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Abstract—In recent years, Neural Machine Translator (NMT)
has shown promise in automatically editing source code. Typical
NMT based code editor only considers the code that needs to
be changed as input and suggests developers with a ranked list
of patched code to choose from - where the correct one may
not always be at the top of the list. While NMT based code
editing systems generate a broad spectrum of plausible patches,
the correct one depends on the developers’ requirement and often
on the context where the patch is applied. Thus, if developers
provide some hints, using natural language, or providing patch
context, NMT models can benefit from them.

As a proof of concept, in this research, we leverage three
modalities of information: edit location, edit code context, commit
messages (as a proxy of developers’ hint in natural language)
to automatically generate edits with NMT models. To that
end, we build MODIT, a multi-modal NMT based code editing
engine. With in-depth investigation and analysis, we show that
developers’ hint as an input modality can narrow the search space
for patches and outperform state-of-the-art models to generate
correctly patched code in top-1 position.

Index Terms—Source Code Edit, Neural Networks, Automated
Programming, Neural Machine Translator, Pretraining, Trans-
formers

I. INTRODUCTION

Programmers often develop software incrementally, adding
gradual changes to the source code. In a continuous software
development environment, programmers modify their source
code for various reasons, including adding additional func-
tionality, fixing bugs, refactoring, etc. It turns out that many of
these changes follow repetitive edit patterns [1]–[3] resulting
in a surge of research effort to automatically generate code-
changes learned from past examples [2]–[6].

In particular, Neural Machine Translation (NMT) models
have been successful in learning automatic code changes [5]–
[11]. At the core, these models contain an encoder and a
decoder — the encoder encodes the code that needs to be
edited, and the decoder sequentially generates the edited code.
Such NMT models are trained with a large corpus of previous
edits to learn generic code change patterns. In the inference
time, given a code fragment that needs to be edited, a trained
NMT model should automatically generate the corresponding
edited code.

However, learning such generic code changes is chal-
lenging. A programmer may change an identical piece
of code in different ways in two different contexts, both
can potentially be correct patches (see Figure 1). For

//Guidance: use LinkedList and fix sublist problem ...
public void addPicture (String picture){

if ((pictures) == null) {
- pictures = new ArrayList<>();
+ pictures = new LinkedList<>(); //correct patch
+ pictures = new HashSet<>(); //plausible patch

}
pictures.add(picture);

}

Fig. 1: Example of an identical code (marked in red) changed in two
different ways ( green and blue) in two different contexts, where both can
be correct patches. However, based on developers’ guidance (top line) to
fix a list related problem, green is the correct patch in this context.

example, an identical code fragment pictures = new
ArrayList<>() was changed in two different ways:
pictures = new HashSet<>(); and pictures =
new LinkedList<>() in two different code contexts.
Without knowing the developers’ intention and the edit con-
text, the automated code editing tools have no way to predict
the most intended patches. For instance, in the above example,
LinkedList was used to fix a sublist-related problem. Once
such an intention is known, it is easy to choose a LinkedList-
related patch from the alternate options. Thus, such an addi-
tional modality of information can reinforce the performance
of automated code-editing tools.

 1 // Guidance: fix problem which occurred when
 2 // the resulting json is empty ...
 3
 4 private String generateResultingJsonString(
 5       char wrappingQuote, Map<String, Object>jsonMap){
 6     JsonObject jsonObject = new JSONObject(jsonMap);
 7     String newJson = jsonObject.toJSONString(LT_COMPRESS);
 8     if (
 9 -        newJson.charAt(1) != wrappingQuote
10 +        !jsonObject.isEmpty() &&
11 +        (newJson.charAt(1) != wrappingQuote)
12     ){
13     return replaceUnescaped(
14        newJson, newJson.charAt(1), qrappingQuote);
15     }
16     return newJson;
17 }

Guidance Context

Fig. 2: A motivating example. The guidance provides a brief summary
of what needs to be changes. The underlined tokens are directly copied
from guidance and context into the patched code.

In fact, given just a piece of code without any additional
information, it is perhaps unlikely that even a human developer
can comprehend how to change it. Consider another real-life
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example shown in Figure 2. If a programmer only considers
the edited expression in line 9, it is difficult to decide how
to modify it. However, with additional information modalities
– i.e., the guidance (line 1,2) and the context (the whole
method before the patch), the correct patch often becomes
evident to the programmer since the guidance effectively
summarises how to change the code and the context provides
necessary ingredients for generating a concretely patched code.
We hypothesize that such multi-modal information could be
beneficial to an automated code-editing tool. To that end, we
design MODIT, a multi-modal code editing engine that is based
on three information modalities: (i) the code fragment that
needs to be edited, (ii) developers’ intention written in natural
language, and (iii) explicitly given edit context.

In particular, MODIT is based on a transformer-based [12]
NMT model. As input, MODIT takes the code that needs to
be edited (e.g., the lines that need to be patched), additional
guidance describing developers’ intent, and the context of the
edits that are explicitly identified by the developer (e.g., the
surrounding method body, or surrounding lines of code, etc.).
Note that previous works [6], [11] also provided context and
the edit location while generating edits; however, they are fed
together to the model as a unified code element. Thus, the
model had the burden of identifying the edit location and then
generating the patch. In contrast, isolating the context from
the edit location and feeding them to the model as different
modalities provides MODIT with additional information about
the edits.

Curating developers’ intent for a large number of edits that
can train the model is non-trivial. As a proof of concept,
we leverage the commit messages associated with the edits
to simulate developers’ intent automatically. We acknowledge
that commit messages could be noisy and may not always
reflect the change summary [13]. Nonetheless, our extensive
empirical result shows that, even with such noisy guidance,
MODIT performs better in generating correctly edited code.

Being a model that encodes and generates source code,
MODIT needs to both clearly understand and correctly gener-
ate programming languages (PL). While several previous ap-
proaches [6], [14] designed sophisticated tree/grammar-based
models to embed the knowledge of PL into the model, the
most recent transformer-based approaches [15]–[17] showed
considerable promise with pre-training with a large volume of
source code. Since these models are pre-trained with billions
of source code written by actual developers, and transformers
are known to learn distant dependencies between the nodes,
these models can learn about code structures during the pre-
training step. Among such pre-trained models, PLBART [17]
learns jointly to understand and generate source code and
showed much promise in generative tasks. Thus, we chose
PLBART as the starting point to train MODIT, i.e., we initialize
MODIT’s model with learned parameters from PLBART.

We evaluate MODIT on two different datasets ( B2Fs,
and B2Fm) proposed by Tufano et al. [8] consisting of an
extensive collection of bug-fix commits from GitHub. Our
empirical investigation shows that a summary of the change

written in natural language as additional guidance from the
developer improves MODIT’s performance by narrowing down
the search space for change patterns. The code-edit context,
presented as a separate information modality, helps MODIT
to generate edited code correctly by providing necessary code
ingredients (e.g., variable names, method names, etc.). MODIT
generates ∼3.5 times more correct patches than CODIT show-
ing that MODIT is robust enough to learn PL syntax implicitly.
Furthermore, MODIT generates two times as many correct
patches as a large transformer model could generate.

Additionally, our empirical investigation reveals that when
we use one encoder to encode all information modalities rather
than learning from individual modalities separately, the model
learns representation based on inter-modality reasoning. In
contrast, a dedicated encoder for each individual modality
only learns intra-modality reasoning. Our experiment shows
that a multi-modal/single-encoder model outperforms multi-
modal/multi-encoder model by up to 46.5%.

We summarize our main contributions in this paper as
follows.

• We propose MODIT– a novel multi-modal NMT-based
tool for automatic code editing. Our extensive empirical
evaluation shows that Automatic Code Editing can be
vastly improved with additional information modalities
like code context and developer guidance.

• We empirically investigate different design choices for
MODIT. We provide a summary of the lessons that we
learned in our experiments. We believe such lessons are
valuable for guiding future research.

• We prototype and build MODIT and open-source all our
code, data in https://git.io/JOudU.

II. BACKGROUND

A. Neural Machine Translation

Neural Machine Translation(NMT) [18] is a very well
studied field, which has been very successful in translating
a sentence from one language to another. At a very high level,
input to an NMT model is a sentence (X = x1, x2, ..., xn),
which is usually a sequence of tokens (xi), and the output
is also a sentence (Y = y1, y2, ..., ym) – sequence of tokens
(yi). While learning to translate from X to Y , NMT mod-
els learn conditional probability distribution P (Y |X) . Such
probability distributions are learned w.r.t. model parameters θ,
where model training process optimizes θ in such a way that
maximizes the expected probability distribution of a dataset.
An NMT model usually contains an encoder and a decoder.
The encoder processes, understands, and generates vector
representations of the input sentence. The decoder starts after
the encoder and sequentially generates the target sentence by
reasoning about the encoder-generated input representation.
While sequentially generating the target sentence, the decoder
usually performs different heuristic searches (for instance,
beam search) to balance exploration and exploitation.

In recent few years, Software Engineering has seen a wide
spectrum of adaptation of NMT. Some prominent application
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of NMT is SE include Program Synthesis [19], Code sum-
marization [20], [21], Edit summarization [13], Code Edit
Generation [5], [6], [8], Automatic Program Repair [9]–[11],
etc. These research efforts capitalize on NMTs’ capability to
understand and generate complex patterns and establish NMT
as a viable tool for SE-related tasks.

B. Transformer Model for Sequence Processing

Transformer [12] model revolutionized sequence processing
with attention mechanism. Unlike the traditional RNN-based
model where input tokens are processed sequentially, the trans-
former assumes soft-dependency between each pair of tokens
in a sequence. Such dependency weights are learned in the
form of attention weights based on the task of the transformer.
While learning the representation of a token, the transformer
learns to attend to all the input tokens. From a conceptual point
of view, the transformer converts a sequence to a complete
graph1, where each node is a token. The weights of the
edges are attention weights between tokens which are learned
based on the task of the transformer. The transformer encodes
each token’s position in the sequence (positional encoding)
as part of the input. In such a way, the transformer learns
long-range dependency. Since its inception, the transformer is
very successful in different NLP understanding and generation
tasks. Transformers’ ability of reasoning about long-range
dependency is proved useful for several source code processing
task including code completions [22], code generation [23],
code summarization [21].

C. Transfer Learning for Source Code

In recent few years, Transfer learning shows promise for
a wide variety of SE tasks. Such transfer learning aims at
learning task agnostic representation of source code and reuse
such knowledge for different tasks. One way to learn such task
agnostic representation of input is pre-training a model with a
large collection of source code. The learning objective of such
pre-training is often understanding the code or generating the
correct code. A pre-trained model is expected to embed the
knowledge about source code through its parameters. Such
pre-trained models are later fine-tuned for task-specific objec-
tives. CuBERT [24], CodeBERT [15], GraphCodeBERT [16]
are all transformer-based encoder models which are pre-trained
to understand code. Such models are primarily trained using
Masked Language Model [25], replaced token prediction [15],
semantic link prediction [16], etc.

For code generation, CodeGPT [9], [26] pre-trains a
transformer-based model to generate general-purpose code
sequentially. More recently, PLBART [17] pre-trained
transformer-based model jointly for understanding and gen-
erating code with denoising auto-encoding [27]. PLBART
consists of an encoder and a decoder. The encoder is presented
with slight noise (for instance, token replacement) induced
code, and the decoder is expected to generate noise-free code.
Since code editing task requires both the understanding of code

1https://en.wikipedia.org/wiki/Complete graph

and code generation, we chose PLBART as the base model for
MODIT.

III. MODIT

Figure 3 shows an overview of MODIT’s working procedure.
MODIT is a multi-layer encoder-decoder based model consist-
ing of a Transformer-based encoder and a Transformer-based
decoder. Both the encoder and decoder consist of 6 layers.
MODIT works on three different modalities of information:
(i) Code that needs to be edited (ep), (ii) natural language
guidance from the developer (G), and (iii) the context code
where the patch is applied (C). We acknowledge that ep is
essentially a substring of C. However, by explicitly extracting
and presenting ep to MODIT, we provide MODIT with ad-
ditional information about the change location. Thus, despite
being a part of the context, we consider ep a separate modality.
Nevertheless, MODIT consists of three steps. First, the pre-
processing step processes and tokenizes these input modalities
(§III-A). Then the encoder in MODIT encodes the processed
input, and the decoder sequentially generates the patched code
as a sequence of tokens (§III-B). At final step, MODIT post-
processes the decoder generated output and prepares the edited
code (§III-C).

A. Pre-processing

Input Consolidation. In the pre-processing step, MODIT
generates consolidated multi-modal input (X) from
the three input modalities (i.e., ep, G, and C). MODIT
combines these input modalities as a sequence separated
by a special <s> token i.e., X = ep <s> G <s> C . In the
example shown in Figure 2, ep is newJson.charAt(1)
)!= wrappingQuote , G is fix problem which
occurred when the resulting json is empty,
and C is the whole function before the edit (see Input
Modalities in Figure 3). MODIT generates a consolidates
multi-modal input sequence as newJson.charAt(1))
... <s> fix problem which occurred ... <s>
private String ... }.

Tokenization. MODIT uses sentence-piece tokenizer [28].
Sentence-piece tokenizer divides every token into sequence
of subtokens. Such subword tokenization is similar to pre-
viously used byte-pair encoding in automatic code edit-
ing literature [9], [29]. We use PLBART [17]’s sentence-
piece tokenizer which is trained on billions of code
from GitHub. After tokenizing the consolidated input X
from Figure 2, we get new Json . char At ( 1
) ... <s> fix problem which oc cur red ...
<s> private String ... _}.

B. Encoder-Decoder Model

The input to MODIT’s encoder-decoder model is a sequence
of subtokens generated in the previous step.
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Input Modalities

private String ... (char  ...
 Map<String, Object>jsonMap){...} 

fix problem which occurred
when the resulting json is empty 

newJson.charAt(1) != wrappingQuote

Modality 1: Code to be edited

Modality 2: Guidance

Modality 3: Context

newJson... <s> 
fix problem ... <s> 
private String ... }

<s> _new Json ...<s> 
_fix _problem ...<s> 
_private _String ... _}

Combined Multi-modal Input

Pre-processing

Tokenization

Tokenized Input

Encoder-Decoder Model

Transformer
Encoder

Transformer Decoder

Output Generation

_! _json
Object . is Empty
() _&& _( ... </s>

Top Candidate Code

Post-processing

Edited Code

! json.isEmpty() && ( newJson.charAt(1) !=
wrappingQuote )

Fig. 3: Overview of MODIT pipeline

Transformer Encoder. Given an input sequence X =
x1, x1, ..., xn, the encoder learns the representation of every
token at layer l as Re

l (xi) using self-attention computed as

Re
l (xi) =

n∑︂
j=i

ai,j ∗Re
l−1(xj) (1)

Where Re
l−1(xj) is the representation of subtoken xj as

generated by layer l − 1, and ai,j is the attention weight
of subtoken xi to xj . Such attention weights are learned by
multi-head attention [12]. Final layer generated representation
(i.e., Re

6(xi)) is the final representation for every subtoken xi

in the input. Note that, the encoder learns the representation
of Equation (1) of a subtoken, using all subtokens in the
sequence. Thus the learned representation of every subtoken
contains information about the whole input sequence. Since
we encode all the information modalities in one sequence, the
learned representation of every subtoken encodes information
about other modalities.
Transformer Decoder. The decoder in MODIT is a transformer-
based sequential left-to-right decoder consisting of 6 layers. It
sequentially generates one subtoken at a time using previously
generated subtokens and the final representation (Re

l (xi)) from
the encoder. The decoder contains two modules – (i) self-
attention, and (ii) cross-attention. The self-attention layer work
similar to the self-attention in the encoder. First, with self
attention, decoder generates representation Rdl(yi) of last
generated token yi with self attention on all previously gen-
erated tokens (y1, y2, ..., yi). This self attention follows same
mechanism described in Equation (1). After learning decoder
representation by self attention, decoder applies attention of
encoder generated input representation using the following
equation,

Dl(yi) =

n∑︂
j=i

αl
i,j ∗Re

6(xj) (2)

Where αl
i,j = softmax

(︁
dot

(︁
Re

6 (xj) , R
dl (yi)

)︁)︁
is the at-

tention weight between output subtoken yi to input subtoken
xj . The softmax generates an attention probability distribution
over the length of input tokens. Finally the decoder learned
representation, Dl(yi) is projected to the vocabulary to predict
maximally likely subtoken from the vocabulary as next token.

In summary, the encoder learns representation of every
subtokens in the input using all input subtoken, essentially

encoding the whole input information in every input subtoken
representation. The decoder’s self-attention mechanism allows
the decoder to attend to all previously generated subtokens
allowing the decoder decide on generating correct token at
correct place. The cross-attention allows the decoder to attend
to encoded representation - implicitly letting the model decide
where to copy from the input where to choose from new
tokens in the vocabulary. We initialize the end-to-end encoder-
decoder in MODIT using pre-trained weights of PLBART [17].

C. Output Generation

The decoder in MODIT continue predicting subtoken until
it predicts the end of sequence </s> token. During inference,
MODIT uses beam search to generate sequence of subtokens.
Once the decoder finishes, MODIT post-processes the top
ranked sequence in the beam search. First, MODIT removes
the end of sequence </s> token. It then detokenizes the
subtokens sequence to code token sequence. In this step,
MODIT merges generated subtokens that are fragments of
a code token into one code token. For the example shown
in Figure 2, MODIT generates the subtoken sequence !
json . is Empty () && ( new Json . char At
( 1 ) != wrap ping Quote ) </s>. After detok-
enization, MODIT generates ! json.isEmpty()&& (
newJson.charAt(1)!= wrappingQuote ) .

IV. EXPERIMENTAL DESIGN

A. Dataset

TABLE I: Statistics of the datasets studied.

Dataset Avg. Avg. Avg. tokens # examples
Tokens Change Size* in Guidance Train Valid Test

B2Fs 32.27 7.39 11.55 46628 5828 5831

B2Fm 74.65 8.83 11.48 53324 6542 6538
* Change size measured as token edit distance.

To prove our concept of MODIT, we experiment on two
different datasets (i.e., B2Fs, and B2Fm) proposed by
Tufano et al. [8]. In these two datasets, they collected large
collections of bug-fix code changes along with commit mes-
sages from Java projects in GitHub. Each example in these
datasets contains the java method before the change (Cp), the
method after the change (Cn), and the commit message for



the change. There are some examples (< 100) with corrupted
bytes in the commit message, which we could not process.
We excluded such examples from the dataset. Table I shows
statistics of the two datasets we used in this paper. B2Fs

contains smaller methods with maximum token length 50,
and B2Fm contains bigger methods with up to 100 tokens in
length. The average size of the change (edit distance) is 7.39,
and 8.83 respectively, in B2Fs and B2Fm.

B. Data Preparation

For the datasets described in Section IV-A, we extract the
input modalities and the expected output to train MODIT. For
every method pair (i.e., before edit - Cp, after edit - Cn) in
those dataset, we use GumTree [30] to extract a sequence
of tree edit locations. We identify the root of the smallest
subtree of Cp’s AST that encompasses all the edit operations.
We call the code fragment corresponding to that subtree as
code to be edited(ep) and used as MODIT’s first modality.
Similarly, we extract the code corresponding to the smallest
subtree encompassing all the edit operations from Cn and
use that as code after edit(en). We use the commit message
associated with the function pair as MODIT’s second modality,
guidance(G). Finally, we use the full method before edit (Cp)
as MODIT’s third modality, context(C).

C. Training

After combining every example in the datasets in MODIT’s
input (ep, G, C) and expected output (en), we use this
combined dataset to train MODIT. For training MODIT, we
use Label Smoothed Cross Entropy [31] as loss function. We
use Adam optimizer, with a learning rate of 5e−5. We train
MODIT for 30 epochs, after every epoch, we run beam search
inference on the validation dataset. We stop training if the
validation performance does not improve for five consecutive
validations.

D. Evaluation Metric

We use the top-1 accuracy as the evaluation metric through-
out the paper. For proof-of-concept, we evaluate all techniques
with beam size 5. When the generated patched code matches
exactly with the expected patched code en, it is correct,
incorrect otherwise. Note that this is the most stringent metric
for evaluation. Previous approaches [6], [10], [11] talked about
filtering out infeasible patches from a ranked list of top k
patches using test cases. However, we conjecture that such
test cases may not always be available for general purpose
code edits. Thus, we only compare top-1 accuracy.

E. Research Questions

MODIT contains several design components: (i) use of
multimodal information, (ii) use of transformer and initial-
izing it with the pre-trained model, and (iii) use of end-
to-end encoder-decoder (using PLBART) to generate patches
instead of separately using pre-trained encoder or pre-trained
decoder, as used by previous tools. First, we are interested in
evaluating MODIT w.r.t. state-of-the-art methods. In particular,

we evaluate how these three design choices effect MODIT’s
performance. So, we start with investigating,

RQ1. How accurately does MODIT generate edited code
w.r.t. other techniques?

MODIT uses three input modalities. Our next evaluation
target is how these individual modalities effect MODIT’s
performance? Thus we ask,

RQ2. What are the contribution of different input
modalities in MODIT ’s performance?

Finally, recall from Section III-A, MODIT proposes to
encode all the input modalities as a sequence and use one
encoder for the consolidated multi-modal input. An alternative
to this encoding mechanism is to encode individual input
modality with dedicated input encoder. Our next evaluation
aims at finding out the best strategy to encode input modalities.
Hence, we investigate,

RQ3. What is the best strategy to encode multiple input
modalities?

V. EMPIRICAL RESULTS

In our first research question, we evaluate MODIT’s perfor-
mance w.r.t. other techniques and the effect of MODIT’s design
components.

RQ1. How accurately does MODIT generate edited code w.r.t.
other techniques?

Experimental Setup. We carefully chose the baselines to
understand the contribution from different design choices of
MODIT. We evaluated our model in two experimental settings.
First, we train different baseline models where the full model
is trained from scratch. In this setting, the first baseline
we consider is an LSTM with attention [18] NMT model.
Various existing code patching approaches [5], [7], [8], [11]
used such settings. Second baseline is Transformer [12] based
S2S model. We consider two different-sized transformers.
This enables us to contrast effect of model size in code-
editing performance. The Transformer-base model consists of
six encoder layers and six decoder layers. The Transformer-
base model’s architecture is the same as MODIT’s architecture.
Furthermore, we consider another transformer with a much
larger architecture. Transformer-large contains twelve encoder
layers and twelve decoder layers with three times as many
learnable parameters as the Transformer-base model. The final
baseline in this group is CODIT, which is a tree-based model.
Comparison w.r.t. CODIT allows us to contrast externally
given syntax information (in the form of CFG) and learned
syntax by transformers (i.e., MODIT). We use all three input
modalities (see Figure 3 for example) as input to the LSTM
and Transformer. Using auxiliary modalities is non-trivial with
CODIT since the input to CODIT must be a syntax-tree. Thus,
we use uni-modal input (ep) with CODIT.

In the second setting, we consider different pre-trained
models, which we used to fine-tune for patch generation.
Figure 4 shows schematic diagrams of the pre-trained models
we compared in this evaluation. First two models we consid-
ered are CodeBERT [15], and GraphCodeBERT [16]. Both



<s> if ( first ... } <s>

first == </s>

first ==

null

null ;

;

Decoder Trained from
Scratch

Pretrained
Bidirectional Encoder

(a) CodeBERT — Consist of bidirectional pretrained
encoder and a decoder trained from scratch.

<SEP>

first == </s>

first ==

null

null ;

;

;

<SEP>

}

;

if

( ...

first ...<s>

if

Pretrained Left-to-Right Decoder

(b) CodeGPT — One pretrained single decoder processes
the input and output sequentially from left to right.

<s> if ( first ... } <s>

first == </s>

first ==

null

null ;

;

Pretrained
Bidirectional Encoder

Pretrained Left-to-
Right Decoder

(c) PLBART — Consist of pretrained bidirectional encoder
and pretrained left to right decoder.

Fig. 4: Schematic diagram of the three types of pre-trained models. used
to evaluate MODIT.

of these models are pretrained encoders primarily trained to
understand code. To use these for the patching task, we add a
six-layered transformer-based decoder along with the encoder.
The decoder is trained from scratch (see Figure 4a). Another
pre-trained baseline is CodeGPT [26]. GPT is a single left-
to-right decoder model primarily pre-trained to generate code.
For the code editing task, a special token <SEP> combines the
input and the output as a sequence separated. Jiang et al. [9]
showed the effectiveness of GPT for the source code patching
task (see Figure 4b). In contrast to these pre-trained models,
MODIT uses PLBART, an end-to-end encoder-decoder model
trained to understand and generate code simultaneously (see
Figure 4c). To compare from a fairground, we evaluate these
pre-trained models with uni-modal input (ep), and multi-modal
input (ep<s> G<s> C), separately.

TABLE II: Top-1 accuracies of different models w.r.t. their training
type, model sizes, input modality.

Training Model # of Multi- Accuracy (%)
Type Name params (M) Modal B2Fs B2Fm

LSTM 82.89 ✓ 6.14 1.04

Transformer-base 139.22 ✓ 11.18 6.61

Transformer-large 406.03 ✓ 13.40 8.63

Fr
om

Sc
ra

tc
h

CODIT 105.43 ✗ 6.53 4.79

✗ 24.28 16.76
CodeBERT 172.50

✓ 26.05 17.13

✗ 24.44 16.85
GraphCodeBERT 172.50

✓ 25.67 18.31

✗ 28.13 16.35
CodeGPT 124.44

✓ 28.43 17.64

✗ 26.67 19.79

Fi
ne

-t
un

ed

MODIT 139.22
✓ 29.99 23.02

Results. Table II shows the accuracy in top 1 predicted

patch by MODIT along with different baselines. LSTM based
S2S model predicted 6.14% and 1.04% correct patches in
B2Fs and B2Fm respectively. The Transformer-base model
achieves 11.18% and 6.61% top-1 accuracy in those datasets,
which improves further to 13.40% and 8.63% with the
Transformer-large model. CODIT predicts 6.53% and 4.79%
correct patches in B2Fs and B2Fm, respectively. Note that
CODIT takes the external information in the form of CFG;
thus, the patches CODIT generate are syntactically correct.
Nevertheless, the transformers, even the smaller model, per-
form better to predict the correct patch. We conjecture that the
transformer model can implicitly learn the code syntax without
direct supervision.

In contrast to the models trained from scratch, when we
fine-tune a pretrained model, it generates significantly more
correct patches than models trained from scratch. For instance,
MODIT (initialized with pretrained PLBART) generates 168%
and 248% more correct patches than the Transformer-base
model (with randomly initialized parameters), despite both
of these models having the same architecture and the same
number of parameters. In fact, the smallest fine-tuned model
(CodeGPT) performs much better than the larger model trained
from scratch (Transformer-large).

All the fine-tuned models exhibit better performance when
the input data are multi-modal with various degrees of im-
provement. With all three input modalities, CodeBERT [15]
generates 7% and 2.2% more correct patches in B2Fs and
B2Fm, respectively, compared to a unimodal CodeBERT
model. In case of MODIT, such improvement is 11.07% in
B2Fs and 16.23% in B2Fm. The G in the multi-modal data
often contains explicit hints about how to change the code. For
instance, consider the example shown in Figure 2, the guidance
explicitly says there is a problem with the json when it is
empty. Furthermore, with the presence of C in the input,
the model can identify different variables, methods used in
the method and potentially copy something from the context.
We conjecture that such additional information from these
two additional input modalities (i) reduce the search space
for change patterns, (ii) help models copy relevant identifiers
from the context.

Among the fine-tuned models multi-modalities, MODIT
generates 15.12% more correct patches than CodeBERT,
16.82% than GraphCodeBERT, and 5.49% than CodeGPT in
B2Fs. In the case of B2Fm dataset, MODIT’s improve-
ment in performance is 34.38%, 25.72%, 30.50% higher than
CodeBERT, GraphCodeBERT, and CodeGPT, respectively. To
understand these results better, let us look at some of the
examples.

Figure 5 shows an example patch where MODIT correctly
generated the expected patch but CodeGPT could not. If we
look closely, we can see that the code to be changed (ep) is a
boolean expression where the two clauses are combines with
&&. While only the first clause, one.isSimilar(two) is
the expected output, CodeGPT chooses the second clause, one
.toString().equals(two.toString()) from the
original. Recall from Figure 4b, CodeGPT processes the com-



//Guidance: merging of items that aren’t actually equal
public static boolean equals(

ItemStack one, ItemStack two) {
- return one.isSimilar(two) &&
- (one.toString().equals(two.toString()));
+ return one.isSimilar(two); //MODIT generated

/* CodeGPT generated */
+ return one.toString().equals(two.toString());
}

Fig. 5: Example patch where MODIT was able to generate correct patch,
but CodeGPT could not. MODIT’s patch is shown in green, and CodeGPT
generated patch is shown in blue.

bined input and output sequence (separated by special <SEP>
token) in left-to-right fashion. Thus, encodes representation of
the input tokens do not contain information about the whole
input sequence. In contrast, the MODIT uses a pre-trained bi-
direction encoder which helps MODIT to understand the input
fully. Based on the examples we have seen and the empirical
result, we conjecture that, for code-editing tasks, the model
must fully understand the input in a bi-directional fashion.

// Guidance: ... code refactoring ...
public boolean isEmpty() {
- if((first) == null){ return true;}
- return false;
+ return (first) == null; //MODIT predicts

/* CodeBERT generated */
+ return ((first) == null) || (first.get()) == null;
}

Fig. 6: Correctly predicted patch by MODIT. CodeBERT could not
understand and reason about the textual hint to predict the correct patch.

Figure 6 shows an example where MODIT generated cor-
rect patch, CodeBERT could not. Note that the guidance
text explicitly asks about code refactoring, implying that the
patched code should be semantically similar to the original
code. Similar to the original code, patched could should return
true when first == null , otherwise it should return
false . An automated code change tool should not add
additional code features when doing the refactoring. However,
CodeBERT generated patch which introduced an additional
clause first.get()== null in the return expression,
which make CodeBERT’s generate code semantically different
from the original. MODIT was able to generate the correct
patch for this example.

Finally, we summarize the empirical lessons we learned in
this research question as

• Multi-modal input improves Code-Editing capability, ir-
respective of the underlying model used. The guidance
often narrows the edit pattern search space, and the
context narrows down the token generation search space.

• Transformer models (especially larger ones) are robust
enough to learn the code’s syntax information without
direct supervision. When a pre-trained model is used
to initialize transformer parameters, the improvement is
notably higher.

• For code-editing task, both understanding the input and
correctly generated output are important. While a pre-

trained encoder understands the code and a pre-trained
decoder generates correct code, an end-to-end pre-trained
encoder-decoder model (e.g., PLBART) the best choice
to fine-tune for this task.

Result 1: MODIT generates 29.99%, and 23.02% correct
patches in top-1 position for two different datasets outper-
forming CodeBERT by up to 25.72%, GraphCodeBERT by
up to 34.38%, and CodeGPT by up to 30.50%. Pre-trained
models tend to be more effective than models trained from
scratch for code editing—MODIT improves the performance
by 167% than the best model trained from the scratch.

MODIT combines multiple modalities of information to
generate patches. Now we investigate,

RQ2. What are the contribution of different input modalities
in MODIT ’s performance?

Experimental Setup. In this experiment, we investigate the
contribution of different input modalities in MODIT’s perfor-
mance. Recall from Section III-A that we use three inputs
in MODIT (i.e., ep, C, G). Here, we investigate different
combinations of such input modalities. More precisely, we
investigate the influence of three information sources: (i)
code that needs to be changed (ep), (ii) context (C), and
(iii) guidance (G). Note that, by presenting ep as a separate
information modality, we are essentially providing MODIT
with the information about the location of the change. To study
the effect of such presentation, we study another alternative
experimental setup, where we annotate the change location
inside the context with two unique tokens <START> and
<END>.
TABLE III: Contribution of different input modalities in MODIT’s
performance. ✓ indicates that corresponding input modality is used
as encoder input, ✗ indicates otherwise. We report top-1 accuracy as
performance measure. Exp. ID is used later to refer to corresponding
experiment result. Exp. ID Φ∗ denotes an experiment with ∗ as input
modalities.

Exp. ID
Inputs Accuracy (%)

ep C G B2Fs B2Fm

Φc ✗ ✓ ✗ 13.05 4.50

Φcg ✗ ✓ ✓ 17.89 4.51

Φ†
c ✗ ✓† ✗ 13.03 4.53

Φ†
cg ✗ ✓† ✓ 17.90 4.60

Φe ✓ ✗ ✗ 26.67 19.79

Φeg ✓ ✗ ✓ 28.76 21.63

Φec ✓ ✓ ✗ 29.79 21.40

Φecg ✓ ✓ ✓ 29.99 23.02
† ep is surrounded by two special tokens <START> and <END> inside the context.

Result. Table III shows MODIT’s performance with different
combination of input modalities. When we present only the
context to MODIT, it predicts 13.05% correct patches in B2Fs

and 4.50% in the B2Fm, which improves further to 17.89%,
and 4.51% in those two datasets respectively when we add G.
Note that in these two scenarios, the model does not explicitly
know which portion of the code needs to be edited; it sees the



whole method and predicts (only) the patched code (en). In
addition to learning how to patch, the model implicitly learns
where to apply the patch in this setup. To test whether the
identification of such location is the performance bottleneck,
we surround the code that needs to be patched with two
special tokens <START> and <END>. SequenceR [11] also
proposed such annotation of buggy code. Surprisingly, such
annotation resulted in comparable (slightly worse in one case)
performance by MODIT.

In the next set of experiments, we extract the code that
needs to be edited (ep) and present it as a separate input
modality. First, we only present the ep without the other
two modalities. When we only present the ep and generate
the edited code (en), it results in 26.67% top-1 accuracy
in the B2Fs and 19.79% in the B2Fm. Ding et al. [32]
attributed such improvement to the reduced search space due to
shorter input. Our result corroborates their empirical findings.
Nevertheless, when we add the G modality with the ep,
MODIT’s performance improves to 28.76% and 21.63% in
B2Fs and B2Fm, respectively.

In our final set of experiments in this research question,
we augment ep with the C. In this evaluation setup, MODIT
predicts 29.79% correct patches in the B2Fs and 21.40% in
the B2Fm, which is improved further to 29.99%, and 23.02%
correct patches in those two datasets when we add G.

// Guidance: fixed some bugs in type checking
// improved performance by caching types of expressions
private TypeCheckInfo getType(SadlUnionType expression){

...
return new TypeCheckInfo(

- declarationConceptName, declarationConceptName
/* MODIT generated patch with guidance */

+ declarationConceptName, declarationConceptName,
+ this, expression

/* MODIT generated patch without guidance */
+ this.declarationConceptName,
+ this.declarationConceptName

);
}

Fig. 7: Example showing the effect of textual guidance in MODIT’s
performance. MODIT produced the correct patch with guidance, without
guidance as input MODIT’s produced patch is essentially refactored
version of original input.

Figure 7 shows an example where MODIT with all
modalities could successfully generate correct patch. The
text guidance (G) provides hint that variable expression

should somehow associate with the construction of
TypeCheckInfo in the patched code. However, without
this guidance MODIT generated a wrong patch by accessing
existing parameters from this object. Essentially, without
the guidance, MODIT refactored the input code.

Figure 8 shows the effect of context as input modality to
MODIT. The before edit version of the code(ep) passed the
wrong parameter (m) to sendMessage function. When the
context (C) is presented to MODIT, it saw another variable
(sent) in the context. In contrast, without context(C), MODIT
indeed changed the parameter; but sent m.toString() —
resulting in a wrong patch.

// Guidance: Fix bug of sending wrong message
public void setPredecessor (model.Message m) {

this.predecessor = Integer.valueOf(m.Content);
model.Message sent = new model.Message();
sent.To = m.Origin;

- sendMessage(m);
/* MODIT generates with the context. */

+ sendMessage(sent);
/* MODIT generates without context as input. */

+ sendMessage(m.toString());
}

Fig. 8: Example showing the necessity of context information in
predicting the correct patch. MODIT’s generated correct patch with the
context as input. Without context, MODIT received sendMessage(m)
and the guidance as input, did not know the variable sent could be the
parameter of the function sendMessage, and predicted a wrong patch.

When we extract the buggy code and present the buggy
code along with the context, we see a big performance
improvement (see the difference between Φc, and Φec in
Table III). We hypothesize that, when only context (i.e., full
code) is presented (Φc), the model gets confused to identify
which portion from the context needs to be edited since any
portion of the code is a likely candidate for patching. However,
when we extract the exact code that needs to be edited and
present as a separate input modality to MODIT, it can focus on
patching just that code using other modalities (including the
context) as a supporting source of information. In a recent
study, Ding et al. [32] pointed out the need for effective
ways to include context in the NMT based code editors. Our
empirical results show that MODIT’s way of including context
as a separate modality is a potential solution to that problem.

In summary, each of the modalities contribute to the overall
performances of MODIT. Lessons learned in these experiments
are:

• Additional textual guidance helps the patch generation.
Such guidance can provide important clue about how
to modify the code and sometimes provide ingredients
necessary for the change.

• Adding context explicitly in the input enables the model
to select appropriate identifiers for patching.

• Isolating buggy code help the model put proper focus on
the necessary part of the code while leveraging auxiliary
information from other modalities.

Result 2: All three modalities (code to be edited, context,
and guidance) are essential for MODIT to perform the
best. Without either one of those, performance decreases.
MODIT’s performance improves up to 37.37% when addi-
tional textual guidance is used as an input modality. Context
modality improves MODIT’s performance up to 6.4%.

We investigate alternative ways to combine multiple input
modalities. We ask,

RQ3. What is the best strategy to encode multiple input
modalities?

Experimental setup. To validate MODIT’s design choice of
appending all input modalities into one sequence, we test
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Fig. 9: An alternative architecture of code editing with multi-encoder
model. We initialize each of the encoders with pre-trained Encoder model.

alternative ways to combine input modalities. In particular,
we follow the design choice proposed by Lutellier et al. [10],
where they used multiple encoders to encode the ep and
the C. Tufano et al. [33] also leverages a similar idea to
encode input code and code review messages. Nevertheless,
we use a multi-encoder model shown in Figure 9. In a multi-
encoder setting, we first encode each input modality with a
corresponding dedicated encoder. After the encoder finishes
encoding, we concatenate the encoded representations and pass
those to the decoder for generating patched code. To retain
maximum effectiveness, we initialize each individual encoder
with pretrained weights from CodeBERT [15]. We consider
a single-encoder model (also initialized with CodeBERT) as
a baseline to compare on the fairground. While presenting
the inputs to the single encoder model, we concatenate input
modalities with a unique separator token <s>. Finally, to
test the robustness of our empirical finding, we propose two
different experimental settings. In the first evaluation setup, we
use all three input modalities. We compare a tri-encoder model
with a single-encoder model. Next, we consider bimodal input
data – ep and G. We use a dual-encoder model and compare
it with a single-encoder model in this setup.

TABLE IV: Comparison of multi encoder model.

# of # of Accuracy (%)
Modalities Encoders B2Fs B2Fm

3 (ep, G, C) 3 20.63 11.69

1 26.05 17.13

2 (ep, G) 2 23.12 15.49

1 23.81 17.46

Result. Table IV shows the result of multi-encoder models.
For tri-modal input data, if we use three different encoders,
the model can predict 20.63% correct patches in the B2Fs and
11.69% correct patches in the B2Fm. In contrast, if we use a
single encoder, the model’s predictive performance increases
to 26.05% and 17.13% top-1 accuracy in the B2Fs and the
B2Fm, respectively.

In the bimodal dataset (where the input modalities are
ep and G), the dual-encoder model predicts 23.12% correct
patches in the top-1 position for the B2Fs and 15.49% correct
for the B2Fm. The single encoder counterpart, in this setup,
predicts 23.81% correct patches for the B2Fs and 17.46%
for the B2Fm. The empirical results show that the single-

encoder model performs better in both the experimental setup
than the multi-encoder setup. We find similar results with
GraphCodeBERT [16].

Y1X1 X2 Y2 Decoder

Single Encoder

(a) Single encoder for encoding multiple-modalities. Encoder can
learn representation w.r.t. all modalities.

Y1 Y2

X1 X2

DecoderEncoder 1

1

Encoder 2

(b) Dual-encoder for encoding individual modalities separately. Rep-
resentation of tokens from a particular modality is learned w.r.t. (only)
other tokens from the same modality.

Fig. 10: Input token representation generation in single encoder and
multiple encoder.

To explain why single-encoder is performing better than
multi-encoder, let us look at the encoders’ working procedure.
Figure 10 depicts how the encoder generates representation for
input tokens. Note that the encoders we used in this research
question are transformer-based, and recall from the Section II,
transformer generates representation for an input token by
learning its dependency on all other tokens in the sequence.
When we present all the input modalities to a single encoder,
it generates input representation for those tokens w.r.t. and
other tokens in the same modality and tokens from other
modalities. For instance, in Figure 10a, the encoder generates
X2’s representation considering X1, Y1, and Y2. In contrast,
in Figure 10, X2’s representation is learned only w.r.t. X1,
since encoder1 does not see the input modality Y . Thus, when
we present all the input modalities to one single encoder, we
conjecture that learned representations are more robust than
that of learning with multi-encoder.

Finally, we summarize the lessons we learned in this re-
search question as

• In multi-modal translation, using single encoder results
in better performance than using a separate encoder for
each modality.

• Single-encoder generates input representation by inter-
modality reasoning (attention), hence learns more robust
representation than that of multi-encoder.

Result 3: Encoding all the input modalities by a single
encoder is the best way to learn in a multi-modal setting.
A single encoder improves code-editing performance by up
to 46.5% than the corresponding multi-encoder setting.

VI. DISCUSSION

A. Localization of Code Edit Site

An alternative modeling approach for code editing is to
generate the sequence of edit operations (i.e., INSERT,
DELETE, UPDATE) [32], [34]–[36], where the model must
know the precise location of an edit operation (often a node in



the AST) before applying it. Throughout this paper, we also
assumed that such edit location is known to MODIT. This
assumption may pose a threat to the usefulness of MODIT in
a real development scenario. To mitigate such a threat, we
perform an experiment where we pass the whole function as
input to MODIT and expect the whole edited function to be
generated. Table V shows the top-1 accuracy in the B2Fs and

TABLE V: Performance of MODIT when the input in the full code and
the output is patched full code.

Inputs Accuracy (%)

Full Code Guidance B2Fs B2Fm

✓ ✗ 20.35 8.35

✓ ✓ 21.57 13.18

the B2Fm. MODIT generates correctly patched full code in
20.35% cases for the B2Fs and 8.35% cases for the B2Fm.
With additional textual guidance, the performance is further
improved to 21.57% and 13.18% in the B2Fs and B2Fm,
respectively. While textual guidance helps in this experimental
setup, we notice a big drop in performance than the results
shown in Table III. This is because the benchmark datasets we
used contain small edits (see Table I). Thus, while generating
the full code, the model wastes a large amount of effort
trying to generate things that did not change. Nevertheless,
our hypothesis external guidance improves code editing holds
even when the model generates full code.

B. Tokenization for Source Code Processing

TABLE VI: Comparison between concrete tokenization and abstract
tokenization alongside pre-trained models. Results are shown as top-1
accuracy of full code generation in B2Fs/ B2Fm datasets.

Token type CodeBERT GraphCodeBERT PLBART

Abstract 16.4 / 5.16 17.30 / 9.10 19.21 / 8.98

Concrete 17.3 / 8.38 16.65 / 8.64 20.35 / 8.35

The possible number of source code can be virtually infinite.
Vocabulary explosion has been a big challenge while process-
ing source code with Machine Learning technique [7], [37].
Previous research efforts have addressed this problem using
several different heuristics. For instance, Tufano et al. [7], [8]
identifiers abstraction, which drastically reduces the vocabu-
lary size considered making it easier to learn patterns by the
model. Recent studies [9], [10], [32], [37] found that Byte-Pair
Encoding [38] partially solves the open-vocabulary problem
by sub-dividing rare words into relatively less rare sub-words.
Such sub-division is also learned from large corpora of data.
All the pre-trained models used in this paper used sub-word to-
kenization techniques. CodeBERT and GraphCodeBERT used
RoBERTa tokenizer [39], CodeGPT used GPT tokenizer [40],
and PLBART used sentence-piece tokenizer [28]. The use of
such tokenizers strips away the burden of identifier abstraction.
Our investigation shows that, in some cases, pre-trained mod-
els perform better with concrete tokens than abstract tokens
(see Table VI for detailed result). Thus, we champion using

input and outputs with concrete tokens when a pre-trained
model is used.

VII. RELATED WORKS

A. Automatic Code Change

There are a lot of research efforts to capture repetitiveness of
developers’ way of editing source code. These researches show
the potential of automatic refactoring [41], [42], boilerplate
code [43] etc. These research efforts include (semi-)automatic
tools involving traditional program analysis techniques (e.g.,
clone detection, dependency analysis, graph matching) [3],
[44]. Other research direction aims at learning source code edit
from previous edits and applying those edit patterns in similar
context [1], [45]. Some of these efforts targets very specific
code changes; For example, Nguyen et al. [46] proposed
a graph-matching-based approach for automatically updating
API usage. Tansey et al. [47] semantic preserving transforma-
tion of java classes for automated refactoring. Other directions
of works address more general-purpose code change learned
from open source repositories [5], [6]. Such approaches tar-
get solving automated code editing tasks in a data-driven
approach, and the edit patterns are learned from example
changes. In this research, we also investigated general purpose
source code changes in the wild. More closely to MODIT,
Rolim et al. [4]’s proposed technique constraints source code
generation with additional input/output specification or test
cases. Nevertheless, we argue that textual guidance could be
a very good surrogate specification.

B. NMT for Code Change Modeling

NMT has been studied for past couple of years to learn
automatic source code change modeling. Tufano et al. [5], [7],
[8] presented initial investigation of using NMT in learning
general purpose code changes. Chakraborty et al. [6] proposed
a tree based hierarchical NMT model for general purpose
source code change. Instead of viewing code as sequence
of tokens, they first generated syntax tree by sampling from
Context Free Grammar, and then another model to fill up the
gaps for identifier. To reduce the search space, they performed
scope analysis to search for suitable identifier. Chen et al. [11]
proposed a copy mechanism based NMT model for APR
where the input is the code before change along with the
context, and the output is the code after change. Their work
treated the input as uni-modal way where the whole code is
one singe modality. In this work, we consider multi-modal way
of modeling, where we isolate the code fragment that needs
to be changed from its context and present that code fragment
concatenated with context to the model. Lutellier et al. [10]
treated code needs to be changed and the context as two
difference modalities and use separate encoders. However, our
empirical evidence showed that using one encoder to encode
all the modalities result in the best performance. More recently,
Ding et al. [32] presented empirical evidence that instead of
generating a whole code element (i.e., context+change) of the
target version, only generating the sequence of changes might
perform better for code change modeling. Recent works [35],



[36] proposed models for generating such edit sequence. Such
models may augment or outperform NMT based code editing
– we leave such investigation as future work.

C. Machine Learning for Source Code Analysis

In recent years, Machine Learning, especially Deep Learn-
ing has been widely adopted across different area of soft-
ware engineering due to Availability of large collection of
source code in open source platforms (e.g., GitHub, Bitbucket,
etc.) Application of ML based source code analysis include
bug detection in code [48], clone detection [49], code com-
pletion [50], vulnerability detection [51], code summariza-
tion [21], code translation [52], etc. Recent works also ap-
proached to learn general purpose transferable representation
learning for source code, which can later be used for various
source code related tasks [9], [15], [53]. The approaches
for learning such transferable representations can be broadly
categorized in two ways. The first category of approaches
(e.g., Code2Vec [53]) aims at learning explicit representation
for tokens in the code. Another category of approaches (e.g.,
CodeBERT [15]) transfers syntactic and semantic interaction
between code components in the form of pre-trained models.
In this approach, a model for a specific task is initialized with
a general-purpose pre-trained model, trained to understand and
generate code. In this paper, we empirically found that such
pre-trained models (PLBART) increase accuracy upto 248%
in patch generation.

VIII. THREATS TO VALIDITY

A. External Validity

Bias in the dataset. Both B2Fs, and B2Fm are collection
of bug-fix commits, and thus there is a threat that these dataset
may exhibit specific bias towards bug-fix patches. While the
commits in these datasets are filtered and classified as bug fix
commits, these changes are made by real developers as part
of development life cycle. Unlike other bugfix datasets [54],
B2Fs and B2Fm do not isolate the bug. Thus, we conjecture
that possibility of existence of any such bias is minimal.
Noise in commit message. We used commit message as
a guidance for code editing. While previous research ef-
forts [55], [56] showed that commit messages are very useful
to summarize the changes in a commit, other research ef-
forts [57], [58] also elucidated noises present in the commit
message. To mitigate this threat, we carefully chose the dataset
we tested MODIT on. The original authors [8] of the the
dataset reported that they carefully investigated the dataset
and after manual investigation, they reported that 97.6% of
the commits in their datasets are true positive. Despite this
threat, MODIT’s performance seems to improve with commit
message as additional input.

B. Construct Validity

In general, developers write commit message after they
edited the code, in theory, summarizing the edits they made. In
this paper, we assumed an experimental setup where developer
would write the summary before editing the code. Such

assumption may pose a threat to the applicability of MODIT in
real world, since in some cases, the developer may not know
what edits they are going to make prior to the actual editing.
Regardless, we consider MODIT as a proof-of-concept, where
empirically we show that, if a developer had the idea of change
in mind, that could help an automated code editor.

C. Internal Validity

All Deep Learning based techniques are sensitive to hyper-
parameters. Thus using a sub-optimal hyper-parameter can
pose a threat to the validity of MODIT, especially while
comparing with other baselines. As we compared with other
pre-trained models, we cannot really modify the architecture
and dimensions of other pre-trained models. As for other
hyper-parameters (i.e., learning rate, batch size, etc.), we
use the exact same hyper-parameters described by respective
paper. Nevertheless, we open source out code and data for
broader dissemination.

IX. CONCLUSION

In this paper, we highlight that an automatic code edit tool
should possess knowledge about the underlying programming
language, in general. Also, it can benefit from additional
information such as edit context and developers’ intention
expressed in natural language. To that end, we design, present,
and evaluate MODIT– a multi-modal NMT-based automated
code editor. Our in-depth evaluation shows that MODIT im-
proves code-editing by leveraging knowledge about program-
ming language through pre-training. In addition, we showed
that leveraging additional modalities of information could
benefit the source code editor. Our empirical evaluation reveals
some critical lessons about the design choices of building
an automated code editor that we believe will guide future
research in automatic code editing.
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