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Abstract—The tremendous expansion of data volume has
driven the transition from monolithic architectures towards
systems integrated with discrete and distributed subcomponents
in modern scalable high performance computing (HPC) systems.
As such, multi-layered software infrastructures have become
essential to bridge the gap between heterogeneous commodity
devices. However, operations across synthesized components with
divergent interfaces inevitably lead to redundant software foot-
prints and undesired latency. Therefore, a scalable and unified
computing platform, capable of supporting efficient interac-
tions between individual components, is desirable for large-
scale data-intensive applications. In this work, we introduce
the Extended Base Global Address Space, or xBGAS, micro-
architecture extension to the RISC-V instruction set architecture
(ISA) for scalable high performance computing. The xBGAS
extension provides native ISA-level support for direct accesses to
remote shared memory by mapping remote data objects into a
system’s extended address space. We perform both software and
hardware evaluations of the xBGAS design. The results show
that xBGAS reduces instruction count generated by interprocess
communication by 69.26% on average. Overall, xXBGAS achieves
an average performance gain of 21.96% (up to 37.29%) across
the tested workloads.

I. INTRODUCTION

Modern high performance computing (HPC) applications
such as graph analytics, machine learning, and sparse linear
solvers are known to be both memory and data intensive.
Large-scale HPC architectures map shared computing and
storage resources into discrete nodes to hold enormous data
sets that require an increasingly high degree of parallelism.
In this scenario, frequent inter-node operations to the shared
data in remote nodes induce a significant latency penalty
compared to local data operations. Further, additional software
infrastructures are required to interface between heterogeneous
nodes and devices, resulting in additional overhead.

Existing work performed on leadership class supercomput-
ers such as the Cray T3E, Fujitsu K, IBM Summit, Sunway
TaihuLight, and TianHe-series have explored network inter-
connects and associated enhancements to communication over
shared resources [1]-[4]. However, the diverse set of devices
that comprise such systems, such as customized processors,
domain-specific accelerators, memory devices, interconnects,
and network devices are largely architected in a vacuum [5].
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The incorporation of these loosely coupled components ne-
cessitates multiple convoluted software layers in order to es-
tablish connections between disparate devices. This synthesis
paradigm not only leads to excessive latency and complexity
overheads, but also severely restricts the degree of scalability
possible for such HPC systems [6]. As such, a scalable and
efficient platform that incorporates distinct components via a
high-performance and unified methodology is strongly desired.

Access to remote data in physically distributed memory
environments is typically accomplished through the use of
the Message Passing Interface (MPI), which distributes and
collects data by sending and receiving messages. MPI can
optimize workloads that feature readily partitionable datasets
and whose memory accesses exhibit a high degree of spatial
locality. However, the limited data locality of irregular HPC
workloads, such as those utilizing graphs or sparse matrices,
are ill-suited to message passing models. As such, the Par-
titioned Global Address Space (PGAS) paradigm has been
introduced to provide efficient one-sided remote data accesses
for irregular applications via a memory-semantic programming
interface (put/get) [7]-[9]. Each PGAS model, including
OpenSHMEM, Chapel, Unified Parallel C (UPC), Global
Arrays (GA), and CoArray Fortran (CAF), is implemented
as either a standalone programming language or a runtime
library. However, similar to MPI, the middleware underlying
these PGAS implementations implicitly induces superfluous
software footprints and associated overheads.

Recent efforts, including those by GenZ, CCIX and Open-
CAPI, have applied partitioned address spaces to memory-
centric architectures in order to investigate high-performance
interconnection models [10]-[12]. These studies found that
communication overheads can be effectively reduced by trans-
lating miscellaneous device-specific operations and protocols
into unified memory operations. However, we have yet to
see a generalized architecture with native extended addressing
support that is capable of providing efficient communication
at the micro-architecture level garner widespread adoption.

To this end, the Extended Base Global Address Space, or
xBGAS, is proposed to provide global, scalable memory ad-
dressing support for HPC through the use of a novel extension



to the RISC-V instruction set architecture (ISA). This exten-
sion provides up to a 128-bit extended address space to support
object-based, flat, or partitioned virtual addressing schemes
across multiple distinct nodes. Further, XBGAS leverages the
extensible nature of the RISC-V architecture to integrate a set
of extended registers and instructions. These resources are then
utilized to eliminate software overheads in remote shared data
accesses.

In this paper, we introduce our xXBGAS research in detail
and make four main contributions. First, we present a method-
ology to create a scalable global address space extension for
high-performance communication between distributed shared
resources. Second, we detail the xBGAS micro-architecture
design, as well as the ISA-level xBGAS instructions and
register file, based on the extensible RISC-V ISA for ef-
ficient inter-node data operations. Third, we design a new
xBGAS programming model and associated runtime library
that provides a high-level programming interface as well as
abstractions for distributed shared data objects. Finally, we
introduce the xBGAS toolchain and implementations using
both software simulators and FPGA-based emulation. We
validate and provide a performance evaluation of the xBGAS
design with benchmarks and applications representing popular
data operations in HPC applications. The xBGAS design
and toolchains are open-source and available on GitHub to
facilitate the research of the community [13]-[18].

The remainder of this paper is organized as follows. Sec-
tion II provides background and motivation for this research.
Section III introduces the xXBGAS extended registers, instruc-
tions, addressing model, and micro-architecture design. Sec-
tion IV showcases the xBGAS runtime library as an interface
for the proposed programming model. Section V details the
xBGAS toolchain design, as well as associated implementa-
tions, in both software and hardware. Section VI discusses
the xBGAS experimental results. Finally, we summarize our
observations and conclusions in Section VII.

II. MOTIVATIONS AND RELATED WORK

According to the Top500 list of the supercomputers, Summit
has over 2.6 PB of DRAM and would require over 52 address
bits if all the DRAM resided in a single address space [19].
Furthermore, current exascale systems research projects the
imminent emergence of 100PB memory systems, which will
require 57 bits of address space. The integration of dense
non-volatile memories and fast interconnects also drives a
demand for even larger memory spaces. Based on historic
rates of growth, it may become necessary to expand common
address space sizes before 2030 [20]. Therefore, the RV128
project [20] has been proposed as a 128-bit address space
extension to the RISC-V ISA. Rather than customizing 64-
bit ABIs, operating systems, register widths, and data paths
to build a flat 128-bit address space in a manner similar to
RV128, xBGAS enhances addressing capabilities by mapping
data objects into an extended address space for efficient cross-
node data accesses in large-scale HPC systems. This section
introduces the motivation of the xXBGAS design and compares

455

it with related works from three orthogonal perspectives,
including software overhead, scalability, and generalizability.
We detail each perspective in the following subsections.

A. Software Overhead

The synthesis of distributed hardware components largely
relies on software bridging. Alongside the growth of data
volumes, shared resources are expanding to meet the perfor-
mance requirements of modern HPC applications. As such, it
has become necessary to append an ever-growing number of
software layers and frameworks to large-scale HPC systems
to bridge these shared data objects. However, the software
overhead resulting from the interaction of these non-uniform
protocols and APIs results in diminishing returns for perfor-
mance enhancements. Although many endeavors have been
devoted to optimizing inter-node shared memory accesses [7],
[8], [21]-[23], performance gains have been critically hindered
by the limitations of communication libraries and overheads
associated with software and layers of protocols. For exam-
ple, OpenSHMEM implementations typically rely on some
combination of complex software infrastructures, such as
the Process Management Interface Exascale (PMIx), Unified
Communication X (UCX) framework, Message Passing In-
terface (MPI), Universal Common Communication Substrate
(UCCS), Remote-Direct Memory Access (RDMA), and other
network frameworks to facilitate low-level communication.
These combined software layers induce significant overheads
and performance degradations.

In order to demonstrate the impact of the aforementioned
software overhead, we profiled OpenSHMEM get operations
built upon a UCX 1.6.0 implementation and utilized the
UCS profiling tool [24] to analyze the proportion of network
I/0 latency and software overhead, respectively. The test
environment is reported in Table III in detail. As shown in
Figure 1, the proportion of network I/O latency increases
from 54.92% to 99.10% as the payload size grows from 1B
to 1IMB. This observation implies that, in the case of large
requests (e.g. greater than 1MB), the impact of the software
overhead is insignificant as the network transfers of large
requests dominate the overall latency. These large network
transfer requests are often observed in regular workloads with
good data locality. However, many modern HPC applications
exhibit irregular workloads that often access pointer-based
data structures such as graphs, unstructured grids, sparse
matrices, etc. This trend leads to many irregular, fine-grained
(e.g. 1B~8B) remote shared memory accesses [25]-[27]. In
these cases, the software overhead can occupy over 44% of
the execution time.

As a validation of the irregular request distributions, we
captured memory footprints of the scatter operation a [b[1] ]
= c[1] with 8 threads, where the array a[] is shared by
thread O and indices b [i] randomly span over the global
shared memory space. As shown in Figure 2, the scatter
remote accesses within a randomly selected time window
(10,000 cycles) are sparsely distributed, which renders the
request aggregation techniques used in [7], [8] impractical.
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Fig. 1: OpenSHMEM Get Profiling

As a result, a tremendous number of small remote accesses
expose the overhead of bloated software infrastructures and
significantly reduce system performance. However, extended
ISA-level instructions possess innate potential to effectively
eliminate the overhead of small remote requests.

In order to quantify the software overhead of commu-
nication in conventional distributed memory programming
paradigms, we measured the instruction counts of 7 widely
used operations in HPC applications with OpenSHMEM 3.0.4,
OpenMPI 4.0.1, and xBGAS. We then derived the proportion
of instructions reduced through the use of the xXBGAS, which
provides ISA and micro-architecture support for remote data
accesses. All these operations were forced to transfer §B data
blocks. As shown in Figure 3, xBGAS dramatically eliminated
redundant instruction execution using its native ISA-level
support for inter-node communication. On average, 73.89%
and 73.46% of the instructions executed by OpenSHMEM and
MPI, respectively, can be avoided by utilizing the xBGAS.
This series of tests reveal the potential impact of architecture-
level optimization on the performance of HPC applications.

B. Scalability

The aforementioned software overhead hinders not only
the system performance, but also the integration of more
distributed shared resources. As a result, bloated software
infrastructures significantly hamper system scalability.

In an effort to enhance scalability and alleviate software
overheads, previous works have incorporated architectural
features in shared memory systems. For example, the Cray
T3D/E architectures introduced extended registers, a DTB An-
nex, and global segment translations to allow shared memory
operations across up to 2048 processors [28], [29]. Scale-
Out NUMA (soNUMA) [30] provides a programming model,
communication protocol, and architecture for low latency
RDMA transfers in a rack-scale system. sONUMA reduces the
overall latency of RDMA operations by placing the RDMA
controller within the processor’s coherent cache hierarchy.
Enabling cache coherence between the RDMA interface and
CPU allows data received by the RDMA to be placed within
the cache hierarchy for fast subsequent accesses. However,
buffering remote accesses in the local cache hierarchy can
result in cache thrashing and degrade performance of local data
operations. Moreover, SONUMA only provides low latency
RDMA reads within a single rack as shown in Table I.
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In contrast, the xXBGAS extension focuses on large-scale
systems (e.g. an entire data center) by mapping shared data
blocks into the extended scalable address space and utilizing
ISA-level remote data operations to directly access the shared
data of any node. Additionally, xBGAS and previously pro-
posed architectural techniques that improve shared data access
in multi-node systems are not mutually exclusive. For example,
the xBGAS ISA extension’s bulk transfer interface (discussed
in Section IV) can be used to further reduce the latency and
related overhead in controlling RDMA engines while making
RDMA transfers transparent to the programmer.

C. Generalizability

In some cases, such as with the Cray T3D, T3E, and SGI
UV series HPC systems, extending a given micro-architecture
to support scalable addressing capabilities sacrifices the gener-
alizability of said architecture. Herein, proprietary instruction
sets and customizations inherent in specific processor archi-
tectures hinder the adoption of these designs in the modern
HPC systems. For example, the SGI UV 300 relied upon
a proprietary NUMALINK interconnect and commercially
available Intel CPUs to scale up to 64 sockets and 64 TB of
memory. In contrast, our proposed xXBGAS methodology uti-
lizes an extended microarchitecture that expands the scalability
of effective memory spaces over any potential interconnect.
The Cray T3D/E, moreover, required specific versions of the
UNICOS operating system [31] to support their extended
addressing model. It is noteworthy that utilizing an extended
addressing model based on a customized OS also necessitates
changes to the standard application binary interface (ABI) and
existing applications. As a result, such customizations to the
OS and ABI circumscribe the generality and portability of
these designs.

A flat 128-bit address space, such as the one proposed
by RV128, similarly requires OS and ABI modifications in
addition to its doubled register width and data path. However,
as the RV128 design and specification have been neither
finalized nor officially released by the RISC-V community,
it is not included for comparisons in Table I.

Driven by the growing need for generalized design, reusable
and extensible ISA architecture frameworks have reemerged
as a promising solution. As an example, the RISC-V [32]
and OpenPiton [33] projects have drawn remarkable interest
from both academia and industry by introducing an open-
source hardware instruction set architecture and many-core



TABLE I: Comparisons of T3D/E, soNUMA and xBGAS

[ Project | Scalability [ Customized OS | Customized ABI |
T3D/E 2k Processors Required Required
soNUMA Single Rack Not Required Not Required
xBGAS Data Center Not Required Not Required

research framework, respectively. These generalized instruc-
tion set frameworks shed a new light on the modern micro-
architecture design, as employed in the GoblinCore-64 (GC64)
data-intensive architecture, the PULPino low-power SoC, and
the Sanctum software isolation for system security [34]-[36].
The xBGAS extension focuses on the convergence of scal-
able HPC and extensible architecture techniques, building on
knowledge gained from these pioneering efforts. Distinct from
RV128 and the Cray T3D/E, the xBGAS provides a general-
ized extended addressing methodology without the necessity
of a customized OS or 64-bit ABI, as presented in Table I.

III. XBGAS DESIGN AND PHILOSOPHY

Driven by the aforementioned motivations, the xXBGAS is
designed to enhance the performance of remote data accesses
by mapping remote resources into a system’s extended address
space. The xBGAS extension categorizes memory operations
into two basic types: local and global (remote) operations.
Local requests refer to data accesses performed using the
instructions of the base instruction set. Global or remote
requests denote operations that utilize the xBGAS extended
addressing capabilities to access data on remote nodes or
storage resources. These remote resources can take the form of
a diverse number of storage mediums or partitioning schemes,
such as distributed memory systems, block devices, memory
mapped file systems, etc.

We use the term object to refer to data accessed with global
memory operations. Data objects may reside in the physical
memory of local or remote nodes. In this section, we describe
the xXBGAS design, including extended registers, addressing
model, micro-architecture, and ISA design.

A. xBGAS Registers

The xBGAS design introduces 32 “extended” registers that
are discernible by use of the letter “e” and designated as
e0 ~ e31. The permissible indices of the extended xBGAS
register file are mapped in the same manner as the base general
purpose registers (GPRs) of RISC-V: 0 ~ z31. The xBGAS
registers are also configured using the standard register width
(termed XLEN in the RISC-V vernacular), which is consistent
with the base registers. The XLEN is equivalent to 32 and
64 bits in the RV32l and RV64I instruction sets, respectively.
Notably, the extended registers can only be accessed by
xBGAS instructions that manage remote data operations. As a
result, the XBGAS extension maintains full compatibility with
the base ISA and is capable of executing unmodified RISC-V
binaries. As such, xBGAS-enabled devices are able to boot
and execute RISC-V Linux along with all its ancillary kernel
modules without any issues.
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B. xBGAS Addressing Model

The xBGAS extension provides scalable addressing capa-
bilities for up to 2 x XLEN bits for any RISC-V system.
As such, 64-bit and 128-bit address spaces are available for
xBGAS extensions based on RV32I and RV641, respectively.
The xBGAS extension utilizes a compound addressing model
to assemble extended global addresses. In the RV64I instruc-
tion set, for example, in addition to the standard 64-bit address
(bit[63:0]) stored in the base GPR, extended registers are
configured to hold a unique namespace that serves as an
object ID, representing a remote resource, as the upper 64-bit
address (bit[127:64]). Thus, through the utilization of paired
base and extended registers, 128-bit addresses are attained to
access remote objects. In this way, we can convey requests or
responses to the correct destination by specifying the upper 64-
bit address (namespace) of a target while utilizing the lower
64-bit address in a traditional manner to locate target data
within a remote node.

Notably, the xXBGAS extension has no influence on local
data accesses. Given that remote objects can be heterogeneous,
customizing the local data access policy will inevitably jeop-
ardize the generalizability and compatibility of the xBGAS
design. Therefore, we ensure that only xBGAS instructions can
access the extended registers and a namespace ID of 0 always
denotes a local memory access. As a result, the extended
address space is simply ignored by local data operations,
regardless of whether or not the XBGAS extension is enabled.

C. xBGAS Architecture Design

Figure 4(a) depicts an overview of the xBGAS architec-
ture design, where each xBGAS processor is extended with
two additional hardware components: the Arbiter and the
Namespace Lookaside Buffer (NLB). The arbiter is directly
attached to the CPU to route data requests based on the type
of operation (local or global). Local accesses are directed to
the local memory system to be handled in the conventional
manner while the global accesses are forwarded to remote
nodes using the extended addresses and the NLB. In order to
minimize the impact on the processor’s critical path, the arbiter
is kept simple. As presented in Figure 4(b), the address and
data buses used to issue memory operations are connected to
both the L1 cache and memory interface. Separate read and
write enable control signals are generated for local and global
memory operations. Data signals returned by the L1 cache and
network interface are multiplexed based on the type of pending
operations. This multiplexer is the only logic added on the
data path of the xBGAS core. As instructions are only fetched
from local memory, instruction requests bypass the arbiter
and proceed directly to the instruction cache. We employ
a directory based cache hierarchy in the xBGAS design to
maintain data coherency of the local cache hierarchy. Requests
from both local and remote sources access a node’s local
memory through the directory. The directory does not maintain
coherency between nodes. Therefore, intra-node data consis-
tency model will not circumscribe the scalability of the entire
system. Figure 4(b) shows how local and remote memory
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I-Type

Mnemonic Base Funct3 Dest Opcode Mnemonic Src

eaddie extd, rs1, imm rs1 111 extd 1111011 esd rs2, imm(rs1) rs2

eld rd, imm(rs1) rs1+ext1 o011 rd 1111011 esw rs2, imm(rs1) rs2
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Base
rs1+extl

rs1+extl

R-Type

Funct3 Opcode Mnemonic Funct7 RS2 RS1 Funct3 RD Opcode

011 1111011 erld rd, rs1, ext2 1010101 ext2 rs1 011 rd 0110011

010 1111011 ersd rs1, rs2, ext3 0100010  rs2 rs1 011 ext3 0110011

Fig. 5: Encoding Examples of xBGAS Instructions

requests access the directory and local memory. Unlike the
soNUMA design [30], which caches remotely accessed data
in local caches, xXBGAS routes remote requests directly to the
memory interface to eliminate the risk of local cache thrashing
in the presence of frequent inter-node communication.

The NLB is a fully associative cache with a “least recently
used” replacement policy that contains a mapping between
recently used namespace IDs and remote node addresses. Each
processor’s NLB is contained within the memory interface.
Figure 4(c) illustrates two NLB examples with namespace
mapping. Global operations initiated by the local core are
received by the memory interface’s NLB. The extended ad-
dress is utilized as a tag to look up the remote node address
associated with the namespace. After the remote node address
is known, the global request is sent to the network interface
for transmission. The address stored in the base register is then
used to access the target data within the remote node.

When a NLB miss occurs, the namespace table in main
memory is searched for the correct translation to update
the NLB. Systems with large namespace tables may use a
hierarchical and distributed scheme so that the whole table
does not need to be stored on each node. An initial namespace
table is distributed to each node by the xBGAS runtime and
updated whenever shared data is allocated or deallocated. An
inter-node data flow example is also illustrated in Figures 4(a)
and (b). The xBGAS core @ first routes a remote request
to the memory interface via the arbiter. The request looks up
the remote node address in the NLB and then proceeds to the
network interface. This dispatched operation is routed to the
memory interface of target node 2, where data is either read
or written. Once the operation is complete, the associated data
or response is returned via the same path back to xBGAS core
@. Accesses from xBGAS core @ follow an analogous path
to access data residing in node 1. Notably, xBGAS employs
efficient one-sided communication that involves neither remote
CPUs nor system calls.
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D. xBGAS ISA Extension

In order to access remote memory, XBGAS includes instruc-
tions to support the extended addressing capabilities based
on the standard RISC-V Instruction Set Architecture (ISA).
Overall, the extended xBGAS instructions can be classified
into four categories as described in the following sections.

1) Address Management Instructions: Since existing data
movement operations in the base RISC-V instruction sets,
such as addi and sd, cannot operate on the xBGAS extended
registers, XBGAS provides three I-type address management
instructions: eaddi, eaddie, and eaddix to manage the extended
addresses. The address management operations read an ex-
tended or general purpose register (GPR), sum the register
value with the instruction’s immediate value and write back the
result to a general purpose or extended register. For example,
the instruction eaddie stores the sum of a base register (rsl)
and a 12-bit immediate value into an extended register (extd).
Encoding examples of eaddie are illustrated in Figure 5. The
detailed encodings of each xXBGAS instruction can be found
in the xXBGAS specification [37].

2) Integer Load/Store Instructions: Similar to the base
load and store instructions of the standard RISC-V ISAs, the
extended integer load and store instructions are also encoded
using the I-type and S-type formats, respectively, to allow
the utilization of immediate operands as address offsets. The
xBGAS introduces 14 extended load and store instructions
such as eld, esd, esw, etc., supporting 1B~8B operands,
representing data sizes: byte, half word, word, and double
word. We show the mnemonics of eld, esd and esw, as well
as the corresponding opcodes and function codes, in Figure 5.

In each instruction, a GPR (rs1) contains the base address,
which will be added with a sign-extended 12-bit immediate
operand to form the lower 64-bit address (bit[63:0]). The
upper 64-bit address (bit[127:64]) is placed in an extended
register (extl). As there is no encoding space for the extended
registers in the I-type or S-type instruction formats, the chosen



|+ [imm(0) |

[ 27641=e21 | [63:0] = x21
[y

Extended Addr

[ 127:641=e11 | [63:0] = x21
[y

Base Addr Base Addr Offset Extended Addr Base Addr

(a) xBGAS Integer Load Operation (b) xBGAS Raw Integer Load Operation

" PE 0: Using ERSD

PE 0: Using ESD

Shared Data of PE 0

# Set Remote Target

PEO eaddie e10, x0, 1 # Set Remote Target
eaddie e11, x0, 1 eaddie e10, x0, 1
l ______________ eaddie e12, x0, 1
# xBGAS Stores in
# xBGAS Stores in Stride
Stride ersd x21, x10, e10
PE1 m esd x21, 0(x10) ersd x22, x11, e10

esd x22, 0(x11)
esd x23, 0(x12)

ersd x23, x12, e10
Shared Data of PE 1

(c) Example of Remote Stride Accesses
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extended register corresponds to the index of rsl. Therefore,
if the base address of an xBGAS integer load/store instruction
is in base register xN, extended register eN will be utilized
for the higher 64-bit address. An example of eld is shown in
Figure 6(a), wherein the register x2/ holds the base address.
Since the index of the utilized base register is 21, the respective
extended register e2/ is automatically accessed to obtain the
extended address. Given the immediate value is zero, the 128-
bit address is synthesized via combining the upper and lower
64-bit addresses stored in registers e2/ and x21, respectively.

3) Raw Integer Load/Store Instructions: Besides the
load/store instructions detailed above, 12 raw integer load and
store instructions are introduced to access remote data, where
the extended register containing the upper 64-bit address is
explicitly specified. The encoding examples of the double-
word raw load and store instructions, erld and ersd are
illustrated in Figure 5, respectively. Figure 6(b) shows an
example of erld that explicitly specifies the extended register
ell to assemble the 128-bit address with base register x21.

This xXBGAS instruction type can eliminate redundant reg-
ister operations and improve the performance of advanced
operations. For instance, Figure 6(c) shows an example of
strided operations between PEs O and 1. Suppose that the
namespace of each PE’s shared memory is identical to its PE
ID and that there exists a pair of shared arrays symmetrically
allocated in PEs 0 and 1, respectively. As PE 0 initiates three
remote store operations to the shared data of PE 1 with stride
size 3, the requested data of PE 0 is mapped into its registers
221 ~ 223 and the corresponding lower 64-bit addresses
are stored into registers 10 ~ x12. By executing the ersd
instruction to perform the remote store operations, we only
need to set the extended address to 1 (the namespace of
remote shared memory) in a single extended register which
can then be repeatedly reused. However, if forced to use the
esd instruction, we need two more eaddie instructions to store
the same namespace into additional extended registers (ell
and el12), which results in 50% more redundant instructions
for the strided operations as compared to using ersd.

4) Remote Atomic Instructions: In addition, xXBGAS also
introduces extended atomic support to perform remote read-
modify-write operations, such as fetch-and-add, compare-and-
swap, etc., wherein each corresponds to a standard RISC-
V local atomic operation. In pursuit of efficient one-sided
communication, XBGAS atomic requests are offloaded to the
network interface controller (NIC) cores and executed without
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involving the host processors. The associated global atomicity
and micro-architecture designs are discussed in [38].

IV. XBGAS RUNTIME LIBRARY

Based on the SPMD (single program, multiple data) pro-
gramming model, we design the XBGAS runtime library with
a simple, yet effective, programming interface that manages
remote data accesses and symmetric shared memory.

The xBGAS runtime library provides developers with APIs
for one-sided put and get operations as well as remote atomic
and collective operations (barrier, broadcast, reduction, etc.).
When accessing a single (register-width) remote data element,
the single-element transfer interface is invoked, which in
turn triggers an extended xBGAS load or store instruction to
complete the remote access. Correspondingly, we provide a
bulk transfer interface to optimize throughput by aggregat-
ing remote accesses rather than repetitively issuing xBGAS
load/store instructions in a loop to handle large requests. We
analyze the performance of this bulk transfer interface in
Section VI-B. In addition, the XBGAS runtime also manages
the metadata of each PE and shared data objects for the inter-
node communications.

V. TOOLCHAIN AND IMPLEMENTATION
A. xBGAS Toolchain

We have implemented the extended xXBGAS registers and
instructions in the XBGAS compilers based on the GNU 8.3.0
and LLVM 8.0.0 toolchains [13], [14]. In order to ensure
correct binary generation, we also designed an xBGAS as-
sembly test suite [15] that ensures cross-toolchain stability. In
addition, we implemented a light-weight runtime library [17]
using ANSI C that provides the API used to realize the XBGAS
programming model.

B. Software Implementation

We have extended Spike [18], a RISC-V simulator, to
provide the capabilities necessary for executing the xBGAS
instructions. In order to simulate the partitioned global address
space and inter-node communication, we integrated MPICH
3.2 into Spike to handle remote memory traffic. Furthermore,
we also extended the cycle-accurate Structural Simulation
Toolkit (SST) 8.0.0 [39] to gather precise runtime statistics
related to the xBGAS program executions. The XBGAS im-
plementation and toolchain are open-source and available on
GitHub [13]-[18].



TABLE II: xBGAS HW Overhead Against the BRISC-V

TABLE III: Simulation Environment Configurations

| Resource [ Baseline [ xBGAS [ Overhead | | Parameters [ Configurations |
Logic utilization (ALMs) 1,088 1,783 63.87 % Base ISA RV64I
Total registers 586 1798 206.82 % Node & Core 64 Nodes, 1 Core/Node, 2 GHz
Non-regFile registers 586 774 32 % CPU $ 8-Way, 16-KB L1, 8-MB L2
Total block memory bits 2,048 3,072 50 % NLB Fully associative, 16 KB, 512 Entries
Fmax 78.7MHz | 77.7MHz 1.2 % Memory DDR4, 2 GB per Node
Average IPC 0.63 0.63 0 % Network 2D-meshed NoC, 32-bit FLIT
4 1 Software mmmmm  Network I/0 1 Software wmmsm  Network 1/0
40|
- 80| 80
239 g g
£ 25 = 60] © 60)
8
E 15| §.40 §40
¢ 12 T 20 T 29
¢ o o 3 v w 1% o - o -
i Be:chmairks B z Get Payload ” Put Payload ®
Fig. 7: Performance Gain Fig. 8: xBGAS Get Profiling Fig. 9: xBGAS Put Profiling
1 2% XBGAS ———  OpenSHMEM —w— 1 Data wmmm Overhead
— 90| 220,
§ 80 EZ]Q ;\? &
5 3o 5
B 60 g . £
€ 40 218 ._‘_.—._‘_.M.__/ T
30! 2%

dia
Sdno

= w @
o N X
® w ®

YIHLVD
SNVIN
NdaNvy
13010¥
¥ILLYOS
VISS
3aLs
821
4952

S
Benchmarks

Fig. 10: Instruction Reductions

C. Hardware Implementation

We used the open-source BRISC-V Design Space Explo-
ration Platform [40] as a baseline RISC-V hardware imple-
mentation. The xBGAS ISA extension is added to the plat-
form’s seven stage pipelined in-order core. The xXBGAS core
includes the extended register file and additional control logic
to initiate extended load and store operations. The Node IDs
are mapped 1:1 with network addresses. The xXBGAS network
interfaces connect to NoC routers. The NoCs of individual
chips are connected with direct links between remote nodes.
NoC routers treat local and remote operations identically, with
remote operations routed to chip-to-chip connections instead
of local memory controllers. Directly connecting chips to-
gether allows load/store messages to be constructed entirely in
hardware. We have excluded the cache hierarchy and network
on chip (NoC) resource utilization from comparisons presented
here because significant modifications to the baseline design
are contained within the processor core. All synthesis results
are based on a Cyclone V (SCSEMAS5F31C6) FPGA. Syn-
thesis is performed using Quartus Prime version 18.0.0. The
suite of benchmarks and demonstration programs provided
with the BRISC-V Platform are used to calculate an average
IPC (Instruction Per Clock) for the baseline and xBGAS cores.
Table II presents a comparison of hardware resource usage
for the xBGAS core and its baseline BRISC-V core. The HW
overhead statistics are post place-and-route. Such overhead is
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mainly determined by the bit width of the extended registers
and the extended physical addresses, regardless of the system
size or number of endpoints.

VI. EVALUATION AND ANALYSES
A. Software Simulation

1) Benchmarks and Environment: In order to evaluate the
efficacy of xBGAS, we select 10 benchmarks, including the
OpenSHMEM micro-benchmarks, Oak Ridge OpenSHMEM
Benchmarks, Scatter and Gather benchmarks, Scalable Syn-
thetic Compact Applications (SSCAvl), and NAS Parallel
Benchmarks (NAS-PB) [41]-[44]. The detailed configuration
of the testing environment is listed in Table III. We compiled
the aforementioned test suites using the RISC-V GCC 8.3.0
compiler and simulate them on the RISC-V Spike and SST
simulators to compare the xBGAS performance against Open-
SHMEM. For OpenSHMEM, we utilized the OSHMEM im-
plementation included as part of the OpenMPI 4.0.1 package.

2) Performance Analysis: We first measure and compare
the runtime statistics of the xBGAS and OpenSHMEM to
study the performance impact of the xXBGAS. As shown in
Figure 7, xBGAS achieves impressive performance enhance-
ments over the tested workloads. Particularly, the performance
of the GATHER, GUPS (Giga-Updates Per Second), RAND-
PUT, and SCATTER benchmarks are improved by over 30%.
On average, xBGAS boosts the performance of the tested
workloads by 21.96% (up to 37.29%).
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These performance enhancements can be attributed to the
xBGAS micro-architecture support that significantly reduces
the overhead of redundant software in communication. As
such, we measure the proportion of network I/O latency and
software overhead when conveying 1B~1MB data trunks with
xBGAS get and put operations. As shown in Figures 8 and
9, the trends of increasing network I/O latency proportion are
observed as payload size increases for both the xBGAS ger and
put operations. Noticeably, xBGAS significantly reduces the
software cost of loading a remote register-width data element
to 9.72%, which implies a software overhead reduction of
78.43%, as compared to the OpenSHMEM get operations
presented in Figure 1. Similarly, xBGAS put operations with
small payloads only induce 9.70% of the software overhead
during the inter-node communication, which further exhibits
the performance impacts of XBGAS on irregular data-intensive
workloads that produce small and sparse memory requests.

We also capture the executed instruction counts during the
process of remote data operations with xBGAS and OpenSH-
MEM. We then derive the proportion of instructions reduced
by xBGAS. The results are shown in Figure 10. We observe
that xXBGAS dramatically eliminates the software communi-
cation overhead in each test suite. Overall, XBGAS reduces
redundant instruction execution by 69.26% on average, which
effectively reduces the latency of inter-node communications.

3) Payload Analysis: As reported in Figure 11, we record
the instruction counts of broadcasting distinct payload sizes
between six nodes using the xBGAS and OpenSHMEM,
respectively. Overall, the xXBGAS model invokes fewer in-
structions (between 3.41x and 22.01x less) as compared to
OpenSHMEM. Following the payload size increases from 8B
to 32KB, the software cost of broadcasting in xBGAS remains
more stable than that of OpenSHMEM, as the instruction count
increases by 2x instead of 9.95x.

Further, each request/response message transferred via the
NoC is broken up into one or more packets. Each message
contains a 32-bit header with the message type and length.
Using this protocol, each pair of request and response trans-
actions require 8B of network control overhead in addition to
the actual payload. As such, the request size can have great
impacts on network resource utilization, e.g. bandwidth and
buffer space. This behavior is observable in Figure 12, where
we show the proportions of payload and control overhead,
when employing different request granularities. Following the
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request size increases from 1B to 1KB, the percentage of
bandwidth consumed by the payload grows from 11.11%
to 99.22%. This observation implies that it will waste the
majority of the bandwidth and network resources on network
control overhead to dispatch small requests (1B~8B) to ac-
complish large data transfer. Therefore, large requests require
bulk transactions to effectively eliminate redundant network
traffic and use bandwidth efficiently.

4) Portability Analysis: Furthermore, we also analyze the
portability of the xBGAS. As the xBGAS API is both seman-
tically and syntactically similar to the OpenSHMEM interface,
the application porting procedure is greatly simplified. In order
to quantify the degree of portability of xBGAS applications,
we count the number of converted functions in lines of
code and derive the percentage of modified lines in each
test suite. As presented in Figure 13, only 4.99% lines of a
program are modified on average to port benchmarks from the
OpenSHMEM to xBGAS. These observations reveal a high
degree of xBGAS program portability, which enhances the
generalizability of the xBGAS solution.

B. RTL Based Simulation

1) Baseline Analysis: In order to evaluate the xBGAS
against existing DMA and RDMA architectures, we com-
pare the number of instructions executed, network protocol
differences, and total transfer latency of different systems in
Sections VI-B2, VI-B3 and VI-B4, respectively. The tested
systems are: 1) a baseline DMA system, 2) an xBGAS system
that does not leverage the bulk transfer interface, and 3) an
xBGAS system that does leverage the bulk transfer interface.

The baseline DMA system is a Xilinx Zynq XC7Z020 SoC
with two ARM Cortex-A9 processors clocked at 666.6MHz
[45]. This baseline was chosen because no RISC-V based
architecture with a DMA engine was available to the authors
at the time of writing. ARM was chosen over other available
architectures (including x86) because it was the only available
RISC architecture with a DMA engine. As RISC-V and ARM
are both RISC ISAs, their executed instruction counts will be
similar for tasks without specialized instructions.

To ensure the baseline DMA system is similar to the
xBGAS core, we compare the baseline DMA system’s IPC
with the average IPC of the xBGAS core presented in Table II.
Figure 14 presents the results. Note that for transfers of up to
256B, the IPCs of the xBGAS core and baseline DMA system
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are identical. The IPCs remain similar for transfers of up to
2KB. The IPC of the baseline system starts to drop as transfers
exceed the 4KB DMA packet limit.

2) Instruction Analysis: In order to measure the number of
executed instructions on the baseline DMA system, 10 million
DMA transfers of each transfer size were executed with a
“bare metal” C program. The average length of each transfer is
calculated by recording the length of time needed to complete
all DMA transfers. The system’s IPC performance counter is
recorded for the duration of the DMA transfers. The IPC,
runtime of the test, and the system clock frequency are used to
compute the number of instructions executed during the test.
The number of instructions executed in both xBGAS systems
(with and without the bulk transfer interface) are calculated
statically based on the xBGAS runtime library assembly code.
Figure 15 plots the instructions executed for each of the three
systems at transfer sizes ranging from 8B to 128KB.

The baseline DMA system limits DMA packet sizes to 4KB
and uses multiple packets for larger transfers. This packet size
limitation is evident in the plot as the instructions executed per
baseline DMA transfer stays flat for transfer sizes less than
4KB and grows linearly for transfer sizes of 4KB and larger.
The instructions executed per XBGAS bulk transfer also grows
linearly after 4KB because our static analysis of the xXBGAS
runtime library assumes the DMA engine behind the xBGAS
bulk transfer interface has the same 4KB packet size limit.

Figure 15 shows that for transfers of 64B or less, the xXBGAS
single-element transfer interface requires the fewest executed
instructions. For transfers greater than 64B, the xBGAS bulk
transfer interface completes transfers with the fewest executed
instructions. The baseline DMA system always requires more
instructions to complete a transfer than the xBGAS bulk trans-
fer interface. Moreover, even XxXBGAS transfers without the
bulk transfer interface can complete transfers up to 32KB with
fewer executed instructions than the baseline DMA system.

Although the xBGAS bulk transfer interface requires more
instructions for small transfers, after a transfer is initialized,
an xBGAS core is free to execute other instructions instead
of waiting for issued global loads or stores to complete,
albeit data dependencies are satisfied. On the other hand, if
contention occurs in the bulk transfer, performing transfers
without it may yield lower latency. The optimal transfer
method is highly dependent on the transfer size and current
system load. Providing the xBGAS runtime library with two
techniques to complete transfers (the single-element or bulk
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Fig. 16: NoC Latency
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transfer interface) allows it to select the best option based on
the current system load and resource usage.

3) Network Protocol Analysis: In addition to lower in-
struction counts, bulk transfers with a regular DMA engine
or xXBGAS bulk transfer interface can provide reduced net-
work latency because of their lower network overhead. If the
xBGAS runtime library must use individual load and store
instructions to execute a transfer, each instruction will be sent
over the network as an individual message with all of the
associated network control overhead. As shown in Figure 12,
most of the data transmitted by small messages is network
control overhead. Leveraging bulk transfers leads to larger
message sizes, lower network control overheads, and more
efficient network resource utilization.

We measure the latency of various network transfers to
demonstrate the impact of bulk messages on network latency.
Transfers initiated by the baseline DMA system or xXBGAS
bulk transfer interface perform transfers with one or more
packets up to 4KB in size. Transfers initiated by xBGAS that
do not leverage the bulk transfer interface transmit as many
one word (4B) packets as needed to transfer a whole message.

The latency of transfers is measured with a NoC RTL
simulation. The NoC 1is configured as an 8x8 mesh. The
NoC routers are clocked at 7SMHz. Each node in the mesh
repeatedly performs transfers of a constant size to a random
address. A simulation is performed for each transfer size. Each
simulation runs for 10,000 cycles. The transfer latencies are
recorded and averaged at the end of the simulation. Figure 16
plots the average latency for bulk packets and single word
transfers. As expected, the larger messages with bulk transfers
lead to lower latencies because of the lower network control
overhead, resulting in more efficient network resource usage.

4) End-to-End Latency Analysis: In order to estimate trans-
fer latency, the network transmission latency in Figure 16 is
added to the computed instruction execution runtime based on
instruction counts presented in Figure 15. Instruction counts
are converted to runtimes based on the clock frequency and
IPC of the xBGAS core presented in Table II. Estimating
runtime with XBGAS IPC models the execution time of the
baseline DMA transfers on an xXBGAS system with a DMA
engine or bulk transfer interface. A 7SMHz clock is used to
ensure the core operates below its Fmax reported in Table II.
Figure 17 plots the total latency for different transfer sizes.

The xBGAS system without the bulk transfer interface pro-
vides the lowest latency transfers for 8B messages. However,



the overhead of single word NoC messages quickly catches
up to the system. Without using the bulk transfer interface,
xBGAS can provide lower latency transfers than the baseline
DMA system for transfers up to 128B. Of the three systems,
for transfers larger than 8B, the xXBGAS bulk transfer interface
provides the lowest latency transfers because of its efficient
interface and use of large packets in the NoC.

VII. CONCLUSION

In this work, we have presented xBGAS, a novel RISC-
V ISA extension providing a scalable global address space
for HPC systems. The xBGAS maps discrete shared resources
into an extended global address space (up to 128 bits)
for efficient inter-component communication. We presented
and analyzed a new ISA-level communication methodology,
micro-architecture designs, and an associated programming
model utilizing extended xBGAS instructions and registers.
Further, we also designed the xBGAS runtime library as an
interface to enhance the portability and programmability of
xBGAS. As demonstrated by our evaluations, xBGAS reduces
69.26% of the instructions generated by communication calls
and exhibits a 21.96% performance improvement on average,
as compared to OpenSHMEM. These results and observations
illustrate the potential impact of xXBGAS on scalable HPC
system design.
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