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Deep Learning based Vulnerability Detection:
Are We There Yet?
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Abstract—Automated detection of software vulnerabilities is a fundamental problem in software security. Existing program analysis
techniques either suffer from high false positives or false negatives. Recent progress in Deep Learning (DL) has resulted in a surge of
interest in applying DL for automated vulnerability detection. Several recent studies have demonstrated promising results achieving an
accuracy of up to 95% at detecting vulnerabilities. In this paper, we ask, “how well do the state-of-the-art DL-based techniques perform
in a real-world vulnerability prediction scenario?”. To our surprise, we find that their performance drops by more than 50%. A
systematic investigation of what causes such precipitous performance drop reveals that existing DL-based vulnerability prediction
approaches suffer from challenges with the training data (e.g., data duplication, unrealistic distribution of vulnerable classes, etc.) and
with the model choices (e.g., simple token-based models). As a result, these approaches often do not learn features related to the
actual cause of the vulnerabilities. Instead, they learn unrelated artifacts from the dataset (e.g., specific variable/function names, etc.).
Leveraging these empirical findings, we demonstrate how a more principled approach to data collection and model design, based on
realistic settings of vulnerability prediction, can lead to better solutions. The resulting tools perform significantly better than the studied
baseline—up to 33.57% boost in precision and 128.38% boost in recall compared to the best performing model in the literature.
Overall, this paper elucidates existing DL-based vulnerability prediction systems’ potential issues and draws a roadmap for future
DL-based vulnerability prediction research. In that spirit, we make available all the artifacts supporting our results: https://git.io/Jf6IA.

Index Terms—Software Vulnerability, Deep Learning, Graph Neural Network.
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1 INTRODUCTION

Automated detection of security vulnerabilities is a fun-
damental problem in systems security. Traditional tech-
niques are known to suffer from high false-positive/false-
negative rates [1], [2]. For example, static analysis-based
tools typically result in high false positives detecting non-
vulnerable (hereafter, neutral) 1 cases as vulnerable, and
dynamic analysis suffers from high false negatives. So far
these tools remain unreliable, leaving significant overhead
for developers [2].

Recent progress in Deep Learning (DL), especially in
domains like computer vision and natural language pro-
cessing, has sparked interest in using DL to detect security
vulnerabilities automatically with high accuracy. According
to Google scholar, 92 papers appeared in popular security
and software engineering venues between 2019 and 2020
that apply learning techniques to detect different types of
bugs2. In fact, several recent studies have demonstrated very
promising results achieving accuracy up to 95% [3]–[6].

Given such remarkable reported success of DL models
at detecting vulnerabilities, it is natural to ask why they are
performing so well, what kind of features these models are
learning, and whether they are generalizable, i.e., can they
be used to reliably detect real-world vulnerabilities?
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1. We prefer to refer to non-vulnerable code as “neutral” to indicate
that they contain no known vulnerabilities or that they do not fall in any
known vulnerability category.

2. published in TSE, ICSE, FSE, ASE, S&P Oakland, CCS, USENIX
Security, etc.

The generalizability of a DL model is often limited by im-
plicit biases in the dataset, which are often introduced dur-
ing the dataset generation/curation/labeling process and
therefore affect both the testing and training data equally
(assuming that they are drawn from the same dataset).
These biases tend to allow DL models to achieve high accu-
racy in the test data by learning highly idiosyncratic features
specific to that dataset instead of generalizable features. For
example, Yudkowsky et al. [7] described an instance where
US Army found out that a neural network for detecting
camouflaged tanks did not generalize well due to dataset
bias even though the model achieved very high accuracy
in the testing data. They found that all the photos with the
camouflaged tanks in the dataset were shot in cloudy days,
and the model simply learned to classify lighter and darker
images instead of detecting tanks.

In this paper, we systematically measure the general-
izability of four state-of-the-art Deep Learning-based Vul-
nerability Prediction (hereafter DLVP) techniques [3]–[6]
that have been reported to detect security vulnerabilities
with high accuracy (up to 95%) in the existing literature.
We primarily focus on the Deep Neural Network (DNN)
models that take source code as input [3]–[6], [8] and detect
vulnerabilities at function granularity. These models oper-
ate on a wide range of datasets that are either generated
synthetically or adapted from real-world code.

First, we curate a new vulnerability dataset from two
large-scale popular real-world projects (Chromium and De-
bian) to evaluate the performance of existing techniques
in the real-world vulnerability prediction setting. The code
samples are annotated as vulnerable/neutral, leveraging
their issue tracking systems. Since both the code and anno-
tations come from the real-world, detecting vulnerabilities
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using such a dataset reflects a realistic vulnerability predic-
tion scenario. We also use FFMPeg+Qemu dataset proposed
by Zhou et al. [6].

To our surprise, we find that none of the existing models
perform well in real-world settings. If we directly use a pre-
trained model to detect the real-world vulnerabilities, the
performance drops by ∼73%, on average. Even if we retrain
these models with real-world data, their performance drops
by ∼54% from the reported results. For example, VulDeeP-
ecker [3] reported a precision of 86.9% in their paper.
However, when we use VulDeePecker’s pre-trained model
in real world datasets, its precision reduced to 11.12%, and
after retraining, the precision becomes 17.68%. A thorough
investigation revealed the following problems:

• Inadequate Model. The most popular models treat code as
a sequence of tokens and do not take into account semantic
dependencies that play a vital role in vulnerability predic-
tions. Further, when a graph-based model is used, it does
not focus on increasing the class-separation between vul-
nerable and neutral categories. Thus, in realistic scenarios,
they suffer from low precision and recall.
• Learning Irrelevant Features. Using state-of-the-art explana-
tion techniques [9], we find that the current models are es-
sentially learning up irrelevant features that are not related
to vulnerabilities and are likely artifacts of the datasets.
• Data Duplication. The training and testing data in most
existing approaches contain duplicates (up to 68%); thus,
artificially inflating the reported results.
• Data Imbalance. Existing approaches do not alleviate the
class imbalance problem [10] of real-world vulnerability
distribution where neutral code are more frequent than the
vulnerable code.

To overcome these problems, we propose a road-map that
we hope will help the DL-based vulnerability prediction
researchers to avoid such pitfalls in the future. To this
end, we demonstrate how a more principled approach to
data collection and model design, based on our empirical
findings, can lead to better solutions. For data collection, we
discuss how to curate real-world vulnerability prediction
data incorporating both static and evolutionary (i.e., bug-
fix) nature of the vulnerabilities. For model building, we
show representation learning [11] can be used on top of
traditional DL methods to increase the class separation
between vulnerable and neutral samples.

We further empirically establish that the use of se-
mantic information (with graph-based models), data de-
duplication, and balancing training data can significantly
improve vulnerability prediction. Following these steps, we
can boost precision and recall of the best performing model
in the literature by up to 33.57% and 128.38% respectively.

In short, this paper argues that DL-based vulnerability
detection is still very much an open problem and requires
a well-thought-out data collection and model design frame-
work guided by real-word vulnerability detection settings.
To this end, we make the below contributions:

1) We systematically study existing approaches in DLVP
task and identify several problems with the current dataset
and modeling practices.
2) Leveraging the empirical results, we propose a summary
of best practices that can help future DLVP research and

experimentally validate these suggestions.
3) We curated a real-world dataset from developer/user
reported vulnerabilities of Chromium and Debian projects
(Available at https://bit.ly/3bX30ai).
4) We also open source all our code and data we used in this
study for broader dissemination. Our code and replication
data are available in https://git.io/Jf6IA.

2 BACKGROUND AND CHALLENGES

DLVP methods aim to detect unknown vulnerabilities in
target software by learning different vulnerability patterns
from a training dataset. Most popular DLVP approaches
consist of three steps: data collection, model building, and
evaluation. First, data is collected for training, and an ap-
propriate model is chosen as per design goal and resource
constraints. The training data is preprocessed according to
the format preferred by the chosen model. Then the model
is trained to minimize a loss function. The trained model
is intended to be used in the real world. To assess the
effectiveness of the model, performance is evaluated on
unseen test examples.

This section describes the theory of DL-based vulnerabil-
ity prediction approaches (§2.1), existing datasets (§2.2), ex-
isting modeling techniques (§2.3), and evaluation procedure
(§2.4). Therein, we discuss the challenges that potentially
limit the applicability of existing DLVP techniques.

2.1 DLVP Theory

DL-based vulnerability predictors learn the vulnerable code
patterns from a training data (Dtrain) set where code ele-
ments are labeled as vulnerable or neutral. Given a code el-
ement (x) and corresponding vulnerable/neutral label (y),
the goal of the model is to learn features that maximize the
probability p(y|x) with respect to the model parameters (θ).
Formally, training a model is learning the optimal parameter
settings (θ∗) such that,

θ∗ = argmaxθ

∏︂
(x,y)∈Dtrain

p(y|x, θ) (1)

First, a code element (xi) is transformed to a real valued
vector (hi ∈ Rn), which is a compact representation of xi.
How a model transforms xi to hi depends on the specifics of
the model. This hi is transformed to a scalar ŷ ∈ [0, 1] which
denotes the probability of code element xi being vulnerable.
In general, this transformation and probability calculation is
achieved through a feed forward layer and a softmax [12]
layer in the model. Typically, for binary classification task
like vulnerability prediction, optimal model parameters are
learned by minimizing the cross-entropy loss [13]. Cross-
entropy loss penalizes the discrepancy in the model’s pre-
dicted probability and the actual probability (0. for neutral
1. for vulnerable examples) [14].

2.2 Existing Dataset

To train a vulnerability prediction model, we need a set of
annotated code that are labeled vulnerable or neutral. The
number of vulnerable code should be large enough to allow
the model to learn from it. Researchers used a variety of
data sources for DLVP (see Figure 1). Depending on how

https://bit.ly/3bX30ai
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Figure 1: Different DLVP dataset and their synthetic/realistic
nature. From red to green, colors symbolize increasing realistic
nature of dataset. Red is the most synthetic, green is the most
realistic.

the code samples are collected and how they are annotated,
we classify them as:
• Synthetic data: The vulnerable code example and the an-
notations are artificially created. SATE IV Juliet [15] dataset
and SARD [16] fall in this category. Here the examples
are synthesized using known vulnerable patterns. These
datasets were originally designed for evaluating static and
dynamic analysis based vulnerability prediction tools.
• Semi-synthetic data: Here either the code or the annotation
is derived artificially. For example, Draper dataset, proposed
by Russell et al. [5], contains functions that are collected
from open source repositories but are annotated using static
analyzers. Examples of SARD [16] and National Vulnera-
bility Database (NVD [17]) dataset are also taken from
production code; however, they are often modified in a way
to demonstrate the vulnerability isolating them from their
original context. Although these datasets are more complex
than synthetic ones, they do not fully capture the complex-
ities of the real-world vulnerabilities due to simplifications
and isolations.
• Real data: Here both the code and the corresponding vul-
nerability annotations are derived from real-world sources.
For instance, Zhou et al. [6] curated Devign dataset, which
consists of past vulnerabilities and their fixes from four
open-source projects, two of which are publicly available.
Problem 1: Data source and their annotation are unreal-
istic. Figure 1) compares current vulnerability datasets in
terms of the realism of code (x-axis) and the annotation
strategy (Y-axis). A model trained on a synthetic dataset, i.e.,
those comprising of simple and unrealistic code examples,
will be limited to detecting only those simple patterns and
they seldom occur in real life vulnerabilities.

As an example, consider a typical buffer overflow ex-
ample in Figure 2 used by VulDeePecker and SySeVR. Al-
beit a good pedagogical example, real world vulnerabilities
are not as simple or as isolated as this example. In con-
trast, Figure 3 shows another buffer overflow example from
Linux kernel. Although the fix here was straightforward,
finding the source of the vulnerability requires an in-depth
understanding of the semantics of different components of
the code such as the variables and the functions. A model
is trained to reason about simpler examples as in fig. 2
will fail to reason about the vulnerability in fig. 3 code. In
addition, any model that is built on data annotated by a

1 void action(char *data) const {
2 // FLAW: Increment of pointer in the loop will cause
3 // freeing of memory not at the start of the buffer.
4 for (; *data != ’\0’; data++){
5 if (*data == SEARCH_CHAR){
6 printLine("We have a match!");
7 break;
8 }
9 }

10 free(data);
11 }

Figure 2: Example Vulnerability (CWE761) [18].

1 static void eap_request(
2 eap_state *esp, u_char *inp, int id, int len) {
3 ...
4 if (vallen < 8 || vallen > len) {
5 ...
6 break;
7 }
8 /* FLAW: ’rhostname’ array is vulnerable to overflow.*/
9 - if (vallen >= len + sizeof (rhostname)){

10 + if (len - vallen >= (int)sizeof (rhostname)){
11 ppp_dbglog(...);
12 MEMCPY(rhostname, inp + vallen,

sizeof(rhostname) - 1);
13 rhostname[sizeof(rhostname) - 1] = ’\0’;
14 ...
15 }
16 ...
17 }

Figure 3: CVE-2020-8597 - A partial patch (original patch [19])
for an instance of buffer overflow vulnerability in Linux point
to point protocol daemon (pppd) due to a logic flaw in the
packet processor [20], [21].

static analyzer [5] would inherit all the drawbacks of static
analysis such as the high false positive rates [1], [2] and
would consequently be severely biased.

Problem 2: The distribution of vulnerable and neutral
examples are unrealistic. In the most realistic dataset
available to us, FFMPeg+Qemu [6], the ratio of vulnerable
and neutral examples is approximately 45%-55%. However,
this does not reflect a real world distribution of vulnerable
code. In reality, neutral code far outnumbers vulnerable
code examples Furthermore, this dataset annotates vulner-
ability by inferring the of commit message of that code goes.
It does not discriminate between vulnerable and neutral
code, instead it discriminates between the nature of fix, i.e.,
between a vulnerability fixing commit and other commits.
A model trained on such a dataset may not perform well in
a realistic use case scenario where we need to differentiate
the vulnerable function from all other neutral functions in
it’s proximity.

In summary, we seek vulnerability detection tools that
can used in real world vulnerability detection and those that
are trained on realistic use cases. To that end, we seek to
build evaluation dataset that closely resemble the complexity
of real code and also the skewed distribution of vulnerabil-
ities in projects. This is in contrast with exiting techniques
that often simplify real code to isolate vulnerabilities and
test static analyzers [16], [22].
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2.3 Existing Modeling Approaches

Model selection depends primarily on the information that
one wants to incorporate. The popular choices for DLVP
are token-based or graph-based models, and the input data
(code) is preprocessed accordingly [3], [5], [6].
• Token-based models: In the token-based models, code is
considered as a sequence of tokens. Existing token-based
models used different Neural Network architectures. For
instance, Li et al. [3] proposed a Bidirectional Long Short
Term Memory (BSLTM) based model, Russell et al. [5] pro-
posed a Convolutional Neural Network (CNN) and Radom
Forest-based model and compared against Recurrent Neu-
ral Network (RNN) and CNN based baseline models for
vulnerability prediction. For these relatively simple token-
based models, token sequence length is an important factor
to impact performance as it is difficult for the models
to reason about long sequences. To address this problem,
VulDeePecker [3] and SySeVR [4] extract code slices. The
motivation behind slicing is that not every line in the code
is equally important for vulnerability prediction. Therefore,
instead of considering the whole code, only slices extracted
from “interesting points” in code (e.g., API calls, array in-
dexing, pointer usage, etc.) are considered for vulnerability
prediction and rest are omitted.
• Graph-based models: These models consider code as graphs
and incorporate different syntactic and semantic depen-
dencies. Different type of syntactic graph (Abstract Syntax
Tree) and semantic graph (Control Flow graph, Data Flow
graph, Program Dependency graph, Def-Use chain graph
etc.) can be used for vulnerability prediction. For example,
Devign [6] leverage code property graph (CPG) proposed by
Yamaguchi et al. [8] to build their graph based vulnerability
prediction model. CPG is constructed by augmenting differ-
ent dependency edges (i.e., control flow, data flow, def-use,
etc.) to the code’s Abstract Syntax Tree (AST) (see §4).
Both graph and token-based models have to deal with
vocabulary explosion problem—the number of possible iden-
tifiers (variable, function name, constants) in code can be
virtually infinite, and the models have to reason about
such identifiers. A common way to address this issue is to
replace the tokens with abstract names [3], [4]. For instance,
VulDeePecker [3] replaces most of the variable and function
names with symbolic names (VAR1, FUNC1, VAR2 etc.).

Expected input for all the models are real valued vec-
tors commonly known as embeddings. There are several
ways to embed tokens to vectors. One such way is to use
an embedding layer [23] that is jointly trained with the
vulnerability prediction task [5]. Another option is to use
external word embedding tool(e.g., Word2Vec [24]) to create
vector representation of every token. VulDeePecker [3] and
SySeVR [4] uses Word2Vec to transform their symbolic to-
kens into vectors. Devign [6], in contrast, uses Word2Vec to
transform the concrete code tokens to real vectors.

Once a model is chosen and appropriate preprocessing
is done on the training dataset, the model is ready to be
trained by minimizing a loss function. Most of the existing
approaches optimize the model by minimizing some varia-
tion of cross-entropy loss. For instance, Russell et al. [5] op-
timized their model using cross-entropy loss, Zhou et al. [6]
used regularized cross entropy loss.
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void	action(char	*data)	const	{
				for	(;	*data	!=	'\0';	data++){
								foo(data);
								bar(data);
								if	(*data	==	SEARCH_CHAR){
												printLine("We	have	a	match!");
												break;
								}
				}
				free(data);
}

Figure 4: Example of CWE-761 [25]. A buffer is freed not at the
start of the buffer but somewhere in the middle of the buffer.
This can cause the application to crash, or in some cases, modify
critical program variables or execute code. This vulnerability
can be detected with data dependency.

Problem 3: Token-based models lack syntactic
representativeness. Token based models assume that
tokens are linearly dependent on each other, and thus,
only lexical dependencies between the tokens are present,
while the semantic dependencies are lost, which often
play important roles in vulnerability prediction [26]. To
incorporate some semantic information, VulDeePecker [3]
and SySeVR [4] extracted program slices of a potentially
interesting point. For example, consider the code in
Figure 4. A slice w.r.t.free function call at line 10 gives us
all the lines except lines 6 and 7. The token sequence of
the slice are: void action ( char * data ) const
{ for ( data ; * data != ‘\0’ ; data ++ ) {
foo ( data ) ; bar ( data ) ; if ( * data ==
SEARCH_CHAR ) { free ( data ) ;. In this examples,
while the two main components for this code being
vulnerable, i.e. data ++ (line 2) and free ( data )
(line 10) are present in the token sequence, they are far
apart from each other without explicitly maintaining any
dependencies.

In contrast, as a graph based model can consider the
data dependency edges (red edge), we see that there is a
direct edge between those lines making those lines closer to
each other making it easier for the model to reason about
that connection. Note that this is a simple CWE example
(CWE 761), which requires only the data dependency graph
to reason about. Real-world vulnerabilities are much more
complex and require reasoning about control flow, data flow,
dominance relationship, and other kinds of dependencies
between code elements [8]. However, graph-based models,
in general, are much more expensive than their token-
based counterparts and do not perform well in a resource-
constrained environment.

Problem 4: Current models are “brittle”. Another
problem with the existing approaches is that although the
trained models learn to discriminate vulnerable and neutral
code samples, the training paradigm does not explicitly
focus on increasing the separation between the vulnerable
and neutral examples. Thus, with slight variations the clas-
sifications become brittle.

Lastly, models suffer from data imbalance [27] between
vulnerable and benign code as the proportion of vulnerable
examples in comparison to the neutral ones in real world
dataset are extremely low [5]. When a model is trained on
such imbalanced dataset, models tend to be biased towards
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def spam() {
  ...
}

def spam() {
  ...
}

def ham_1() {
  ...
  ...
}

def egg() {
  ...
}

def egg() {
  ...
}
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def ham_0() {
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}

Figure 5: Collecting real world data for REVEAL. Green sam-
ples are labeled as neutral, while red sample is marked as
vulnerable.
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Figure 6: Number of functions changed per vulnerability fix
commit.

the neutral examples.

2.4 Existing Evaluation Approaches

To understand the applicability of a trained model for
detecting vulnerability in the real-world, it must first be
evaluated. In most cases, a trained model is evaluated on
held out test set. Test examples go through the same pre-
processing technique as the training and then the model
predicts the vulnerability of those pre-processed test exam-
ples. This evaluation approach gives an estimate of how the
model may perform when used to detect vulnerabilities in
the real-world.
Problem 5: The scope of evaluation in current approaches
is limited. All the existing approaches report their perfor-
mances using their own evaluation dataset. Such an eval-
uation strategy does not give a comprehensive overview of
the applicability of the models in other real-world examples.
All we can learn from such intra-dataset evaluation is how
well their approach fits their own dataset. Although studies
report some limited case studies on such on finding vul-
nerabilities in real-world projects, these case studies do not
shed light on the false positives and false negatives [1]. The
number of false positives and false negatives are directly
correlated to the developer effort in vulnerability predic-
tion [28] and too much of any would hold the developer
from using the model [29].

3 REVEAL DATA COLLECTION

To address the limitations with the existing data sets (high-
lighted by Problem 1 and Problem 2), we curate a more
robust and comprehensive real world dataset, REVEAL,
by tracking the past vulnerabilities from two open-source
projects: Linux Debian Kernel and Chromium (open source

project of Chrome) . We select these projects because: (i)
these are two popular and well-maintained public projects
with large evolutionary history, (ii) the two projects repre-
sent two important program domains (OS and browsers)
that exhibit diverse security issues, and (iii) both the projects
have plenty of publicly available vulnerability reports.

To curate our data, we first collect already fixed issues
with publicly available patches. For Chromium, we scraped
its bug repository Bugzilla3. For Linux Debian Kernel, we
collected the issues from Debian security tracker4. We then
identify vulnerability related issues, i.e., we choose those
patches that are labeled with “security”. This identifica-
tion mechanism is inspired by the security issue iden-
tification techniques proposed in existing literature [30].
Zhou et al. [31]’s proposed approach filter out commits that
do not have security related keywords.

For each patch, we extracted the corresponding vulnera-
ble and fixed versions (i.e., old and new version) of C/C++
source and header files that are changed in the patch. We
annotate the previous versions of all changed functions (i.e.,
the versions prior to the patch) as ‘vulnerable’ and the fixed
version of all the changed functions (i.e., the version after
patch) as ‘clean’. Additionally, other functions that were not
involved in the patch (i.e., those that remained unchanged)
are all annotated as ‘clean’. Annotating code in this way sim-
ulates real-world vulnerability prediction scenario, where a
DL model would learn to inspect the vulnerable function in
the context of all the other functions in its scope. Further,
retaining the fixed variant of the vulnerable function helps
the DL model learn the nature of vulnerability-fix patches.

A contrived example of our data collection strategy
is illustrated in Figure 5. Here, we have two versions of
a file file.c. The previous version of the file (version
k − 1) has a vulnerability which is fixed in the subsequent
version (version k) by patching the function ham_0() to
ham_1(). In our dataset, ham_0() would be included
and labeled ‘vulnerable’ and ham_1() would be included
and labeled ‘clean’. The other two functions (spam() and
egg) remained unchanged in the patch. Our dataset would
include a copy of these two functions and label them as
‘clean’. Note, when multiple functions are involved in a
vulnerability-fix, we annotate the previous (or pre-commit)
version of each changed function as ‘vulnerable’ and the
new (or post-commit) version as ‘clean’. Figure 6 shows
a histogram of number of functions that are changed per
vulnerability-fix commit. We observed that, in most cases,
the patches change very small number of functions. In 80%
of the cases, changes spanned 4 or fewer functions.

Table 1 summarizes the details of all the datasets. The
details of our REVEAL dataset is highlighted in gray. Ad-
ditional details of the summary statistics of the REVEAL
dataset are tabulated in Table 2.

4 REVEAL: A ROADMAP FOR VULNERABILITY
PREDICTION

In this section, we present a brief overview of the REVEAL
pipeline that aims to lay a roadmap for accurately detecting

3. https://bugs.chromium.org/p/chromium/issues/list
4. https://security-tracker.debian.org/tracker/

https://bugs.chromium.org/p/chromium/issues/list
https://security-tracker.debian.org/tracker/
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Table 1: Summary of DLVP datasets and approaches.

Dataset Used By # Programs % Vul* Granularity Model Type Model Description

SATE IV Juliet [15] Russell et al. [5] 11,896 45.00 Function Token CNN+RF Synthetic code for testing static analyzers.

SARD [16] VulDeePecker [3] 9,851 31 Slice Token BLSTM Synthetic, academic, and production security
flaws or vulnerabilities.SySeVR [4] 14,000 13.41 Slice Token BGRU

NVD [17] VulDeePecker‡ 840 31 Slice Token BLSTM Collection of known vulnerabilities
from real world projects.SySeVR‡ 1,592 13.41 Slice Token BGRU

Draper [5] Russell et al. [5] 1,274,366 6.46 Function Token CNN+RF
Contains code from public repositories

in Github and Debian source repositories.

FFMPeg+Qemu [6] Devign [6] 22,361 45.02 Function Graph GGNN
FFMPeg is a multimedia library;

Qemu is hardware virtualization emulator.

REVEAL dataset This paper 18,169 9.16 Function Graph
GGNN +

MLP +
Triplet Loss

Contains code from Chromium and Debian
source code repository

* Percentage of vulnerable samples in the dataset.
‡ VulDeePecker and SySeVR uses combination of SARD and NVD datasets to train and evaluate their model.
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Figure 7: Overview of the REVEAL vulnerability prediction framework.

Summary Statistic Count

No. Functions 18169

No. Vulnerable functions 1665

Avg. lines of code 24

Avg. tokens 240

Avg. nodes 35

Avg. edges 189

Table 2: Summary Statistics of the REVEAL dataset.

vulnerabilities in real-world projects. Figure 7 illustrates the
REVEAL pipeline. It operates in two phases namely, feature
extraction (Phase-I) and training (Phase-II). In the first phase
we translate real-world code into a graph-embedding (§4.1).
In the second phase, we train a representation learner on the
extracted features to learn a representation that most ideally
demarcates the vulnerable examples from neutral examples
(§4.2).

4.1 Feature Extraction (Phase-I)
The goal of this phase is to convert code into a compact and
a uniform length feature vector while maintaining the se-
mantic and syntactic information. In order to address Prob-
lem 3 (discussed in Section 2.3), our proposed road map
extracts a feature vector using a graphical representation
of code. Note that, the feature extraction scheme presented
below represents the most commonly used series of steps for
extracting features from a graph representation [6]. REVEAL
uses this scheme to extract the graph embedding of each

function in code (graph based feature vector that represent
the entirety of a function in a code).

To extract the syntax and semantics in the code, we
generate a code property graph (hereafter, CPG) [8]. The
CPG is a particularly useful representation of the original
code since it offers a combined and a succinct representation
of the code consisting of elements from the control-flow
and data-flow graph in addition to the AST and program
dependency graph (or PDG). Each of the above elements
offer additional context about the overall semantic structure
of the code [8].

Formally, a CPG is denoted as G = (V,E), where
V represent the vertices (or nodes) in the graph and E
represents the edges. Each vertex V in the CPG is com-
prised of the vertex type (e.g., ArithmeticExpression,
CallStatement etc.) and a fragment of the original code.
To encode the type information, we use a one-hot encoding
vector denoted by Tv . To encode the code fragment in the
vertex, we use a word2vec embedding denoted by Cv . Next,
to create the vertex embedding, we concatenate Tv and Cv

into a joint vector notation for each vertex.
The current vertex embedding is not adequate since it

considers each vertex in isolation. It therefore lacks informa-
tion about its adjacent vertices and, as a result, the overall
graph structure. This may be addressed by ensuring that
each vertex embedding reflects both its information and
those of its neighbors. We use gated graph neural networks
(hereafter GGNN) [32] for this purpose.

Feature vectors for all the nodes in the graph (X) along
with the edges (E) are the input to the GGNN [31], [32]. For
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every vertex in the CPG, GGNN assigns a gated recurring
unit (GRU) that updates the current vertex embedding by
assimilating the embedding of all its neighbors. Formally,

x′
v = GRU(xv,

∑︂
(u,v)∈E

g(xu))

Where, GRU(·) is a Gated Recurrent Function, xv is the
embedding of the current vertex v, and g(·) is a transfor-
mation function that assimilates the embeddings of all of
vertex v’s neighbors [32]–[34]. x′

v is the GGNN-transformed
representation of the vertex v’s original embedding xv . x′

v

now incorporates v’s original embedding xv as well as the
embedding of its neighbors.

The final step in preprocessing is to aggregate all the
vertex embedding x′

v to create a single vector representing
the whole CPG denoted by xg , i.e.:

xg =
∑︂
v∈V

x′
v

Note that REVEAL uses a simple element-wise sum-
mation as the aggregation function, but in practice it is
a configurable parameter in the pipeline. The result of
the pipeline presented so far is an m−dimensional feature
vector representation of the original source code. To pre-
train the GGNN, we augment a classification layer on top
of the GGNN feature extraction. This training mechanism
is similar to Devign [6]. Such pre-training deconstructs
the task of “learning code representation”, and “learning
vulnerability”, and is also used by Russell et al. [5]. While,
we pre-train GGNN in a supervised fashion, unsupervised
program representation learning [35] can also be done to
learn better program presentation. However, such learning
is beyond the scope of this research and we leave that for
future research.

4.2 Training (Phase-II)

In real-world data, the number of neutral samples (i.e., nega-
tive examples) far outnumbers the vulnerable examples (i.e.,
positive examples) as shown in Table 1. If left unaddressed,
this introduces an undesirable bias in the model limiting its
predictive performance. Further, extracted feature vectors
of the vulnerable and neutral examples exhibit a significant
overlap in the feature space. This makes it difficult to
demarcate the vulnerable examples from the neutral ones.
Training a DL model without accounting for the overlap
makes it susceptible to poor predictive performance.

To mitigate the above problems, we propose a two step
approach. First, we use re-sampling to balance the ratio of
vulnerable and neutral examples in the training data. Next,
we train a representation learning model on the re-balanced
data to learn a representation that can most optimally dis-
tinguish vulnerable and neutral examples.

4.2.1 Reducing Class Imbalance
In order to handle imbalance in the number of vulnerable
and neutral classes, we use the “synthetic minority over-
sampling technique” (for short, SMOTE) [36]. It operates by
changing the frequency of the different classes in the data.
Specifically, SMOTE sub-samples the majority class (i.e.,

randomly deleting some examples) while super-sampling
the minority class (by creating synthetic examples) until all
classes have the same frequency. In the case of vulnerability
prediction, the minority class is usually the vulnerable ex-
amples. SMOTE has shown to be effective in a number of
domains with imbalanced datasets [37], [38].

During super-sampling, SMOTE picks a vulnerable ex-
ample and finds k nearest vulnerable neighbors. It then
builds a synthetic member of the minority class by in-
terpolating between itself and one of its random nearest
neighbors. During under-sampling, SMOTE randomly re-
moves neutral examples from the training set. This process
is repeated until a balance is reached between the vulnerable
and neutral examples. Note that, while we use off-the-
shelf SMOTE for re-balancing training data, other data re-
balancing technique (e.g., MWMOTE [39], ProWSyn [40]).
Nevertheless, SMOTE as a re-balancing module in RE-
VEAL’s pipeline is configurable and can easily be replaced
by other re-balancing techniques. Comparison between dif-
ferent re-balancing techniques themselves is beyond the
scope of this research.

4.2.2 Representation Learning Model

The graph embedding of the vulnerable and neutral code
samples at the end of Phase-I tend to exhibit a high degree
of overlap in feature space. This makes the models “brittle”
as highlighted previously by Problem 4 in §2. This effect
is illustrated by the t-SNE plot [41] of the feature space
in Figure 9(a)–(d). In these examples, there are no clear
distinctions between the vulnerable (denoted by +) and
the neutral samples (denoted by ◦). This lack of separation
makes it particularly difficult to train an ML model to
learn the distinction between the vulnerable and the neutral
samples.

To improve the predictive performance, we seek a model
that can project the features from the original non-separable
space into a latent space which offers a better separability
between vulnerable and neutral samples. For this, we use
a multi-layer perceptron (MLP) [13], designed to transform
input feature vector (xg) to a latent representation denoted
by h(xg). The MLP consists of three groups of layers namely,
the input layer (xg), a set of intermediate layers which are
parameterized by θ (denoted by f(·, θ), and a final output
layer denoted by ŷ.

The proposed representation learner works by taking
as input the original graph embedding xg and passing
it through the intermediate layers f(·, θ). The intermedi-
ate layer project the original graph embedding xg onto
a latent space h(xg). Finally, the output layer uses the
features in the latent space to predict for vulnerabilities
as, ŷ = σ (W ∗ h(xg) + b). Where σ represents the softmax
function, hg is the latent representation, W and b represent
the model weights and bias respectively.

To maximize the separation between the vulnerable and
the neutral examples in the latent space, we adopt the
triplet loss [42] as our loss function. Triplet loss has been
widely used in machine learning, specifically in represen-
tation learning, to create a maximal separation between
classes [43], [44]. The triplet loss is comprised of three
individual loss functions: (a) cross entropy loss (LCE);
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(b) projection loss (Lp); and (c) regularization loss (Lreg ).
It is given by:

Ltrp = LCE + α ∗ Lp + β ∗ Lreg (2)
α and β are two hyperparameters indicating the contribu-
tion of projection loss and regularization loss respectively.
The first component of the triplet loss is to measure the
cross-entropy loss to penalize miss-classifications. Cross-
entropy loss increases as the predicted probability diverges
from the actual label. It is given by,

LCE = −
∑︂

ŷ · log(y) + (1− ŷ) · log(1− y) (3)
Here, y is the true label and ŷ represents the predicted
label.The second component of the triplet loss is used the
quantify how well the latent representation can separate the
vulnerable and neutral examples. A latent representation
is considered useful if all the vulnerable examples in the
latent space are close to each other while simultaneous being
farther away from all the neutral examples, i.e., examples
from same class are very close (i.e., similar) to each other
and examples from different class are far away from each
other. Accordingly, we define a loss function Lp which is
defined by.

Lp = |D(h(xg), h(xsame))− D(h(xg), h(xdiff )) + γ| (4)
Here, h(xsame) is the latent representation of an example

that belongs to the same class as xg and h(xdiff ) is the latent
representation of an example that belongs to a different class
as that of xg . Further, γ is a hyperparameter used to define
a minimum separation boundary. Lastly, D(·) represents the
cosine distance between two vectors and is given by,

D(v1, v2) = 1−
⃓⃓⃓⃓

v1.v2
||v1|| ∗ ||v2||

⃓⃓⃓⃓
(5)

If the distance between two examples that belong to the
same class is large (i.e., D(h(xg), h(xsame)) is large) or if
the distance between two examples that belong to different
classes is small (i.e., D(h(xg), h(xdiff )) is small), Lp would
be large to indicate a sub-optimal representation.

The final component of the triplet loss is the regulariza-
tion loss (Lreg ) that is used to limit the magnitude of latent
representation (h(xg)). It has been observed that, over sev-
eral iterations, the latent representation h(xg) of the input xg

tend to increase in magnitude arbitrarily [45]. Such arbitrary
increase in h(xg) prevents the model from converging [46].
Therefore, we use a regularization loss (Lreg ) to penalize
latent representations (h(xg)) that are larger in magnitude.
The regularization loss is given by:

Lreg = ||h(xg)||+ ||h(xsame)||+ ||h(xdiff )|| (6)

With the triplet loss function, REVEAL trains the model
to optimize for it parameters (i.e., θ,W, b) by minimizing
equation 2. The effect of using representation learning can
be observed by the better separability of the vulnerable and
neutral examples in Figure 9(b).

5 EXPERIMENTAL SETUP

5.1 Implementation Details
We use Pytorch 1.4.0 with Cuda version 10.1 to implement
our method. For GGNN, we use tensorflow 1.15. We ran

our experiments on single Nvidia Geforce 1080Ti GPU,
Intel(R) Xeon(R) 2.60GHz 16 CPU with 252 GB ram. Neither
Devign’s implementation, nor their hyperparameters are
not publicly availavle. We followed their paper and re-
implemented to our best ability. For the GGNN, maximum
iteration number is set to be 500. For the representation
learner maximum iteration is 100. We stop the training
procedure if F1-score on validation set does not increase in
for 50 consecutive training iteration for GGNN and 5 for
Representation Learning.

5.2 Study Subject

Table 1 summarizes all the vulnerability prediction ap-
proaches and datasets studied in this paper. We evaluate
the existing methods (i.e., VulDeePecker [3], SySeVR [4],
Russell et al. [5], and Devign [6]) and REVEAL’s performance
on two real world datasets (i.e., REVEAL dataset, and FFM-
Peg+Qemu). FFMPeg+Qemu was shared by Zhou et al. [6]
who also proposed the Devign model in the same work.
Their implementation of Devign was not publicly available.
We re-implement their method to report our results. We
ensure that our results closely match their reported results
in identical settings.

5.3 Evaluation

To understand a model’s performance, researchers and
model developers need to understand the performance of a
model against a known set of examples. However, as noted
by Problem 5 in §2, current evaluation strategies are limited
both in scope and in their choice of evaluation metrics. There
are two important aspects to consider during evaluation, (a)
the evaluation metric, and (b) the evaluation procedure.

Problem Formulation and Evaluation Metric: Most of the ap-
proaches formulate the problem as a classification problem,
where given a code example, the model will provide a
binary prediction indicating whether the code is vulnerable
or not. This prediction formulation relies on the fact that
there are sufficient number of examples (both vulnerable
and neutral) to train on. In this study, we are focusing on the
similar formulation. While both VulDeePecker and SySeVR
formulate the problem as classification of code slices, we
followed the problem formulation used by Russell et al. [5],
and Devign [31], where we classify the function. We note
that slices are paths in the control/data flow/dependency
graphs, and a slice lacks the rich connectivity of nodes that
is present in the whole graph. Thus we chose to classify the
whole graph in contrast to the slices.

We study approaches based on four popular evaluation
metrics for classification task [47] – Accuracy, Precision,
Recall, and F1-score. Precision, also known as Positive Pre-
dictive rate, is calculated as true positive / (true positive +
false positive), indicates correctness of predicted vulnerable
samples. Recall, on the other hand, indicates the effective-
ness of vulnerability prediction and is calculated as true
positive / (true positive + false negative). F1-score is defined
as the geometric mean of precision and recall and indicates
balance between those.

Evaluation Procedure: Since DL models highly depend on
the randomness [48], to remove any bias created due to
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the randomness, we run 30 trials of the same experiment.
At every run, we randomly split the dataset into disjoint
train, validation, and test sets with 70%, 10%, and 20% of
the dataset respectively. We report the median performance
and the inter-quartile range (IQR) of the performance. When
comparing the results to baselines, we use statistical sig-
nificance test [49] and effect size test [50]. Significance test
tells us whether two series of samples differ merely by
random noises. Effect sizes tells us whether two series
of samples differ by more than just a trivial amount. To
assert statistically sound comparisons, following previous
approaches [51], [52], we use a non-parametric bootstrap
hypothesis test [53] in conjunction with the A12 effect size
test [54]. We distinguish results from different experiments
if both significance test and effect size test agreed that the
division was statistically significant (99% confidence) and
is not result of a “small” effect (A12 ≥ 60%) (similar to
Agrawal et al. [51]).

6 EMPIRICAL RESULTS

6.1 Effectiveness of existing vulnerability prediction
approaches (RQ1)
Motivation. The goal of any DLVP approaches is to be
able to predict vulnerabilities in the real-world. The datasets
that the existing models are trained on contain simplistic ex-
amples that are representative of real-world vulnerabilities.
Therefore, we ought to, in theory, be able to use these models
to detect vulnerabilities in the real-world.
Approach. There are two possible scenarios under which
these models may be used:
◦ Scenario-A (pre-trained models): We may reuse the existing
pre-trained models as it is to predict real-world vulnera-
bilities. To determine how they perform in such a setting,
we first train the baseline models with their respective
datasets as per Table 1. Next, we use those pre-trained
models to detect vulnerabilities in the real-world (i.e., on
FFMPeg+Qemu, and REVEAL dataset).
◦ Scenario-B (re-trained models): We may rebuild the existing
models first by training them on the real-world datasets,
and then use those models to detect the vulnerabilities.
To assess the performance of baseline approaches in this
setting, we first use one portion of the FFMPeg+Qemu and
REVEAL dataset to train each model. Then, we use those
models to predict for vulnerabilities in the remainder of
the FFMPeg+Qemu and REVEAL. We repeat the process 30
times, each time training and testing on different portions
of the dataset.
Observations. Table 3b tabulates the performance of exist-
ing pre-trained models on predicting vulnerabilities in real-
world data (i.e., Scenario-A). We observe a precipitous drop
in performance when pre-trained models are used for real-
world vulnerability prediction.

For example, In REVEAL dataset, VulDeePecker achieves
an F1-score of only 12 .18% and in FFMPeg+Qemu,
VulDeePecker achieves an F1-score of 14 .27%, while in the
baseline case (see Table 3a), the F1-score of VulDeePecker
was as high as 85 .4%. Even the sophisticated graph-based
Devign model produced an F1-score of only ∼ 17% and
precision as low as ∼ 10% on REVEAL dataset. Similar
performance drops are observed for all the other baselines.

Table 3: Performance of existing approaches in predicting real
world vulnerability. All the numbers are reported as Median
(IQR) format.

(a) Baseline scores reported by the respective papers. We report
single values since authors do not report Median (IQR).

Dataset Technique Training Acc Prec Recall F1

VulDeePecker NVD/SARD · 86.90 · 85.40

SySeVR NVD/SARD 95.90 82.50 · 85.20

Russell et al. Juliet · · · 84.00Ba
se

lin
e

Draper · · · 56.6

Devign FFMPeg+Qemu 72.26 · · 73.26

· = Not Reported.

(b) Scenario-A: Using Existing Pre-trained Models

Dataset Technique Training Acc Prec Recall F1

VulDeePecker NVD/SARD 79.05 11.12 13.64 12.18
(0.25) (0.48) (0.50) (0.47)

SySeVR NVD/SARD 79.48 9.38 15.89 10.37
(0.24) (0.30) (0.63) (0.36)

Russell et al. Juliet 38.11 41.36 6.51 11.24
(0.11) (0.38) (0.07) (0.12)

Draper 70.08 49.05 15.61 23.66
(0.14) (0.35) (0.12) (0.24)

R
E

V
E

A
L

da
ta

se
t

Devign FFMPeg+Qemu 66.24 10.74 37.04 16.68
(0.14) (0.11) (0.54) (0.17)

VulDeePecker NVD/SARD 52.27 8.51 44.78 14.27
(0.23) (0.22) (0.66) (0.33)

SySeVR NVD/SARD 52.52 10.62 46.69 16.77
(0.18) (0.22) (0.20) (0.31)

Russell et al.

Juliet 49.84 33.17 45.53 37.65
(0.10) (0.13) (0.14) (0.12)FF

M
pe

g
+

Q
em

u

Draper 53.96 44.00 49.53 46.60
(0.14) (0.17) (0.20) (0.15)

(c) Scenario-B: Using Retrained Models with Real-world Data.

Dataset Input Approach Acc Prec Recall F1

R
E

V
E

A
L

da
ta

se
t

Token Russell et al. 90.98 24.63 10.91 15.24
(0.75) (5.35) (2.47) (2.74)

Slice + VulDeePecker 89.05 17.68 13.87 15.7
(0.80) (7.51) (8.53) (6.41)

Token SySeVR 84.22 24.46 40.11 30.25
(2.48) (4.85) (4.71) (2.35)

Graph Devign 88.41 34.61 26.67 29.87
(0.66) (3.24) (6.01) (4.34)

FF
M

pe
g

+

Q
em

u

Token Russell et al. 58.13 54.04 39.50 45.62
(0.88) (2.09) (2.17) (1.33)

Slice + VulDeePecker 53.58 47.36 28.70 35.20
(0.61) (1.80) (12.08) (8.82)

Token SySeVR 52.52 48.34 65.96 56.03
(0.81) (1.51) (7.12) (3.20)

Graph Devign† 58.57 53.60 62.73 57.18
(1.03) (3.21) (2.99) (2.58)

† We made several unsuccessful attempts to contact the authors for
Devign’s implementation. Despite our best effort, Devign’s reported
result is not reproducible. We make our implementation of Devign
public at https://github.com/saikat107/Devign for further use.

On average, we observe a 73% drop of F1-score across all
the models in this setting.

For scenario-B, Table 3c tabulates our findings for re-
trained models. Here, we also observe a significant perfor-
mance drop from the baseline results. In REVEAL dataset,
both Russell et al. and VulDeePecker achieve an F1-score
of roughly 15% (in contrast to their baseline performances

https://github.com/saikat107/Devign
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Table 4: Percentage of duplicate samples in datasets.

Dataset Pre-processing Technique % of duplicates

Juliet Russell et al. 68.63

NVD + SARD VulDeePecker 67.33

SySeVR 61.99

Draper Russell et al. 6.07 / 2.99

REVEAL dataset

None 0.6

VulDeePecker 25.85

SySeVR 25.56

Russell et al. 8.93

FFMPeg+Qemu

None 0.2

VulDeePecker 19.58

SySeVR 22.10

Russell et al. 20.54

of 85%). SySeVR achieved an F1-score of 30% on REVEAL
dataset. We observed similar trends in other settings, with
an average F1 score drop of 54%.
Result. Existing approaches fail to generalize to real-world
vulnerability prediction. If we directly use a pre-trained
model to detect the real-world vulnerabilities, the f1-score
drops by ∼73%, on average. Even if we retrain these models
with real-world data, their performance drops by ∼54%
from the reported results.

6.2 Key limitations of existing DLVP approaches (RQ2)

Motivation. In this RQ, we investigate the reasons behind
their failure. We find that the baseline methods suffer from
a number of problems, as listed below:

6.2.1 Data Duplication
Preprocessing techniques such as slicing used by VulDeeP-
ecker and SySeVR and tokenization used by Russell et al.
introduce a large number of duplicates in both the training
and testing data. There are several ways duplication can be
introduced by these preprocessing techniques – e.g., same
slice can be extracted from different entry points, different
code can have same tokens due to the abstract tokenization,
etc.
Approach. We apply each preprocessing technique to its re-
spective dataset (see §2) and also to the real-world datasets.
Observations. Table 4 tabulates the number of dupli-
cates introduced by some of the vulnerability prediction
approaches. We observe that the preprocessing technique
of SySeVR and VulDeePecker (i.e., slicing followed by tok-
enization) introduces a significant amount of (> 60%) du-
plicate samples. Further, semi-synthetic datasets like NVD,
SARD, and Juliet (comprised of much simpler code snip-
pets) result in a large number of duplicates. In contrast,
real-world datasets are much more complex and therefore
have far fewer duplicates. In our case, the two real-world
data contain little to no duplicates prior to preprocessing
(REVEAL dataset had only 0.6%, and FFMPeg+Qemu had
0.2%). After preprocessing, although some duplicates are
introduced (e.g., SySeVR’s preprocessing technique intro-
duces 25.56% duplicates in REVEAL dataset and 22.10%
duplicates in FFMPeg+Qemu), they are much lesser than
baseline datasets. While duplicates created by slicing and
pre-processing techniques do favor vulnerability prediction

in general [4], [55], it seriously undermines the capability of
a DL model to extract patterns. In fact, prevalence of such
duplicates in training set might lead a DL model to learn
irrelevant features. Common examples between train and
test sets hampers fair comparison of different DL models
for vulnerability prediction task.

Ideally, a DL based model should be trained and tested
on a dataset where 100% examples are unique. Inter-set
duplicates may cause the model to memorize examples
from training set, making the performance measure very
unreliable. Intra-set duplicates (sepcially duplicates inside
test set) tend to artificially inflate the overall performance
of a method [56], as evidenced by the discrepancy of the
baseline results and results of the pre-trained models in
Scenario-A of RQ1 (see Table 3b).

6.2.2 Data Imbalance
Real world data often contains significantly more neutral
examples than vulnerable ones. A model trained on such
skewed dataset is susceptible to being considerably biased
toward the majority class.
Approach. We compute percentage on vulnerable samples
w.r.t. total number of samples from different datasets used
in this paper as shown in Table 1.
Observations. We notice that several datasets exhibit a
notable imbalance in the fraction of vulnerable and neutral
examples; . the percentage vulnerability is sometimes as low
as 6%. The ratio of vulnerable and neutral examples varies
depending on the project and the data collection strategy
employed. Existing methods fail to adequately address the
data imbalance during training. This causes two problems:
(1) When pre-trained models are used (i.e., Scenario-A in
RQ1) to predict vulnerabilities in the real world, the ratios
of vulnerable and neutral examples differ significantly in
training and testing datasets. This explains why pretrained
models perform poorly (as seen in Table 3b). (2) When
the models are re-trained, they tend to be biased towards
the class with the most examples (i.e., the majority class).
This results in poor recall values (i.e., they miss a lot of
true vulnerabilities) and hence, also the F1-score (as seen
in Table 3c).

6.2.3 Learning Irrelevant Features
In order to choose a good DL model for vulnerability
prediction, it is important to understand what features the
model uses to make its predictions. A good model should
assign greater importance to the vulnerability related code
features.
Approach. To understand what features a model uses for its
prediction, we find the feature importance assigned to the
predicted code by the existing approaches. For token-based
models such as VulDeePecker, SySeVR, and Russell et al.,
we use Lemna to identify feature importance [9]. Lemna
assigns each token in the input with a value ωt

i , representing
the contribution of that token for prediction. A higher value
of ωt

i indicates a larger contribution of token towards the
prediction and vice versa. For graph-based models, such as
Devign, Lemna is not applicable [9]. In this case, we use
the activation value of each vertex in the graph to obtain
the feature importance. The larger the activation, the more
critical the vertex is.
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1 link_layer_show(struct ib_port *p,
2 struct port_attribute *unused, char * buf){
3 switch (rdma_port_get_link_layer(
4 p->ibdev, p->port_num)) {
5 case IB_LINK_LAYER_INFINIBAND:
6 return sprintf(buf, "%s\n", "InfiniBand");
7 case IB_LINK_LAYER_ETHERNET:
8 return sprintf(buf, "%s\n", "Ethernet");
9 default:

10 return sprintf(buf, "%s\n", "Unknown");
11 }
12 }

(a) Vulnerable code example in Draper [5] dataset correctly
predicted by Russel et al.’s token-based method.

1 static int mov_read_dvc1(MOVContext *c,
2 AVIOContext *pb, MOVAtom atom) {
3 AVStream *st;
4 uint8_t profile_level;
5 if (c->fc->nb_streams < 1)
6 return 0;
7 st = c->fc->streams[c->fc->nb_streams-1];
8 if (atom.size >= (1<<28) || atom.size < 7)
9 return AVERROR_INVALIDDATA;
10 profile_level = avio_r8(pb);
11 if ((profile_level & 0xf0) ! = 0xc0)
12 return 0;

... ...
18 st->codec->extradata_size = atom.size - 7;
19 avio_seek(pb, 6, SEEK_CUR);
20 avio_read(
21 pb, st->codec->extradata,
22 st->codec->extradata_size);
23 return 0;
24 }

(b) Vulnerable example from FFMPeg+Qemu [6] dataset
correctly predicted by graph model. Other method could
not predict the vulnerability in this example.

Figure 8: Contribution of different code component in
correct classification of vulnerability by different model.
Underlined red shaded code elements are most contributing,
Italic green shaded are the least. Bold Blue colored code are the
source of vulnerabilities.

Observations. To visualize the feature importances, we use
a heatmap to highlight the most to least important segments
of the code. Figure 8 shows two examples of correct pre-
dictions. Figure 8a shows an instance where Russell et al.’s
token-based method accurately predicted a vulnerability.
But, the features that were considered most important for
the prediction (lines 2 and 3) are not related to the actual
vulnerability that appears in buggy sprintf lines (lines 6,
8, and 10). We observe similar behavior in other token based
methods.

In contrast, Figure 8b shows an example that was mis-
classified as neutral by token-based methods, but graph-
based models accurately predict them as vulnerable. Here
we note that the vulnerability is on line 20, and graph-based
models use lines 3, 7, 19 to make the prediction, i.e. mark
the corresponding function as vulnerable. We observe that
each of these lines shares a data dependency with line 20
(through pb and st). Since graph-based models learn the
semantic dependencies between each of the vertices in the
graph through the code property graph, a series of con-
nected vertices, each with high feature importance, causes
the graph-based model to make the accurate prediction.
Token-based models lack the requisite semantic information
and therefore fail to make accurate predictions.

6.2.4 Model Selection: Lack of Class Separation

Existing approaches translate source code into a numeric
feature vector that can be used to train a vulnerability pre-
diction model. The efficacy of the vulnerability prediction
model depends on how separable the feature vectors of the
two classes (i.e., vulnerable examples and neutral examples)
are. The greater the separability of the classes, the easier it
is for a model to distinguish between them.
Approach. We use t-SNE plots to inspect the separability
of the existing models. t-SNE is a popular dimensionality
reduction technique that is particularly well suited for vi-
sualizing how high-dimensional datasets look in a feature
space [41]. A clear separation in the t-SNE space indicates
that the classes are distinguishable from one another. In
order to numerically quantify the separability of the classes,
we use the centroid distance proposed by Mao et al. [42].
We first find the centroids of each of the two classes.
Next, we compute the euclidean distance between the the
centroids. Models that have larger the euclidean distances
are preferable since they exhibit greater class separation.
Observations. Figure 9 illustrates the t-SNE plots of the
existing approaches. All the existing approaches (Figure 9a–
9d) exhibit a significant degree of overlap in the feature
space between the two classes. This is also reflected by
the relatively low distance between the centroids in each
of the existing methods. Among exiting methods, Devign
(Figure 9d) has the least centroid distance (around 0.0025);
this is much lower than any other existing approach. This
lack of separation explains why Devign, in spite of being
a graph-based model, has poor real-world performance
(see Table 3).
Result. Existing approaches have several limitations: they
(a) introduce data duplication, (b) don’t handle data im-
balance, (c) don’t learn semantic information, (d) lack class
separability. DLVP may be improved by addressing these
limitations.

6.3 How to improve DLVP approaches? (RQ3)

Motivation. To address challenges discussed in RQ2, we
offer REVEAL— a road-map to help avoid some of the
common problems that current state-of-the-art vulnerabil-
ity prediction methods face when exposed to real-world
datasets.
Approach. A detailed description of REVEAL pipeline is
presented in §4. This pipeline offers the following benefits
over the current state-of-the-art:

1) Addressing duplication: REVEAL does not suffer from
data duplication. During pre-processing, input samples are
converted to their corresponding code property graphs
whose vertices are embedded with a GGNN and aggregated
with an aggregation function. This pre-processing approach
tends to create a unique feature for every input samples.
So long as the inputs are not exactly the same, the feature
vector will also not be the same.
2) Addressing data imbalance: REVEAL makes use of synthetic
minority oversampling technique (SMOTE) to re-balance
the distribution of vulnerable and neutral examples in the
training data. This ensures that the trained model would
be distribution agnostic and, therefore, better suited for
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Centroid Distance = 0.0459

(a) Russell et al.

Centroid Distance = 0.0225

(b) VulDeePecker

Centroid Distance = 0.0375

(c) SySeVR

Centroid Distance = 0.0024

(d) Devign

Centroid Distance = 0.1711

(e) REVEAL

Figure 9: t-SNE plots illustrating the separation between vulnerable (denoted by +) and neutral (denoted by ◦) example. Existing
methods fail to optimally separate vulnerable and neutral classes.
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Figure 10: Performance spectrum of REVEAL dataset.
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Figure 11: Performance spectrum of FFMPeg+Qemu.
Legends: Vul=VulDeePecker [3], Sys=SySeVR [4], Rus=Russell et al. [5], Dev=Devign [6], Rev=REVEAL.
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Figure 12: Effect of GGNN in REVEAL’s F1 score. The per-
formance increase in both datasets when node information
is propagated to the neighboring node through GGNN. The
effect size is 0.81 (large) for REVEAL dataset and 0.73 for
FFMPeg+Qemu.
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Figure 13: Effect of training data re-balancing in REVEAL’s
performance (F1-score). In both datasets, re-balancing improves
the performance of REVEAL.

real-world vulnerability prediction where the distribution
of vulnerable and neutral examples is unknown.
3) Addressing model choice: REVEAL extracts semantic as well
as syntactic information from the source code using code
property graphs. Using GGNN, each vertex embedding is
updated with the embeddings of all its neighboring ver-
tices. This further increases the semantic richness of the
embeddings. This represents a considerable improvement
to the current token-based and slicing-based models. As
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Figure 14: REVEAL’s performance (F1-score) in comparison to
other machine learning models.

shown in Figure 8b, REVEAL can accurately predict the
vulnerability here.
4) Addressing the lack of separability: As shown in Figure 9a–
9d, the vulnerability class is almost inseparable from the
non-vulnerability class in the feature space. To address this
problem, REVEAL uses a representation learner that auto-
matically learns how to re-balance the input feature vectors
such that the vulnerable and neutral classes are maximally
separated [11]. This offers significant improvements over the
current state-of-the-art as shown in Figure 9e. Compared
to the other approaches of Figure 9a–9d, REVEAL exhibits
the highest separation between the vulnerable and neutral
classes (roughly 85× higher than other GGNN based vul-
nerability prediction).

We compare performance of REVEAL with existing vulnera-
bility prediction approaches of two real-world datasets, i.e.,
FFMPeg+Qemu and REVEAL data.
Observations. Figures 10 and 11 compare the performance
of REVEAL tool with other approaches. We observe that
REVEAL offers noticeable improvements in all the metrics:
◦ REVEAL dataset: REVEAL performs best in terms of F1-
score and recall. The median recall is 60.91% ( 20.8% more
than that of SySeVR, the next best model) and median F1-
score is 41.25% (11.38% more than SySeVR). This represents
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a 51.85% and 36.36% improvement in recall and F1 over
SySeVR respectively. While Devign (another GGNN based
vulnerability prediction) produces a better precision, De-
vign’s median recall 56.21% less than that of REVEAL. This
indicates that, compared to Devign, REVEAL can find larger
number of true-positive vulnerabilities (resulting in a better
recall) at the cost slightly more false-positives (resulting in
a slightly lower precision). Overall, REVEAL’s median F1-
score is 11.38% more than Devign, i.e., a 38.09% improve-
ment.
◦ FFMPeg+Qemu: REVEAL outperforms other approaches
in all performance metrics. REVEAL’s median accuracy,
precision, recall, and F1-scores are 5.01%, 5.19%, 13.11%, and
12.64% higher respectively than the next best approach.

In the rest of this research question, we investigate
contribution of each component of REVEAL.

6.3.1 Contribution of Graph Neural Network

To understand the contribution of GGNN, we create a
variant of REVEAL without GGNN. In this setup, we bypass
the use GGNN and aggregate the initial vertex features to
create the graph features. Further, we create another variant
of REVEAL that uses only GGNN without re-sampling or
representation learning.

Figure 12 shows the F1-scores for the above setup. We
observe that, in both REVEAL dataset and FFMPeg+Qemu,
F1-score increases when we use GGNN in REVEAL’s
pipeline. We observe that the improvements offered by the
use of GGNN is statistically significant (with a p-value of
0.0002 in REVEAL dataset, and 0.001 in FFMPeg+Qemu).
Further, when we perform the A12 effect size [50] with 30
independent experiment runs in each case, we found that
the the effect size is 81% for REVEAL dataset and 73% for
FFMPeg+Qemu. This means that 81% of the times REVEAL
performs better with GGNN than it does without GGNN in
REVEAL dataset and 73% in FFMPeg+Qemu. Both of those
effect sizes are considered large indicating REVEAL with
GGNN is better than REVEAL without GGNN.

6.3.2 Effect of Training Data Balancing

To understand the contribution of SMOTE, we deploy two
variants of REVEAL one with SMOTE and one without. Note
that, REVEAL uses SMOTE as an off-the shelf data balancing
tool. Choice of which data-balancing tool should be used is
a configurable parameter in REVEAL’s pipeline.

Figure 13 illustrates the effect of using data re-sampling
in REVEAL’s pipeline. We observe that re-balancing training
data improves REVEAL’s performance in general. The more
skewed the dataset, the larger the improvement. In FFM-
Peg+Qemu, neutral examples populates roughly 55% of the
data. There, using SMOTE offers only a 3% improvement
in F1-score (see Figure 13b). However, in REVEAL dataset,
neutral examples populates 90% of the data, there we obtain
more than 22% improvement in F1-score compared to not
using SMOTE (see Figure 13a). Without SMOTE, the pre-
cision of REVEAL tool improves and reaches up to 46.23%
highest achieved precision among all the experimental set-
tings. However, this setting suffers from low recall due to
data imbalance. Thus, if an user cares more about precision
over recall, SMOTE can be turned off, and vice versa.

6.3.3 Effect of Representation Learning

In order to understand the contribution of representation
learning, we replace representation learning with three
other learners: (a) Random Forest (a popular decision tree
based classifier used by other vulnerability prediction ap-
proaches like Russell et al. [5]); (b) SVM with an RBF kernel
which also attempts to maximize the margin between vul-
nerable and neutral instances [57]; and (c) An off-the-shelf
Multi-Layer Perceptron.

Figure 14 shows the REVEAL’s performance with dif-
ferent classification models. In both REVEAL dataset and
FFMPeg+Qemu, our representation learner with triplet loss
achieves the best performance. Max-margin models results
in better performance in classifying vulnerable code in
general. REVEAL with the representation learner performs
statistically and significantly better than SVM in both RE-
VEAL dataset and FFMPeg+Qemu (with p-values < 0.01 and
A12 > 0.6). This is likely because SVM is a shallower than a
representation learning model that propagates losses across
several perceptron layers.
Result. The performance of DLVP approaches can be sig-
nificantly improved using the REVEAL pipeline. The use
of GGNN based feature embedding along with SMOTE
and representation learning remedies data-duplication, data
imbalance, and lack of separability. REVEAL produces im-
provements of up to 33.57% in precision and 128.38% in
recall over state-of-the-art methods.

7 THREATS TO VALIDITY

7.1 Internal Validity

Tangled Commits. Tangled commits have long been stud-
ied in software engineering [58], [59] and a major setback
for software evolution history driven research [60], [61]. De-
velopers often combine more than one unrelated or weakly
related changes in code in one commit [60] causing such
a commit to be entanglement of more than one changes.
Our collected REVEAL data is also subject to such a threat
of containing tangled code changes. That said, to validate
that the empirical finding in the paper are not biased by
the tangled commits, we created an alternate version of
REVEAL data, where we removed any patch that changes
more than one function from consideration. In that version
of REVEAL data, we find that REVEAL achieves 26.33% f1-
score ( compared to 41.25% f1-score in REVEAL’s dataset
). In contrast, if we do not use representation learning,
REVEAL’s f1 score drops to 22.95%. If we do not use the
data balancing, REVEAL’s performance drops to 13.13%.
When we remove GGNN from REVEAL’s pipeline, f1 score
drops to 22.82%. These results corroborates the importance
of GGNN, data balancing and representation learning in
REVEAL’s pipeline irrespective of existence of tangled code
changes.
Multi-function Vulnerabilities. Our formulation of VD is

classification of a function. Some vulnerabilities might ex-
hibit across multiple functions in the codebase. Annotating
all such functions may hurt the reliability or applicability
of a model, posing a threat to the validity of REVEAL. That
said, we find that, in most cases (80%), vulnerability patches
do not span more than 4 functions (see Figure 6)
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Another possible strategy to mitigate this threat is to con-
sider file level vulnerability instead of functions within each
file. However, we found that the code property graph (CPG)
representation corresponding to a file becomes intractably
large and current implementations of graph based neural
networks are not adept at scaling very well w.r.t. such large
graphs.

7.2 External Validity
Unknown vulnerabilities. Existing DLVP models, includ-
ing our pipeline, rely on inferring vulnerabilities based on
past semantic and syntactic patterns. As a result, these
models may not be effective in discovering vulnerability
as yet unseen in past training data. For discovering such
vulnerabilities, one may use other vulnerability detection
paradigms such as fuzzing [62], [63], or a hybrid of static
and dynamic analysis techniques [64].
Modularity of REVEAL’s pipeline. REVEAL uses differ-
ent components as modules in its pipeline. Each of the
(trainable) modules are trained individually. While such
modularity makes REVEAL very agile, it may miss some
vulnerability patterns which might otherwise be found if
trained jointly. We view this research as a roadmap towards
building strong DLVP tool, thus modularity and agility are
very important factors in this works so that users may
optionally each component by their chosen alternatives,
e.g.,, Representation learning may be replaced with SVM for
training speed-up, or GGNN may be replaced with other
unsupervised graph embedding approach such as node2vec
or deepwalk.

8 RELATED WORK

Vulnerability detection (vulnerability prediction) in soft-
ware has been a significant research problem in software
engineering. Traditional vulnerability detection systems fall
into three major categories – static analysis [26], [65], dy-
namic analysis [66], [67], and symbolic analysis [68], [69].
Static analyzers analyze the static properties of the code i.e.
AST [70], Flow/Dependency graphs [8], [71]. While static
analyzers are often lightweight, used earlier in the develop-
ment pipeline, such analyzers often cause a high number of
false positives [72]. In contrast, dynamic analyzers execute
the program and analyze for potential vulnerabilities of the
program w.r.t. the runtime behavior of the program [67].
Dynamic analyzers detect vulnerabilities by reasoning about
the user input (e.g., taint tracking) or generating useful
program input to force the model crash (e.g., fuzzing). While
dynamic analyzers execute the program on real inputs,
symbolic analyzers analyze the program based on symbolic
inputs [68], [73].

In recent years, all approached of vulnerability predic-
tion heavily adopted machine learning and deep learning.
VulDeePecker [3], SySeVR [4], µVulDeePecker [55], Rus-
sell et al. [5], Devign [6] are some of the recent approaches
of leveraging static property of the program with machine
learning. DL-based static analyzers reduce developers’ bur-
den of hard-coding the vulnerability patterns since DL
models learn those patterns from data.

Deep Neural Networks have shown promises in dif-
ferent dynamic analyses, including taint tracking [74],

fuzzing [62], [63]. Traditional rule-based taint tracking is
often tedious as it requires the specification of taint rules.
Neutaint [74] tracks the taint information through a neu-
ral network and gradient analysis. Neural network-based
fuzzers [62], [63] typically use a surrogate neural network
for representing the program under test. Such neural net-
work helps input mutator efficiently traverse through in in-
finite input space for effective fuzzing. Neuro-symbolic exe-
cution [75] tool combines the traditional symbolic execution
with machine learning by approximating hard to symbolic
constraints with deep neural networks. While vulnerability
prediction is one application of ML-based dynamic and
symbolic analyzers, such analyzers are generally useful for
general-purpose bug detection (testing) and verification.

Other approaches for vulnerability and defect prediction
use software metrics derived from commit messages [76],
and other product and process metrics. These approaches
are frequently reported to be capable of finding the locations
of over 70% (or more) of the defects in code [77]–[83].
Such analyses often use statistical machine learning (such
a random forests) to detect potential vulnerabilities and
defects. The success of these methods in finding bugs is
higher than other industrial methods such as manual code
reviews [84].

Given the widespread adoption of DL-based vulnera-
bility prediction, it is distinctly important to analyze such
research’s feasibility in the real-world vulnerability predic-
tion. Li et al. [85] showed a comparative study of different
DL based vulnerability prediction tools. However, their
study did not compare against the real-world scenario. This
work offers a detailed inspection of the existing researches.
We throw light on some of the limitations of current vulner-
ability prediction approaches, and we propose a roadmap
for collecting real world vulnerability data and improved
modeling technique for real world vulnerability prediction.

9 CONCLUSION

In this paper, we systematically study different aspects of
Deep Learning based Vulnerability Detection to effectively
find real world vulnerabilities. We empirically show dif-
ferent shortcomings of existing datasets and models that
potentially limits the usability of those techniques in prac-
tice. Our investigation found that existing datasets are too
simple to represent real world vulnerabilities and existing
modeling techniques do not completely address code se-
mantics and data imbalance in vulnerability detection. Fol-
lowing these empirical findings, we propose a framework
for collecting real world vulnerability dataset. We propose
REVEAL as a configurable vulnerability prediction tool that
addresses the concerns we discovered in existing systems
and demonstrate its potential towards a better vulnerability
prediction tool.
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RESPONSE TO REVIEWERS

EDITOR
The study presented in the paper has been well received by the
reviewers. There are however certain aspects that must be better
elaborated before the paper can be considered for publication. In
particular:
• The dataset must be described more accurately;
• The presentation must be improved in multiple places;
• A threats to validity section must be added to the paper;
• The online material must be strengthened to make it usable by
third parties; and
• Additional information about REVEAL must be incorporated
in the paper.
Thank you very much for your comments. We have taken

all the reviews into careful consideration and we have
changed the manuscript to reflect the feedback. We hope the
new draft satisfies all the issues and concerns raised by the
reviewers. To assist the reviewers in tracking all the changes
we have incorporated in this version, we have annotated
changes with RX-XX to correspond to reviewers’ concerns.

RESPONSE TO REVIEWER - 1
We thank you for your detailed and constructive re-

views. We have made several modifications, clarification
and changes to our manuscript that addresses your reviews
and concern. We hope this version or our manuscripts is
better suitable for publication thanks to your meticulous
reviews and feedback. To assist further review process, we
have annotated the changes with R1-XX and new text is
highlighted in blue.

R1-1. Current presentation is a bit mixed, so the contribu-
tions seem fuzzy. Section 7.2 that describes the possible
presence of changes not related to security should be re-
ported closer to the discussion of the database (and not at
the very end)
Thank you for highlighting this issue. We apologize for the

confusion. As per you advice, we have moved this section
closer to the introduction and discussion of the REVEAL
dataset in §3 (see R1-1a on page ??).

Further, we have added two passages in the threats to
validity section (§7) to discuss the impact of tangled com-
mits (see R1-1b on page ??) and multi-function vulnerability
fixes (see R1-1c on page ??).

R1-2. The motivation behind the steps is not obvious as the
actual problems of current DL vulnerability predictors are
only presented in 6.2.
We apologize for the lack of clarity. We have updated our

new draft to highlight the problems with current DL vulner-
ability predictors earlier on in the paper in §2. Specifically,
we identify each problem with a Problem XX tag, and use
those tags for further discussion (see R1-2 on page ??).

R1-3. A general comment to section 4 - the pipeline is
presented as a new deep-learning vulnerability predictor.
Instead, this is more like a ”roadmap”, i.e., the way on how
to consider the identified weaknesses in the deep-learning
prediction.

Thank for your comment. We have reworded the section to
highlight that REVEAL offers a road-map for deep learning
based vulnerability prediction. All related changes are high-
lighted in blue. Please see content prefixed with R1-3 in §4
(page ??).

R1-4. I suggest the authors to add a section that describes
the database, e.g., how many vulnerable/fixed samples,
how big are the sizes of functions?
Thanks for the suggestion. We have expanded our descrip-

tion of the data collection procedure in §3. Additionally we
provide the statistics of the dataset in Table 2 (see R1-4 on
page ??).

R1-5. The approach to construct such a database is similar
to the historical databases used to evaluate static analysis
tools. It’s not critical, but it might support the authors’
motivation...Reference [3] (Pashchenko et al.) reported that
static analysis tools might generate alerts for ”a wrong
reason”, i.e., for vulnerabilities present in the code, but
either not known yet or not used for the current evaluation
— I think, this is an important problem to be considered
when designing a real-world database for evaluating any
kind of vulnerability finding tools.

Thank you for pointing out these references. These are
really interesting and we do agree with Pashchenko et al.. In
fact, our data collection motivation aligns with Pashchenko
et al.’s finding.

However, unlike static analysis tools, detecting zero day
vulnerabilities are very difficult for any supervised ML
model since they reason about vulnerabilities based on past
examples of such vulnerabilities. This is a potential threat
to any ML based approach. Further research is needed for
building a vulnerability detection tool for vulnerabilities
and it might need a hybrid approach that reasons about
both static information and the dynamic traces of the code.
This is beyond the scope of this paper, but we’ll certainly
explore in our future work. As per you recommendation, we
have now added a discussion about the above mentioned
papers in the manuscript (see R1-5a on page ??). We have
also included additional details in the threats to validity
section (see R1-5b on page ??).

R1-6. The proposal to use SMOTE to make the training
classes balanced is interesting. But I am a bit confused,
because it clashes with the goal of having the real distribu-
tion and reducing the number of duplicates. I think, this
needs to be discussed.
Thanks for pointing this out. We apologize for the lack

of clarity on this matter. We note that data distribution
plays a role in two distinct aspects of the model: (a) during
evaluation, and (b) during training a model.

First, while evaluating a tool, the evaluation dataset (i.e.
test set in our setting) must closely resemble the realistic
distribution of vulnerabilities (where there are a lot more
neutral examples that vulnerable examples). Thus, we draw
the training and testing splits from the original dataset
in a stratified manner where both the splits exhibit same
distribution. This prevents our test set from having an un-
realistically large number of vulnerabilities (diverging from
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how many one sees in real life). Other approaches ignore
this aspect and thus have far too many vulnerabilities in
their test set (Devign for example has 55% vulnerabilities in
their test set).

Second, during training, we may change the distribution
(of only the training set) to have a roughly equal fraction
of vulnerable and neutral examples without modifying the
test set. If we do not rebalance the training set, and train a
DL model on a skewed dataset, the learning process would
be biased by the majority class in the training samples, and
this must be avoided. Thus, our solution here is to re-balance
(with SMOTE) the training data only, and leave the test data
as is to reflect the realistic distribution. We have updated
our draft clarifying this point (see R1-6a on page ??).

With regards to reducing duplicate, we seek to avoid
duplicates in the test set (we many ignore duplicates only
in the training set). Our motivation is inspired by the ob-
servation of Allamanis et al. [56], where they showed two
different adverse effect of having duplicates in the testing
data. First, if there are same examples that exist both in train
and test set, then we may obtain a high performance because
we can trivially match the duplicated test instance with the
label of the same instance in the training set. But this is not
very reliable. Secondly, if there are many duplicates within
the test set, that might also bias the evaluation process by
artificially inflating the performance. These are the types of
duplicates we seek to reduce (see R1-6b on page ??).

R1-7. A comment about the structure: the proposal to use
SMOTE itself is located in section 4.2.1 (ReVeals pipeline
description), later (section 6.3.2) the authors provide addi-
tional details that SMOTE is a ”configurable” parameter.
I think, this should be presented together (i.e., in section
4.2.1).

Thanks for you suggestion. We fully agree with your
suggestion and thus we now presented SMOTE as a con-
figurable module in section 4.2.1 (our replication package
has be modified accordingly). Please see text marked R1-7

on page ??.

R1-8. Also, which other options could be used instead
of SMOTE? Perhaps, vulnerability injection techniques
might work.

Thank you highlighting this point. In general, vulnerability
injection can also be a good way to re-balance and/or
augment training data. However, based on our reading of
the literature, we found that current injection strategies have
certain limitations. First, static analysis based bug injection
(e.g., Kashyap et al. [86]) require bug templates, which can
be hard to generate and validate. Further, if we already
had the bug template, we can trivially identify those pat-
terns without DL techniques. DL techniques are beneficial
because they infer these patterns implicitly during training
and do not need developers to generate patterns manually.

Second, dynamic analysis based bug injectors (e.g., Lava)
can only inject data flow bugs. Such a limited injection
strategy may bias the model towards discovering only
dataflow bugs. That said, in our future research, we intend
to shed light on different data-augmentation techniques for
vulnerability prediction.

R1-9. In section 5.3 you write: ”This is the most suitable
model working with the graph, since slices are paths in the
graph.” - I am not sure that I understand this, could you
explain your point here?
Our apologies for the confusion. We intended to convey

that slices can be viewed as paths in the control-/data-
flow or dependency graphs, and that slices lacks the rich
connectivity of nodes that is present in the entire graph.
Therefore, we operate on the scale of the entire graph
instead of operating on a slice level. We have clarified this
matter in our new draft (see R1-9 on page ??).

R1-10. I am not sure I understand section 6.2.1 - what do
you mean by duplication? And how could slicing intro-
duce duplicates? Can you provide an example?
Our apologies for the confusion. Below, we provide an

(hypothetical) example here to explain this further. We want
to note that, VulDeePecker extracts slices from a list of API
calls (e.g.,, read()), whereas SySeVR extracts slices in four
different ways — API calls, Arithmetic expressions, Pointer
Expressions, and Array access point.

Consider the example in fig. 15 below:

1 void foo(){
2 int i = 0;
3 int sum = 0;
4 int product = 1;
5 int w = read();
6 for(i = 1; i < N; ++i) {
7 sum = sum + i + w;
8 product = product * i;
9 }

10 print(sum);
11 }

Figure 15

The statement read() (line 5) is the API call of interest for
SySeVR. The extracted slice will resemble the fig. 16 below:

1 int i = 0;
2 int sum = 0;
3 int w = read();
4 for(i = 1; i < N; ++i) {
5 sum = sum + i + w;
6 }
7 print(sum);

Figure 16

Now, when SySeVR extracts a slice from the code in
fig. 15 based on the arithmetic expression (say product
= product * i; in line 8), that slice will essentially be
the same as the slice extracted from the API call on line 5
(fig. 16). This will create a duplicate.

Additionally, their tokenization method (replacing con-
crete identifiers with abstract ones like VAR_1, FUNC_1,
etc.) creates more duplicates between train and test splits.
As noted in our response to R1-6, such training/testing
duplicates artificially inflate the results.

R1-11. I guess, you have an access to the Juliet, NVD +
SARD, and Draper datasets. It would be interesting to
know how ReVeal performs there.
Thanks for highlighting this point. We do have access to

the Juliet, NVD+SARD, and Draper dataset. We chose not
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to include these results in the paper since these datasets
were not representative of real-world vulnerabilities and the
goal of our work to focus on the challenges with detecting
real-world vulnerabilities. That said, we did perform some
experiments on these other datasets, and we discuss them
below.

VulDeePecker and SySeVR’s released version of
NVD+SARD dataset was not suitable for REVEAL since they
only released the slices (not the entire function). Therefore,
we manually extracted the vulnerable and neutral functions
from these datasets and ran REVEAL on it. We have made
available these functions in our replication package for
wider dissemination.

The results of REVEAL (and the effect of its constituent
components) are shown in table 5. In general, REVEAL
vastly outperforms their models (see Table 3a).

Approach Precision Recall F1
GGNN only 95.70 91.08 93.33
REVEAL-no-ggnn 94.89 90.27 92.52
REVEAL-no-smote 95.38 92.17 93.74
REVEAL-no-rl 94.15 95.89 95.01
REVEAL 94.94 96.38 95.65

Table 5: Different components of REVEAL’s performance in
Juliet dataset.

With respect to the Draper dataset, Russell et al. did
release their entire dataset. Therefore, we were able to run
REVEAL on their datasets. Due to the extreme imbalance in
the Draper dataset (i.e., only ≈ 6% are vulnerable examples),
GGNN in REVEAL’s pipeline was extremely biased to-
wards the neutral examples. To solve this problem, we sub-
sampled the neutral training examples to create a balanced
dataset to train GGNN. We used this balanced dataset to
train GGNN in REVEAL’s pipeline. Table 6 shows the results
of REVEAL in Draper dataset.

Approach Precision Recall F1
REVEAL-imbalance 10.28 91.24 18.47
GGNN only (balanced) 27.88 86.59 42.17
REVEAL-no-rl 29.57 88.34 44.30
REVEAL 36.24 87.29 51.22

Table 6: Different component of REVEAL’s performance in
Draper dataset.

We observe a significant impact of training data rebal-
ancing. In this experiment, we sub-sampled the training
data for training GGNN. One might might wonder why
use SMOTE in place of such simple under-sampling in
other datasets. To this, we note that Draper is a large
dataset (containing 1.2M examples in total). Thus, just with
undersampling we are left with sufficiently large quantity
of data to train a model. However, in REVEAL dataset and
FFMPeg+Qemu, we need to increase number of vulnerable
examples for training (i.e. we need to oversample). Thus, we
first converted the code examples to feature space and used
off-the-shelf SMOTE to re-balance the training data.

Finally, as you suggested, we can also use bug injection
methods. We completely agree that such a injection tool
will be helpful towards rebalancing data. We leave further
exploration on that topic to future research.

R1-12. On top of page 10 (right column), you write “...
disjoint train, validation, and test sets with 80%, 10%, and
20%...” - is it a typo?
We apologize for this error. We corrected it in our new draft.
R1-13. Section 8 seems to be a repetition of the material
presented in the background section...I was also a bit sur-
prised when I haven’t found threats to validity and the
discussion of future work in the paper.
Thanks for pointing this out. We have included a section for
threats to validity (see R1-13a on page ??) as well as modified
the related work (see R1-13b on page ??) in current version
of the manuscript. In contrast to the previous version, in
this version of the related work, we focused more on high
level picture of current research in vulnerability and bug
detection, use of machine learning in different approaches of
bug detection. We hope, this version of the related work help
the reader get a high level overview of the current research.

RESPONSE TO REVIEWER - 2
We thank you for your detailed and constructive re-

views. We have made several modifications, clarification
and changes to our manuscript that addresses your reviews
and concern. We hope this version or our manuscripts is
better suitable for publication thanks to your meticulous
reviews and feedback. To assist further review process,
we have annotated the changes with R2-X. We have also
indicated new text in blue.

R2-1. I was unable to run the code from their repository,
because their get_data.sh script returned an HTML file
with a quoted exceeded error instead of the expected ZIP
file. I tried the script on two different days.

We apologize for the error. We have corrected the
Google Drive URL and tested on an new machine. The
get_data.sh script is functional now. Should there be
other problems, please feel free to raise an issue on github,
we’ll be sure address them promptly.

R2-2. The authors use red and green together in their
figures. I’m colorblind, so that’s sometimes a problem. I
couldn’t distinguish the two classes in Figure 8, even with
the use of different symbols, as there are too many tiny
symbols to readily distinguish.
We sincerely apologize for this mistake. It was an honest

mistake on our part. We have updated the relevant figures
with appropriate scheme.

R2-3. The authors use the term ”non-vulnerable” to refer to
code with no known vulnerability. Much of the literature
prefers the term ”neutral”, as you cannot be certain that
there is no vulnerability to be found.
We completely agree with this point. Being a data-driven

method, the zero day vulnerabilities are beyond the scope
of the paper’s analysis. In that way, the neutral code are
actually “neutral”. We have clarified the point in the pa-
per (see R2-3 on page ??). Further, we have replaced the term
non-vulnerable with “neutral” across the paper.

R2-4. There are a couple mispellings in section 5.1 in
the sentence with the phrase ”ate not”. Also, reference
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37 consists solely the name of the static analysis tool
”Flawfinder.”
Thanks for pointing those out. In current version of the

manuscript, we corrected those (and other) typographical
errors. The reference has also been updated.

RESPONSE TO REVIEWER - 3
We thank you for your detailed and constructive re-

views. We have made several modifications, clarification
and changes to our manuscript that addresses your reviews
and concern. We hope this version or our manuscripts is
better suitable for publication thanks to your meticulous
reviews and feedback. To assist further review process, we
have annotated the changes with R3-X

R3-1. The paper does not provide the same level of in-
tuitive understanding for their own technique, REVEAL,
which is presented in a very abstract way. While the high-
level aspects of the technique are clear, it would have been
illustrative to see how REVEAL performs on the same
examples for which the other technique did not do as well
(some of the examples later in the paper do address this
partly).
We apologize for the confusion here. We have updated

our new draft to highlight the problems with current DL
vulnerability predictors earlier on in the paper in §2. Specif-
ically, we identify each problem with a Problem XX tag,
and we use those problems as motivation for developing
the REVEAL pipeline (see R3-1 on page ??).

R3-2. I would have also liked to see a head-on-head com-
parison between REVEAL and other other techniques, es-
pecially the DEVIGN technique, which also seems to have
similar accuracy numbers though it assumes the dataset
is balanced. But I can understand why this is difficult,
especially as the original DEVIGN implementation wasn’t
available to the authors and they had to roll their own.
Thanks for pointing this out. As you mentioned, we had

to spin up our own implementation of the devign model.
Futher, we were only able to access 2 out of 4 of their
datasets. They released FFMpeg and QEMU but did not
release Linux and Wireshark datasets. Unfortunately, we
were unsuccessful in reaching out to the authors of the
original paper for their model and other datasets. As a
result, we could not perform an head-on comparison with
their work. For the datasets, they did release (i.e., FFMPeg
and QEMU), we have reported our findings in this paper.

We note that, some very recent work have also
tried to recreate Devign’s result. For instance, Microsoft’s
CodeXGLUE used their large scale CodeBERT model on
Devign dataset and achieved accuracy of 62.08% (see
https://git.io/JtRfI for details), which is slightly better than
what we observe in this paper and significantly lower than
what Devign originally had reported.

R3-3. Grammatical and punctuation issues.
Thank you for pointing those out. We apologize for such

mistakes. We have corrected those.

https://git.io/JtRfI
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