric metamaterials offers the potential to create numerous EPs in a scale-free fashion similar to
the scale-free nature of their fractal frequency spectra. Here, we introduce PT-symmetric Ed-MetaMaters
with fractal frequency spectra and establish a universal route for the emergence of EPs in those
metamaterials. We describe the mechanisms of the emerging EPs induced by the elastodynamic interactions
in three classes of such PT-symmetric Ed-MetaMater with fractal spectrum—a quasi-periodic
(incommensurate) Ed-MetaMater inspired by the Aubry-Harper model [37–43], a geometric fractal
Ed-MetaMater made of H-shaped motifs [44], and an aperiodic Ed-MetaMater that follows Fibonacci
substitutional rule [45, 46]. The universal scale-free nature of the EP formation and its connection to the
fractal dimension of the frequency spectrum of the underlying Hermitian Ed-MetaMater are established
using a coupled-mode-theory (CMT) modeling.

2. Method: finite element modeling

We used a commercial finite element platform, Abaqus Simulia, to computationally model the steady-state
dynamics of the Ed-MetaMater. The material properties of aluminum (Young’s modulus: 68.9 GPa,
Poisson’s ratio: 0.33, density: 2700 kg m−3) is assumed for all components of the Ed-MetaMater which are
modeled with cylindrical beam elements. The modal response convergence has been tested for different
element sizes and types and twenty 3-node quadratic Timoshenko beam elements (Abaqus Simulia: B32) in
each segment of the structure has been chosen. The P-symmetric Ed-MetaMater is harmonically excited
using a prescribed axial displacement at the left end of the horizontal coupling rod generating a longitudinal
wave in the rod, and the corresponding sinusoidal axial reaction force at its fixed-right-end is measured,
simulating a steady-state elastic wave dynamics in the metamaterial. The PT-symmetry is created by
introducing equal amount of energy amplification and attenuation at each P-symmetric part of the
Ed-MetaMater, characterized by an amplification/attenuation rate. These gain/loss mechanisms have been
modeled by introducing a structural anti-damping/damping coefficient in Abaqus Simulia with its
magnitude varying from γ = 0.001 to 1. We also used another commercial finite element platform,
COMSOL Multiphysics, to perform eigenfrequency analyses to examine the eigenmodes of EP pairs in both
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Figure 2. (a) The formation of a typical EP (inset shows a log–log plot of the frequency difference ΔEP vs 1 − γ/γEP near the
EP). The red line has a slope of 0.5 shows the square-root characteristic. (b)–(d) The displacement fields u(x) of the eigenmodes
corresponding to (b) the exact phase, (c) EP, and (d) broken phase (the upper and lower figures show the real and imaginary
parts of the displacement field and red/blue represents mode-1/mode-2).

exact and broken phases (figures 2(b)–(d)). In this model, quadratic Timoshenko beam elements have been
used and the ends of the coupling rod on either side has been fixed-constrained to respect P-symmetry. The
response consistency between Abaqus Simulia and COMSOL Multiphysics has also been verified. It is
noteworthy that these implicit dynamic simulations of fractal elastodynamic systems with PT-symmetry
require significant computational time.

3. Results

3.1. PT-symmetric quasi-periodic Aubry-Harper Ed-MetaMater
The finite element model of the quasi-periodic Aubry-Harper Ed-MetaMater (figure 1(a)) is generated by
several vertical beams (length: 6 cm; radius: 0.5 cm) coupled by a horizontal rod with the beam positions
given by xs = sa + R sin(sθ), where s ∈ Z is the rod index, a (5 cm) is the distance between the centers of
neighboring projection circles, and R (2 cm < a/2) is the radius of the circle. When the projection
parameter θ ∈ (0, 1) is an irrational number, the period of the impedance profile of the structure is
incommensurate with the lattice period. To this end, we use the ratio of two adjacent numbers in a
Fibonacci sequence for θ = p/q, so that the impedance profile of the structure becomes commensurate with
the lattice of rods with period q, defining the generation of this Ed-MetaMater (e.g. 7th generation (Gen-7)
corresponds to θ = 5/8, which is composed of the 6th and 7th numbers in Fibonacci sequence: 0, 1, 1, 2, 3,
5, 8, 13, . . . ). The incommensurate limit associated with a truly quasi-periodic structure is investigated via a
scaling procedure and it is reached when q →∞.

The P-symmetric (γ = 0) Aubry-Harper Ed-MetaMater is harmonically excited (0–25 kHz) using a
prescribed axial displacement at the left end of the horizontal coupling rod generating a longitudinal wave
in the rod, and the corresponding sinusoidal axial reaction force at its fixed-right-end is measured,
simulating a steady-state elastic wave dynamics in the metamaterial. The fractal dimension D of its
frequency spectra (see figure S1 in supplementary material (https://stacks.iop.org/NJP/23/063079/mmedia))
is calculated using the correlation-dimension method [47] and found to be D = 0.83 ± 0.02 (see figure S2
in supplementary material) (a standard box-counting method results in the same D—albeit the
correlation-dimension method converges faster to the value of D). We also find that the D of the
P-symmetric Ed-MetaMater is the same as that of the corresponding Ed-MetaMater without being coupled
to its mirror image. The D remains the same even in the PT-symmetric case—albeit in this case, it refers
only to the real part of the frequencies. This robustness of the D of the real part of frequency spectrum
against P or PT-symmetries was checked for all the systems we studied.

The PT-symmetry is created by introducing at each P-symmetric part of the Ed-MetaMater equal
amount of energy gain and loss (−/+ γ), characterized by an amplification/attenuation rate γ. When γ is
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Figure 3. The EPs in PT-symmetric Gen-10 Aubry-Harper Ed-MetaMater. (a) Linear relationship between Δ0 and γEP.
(b) Integrated distribution reported as N (Δ0) ×Δk

0; axes normalized by their corresponding maxima.

increased, several pairs of modes interact and coalesce to form a cascade of EPs at different critical values
{γ(n)

EP } and a square-root behavior typical of order-two EPs can be observed near the EP. An example of a
typical EP in Gen-10 PT-symmetric Aubry-Harper Ed-MetaMater is shown in figure 2. At a critical
gain/loss intensity γEP = 0.00251, the eigenvalues (figure 2(a)) and the corresponding eigenmodes
(figure 2(c)) coalesce to form an EP. The square-root behavior typical of order-two EPs can be observed in
the inset of figure 2(a); ΔEP is the frequency difference between the corresponding mode pairs. The
eigenmode components of the vector u(xs) in (figure 2(b)–(d)) describe the displacement field of the
transverse tip-deflections of the cross beams at xs. While in our computation we evaluate the complex
displacement fields, the physically relevant information is their amplitude and the phase difference between
the components of the mode. We expect that for γ � γEP (exact PT-symmetric phase) these eigenmodes are
also eigenmodes of the PT-operator, i.e. the complex field remains invariant under the combined parity
(xs → x−s) and time (i →−i) operations (figures 2(b) and (c)). In contrast, for γ > γEP (broken
PT-symmetric phase) the modes are not any more eigenmodes of the PT-operator. They are rather mapped
to one another once the joint PT-operation is applied (figure 2(d)).

To further estimate the non-Hermitian perturbation strength γ that enforces an EP degeneracy for a
specific pair of modes, we plot γEP vs Δ0 for each EP found in the spectrum. Here, Δ0 ≡ ΔEP|γ=0 is the
frequency difference between the corresponding mode pairs when γ = 0. All EPs (< 25 kHz) in a Gen-10
PT-symmetric Aubry-Harper Ed-MetaMater are shown in figure 3(a). Their linear relation demonstrates
the intimate relation between the initial (i.e. when γ = 0) frequency split of these two interacting modes Δ0

and the critical gain/loss intensity γEP which coalesce those modes to form an EP. In other words, the
non-Hermitian perturbation strength γEP that is needed for enforcing a degeneracy between an EP-pair
must be of the same order as the frequency split of those modes in the P-symmetric Ed-MetaMater.
Therefore, a statistical analysis of γEP reduces to the statistical description of these Δ0, which are associated
with the specific mode pairs that eventually form EPs. The latter is easier to evaluate numerically since it
does not require a high-resolution parametric evaluation of the modes—as opposed to the precise
determination of γEP.

We evaluate the probability density function (PDF) P (Δ0) of those EPs. For better statistical processing
of these data, we refer to the integrated distribution N (Δ0) =

∫∞
Δ0

P(x)dx whose derivative
P (Δ0) = −dN (Δ0) /dΔ0 determines the PDF of the frequency split of the EP-pairs and therefore the PDF
P(γEP) of the gain/loss intensity that is necessary for inducing an EP degeneracy. We find that

N (Δ0) =

∫ ∞

Δ0

P(x)dx̃Δ−k
0 , (1)

where the best fit parameter k is found to be k = 0.81 ≈ D. Thus, the PDF for the gain/loss intensity scales
as P (γEP) ∼ γ−(1+D)

EP , which is represented by the flat spread in N (Δ0) ×Δk
0 vs Δ0 (figure 3(b)).

3.2. The PT-symmetric H-tree geometric fractal Ed-MetaMater
We investigate another class of Ed-MetaMater whose fractal spectrum is originating from a geometric
fractality in configuration space [44]. The H-tree geometric fractal Ed-MetaMater is made of two identical
planar components made of H-motifs (figure 4(a)). The first generation of this fractal contains two
H-shaped structures—each made of three identical cylindrical beams (length: 11.6 cm, radius:
2.38 mm)—coupled by a passive (zero gain/loss) horizontal elastic rod (coupling length: 11.6 cm; length of
exterior side ledges: 5.8 cm) such that they form a P-symmetric system. Each subsequent generation adds
H-motifs scaled down in length by a factor of 2 (constant diameter) to each tip of the prior H-structure.
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Figure 4. (a) Illustration of a Gen-4 H-tree-fractal Ed-MetaMater and first four generations of its planar component; red/blue
represents energy gain/loss. The Gen-1 planar component is made of three identical cylindrical beams (length: 11.6 cm, radius:
2.38 mm). For the subsequent generations, H-motifs are scaled down in length by a factor of 2 (constant diameter) and added to
each tip of the prior H-structure. Two identical planar components are then coupled by a passive (zero gain/loss) horizontal
elastic rod (coupling length: 11.6 cm; length of exterior side ledges: 5.8 cm) to form a P-symmetric H-tree-fractal Ed-MetaMater.
The metamaterial is made of aluminum (Young’s modulus: 68.9 GPa, Poisson’s ratio: 0.33, density: 2700 kg m−3) to which the
gain/loss is introduced by structural anti-damping/damping. (b) Linear relationship between Δ0 and γEP. (c) Integrated
distribution reported as N (Δ0) ×Δk

0; axes are normalized by their corresponding maxima.

The analysis of the correlation-dimension of the frequency spectrum indicates that its D converges to 0.80
(see figure S3 in supplementary material).

As previously, the PT-symmetry is created by introducing equal gain/loss (γ = 0.001–1) to the left and
right planar components (figure 4(a)). The P-symmetric H-tree-fractal Ed-MetaMater is harmonically
excited (0–50 kHz) using a prescribed axial displacement at the left end of the horizontal coupling rod
generating a longitudinal wave in the rod, and the corresponding sinusoidal axial reaction force at its
fixed-right-end is measured, simulating a steady-state elastic wave dynamics in the metamaterial (see figure
S4 in supplementary material). When γ is increased, similar to Aubry-Harper Ed-MetaMater, all four
generations of the PT-symmetric H-tree-fractal Ed-MetaMater show the emergence of numerous EPs at{
γ(n)

EP

}
which are proportional to the Δ0 associated with those specific EP-pairs (figure 4(b)). We evaluated

the N (Δ0) which allows estimating the PDF P (γEP) for the critical gain/loss intensity γEP. Figure 4(c)
shows the integrated distribution by the variable N (Δ0) ×Δk

0 as a function of Δ0. We find that for
k = 0.77 ≈ D, the data demonstrate a flat spread, leading to the conclusion that P (γEP) ∼ γ−(1+D)

EP . This
finding again demonstrates the intimate relation between the emerging EPs and the fractality of the
metamaterial’s spectrum.

3.3. The PT-symmetric aperiodic Fibonacci Ed-MetaMater
To further verify the universal nature of equation (1) we studied another class of Ed-MetaMater with
unfolding spectral symmetries—an aperiodic system based on Fibonacci substitutional rule (figure 5(a),
details in supplementary material). It is created by equally spaced (3 cm) vertical beams (lengths of A: 8 cm,
B: 6 cm; radius: 0.5 cm) organized based on Fibonacci substitutional rule (further details in supplementary
material) that are coupled by a horizontal rod (radius: 0.5 cm; exterior ledges: 3 cm) and then mirrored to
form a P-symmetric system. The system is harmonically excited (0–50 kHz) using a prescribed axial
displacement at the left end of the horizontal coupling rod generating a longitudinal wave in the rod, and
the corresponding sinusoidal axial reaction force at its fixed-right-end is measured, simulating a steady-state
elastic wave dynamics in the metamaterial (see figure S5 in supplementary material). The
correlation-dimension analysis indicates that the frequency spectrum of this system is characterized by
D = 0.80 (see figure S6 in supplementary material). The relation between Δ0 and γEP is found to be linear
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Figure 5. (a) Illustration of a Gen-7 Fibonacci Ed-MetaMater; red/blue represents energy gain/loss. The right half (blue) of the
Ed-MetaMater is made by 13 equally spaced (3 cm) vertical beams (lengths of A: 8 cm, B: 6 cm; radius: 0.5 cm), the number and
organization of those beams are based on Fibonacci substitutional rule (see further details in supplementary material). The left
half of the Ed-MetaMater (red) is a mirror reflection of the right one. The metamaterial is made of aluminum (Young’s modulus:
68.9 GPa, Poisson’s ratio: 0.33, density: 2700 kg m−3) to which the gain/loss is introduced by structural anti-damping/damping.
(b) Linear relationship between Δ0 and γEP. (c) Integrated distribution reported as N (Δ0) ×Δk

0; axes are normalized by their
corresponding maxima.

again (figure 5(b)). The N (Δ0) ×Δk
0 vs Δ0 demonstrates a flat spread with k = 0.80 ≈ D (figure 5(c)),

concluding that P (γEP) ∼ γ−(1+D)
EP .

3.4. A universal mathematical model for PT-symmetric fractal metamaterials
The intimate relation between P (γEP) and the spectral fractal dimension of an Ed-MetaMater at γ = 0
implies the existence of an underlying universal route for the creation of EPs in systems with fractal
spectrum. To this end, we develop a CMT-based model that utilizes on-site resonant modes that follow an
aperiodic Fibonacci substitutional rule (details in figure 6(a) and supplementary material). The CMT
Fibonacci model is described by the Hamiltonian:

H =
∑

n
|n〉Vn〈n|+

∑
n
|n + 1〉〈n| + c.c., (2)

where the coupled resonant frequencies Vn take only two values ±V arranged in a Fibonacci sequence and
{|n〉} is the local mode basis. This system is known to have a Cantor-set spectrum with zero Lebesgue
measure for all V > 0 [48]. A benefit of the Fibonacci CMT modeling is that its spectral fractal dimension
D can be tuned by varying on-site resonance of the model, V, thus giving us the possibility to scrutinize the
relation P (γEP) ∼ γ−(1+D)

EP for a variety of spectral fractal dimensions. It turns out that the PDF of the
nearest level spacing sn ≡ ωn+1 − ωn of such family of systems follows a scale-free distribution whose
power-law behavior is dictated by the fractality of the spectrum, i.e. P (s) ∼ s−(1+D) [49–51]. This power
law is a signature of level clustering and it is distinct from the PDF P (s) of chaotic or integrable systems
[52, 53]. We point out that the realization of this class of systems is not confined only to aperiodic systems
like the Fibonacci chain model in equation (2), but also applicable to quasi-periodic systems with
metal-insulator transition at some critical value of the on-site resonance (e.g. the Aubry-Harper model)
[34, 54, 55], or wave systems with a chaotic classical limit as the kicked Harper model [53]. Therefore, our
CMT model represents a typical example of a whole class of systems with fractal spectrum.

The P-symmetric Fibonacci model is implemented by coupling the Hamiltonian of equation (2) with its
mirror image. The corresponding effective CMT Hamiltonian takes the form:

HP =

( −1∑
n=−N

|n〉Vn〈n|+
−2∑

n=−N
|n + 1〉〈n|+ c.c.

)
+

(
N∑

n=1

|n〉V̄n〈n|+
N−1∑
n=1

|n + 1〉〈n|+ c.c.

)

+
(
|1〉〈−1|+ c.c.

)
, (3)

where {Vn} is the mirror-symmetric Fibonacci sequence of {Vn} and t describes the coupling between two
Fibonacci chains. We found that the P-symmetric variant has a fractal frequency spectrum with the same D
as the one of the systems of equation (2). Finally, a PT-symmetric CMT model HPT is implemented by
introducing uniform gain/loss to the left/right portions of the system in equation (3), i.e. Vn → Vn − iγ and
Vn → Vn + iγ. Because of the simplicity in its structure, this model allows reaching higher generations for
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Figure 6. (a) Illustration of the first five generations of the CMT-based mathematical model with on-site resonances that follow
the Fibonacci substitutional rule; red/blue represents energy gain/loss. (b) The linear relation between Δ0 and γEP. (c) Integrated
distribution N (Δ0) as functions of Δ0 in Gen-17 Fibonacci CMT model.

more accurate numerical analyses compared to the computationally costly finite element models in previous
three examples.

Consider the parametric evolution of frequencies of the P-symmetric model as the coupling constant t
that connects the two Fibonacci sub-systems increases. For t = 0, we have two replicas of the same
Fibonacci chain in equation (2) and, therefore, the spectrum consists of pairs of degenerate modes. As the
coupling t increases, the degeneracy is lifted ω±

n = ωn ± t. Simple degenerate perturbation theory with
respect to t indicates that the new eigenstates are a linear symmetric/antisymmetric combination of the
eigenstates of the Fibonacci Hamiltonian in equation (2). The above perturbative framework is applicable as
long as the t is smaller than the distance between nearby frequencies sn = ωn+1 − ωn of the uncoupled
Hamiltonian H in equation (2). The frequency clustering occurring for fractal spectra, however, enforces a
rapid breakdown of the perturbation theory, even for infinitesimal t. Nevertheless, the eigenstates of the
Hamiltonian HP(t) are still eigenfunctions of the P-symmetric operator and therefore are symmetric or
anti-symmetric with respect to the mirror axis of the total chain. The frequency spacing of nearby levels,
however, is not dictated by t but the fractal nature of the spectrum.

We treat the inclusion of a small non-Hermitian element ±γ perturbatively. In this case the total
Hamiltonian HPT can be written as HPT = HP(t) + iγΓ where the 2N × 2N perturbation matrix Γ has
elements Γnm = δnm for n � −1 and Γnm = −δnm for n � 1. Finite γ leads to level shifts proportional to γ2

since the first-order correction vanishes due to the P-symmetry of the corresponding unperturbed
eigenmodes of HP(t). For γ = γEP � s = Δ0, the perturbation theory breaks down, signaling level crossing
and the appearance of pairs of complex frequencies. It is still intriguing the fact that the non-Hermitian
perturbation operator iγΓ couples the nearby levels of Hp(t) in the case of fractal spectrum where the
validity of level spacing, and therefore of perturbation theory, is ‘blurred’—specifically in the
thermodynamic N →∞ limit. Nevertheless, our detailed numerical investigations confirmed the linear
relation γEP ∼ Δ0 for a variety of V-values and find that the linear relation holds with a good
approximation in all cases (figure 6(b)). In case of finite system sizes N, some frequency differences Δ0 are
still dictated by t, though their weight goes to zero at the thermodynamic limit N →∞. The above analysis
allows us to associate the PDF of the gain/loss intensity that results in EP degeneracy with the distribution
of level spacings, leading to the conclusion that P (γEP) ∼ γ−(1+D)

EP . We tested the validity of the above
arguments numerically using the Fibonacci CMT model for a variety of potentials V and corresponding
fractal dimensions D(V) and in all cases we find an excellent agreement with the above theoretical results
(figure 6(c)).

The figure 7 comprehensively presents the relationship between the spectral fractal dimensions of all
aforementioned P-symmetric systems and the power exponents corresponding to the EPs in the
PT-symmetric Fibonacci CMT model with different on-site resonances (indicated by circles; further details
see figures S7 and S8 in supplementary material), the PT-symmetric Aubry-Harper Ed-MetaMater (blue
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Figure 7. The universal relations between the best-fit power exponents k of the integrated distribution N (Δ0) ∼ 1/Δk
0 and the

spectral fractal dimensions D of various fractal metamaterials.

star), the PT-symmetric H-tree-fractal Ed-MetaMater (yellow triangle), and the PT-symmetric Fibonacci
Ed-MetaMater (purple square). The universality in the relations between the emergence of EPs in these
metamaterials and the fractality of their initial spectra is evident in figure 7. The linear fit (black line) with a
slope ∼1 signifies the universality of this equality relationship, i.e., the power-law exponent describing a
scale-free PDF P (γEP) ∼ γ−(1+D)

EP in a PT-symmetric Ed-MetaMater with unfolding spectral symmetries
can directly be obtained from its spectral fractal dimension D. This enables a universal route for effectively
predicting the emergence of EPs by the initial spectrum itself.

The linear relation found between the critical gain/loss required for creating EPs and the initial split
between the mode pairs that coalesce, shows that the high-signal-quality hypersensitive sensors that exploit
EPs in PT-symmetric metamaterials can be engineered by appropriate interacting mode pairs that facilitate
experimentally realizable low gain/loss. Such systems can be realized via active materials, for example by
using piezoelectric elements embedded in the crossbeams that are controlled by non-Foster circuits to
provide balanced gain/loss [56] or in combination with passive materials with highly tunable loss [57]. Gain
in ultrasonic frequency regime can also be achieved through electroacoustic amplification via
phonon-electron interaction in piezoelectric semiconductor [58–60]. The classical noise in Ed-MetaMater
(in contrast to quantum noise) may not be a significant concern towards achieving high signal-to-noise
ratio as it has been indicated by recent studies on non-Foster circuits [61] that the noise is in same level as
in typical diabolic degeneracies.

4. Conclusions

In summary, we designed three PT-symmetric metamaterials with fractal frequency spectrum—a
quasi-periodic Aubry-Harper Ed-MetaMater, an H-tree geometric fractal Ed-MetaMater, and an aperiodic
Fibonacci Ed-MetaMater—and investigated them using steady-state dynamic finite element approach. The
scale-free emergence of numerous EPs is seen in all metamaterials, showing an intimate relation between
the scale-free distribution of critical gain/loss intensities and the spectral fractal dimension of the
corresponding Hermitian spectra. Particularly, the linear relation we found between the critical gain/loss
required for creating EPs and the initial split between the mode pairs that coalesce, shows that the
high-signal-quality hypersensitive sensors that exploit EPs in PT-symmetric metamaterials can be
engineered by appropriate interacting mode pairs that facilitate experimentally realizable low gain/loss.

We further verified the findings from the specific classes of quasi-periodic, fractal, and aperiodic
metamaterials and generalized them to a universal law using a CMT-based PT-symmetric fractal
mathematical model. The universal relations among the creation of EPs, the scale-free probability
distribution of critical gain/loss intensity, and the fractal dimension of the underlying Hermitian spectrum
in these PT-symmetric Ed-MetaMater provide a powerful and convenient tool for predicting the emergence
of EPs. Our findings are applicable beyond the elastodynamic realm to PT-symmetric metamaterials in
acoustic, optical, microwave, and radiofrequency domains as well. We expect that our detailed numerical
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results will motivate further mathematical investigations on the interplay of PT-symmetry and the systems
with unfolding spectral symmetries.
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