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Abstract— Numerous mobile robotic applications require
agents to persistently explore and exploit spatiotemporally
varying, partially observable environments. Ultimately, the
mathematical notion of regret, which quite simply represents
the instantaneous or time-averaged difference between the
optimal reward and realized reward, serves as a meaningful
measure of how well the agents have exploited the envi-
ronment. However, while numerous theoretical regret bounds
have been derived within the machine learning community,
restrictions on the manner in which the environment evolves
preclude their application to persistent missions. On the other
hand, meaningful theoretical properties can be derived for
the related concept of dynamic coverage, which serves as an
exploration measurement but does not have an immediately
intuitive connection with regret. In this paper, we demonstrate
a clear correlation between an appropriately defined measure of
dynamic coverage and regret, then go on to derive performance
bounds on dynamic coverage as a function of the environmental
parameters. We evaluate the correlation for several variants of
an airborne wind energy system, for which the objective is to
adjust the operating altitude in order to maximize power output
in a spatiotemporally evolving wind field.

I. INTRODUCTION

Numerous mobile robotic systems are tasked with carrying
out missions in or harvesting resources from spatiotem-
porally varying environments. Examples include wheeled
mobile robotic systems [1], [2], unmanned aerial vehicles
[3], autonomous sailing drones [4], and tumbleweed rovers
[5]. In each of the aforementioned examples, the spatiotem-
porally varying resource is only measured at a limited set
of locations, thereby rendering the environment partially
observable and necessitating a balance between exploration
(maintaining an accurate map of the environment) and ex-
ploitation (carrying out the mission). A final example, which
serves as a case study in the present paper, is that of an
airborne wind energy (AWE) system. In an AWE system,
the conventional tower is replaced with tethers and a lifting
body (typically a kite, wing, or aerostat). This allows the
system to adjust its altitude in order to seek the highest wind
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speeds in order to maximize power generation. Since it is
impractical to measure the wind at locations far from the
AWE system, a balance of exploration and exploitation is
once again required (see [6]–[10]). For the present work, we
focus our attention on a farm of Buoyant Airborne Turbines
(BATs), as depicted in Fig. 1a. Each BAT uses a lighter-than-
air shell to lift a horizontal-axis turbine to high altitudes.
In our simulation results, we consider topologies with and
without the inclusion of supplemental sensing drones (quad
rotors), as shown in Fig. 1b, with a sample spatiotemporally
varying wind environment (i.e., a set of wind shear profiles)
depicted in Fig. 1c. We use this system as a running thread
to illustrate key concepts and results throughout the paper.

In all of the aforementioned works, control strategies
have been devised that effectively balance exploration and
exploitation, as validated through simulation and experi-
mental studies. However, it is desirable to augment these
empirical studies with analytic performance guarantees for
the purpose of comparing them against each other for a
variety of environmental conditions or with extension to
other applications. Indeed, numerous publications in the ma-
chine learning literature produce analytic bounds on explo-
ration/exploitation performance in terms of a quantity known
as regret, which represents the instantaneous, time-averaged,
or cumulative difference between achieved performance and
the performance achieved and optimal performance. While
regret serves as an ideal performance measure, each of
the aforementioned regret bounds derived in the literature
involves some significant restriction on the manner by which
the environment evolves, which precludes their extension to
the class of systems studied in the present work. In particular,
[13], [14] and many others others assume a stationary
environment. Among the papers that consider non-stationary
environments, which include work on dynamic regret and
adaptive regret, the imposition of restrictions on the manner
in which the environment is able to evolve temporally are
key to deriving regret bounds. These restrictions include
abruptly changing environments [15], [16], variation budgets
[16], [17], adversarial environments [18], and independence
assumptions [19]. In other cases, restrictions such as path
length restrictions [20]–[22] and comparator regularity [20]
affect the extent to which the regret reflects the true perfor-
mance of a system, indirectly affecting their application to
spatiotemporally varying environments.

Due to the limitations associated with the direct derivation
of analytical regret bounds for our class of systems, we
turn to an alternative measure known as dynamic coverage.



(a) Altaeros Buoyant Airborne Turbine (BAT)
[11]

(b) Four AWE systems as exploitation agents
with four quadcopters as exploration agents

(c) Sample wind shear profiles from Cape
Henlopen wind profiler [12]

Fig. 1: AWE system considered in this work (left), overall topology for simulation case studies in the paper (middle), and
sample wind profile evolution (right).

As described in [3], [23], [24], and [25], dynamic coverage
characterizes how well each point within a prescribed domain
has been measured (i.e., “covered”) at each point in time.
The underlying assumption is that the sensors are mobile
and, in general, the environment can be time-varying. Dy-
namic coverage-based control has been applied successfully
to intruder detection [23], robustness to sensor death [24],
and full-domain exploration using directional sensors [3],
[25]. From the standpoint of deriving analytical bounds,
coverage carries a distinct advantage over regret in the sense
that it is chiefly an exploration-based metric, rendering it
largely decoupled from the stochasticity of the environment.
However, because it is largely an exploration-based metric,
it is not as obviously tied to performance as regret is.

In summary, we have examined two metrics – regret and
dynamic coverage. One of these (regret) is precisely the
performance metric that we would like to derive bounds for
but is fraught with mathematical complications. The other
(dynamic coverage) provides a more straightforward mecha-
nism for deriving bounds but is not obviously correlated with
true performance. In this paper, we bridge the gap between
dynamic coverage and regret by re-tailoring the standard
dynamic equations that describe coverage to capture the
essential dynamic behavior of regret. This allows us to derive
meaningful bounds on an appropriately defined dynamic cov-
erage metric, then demonstrate a clear correlation between
that metric and regret. Specifically, we derive hard bounds
on average coverage over the domain, then demonstrate that
the coverage model does in fact closely correlate to regret,
demonstrating the utility of the derived bounds. We illustrate
this specifically for the AWE system case study.

II. PROBLEM TOPOLOGY AND DEFINITIONS

Each mobile network considered in this work consists of
exploitation agents and, optionally, exploration agents:

• Exploitation agents are tasked with either carrying out
a prescribed mission or harvesting resources from the
environment (e.g., wind energy).

• Exploration agents are supplemental agents that are
tasked solely with sensing; they have no mission to carry
out, nor do they harvest the ambient energy.

In the AWE system of Fig. 1b, the exploitation agents are
the BATs, which harvest wind energy. The exploration agents
are supplemental quadcopters, which serve the sole role of
measuring the local wind speed. Here, the exploitation agents
are also capable of measuring the wind speed, rendering the
supplemental quadcopters optional for the application.

In terms of the underlying control system, the control
variable is the vector of spatial location commands to the
agents, which are in general subject to mobility constraints.
Performance is measured in terms of a reward function,
r(z, t), which characterizes the value of an exploration agent
being located at location z at time t. Given a control policy,
which will be denoted by π in the paper, the realized reward
at time t, denoted as fπ(t) is equal to the sum of the
individual rewards over all p exploitation agents:

fπ(t) =

p∑
i=1

r(zi, t). (1)

In the AWE case study, the individual rewards are taken as
the local wind speeds.

III. REGRET AND COVERAGE FORMULATIONS

A. Regret

In this work, we define regret as the difference between
achieved performance and the performance of a comparator
that performs optimally given omniscient information, i.e.:

Rinst(π, t) = f∗(t)− fπ(t). (2)

Here, Rinst(π, t) is the instantaneous regret associated with
control strategy π operating at time t, f∗(t) is the reward at
time t associated with an optimal omniscient strategy, and
fπ(t) is the reward achieved by strategy π at time t. We also
define cumulative regret as:

R(π, tk) =

k∑
i=1

(
f∗(ti)− fπ(ti)

)
(3)

and average regret as:

Ravg(π, tk) =
1

k

k∑
i=1

(
f∗(ti)− fπ(ti)

)
(4)



B. Coverage

Dynamic coverage is a quantity representing both the
amount of measurements taken near a point and the quality
of those measurements, where sensing quality is quantified
by a sensing function, denoted Si. One candidate sensing
function, which we use in the AWE example, is:

Si(z, zi(t)) = Ae−(
‖z−zi(t)‖

r )2 (5)

where Si(z, zi(t)) is the value of the sensing function of
agent i at location z and time t, zi(t) is the location of
sensing agent i at time t, and A and r are parameters related
to magnitude and width of the sensing function, respectively.
The sensing function specifically characterizes the ability of
a sensor to measure the environment at location z, based on
how far that sensor is from z.

Based on our sensing functions, we now define our model
of coverage dynamics as follows:

q̇(z, t) = (1− q(z, t))
n∑
i=1

Si(z, zi(t))− αq(z, t) (6)

where q(z, t) ∈ [0, 1] is coverage as a function of spatial
parameter, n is the total number of sensing agents, and α is
a parameter defining the “coverage loss rate.” The parameter
α can be tuned to match the time scale of the environment,
reflecting the fact that old measurements lose value over
time and allowing coverage to both increase and decrease.
Coverage at any spatial location is continuously defined on
the interval [0, 1] (noting that if q(z, 0) ∈ [0, 1], the first
term of q̇(z, t) will result in an increase in q(z, t) bounded
above by 1, and the second term will result in a decrease
in q(z, t) bounded below by 0). These features differentiate
the proposed formulation from non-decreasing and boolean
coverage formulations that can be found elsewhere in the lit-
erature. In this work, we will also examine average coverage,
denoted by qavg and obtained by integrating coverage over
the spatial domain:

qavg(t) ,
1

zm − z0

∫ zm

z0

q(z, t) dz (7)

With constant sensor placements (and therefore constant
Si(z, zi(t))), coverage will converge to an equilibrium value
that depends on the relative values of A and α. However,
with effective control, the sensing will be time-varying due
to mobile sensors, so coverage will only converge to within
some set, exhibiting limit cycle type behavior. For the AWE
case study with one BAT and three auxiliary drones, an
example of the spatiotemporal behavior of coverage can be
seen in Fig. 2.

IV. BOUNDING DYNAMIC COVERAGE

Due to a lack of direct dependence on the stochastic
resource, performance guarantees for dynamic coverage are
more easily derived than are (meaningful) performance
guarantees for regret. To this end, we use this section to
specify methods to determine upper and lower bounds for
the maximum achievable average coverage (MAAC), the

Fig. 2: Sample coverage surface plot. Limit cycle type
behavior can be seen in the repetitive cycles experienced
at each spatial location.

largest reachable average value of the state vector q, where
q = [q(z1), q(z2), ..., q(zm)]T , for some unspecified time.
This definition depends on the definition of reachability:

Definition 1: A coverage state q is defined to be reachable
if there exists some τ and some sensor trajectory vector
z(t) = [z1(t), z2(t), ..., zn(t)]

T defined for t ∈ [0, τ ] such
that for all spatial locations i, subject to q(zi, 0) = 0 and
the dynamic model in (6), q(zi, τ) = q(zi). The set of all
reachable states q is denoted by Q.

The utility of this definition is that a coverage state is
deemed unreachable if it is impossible to create some control
trajectory that is capable of reaching that state. Unreachable
states represent coverage levels unobtainable without adding
more sensing capability to the system. We now also define
maximum achievable average coverage (MAAC) as:

qMAAC = max
q∈Q

1

m

m∑
i=1

q(zi) (8)

q
MAAC

= argmax
q∈Q

1

m

m∑
i=1

q(zi) (9)

where qMAAC is the maximum achievable value of coverage
averaged across the domain discretized into m distinct lo-
cations, q

MAAC
is the state vector corresponding to MAAC,

and Q is the set of all reachable values of the coverage state
vector. Noting that the set Q is closed and bounded (i.e.,
compact), this maximum is guaranteed to exist. Note that the
difficulty in calculating qMAAC lies entirely in identifying a
set of constraints that dictate the set Q of reachable states.
However, in order to bound qMAAC, we do not need to create
a set solely consisting of reachable states; we merely need
one that is guaranteed to contain qMAAC. To this end, we
introduce the following lemma, which states that it must be
possible to achieve an instantaneously constant (zero time
derivative) average coverage at the MAAC state:

Lemma 1: For any MAAC state, q
MAAC

(9), there exists
z for which 1

m

∑m
i=1 q̇(zi) , q̇avg = 0 where q̇(zi) is the

time derivative of coverage as defined in (6).



Proof: We will show that it is possible to choose a
sensor trajectory vector, z(t), such that the left and right
limits of q̇avg both converge to the same nonnegative value
for any MAAC state. We begin with the left limit. By
continuity of q(z, t) and the fact that q

MAAC
is a local

maximizer, it follows that:

lim
t→t−max

q̇avg ≥ 0 (10)

for some time tmax corresponding to a local maximal value
of average coverage. Thus, the value of the derivative of
coverage using a left hand limit is nonnegative.

To address the right limit, we need to show that for some
z, q̇ will be continuous (and q̇ will be equal to its left hand
limit). To do so, we start by examining the dynamic model
(6), noting that if q̇(zi, tmax) is continuous for all zi at
tmax, average coverage will also be continuous as it is a
sum of a finite number of continuous functions. Next, as
the right hand side of (6) is comprised solely of bounded
terms with no division, q̇(zi, t) is finite and therefore q(zi, t)
is continuous. Finally, note that it is possible to choose
instantaneously stationary sensor locations (constant z) such
that

∑n
i=1 Si(z, zi(t)) is instantaneously continuous. As is

is possible to represent q̇(zi, t) as the finite sum and product
of continuous functions, it is possible to choose z such that
q̇avg will be continuous. This continuity combined with (10)
guarantees that the q̇avg exists for some z and is nonnegative.
Given that q̇avg exists for some maximum, q̇avg = 0 is
guaranteed, proving the lemma.

Combining the results of Lemma 1, which demonstrate
that the MAAC state is one where the time derivative of
average coverage is equal to zero, with additional constraints
that are imposed by the number of agents in the system, an
upper bound on MAAC can be computed as the solution
to a constrained optimization problem, as specified in the
following theorem:

Theorem 1: Given a spatial domain discretized into m
locations, n sensing agents, coverage parameters A and α,
and the coverage dynamics (6), the solution to the following
optimization problem will be an upper bound on MAAC:

max
q,z

1

m

m∑
i=1

q(zi) (11)

subject to : q(zi) ≤
nA

nA+ α
∀ i (12)

m∑
j=1

(
(1− q(zj , t))

n∑
i=1

Si(zj , zi(t))− αq(zj , t)
)
≥ 0 (13)

Proof: First, we will show that this optimization
problem has a solution. To do this, we note that the objective
function is linear in the decision variables therefore it is
continuous. The domain of the optimization problem is
bounded by:

0 ≤ q(zi) ≤ 1 ∀ i = 1...m

z1 ≤ zj ≤ zm ∀ j = 1...n
(14)

Fig. 3: Sample 2D problem constraints. Constraints are upper
bounds on q1 and q2 separately, as well as a bound corre-
sponding to Lemma 1. The gray region is a set containing
the set Q of all reachable states. The maximum value of
qavg = 1

2 (q1+q2) is the point where the gray region intersects
the greatest level curve of qavg.

Because the domain is closed and bounded, a maximum is
guaranteed to exist. In the multidimensional case, the second
set of inequalities will hold individually for each dimension,
defining the boundaries of the domain.

To prove that the optimization problem yields an upper
bound on maximum achievable coverage, we must show that
the maximum achievable coverage is contained in the domain
of the optimization problem. We do this by evaluating each
constraint to show that it does not eliminate the MAAC state.

The first set of constraints is an element-by-element con-
sideration of maximum achievable coverage. According to
the dynamic model (6), q(zi, t) will be maximized when∑n
i=1 Si(z, t) maintains its maximal value nA and the

system is allowed to converge to an equilibrium. In this case:

(1− qmax(zi))nA− αqmax(zi) = 0 (15)

qmax(zi) =
nA

nA+ α
(16)

As this is an upper bound on the coverage that can be
attained at any single point, the first set of constraints does
not eliminate any reachable states.

Finally, the last constraint does not eliminate the MAAC
state by Lemma 1. Since the optimization problem has a
solution and the MAAC state is in the domain of the problem,
the solution is guaranteed to be at least as large as MAAC
and is therefore an upper bound.

This constrained optimization is illustrated in Fig. 3 for
a sample problem with only two spatial locations (and
therefore two coverage state variables, q1 and q2). The
red upper bounds correspond to constraints imposed by the
number of sensors, given mathematically in (12), and the
blue curve corresponds to the bound from Lemma 1. Now
that we have derived upper bounds on MAAC, we will derive
lower bounds:

Theorem 2: A lower bound on MAAC can be obtained as
the solution to the following optimization problem, given an



TABLE I: Statistical Model Hyperparameters

σ lz lt
5.1 m/s 270 m/s 22 min

initial state q(zi(0), 0) ∀ i and the dynamic model (6):

max
z(t)

1

m

m∑
i=1

q(zi, tf )

subject to : q̇(z, t) = (1− q(z, t))
n∑
i=1

Si(z, zi(t))

− αq(z, t)

(17)

Proof: By the definition of MAAC, any reachable state
will correspond to a lower bound, so a search for a lower
bound can be done by simply beginning at the initial state of
zero coverage and searching for the control input sequence
that maximizes average coverage. Since any state found this
way will have a corresponding control sequence, it must be
reachable and will therefore be a lower bound on MAAC.

V. PREDICTIVE MODELING AND SIMULATION

Using the AWE system as a case study, we now demon-
strate the correlation between dynamic coverage and regret
through simulation. We begin by reviewing statistical mod-
eling tools from [26] and [27] that are used to (i) generate a
synthetic data set for simulations and (ii) generate real-time
characterizations of regret statistics during the execution of
candidate control strategies.

We begin by defining a mean and covariance function for
our reward. Specifically, we consider a mean function of zero
in this work, along with a squared exponential covariance
kernel, given by:

k(z, t, z′, t′) = σ2e
− (z−z′)2

2l2z e
− (t−t′)2

2l2t . (18)

where (z, t) and (z′, t′) are the two points for which the
covariance is calculated. The parameters σ, lz , and lt, which
are given for the AWE study in Table I, are commonly
referred to as hyperparameters and can be adjusted in order
to reflect the desired statistical properties of the model.

To generate synthetic data, we generate a white noise
signal and use the covariance kernel as a coloring filter to
transform the signal into one with the desired hyperparame-
ters. Full details are given in [27].

To maintain running estimates of conditional reward statis-
tics to be used for control, Gaussian Process (GP) modeling
is used. GP modeling provides a framework for maintaining
calculations of prediction mean and prediction variance,
which represent the conditional mean and variance of the
prediction error, conditioned upon data collected up until that
point in time, and are given by [28]:

µ∗ = K(z∗, z)K(z, z)−1y

σ2
∗ = K(z∗, z∗)−K(z∗, z)K(z, z)−1K(z, z∗)

(19)

Here, µ∗ and σ2
∗ are the prediction mean and prediction

variance respectively of the set of test points z∗ based on
historical data y at points z. The function K(·, ·) is the matrix
form of the covariance kernel whose dimensions are given
by the lengths of the two input vectors.

A. Upper Confidence Bound Control Strategy

In this work, we take the time step to be 10 minutes
such that the system can reasonably traverse the domain
within a single time step, reducing the decision variable to
the next operating location. The decision of which spatial
location(s) to visit at each time step (altitudes, in the case
of the AWE system) is made in this work through an upper
confidence bound (UCB) [29] control strategy. This strategy
explicitly trades off exploration and exploitation through the
maximization of the following acquisition function:

αt(µt(z), σt(z)) = µt(z) +
√
βtσt(z), (20)

where βt is a parameter that defines the relative weighting
of µt(z) and σt(z) in the acquisition function. The control
decision associated with this acquisition function is:

znext = argmax
z

αt(µt(z), σt(z)) (21)

Each time the acquisition function is evaluated, points with
high variance and points with high expected value are both
valued. Larger βt values correspond to greater emphasis on
exploration over exploitation.

B. Simulation Results

In this section, we present simulations of the AWE system
with several auxiliary sensing agents, an example of which
is shown in Fig. 1b. Here, we consider one BAT with various
numbers of sensing agents operating in a 1-dimensional
domain where wind speed varies with time and altitude. We
control the BAT with the upper confidence bound (UCB)
algorithm with

√
βt = 5 and the sensors with a variety

of control algorithms based on current coverage level. For
each combination of sensor control algorithm and number
of sensors, we ran a suite of simulations and plotted the
average regret vs. average coverage averaged over the set of
simulations. Varying the number of sensors and associated
control algorithms allows for direct variation of the sys-
tem’s exploration capabilities, affecting the average coverage,
which in turn indirectly affects the average regret. As can be
seen in Fig. 4, this results in a strong correlation (Spearman
correlation coefficient = -0.912) between regret and average
coverage.

We further analyze the bounds on maximum achievable
average coverage by taking results from simulations and
comparing them to the calculable bounds. We obtained the
results in Table II using a sensor control strategy that opti-
mizes coverage gain over the current time step irrespective of
future time steps. The deviation between the actual maximum
and the lower bound on MAAC is due to suboptimality of
the sensor control algorithm.



Fig. 4: Correlation between coverage and regret

TABLE II: Maximum Achievable Average Coverage
(MAAC) Bounds vs. Actual

Upper Bound Lower Bound Actual Maximum
0.5384 0.4598 0.451

VI. CONCLUSION

This work presented a novel dynamic coverage formula-
tion with properties that allowed for a link between dynamic
coverage and regret for systems operating in spatiotemporally
varying environments. Specifically, we presented upper and
lower bounds on maximum achievable average coverage
(MAAC) and also showed that a simple algorithm could
come close to attaining the lower bound. We then showed a
link between average regret and average coverage.
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