
xBGAS: A Global Address Space Extension on

RISC-V for High Performance Computing

Xi Wang
Texas Tech University

xi.wang@ttu.edu

John D. Leidel
Tactical Computing Laboratories

jleidel@tactcomplabs.com

Brody Williams
Texas Tech University

brody.williams@ttu.edu

Alan Ehret
Texas A&M University

ehretaj@tamu.edu

Miguel Mark
Texas A&M University

mmark@tamu.edu

Michel A. Kinsy
Texas A&M University

mkinsy@tamu.edu

Yong Chen
Texas Tech University
yong.chen@ttu.edu

Abstract—The tremendous expansion of data volume has
driven the transition from monolithic architectures towards
systems integrated with discrete and distributed subcomponents
in modern scalable high performance computing (HPC) systems.
As such, multi-layered software infrastructures have become
essential to bridge the gap between heterogeneous commodity
devices. However, operations across synthesized components with
divergent interfaces inevitably lead to redundant software foot-
prints and undesired latency. Therefore, a scalable and unified
computing platform, capable of supporting efficient interac-
tions between individual components, is desirable for large-
scale data-intensive applications. In this work, we introduce
the Extended Base Global Address Space, or xBGAS, micro-
architecture extension to the RISC-V instruction set architecture
(ISA) for scalable high performance computing. The xBGAS
extension provides native ISA-level support for direct accesses to
remote shared memory by mapping remote data objects into a
system’s extended address space. We perform both software and
hardware evaluations of the xBGAS design. The results show
that xBGAS reduces instruction count generated by interprocess
communication by 69.26% on average. Overall, xBGAS achieves
an average performance gain of 21.96% (up to 37.29%) across
the tested workloads.

I. INTRODUCTION

Modern high performance computing (HPC) applications

such as graph analytics, machine learning, and sparse linear

solvers are known to be both memory and data intensive.

Large-scale HPC architectures map shared computing and

storage resources into discrete nodes to hold enormous data

sets that require an increasingly high degree of parallelism.

In this scenario, frequent inter-node operations to the shared

data in remote nodes induce a significant latency penalty

compared to local data operations. Further, additional software

infrastructures are required to interface between heterogeneous

nodes and devices, resulting in additional overhead.
Existing work performed on leadership class supercomput-

ers such as the Cray T3E, Fujitsu K, IBM Summit, Sunway

TaihuLight, and TianHe-series have explored network inter-

connects and associated enhancements to communication over

shared resources [1]–[4]. However, the diverse set of devices

that comprise such systems, such as customized processors,

domain-specific accelerators, memory devices, interconnects,

and network devices are largely architected in a vacuum [5].

The incorporation of these loosely coupled components ne-

cessitates multiple convoluted software layers in order to es-

tablish connections between disparate devices. This synthesis

paradigm not only leads to excessive latency and complexity

overheads, but also severely restricts the degree of scalability

possible for such HPC systems [6]. As such, a scalable and

efficient platform that incorporates distinct components via a

high-performance and unified methodology is strongly desired.

Access to remote data in physically distributed memory

environments is typically accomplished through the use of

the Message Passing Interface (MPI), which distributes and

collects data by sending and receiving messages. MPI can

optimize workloads that feature readily partitionable datasets

and whose memory accesses exhibit a high degree of spatial

locality. However, the limited data locality of irregular HPC

workloads, such as those utilizing graphs or sparse matrices,

are ill-suited to message passing models. As such, the Par-

titioned Global Address Space (PGAS) paradigm has been

introduced to provide efficient one-sided remote data accesses

for irregular applications via a memory-semantic programming

interface (put/get) [7]–[9]. Each PGAS model, including

OpenSHMEM, Chapel, Unified Parallel C (UPC), Global

Arrays (GA), and CoArray Fortran (CAF), is implemented

as either a standalone programming language or a runtime

library. However, similar to MPI, the middleware underlying

these PGAS implementations implicitly induces superfluous

software footprints and associated overheads.

Recent efforts, including those by GenZ, CCIX and Open-

CAPI, have applied partitioned address spaces to memory-

centric architectures in order to investigate high-performance

interconnection models [10]–[12]. These studies found that

communication overheads can be effectively reduced by trans-

lating miscellaneous device-specific operations and protocols

into unified memory operations. However, we have yet to

see a generalized architecture with native extended addressing

support that is capable of providing efficient communication

at the micro-architecture level garner widespread adoption.

To this end, the Extended Base Global Address Space, or

xBGAS, is proposed to provide global, scalable memory ad-

dressing support for HPC through the use of a novel extension

454

2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/21/$31.00 ©2021 IEEE
DOI 10.1109/IPDPS49936.2021.00054

to the RISC-V instruction set architecture (ISA). This exten-

sion provides up to a 128-bit extended address space to support

object-based, flat, or partitioned virtual addressing schemes

across multiple distinct nodes. Further, xBGAS leverages the

extensible nature of the RISC-V architecture to integrate a set

of extended registers and instructions. These resources are then

utilized to eliminate software overheads in remote shared data

accesses.

In this paper, we introduce our xBGAS research in detail

and make four main contributions. First, we present a method-

ology to create a scalable global address space extension for

high-performance communication between distributed shared

resources. Second, we detail the xBGAS micro-architecture

design, as well as the ISA-level xBGAS instructions and

register file, based on the extensible RISC-V ISA for ef-

ficient inter-node data operations. Third, we design a new

xBGAS programming model and associated runtime library

that provides a high-level programming interface as well as

abstractions for distributed shared data objects. Finally, we

introduce the xBGAS toolchain and implementations using

both software simulators and FPGA-based emulation. We

validate and provide a performance evaluation of the xBGAS

design with benchmarks and applications representing popular

data operations in HPC applications. The xBGAS design

and toolchains are open-source and available on GitHub to

facilitate the research of the community [13]–[18].

The remainder of this paper is organized as follows. Sec-

tion II provides background and motivation for this research.

Section III introduces the xBGAS extended registers, instruc-

tions, addressing model, and micro-architecture design. Sec-

tion IV showcases the xBGAS runtime library as an interface

for the proposed programming model. Section V details the

xBGAS toolchain design, as well as associated implementa-

tions, in both software and hardware. Section VI discusses

the xBGAS experimental results. Finally, we summarize our

observations and conclusions in Section VII.

II. MOTIVATIONS AND RELATED WORK

According to the Top500 list of the supercomputers, Summit

has over 2.6 PB of DRAM and would require over 52 address

bits if all the DRAM resided in a single address space [19].

Furthermore, current exascale systems research projects the

imminent emergence of 100PB memory systems, which will

require 57 bits of address space. The integration of dense

non-volatile memories and fast interconnects also drives a

demand for even larger memory spaces. Based on historic

rates of growth, it may become necessary to expand common

address space sizes before 2030 [20]. Therefore, the RV128

project [20] has been proposed as a 128-bit address space

extension to the RISC-V ISA. Rather than customizing 64-

bit ABIs, operating systems, register widths, and data paths

to build a flat 128-bit address space in a manner similar to

RV128, xBGAS enhances addressing capabilities by mapping

data objects into an extended address space for efficient cross-

node data accesses in large-scale HPC systems. This section

introduces the motivation of the xBGAS design and compares

it with related works from three orthogonal perspectives,

including software overhead, scalability, and generalizability.

We detail each perspective in the following subsections.

A. Software Overhead

The synthesis of distributed hardware components largely

relies on software bridging. Alongside the growth of data

volumes, shared resources are expanding to meet the perfor-

mance requirements of modern HPC applications. As such, it

has become necessary to append an ever-growing number of

software layers and frameworks to large-scale HPC systems

to bridge these shared data objects. However, the software

overhead resulting from the interaction of these non-uniform

protocols and APIs results in diminishing returns for perfor-

mance enhancements. Although many endeavors have been

devoted to optimizing inter-node shared memory accesses [7],

[8], [21]–[23], performance gains have been critically hindered

by the limitations of communication libraries and overheads

associated with software and layers of protocols. For exam-

ple, OpenSHMEM implementations typically rely on some

combination of complex software infrastructures, such as

the Process Management Interface Exascale (PMIx), Unified

Communication X (UCX) framework, Message Passing In-

terface (MPI), Universal Common Communication Substrate

(UCCS), Remote-Direct Memory Access (RDMA), and other

network frameworks to facilitate low-level communication.

These combined software layers induce significant overheads

and performance degradations.

In order to demonstrate the impact of the aforementioned

software overhead, we profiled OpenSHMEM get operations

built upon a UCX 1.6.0 implementation and utilized the

UCS profiling tool [24] to analyze the proportion of network

I/O latency and software overhead, respectively. The test

environment is reported in Table III in detail. As shown in

Figure 1, the proportion of network I/O latency increases

from 54.92% to 99.10% as the payload size grows from 1B

to 1MB. This observation implies that, in the case of large

requests (e.g. greater than 1MB), the impact of the software

overhead is insignificant as the network transfers of large

requests dominate the overall latency. These large network

transfer requests are often observed in regular workloads with

good data locality. However, many modern HPC applications

exhibit irregular workloads that often access pointer-based

data structures such as graphs, unstructured grids, sparse

matrices, etc. This trend leads to many irregular, fine-grained

(e.g. 1B∼8B) remote shared memory accesses [25]–[27]. In

these cases, the software overhead can occupy over 44% of

the execution time.

As a validation of the irregular request distributions, we

captured memory footprints of the scatter operation a[b[i]]
= c[i] with 8 threads, where the array a[] is shared by

thread 0 and indices b[i] randomly span over the global

shared memory space. As shown in Figure 2, the scatter

remote accesses within a randomly selected time window

(10,000 cycles) are sparsely distributed, which renders the

request aggregation techniques used in [7], [8] impractical.

455

Fig. 1: OpenSHMEM Get Profiling Fig. 2: Random Request Distribution Fig. 3: xBGAS Inst. Reductions

As a result, a tremendous number of small remote accesses

expose the overhead of bloated software infrastructures and

significantly reduce system performance. However, extended

ISA-level instructions possess innate potential to effectively

eliminate the overhead of small remote requests.

In order to quantify the software overhead of commu-

nication in conventional distributed memory programming

paradigms, we measured the instruction counts of 7 widely

used operations in HPC applications with OpenSHMEM 3.0.4,

OpenMPI 4.0.1, and xBGAS. We then derived the proportion

of instructions reduced through the use of the xBGAS, which

provides ISA and micro-architecture support for remote data

accesses. All these operations were forced to transfer 8B data

blocks. As shown in Figure 3, xBGAS dramatically eliminated

redundant instruction execution using its native ISA-level

support for inter-node communication. On average, 73.89%

and 73.46% of the instructions executed by OpenSHMEM and

MPI, respectively, can be avoided by utilizing the xBGAS.

This series of tests reveal the potential impact of architecture-

level optimization on the performance of HPC applications.

B. Scalability

The aforementioned software overhead hinders not only

the system performance, but also the integration of more

distributed shared resources. As a result, bloated software

infrastructures significantly hamper system scalability.

In an effort to enhance scalability and alleviate software

overheads, previous works have incorporated architectural

features in shared memory systems. For example, the Cray

T3D/E architectures introduced extended registers, a DTB An-

nex, and global segment translations to allow shared memory

operations across up to 2048 processors [28], [29]. Scale-

Out NUMA (soNUMA) [30] provides a programming model,

communication protocol, and architecture for low latency

RDMA transfers in a rack-scale system. soNUMA reduces the

overall latency of RDMA operations by placing the RDMA

controller within the processor’s coherent cache hierarchy.

Enabling cache coherence between the RDMA interface and

CPU allows data received by the RDMA to be placed within

the cache hierarchy for fast subsequent accesses. However,

buffering remote accesses in the local cache hierarchy can

result in cache thrashing and degrade performance of local data

operations. Moreover, soNUMA only provides low latency

RDMA reads within a single rack as shown in Table I.

In contrast, the xBGAS extension focuses on large-scale

systems (e.g. an entire data center) by mapping shared data

blocks into the extended scalable address space and utilizing

ISA-level remote data operations to directly access the shared

data of any node. Additionally, xBGAS and previously pro-

posed architectural techniques that improve shared data access

in multi-node systems are not mutually exclusive. For example,

the xBGAS ISA extension’s bulk transfer interface (discussed

in Section IV) can be used to further reduce the latency and

related overhead in controlling RDMA engines while making

RDMA transfers transparent to the programmer.

C. Generalizability

In some cases, such as with the Cray T3D, T3E, and SGI

UV series HPC systems, extending a given micro-architecture

to support scalable addressing capabilities sacrifices the gener-

alizability of said architecture. Herein, proprietary instruction

sets and customizations inherent in specific processor archi-

tectures hinder the adoption of these designs in the modern

HPC systems. For example, the SGI UV 300 relied upon

a proprietary NUMALINK interconnect and commercially

available Intel CPUs to scale up to 64 sockets and 64 TB of

memory. In contrast, our proposed xBGAS methodology uti-

lizes an extended microarchitecture that expands the scalability

of effective memory spaces over any potential interconnect.

The Cray T3D/E, moreover, required specific versions of the

UNICOS operating system [31] to support their extended

addressing model. It is noteworthy that utilizing an extended

addressing model based on a customized OS also necessitates

changes to the standard application binary interface (ABI) and

existing applications. As a result, such customizations to the

OS and ABI circumscribe the generality and portability of

these designs.

A flat 128-bit address space, such as the one proposed

by RV128, similarly requires OS and ABI modifications in

addition to its doubled register width and data path. However,

as the RV128 design and specification have been neither

finalized nor officially released by the RISC-V community,

it is not included for comparisons in Table I.

Driven by the growing need for generalized design, reusable

and extensible ISA architecture frameworks have reemerged

as a promising solution. As an example, the RISC-V [32]

and OpenPiton [33] projects have drawn remarkable interest

from both academia and industry by introducing an open-

source hardware instruction set architecture and many-core

456

TABLE I: Comparisons of T3D/E, soNUMA and xBGAS

Project Scalability Customized OS Customized ABI
T3D/E 2k Processors Required Required

soNUMA Single Rack Not Required Not Required
xBGAS Data Center Not Required Not Required

research framework, respectively. These generalized instruc-

tion set frameworks shed a new light on the modern micro-

architecture design, as employed in the GoblinCore-64 (GC64)

data-intensive architecture, the PULPino low-power SoC, and

the Sanctum software isolation for system security [34]–[36].

The xBGAS extension focuses on the convergence of scal-

able HPC and extensible architecture techniques, building on

knowledge gained from these pioneering efforts. Distinct from

RV128 and the Cray T3D/E, the xBGAS provides a general-

ized extended addressing methodology without the necessity

of a customized OS or 64-bit ABI, as presented in Table I.

III. XBGAS DESIGN AND PHILOSOPHY

Driven by the aforementioned motivations, the xBGAS is

designed to enhance the performance of remote data accesses

by mapping remote resources into a system’s extended address

space. The xBGAS extension categorizes memory operations

into two basic types: local and global (remote) operations.

Local requests refer to data accesses performed using the

instructions of the base instruction set. Global or remote
requests denote operations that utilize the xBGAS extended

addressing capabilities to access data on remote nodes or

storage resources. These remote resources can take the form of

a diverse number of storage mediums or partitioning schemes,

such as distributed memory systems, block devices, memory

mapped file systems, etc.

We use the term object to refer to data accessed with global

memory operations. Data objects may reside in the physical

memory of local or remote nodes. In this section, we describe

the xBGAS design, including extended registers, addressing

model, micro-architecture, and ISA design.

A. xBGAS Registers

The xBGAS design introduces 32 “extended” registers that

are discernible by use of the letter “e” and designated as

e0 ∼ e31. The permissible indices of the extended xBGAS

register file are mapped in the same manner as the base general

purpose registers (GPRs) of RISC-V: x0 ∼ x31. The xBGAS

registers are also configured using the standard register width

(termed XLEN in the RISC-V vernacular), which is consistent

with the base registers. The XLEN is equivalent to 32 and

64 bits in the RV32I and RV64I instruction sets, respectively.

Notably, the extended registers can only be accessed by

xBGAS instructions that manage remote data operations. As a

result, the xBGAS extension maintains full compatibility with

the base ISA and is capable of executing unmodified RISC-V

binaries. As such, xBGAS-enabled devices are able to boot

and execute RISC-V Linux along with all its ancillary kernel

modules without any issues.

B. xBGAS Addressing Model

The xBGAS extension provides scalable addressing capa-

bilities for up to 2 × XLEN bits for any RISC-V system.

As such, 64-bit and 128-bit address spaces are available for

xBGAS extensions based on RV32I and RV64I, respectively.

The xBGAS extension utilizes a compound addressing model

to assemble extended global addresses. In the RV64I instruc-

tion set, for example, in addition to the standard 64-bit address

(bit[63:0]) stored in the base GPR, extended registers are

configured to hold a unique namespace that serves as an

object ID, representing a remote resource, as the upper 64-bit

address (bit[127:64]). Thus, through the utilization of paired

base and extended registers, 128-bit addresses are attained to

access remote objects. In this way, we can convey requests or

responses to the correct destination by specifying the upper 64-

bit address (namespace) of a target while utilizing the lower

64-bit address in a traditional manner to locate target data

within a remote node.

Notably, the xBGAS extension has no influence on local

data accesses. Given that remote objects can be heterogeneous,

customizing the local data access policy will inevitably jeop-

ardize the generalizability and compatibility of the xBGAS

design. Therefore, we ensure that only xBGAS instructions can

access the extended registers and a namespace ID of 0 always

denotes a local memory access. As a result, the extended

address space is simply ignored by local data operations,

regardless of whether or not the xBGAS extension is enabled.

C. xBGAS Architecture Design

Figure 4(a) depicts an overview of the xBGAS architec-

ture design, where each xBGAS processor is extended with

two additional hardware components: the Arbiter and the

Namespace Lookaside Buffer (NLB). The arbiter is directly

attached to the CPU to route data requests based on the type

of operation (local or global). Local accesses are directed to

the local memory system to be handled in the conventional

manner while the global accesses are forwarded to remote

nodes using the extended addresses and the NLB. In order to

minimize the impact on the processor’s critical path, the arbiter

is kept simple. As presented in Figure 4(b), the address and

data buses used to issue memory operations are connected to

both the L1 cache and memory interface. Separate read and

write enable control signals are generated for local and global

memory operations. Data signals returned by the L1 cache and

network interface are multiplexed based on the type of pending

operations. This multiplexer is the only logic added on the

data path of the xBGAS core. As instructions are only fetched

from local memory, instruction requests bypass the arbiter

and proceed directly to the instruction cache. We employ

a directory based cache hierarchy in the xBGAS design to

maintain data coherency of the local cache hierarchy. Requests

from both local and remote sources access a node’s local

memory through the directory. The directory does not maintain

coherency between nodes. Therefore, intra-node data consis-

tency model will not circumscribe the scalability of the entire

system. Figure 4(b) shows how local and remote memory

457

Fig. 4: The xBGAS Architecture Design

Fig. 5: Encoding Examples of xBGAS Instructions

requests access the directory and local memory. Unlike the

soNUMA design [30], which caches remotely accessed data

in local caches, xBGAS routes remote requests directly to the

memory interface to eliminate the risk of local cache thrashing

in the presence of frequent inter-node communication.

The NLB is a fully associative cache with a “least recently

used” replacement policy that contains a mapping between

recently used namespace IDs and remote node addresses. Each

processor’s NLB is contained within the memory interface.

Figure 4(c) illustrates two NLB examples with namespace

mapping. Global operations initiated by the local core are

received by the memory interface’s NLB. The extended ad-

dress is utilized as a tag to look up the remote node address

associated with the namespace. After the remote node address

is known, the global request is sent to the network interface

for transmission. The address stored in the base register is then

used to access the target data within the remote node.

When a NLB miss occurs, the namespace table in main

memory is searched for the correct translation to update

the NLB. Systems with large namespace tables may use a

hierarchical and distributed scheme so that the whole table

does not need to be stored on each node. An initial namespace

table is distributed to each node by the xBGAS runtime and

updated whenever shared data is allocated or deallocated. An

inter-node data flow example is also illustrated in Figures 4(a)

and (b). The xBGAS core 1 first routes a remote request

to the memory interface via the arbiter. The request looks up

the remote node address in the NLB and then proceeds to the

network interface. This dispatched operation is routed to the

memory interface of target node 2, where data is either read

or written. Once the operation is complete, the associated data

or response is returned via the same path back to xBGAS core

1 . Accesses from xBGAS core 2 follow an analogous path

to access data residing in node 1. Notably, xBGAS employs

efficient one-sided communication that involves neither remote

CPUs nor system calls.

D. xBGAS ISA Extension
In order to access remote memory, xBGAS includes instruc-

tions to support the extended addressing capabilities based

on the standard RISC-V Instruction Set Architecture (ISA).

Overall, the extended xBGAS instructions can be classified

into four categories as described in the following sections.
1) Address Management Instructions: Since existing data

movement operations in the base RISC-V instruction sets,

such as addi and sd, cannot operate on the xBGAS extended

registers, xBGAS provides three I-type address management

instructions: eaddi, eaddie, and eaddix to manage the extended

addresses. The address management operations read an ex-

tended or general purpose register (GPR), sum the register

value with the instruction’s immediate value and write back the

result to a general purpose or extended register. For example,

the instruction eaddie stores the sum of a base register (rs1)

and a 12-bit immediate value into an extended register (extd).

Encoding examples of eaddie are illustrated in Figure 5. The

detailed encodings of each xBGAS instruction can be found

in the xBGAS specification [37].
2) Integer Load/Store Instructions: Similar to the base

load and store instructions of the standard RISC-V ISAs, the

extended integer load and store instructions are also encoded

using the I-type and S-type formats, respectively, to allow

the utilization of immediate operands as address offsets. The

xBGAS introduces 14 extended load and store instructions

such as eld, esd, esw, etc., supporting 1B∼8B operands,

representing data sizes: byte, half word, word, and double
word. We show the mnemonics of eld, esd and esw, as well

as the corresponding opcodes and function codes, in Figure 5.
In each instruction, a GPR (rs1) contains the base address,

which will be added with a sign-extended 12-bit immediate

operand to form the lower 64-bit address (bit[63:0]). The

upper 64-bit address (bit[127:64]) is placed in an extended

register (ext1). As there is no encoding space for the extended

registers in the I-type or S-type instruction formats, the chosen

458

Fig. 6: xBGAS Instruction Examples

extended register corresponds to the index of rs1. Therefore,

if the base address of an xBGAS integer load/store instruction

is in base register xN, extended register eN will be utilized

for the higher 64-bit address. An example of eld is shown in

Figure 6(a), wherein the register x21 holds the base address.

Since the index of the utilized base register is 21, the respective

extended register e21 is automatically accessed to obtain the

extended address. Given the immediate value is zero, the 128-

bit address is synthesized via combining the upper and lower

64-bit addresses stored in registers e21 and x21, respectively.

3) Raw Integer Load/Store Instructions: Besides the

load/store instructions detailed above, 12 raw integer load and

store instructions are introduced to access remote data, where

the extended register containing the upper 64-bit address is

explicitly specified. The encoding examples of the double-

word raw load and store instructions, erld and ersd are

illustrated in Figure 5, respectively. Figure 6(b) shows an

example of erld that explicitly specifies the extended register

e11 to assemble the 128-bit address with base register x21.

This xBGAS instruction type can eliminate redundant reg-

ister operations and improve the performance of advanced

operations. For instance, Figure 6(c) shows an example of

strided operations between PEs 0 and 1. Suppose that the

namespace of each PE’s shared memory is identical to its PE

ID and that there exists a pair of shared arrays symmetrically

allocated in PEs 0 and 1, respectively. As PE 0 initiates three

remote store operations to the shared data of PE 1 with stride

size 3, the requested data of PE 0 is mapped into its registers

x21 ∼ x23 and the corresponding lower 64-bit addresses

are stored into registers x10 ∼ x12. By executing the ersd
instruction to perform the remote store operations, we only

need to set the extended address to 1 (the namespace of

remote shared memory) in a single extended register which

can then be repeatedly reused. However, if forced to use the

esd instruction, we need two more eaddie instructions to store

the same namespace into additional extended registers (e11
and e12), which results in 50% more redundant instructions

for the strided operations as compared to using ersd.

4) Remote Atomic Instructions: In addition, xBGAS also

introduces extended atomic support to perform remote read-

modify-write operations, such as fetch-and-add, compare-and-
swap, etc., wherein each corresponds to a standard RISC-

V local atomic operation. In pursuit of efficient one-sided

communication, xBGAS atomic requests are offloaded to the

network interface controller (NIC) cores and executed without

involving the host processors. The associated global atomicity

and micro-architecture designs are discussed in [38].

IV. XBGAS RUNTIME LIBRARY

Based on the SPMD (single program, multiple data) pro-

gramming model, we design the xBGAS runtime library with

a simple, yet effective, programming interface that manages

remote data accesses and symmetric shared memory.

The xBGAS runtime library provides developers with APIs

for one-sided put and get operations as well as remote atomic

and collective operations (barrier, broadcast, reduction, etc.).

When accessing a single (register-width) remote data element,

the single-element transfer interface is invoked, which in

turn triggers an extended xBGAS load or store instruction to

complete the remote access. Correspondingly, we provide a

bulk transfer interface to optimize throughput by aggregat-

ing remote accesses rather than repetitively issuing xBGAS

load/store instructions in a loop to handle large requests. We

analyze the performance of this bulk transfer interface in

Section VI-B. In addition, the xBGAS runtime also manages

the metadata of each PE and shared data objects for the inter-

node communications.

V. TOOLCHAIN AND IMPLEMENTATION

A. xBGAS Toolchain

We have implemented the extended xBGAS registers and

instructions in the xBGAS compilers based on the GNU 8.3.0

and LLVM 8.0.0 toolchains [13], [14]. In order to ensure

correct binary generation, we also designed an xBGAS as-

sembly test suite [15] that ensures cross-toolchain stability. In

addition, we implemented a light-weight runtime library [17]

using ANSI C that provides the API used to realize the xBGAS

programming model.

B. Software Implementation

We have extended Spike [18], a RISC-V simulator, to

provide the capabilities necessary for executing the xBGAS

instructions. In order to simulate the partitioned global address

space and inter-node communication, we integrated MPICH

3.2 into Spike to handle remote memory traffic. Furthermore,

we also extended the cycle-accurate Structural Simulation

Toolkit (SST) 8.0.0 [39] to gather precise runtime statistics

related to the xBGAS program executions. The xBGAS im-

plementation and toolchain are open-source and available on

GitHub [13]–[18].

459

TABLE II: xBGAS HW Overhead Against the BRISC-V

Resource Baseline xBGAS Overhead
Logic utilization (ALMs) 1,088 1,783 63.87 %
Total registers 586 1798 206.82 %
Non-regFile registers 586 774 32 %
Total block memory bits 2,048 3,072 50 %
Fmax 78.7MHz 77.7MHz 1.2 %
Average IPC 0.63 0.63 0 %

TABLE III: Simulation Environment Configurations

Parameters Configurations
Base ISA RV64I

Node & Core 64 Nodes, 1 Core/Node, 2 GHz
CPU $ 8-Way, 16-KB L1, 8-MB L2
NLB Fully associative, 16 KB, 512 Entries

Memory DDR4, 2 GB per Node
Network 2D-meshed NoC, 32-bit FLIT

Fig. 7: Performance Gain Fig. 8: xBGAS Get Profiling Fig. 9: xBGAS Put Profiling

Fig. 10: Instruction Reductions Fig. 11: Broadcast Instruction Count Fig. 12: Bandwidth Utilization

C. Hardware Implementation

We used the open-source BRISC-V Design Space Explo-

ration Platform [40] as a baseline RISC-V hardware imple-

mentation. The xBGAS ISA extension is added to the plat-

form’s seven stage pipelined in-order core. The xBGAS core

includes the extended register file and additional control logic

to initiate extended load and store operations. The Node IDs

are mapped 1:1 with network addresses. The xBGAS network

interfaces connect to NoC routers. The NoCs of individual

chips are connected with direct links between remote nodes.

NoC routers treat local and remote operations identically, with

remote operations routed to chip-to-chip connections instead

of local memory controllers. Directly connecting chips to-

gether allows load/store messages to be constructed entirely in

hardware. We have excluded the cache hierarchy and network

on chip (NoC) resource utilization from comparisons presented

here because significant modifications to the baseline design

are contained within the processor core. All synthesis results

are based on a Cyclone V (5CSEMA5F31C6) FPGA. Syn-

thesis is performed using Quartus Prime version 18.0.0. The

suite of benchmarks and demonstration programs provided

with the BRISC-V Platform are used to calculate an average

IPC (Instruction Per Clock) for the baseline and xBGAS cores.

Table II presents a comparison of hardware resource usage

for the xBGAS core and its baseline BRISC-V core. The HW

overhead statistics are post place-and-route. Such overhead is

mainly determined by the bit width of the extended registers

and the extended physical addresses, regardless of the system

size or number of endpoints.

VI. EVALUATION AND ANALYSES

A. Software Simulation
1) Benchmarks and Environment: In order to evaluate the

efficacy of xBGAS, we select 10 benchmarks, including the

OpenSHMEM micro-benchmarks, Oak Ridge OpenSHMEM

Benchmarks, Scatter and Gather benchmarks, Scalable Syn-

thetic Compact Applications (SSCAv1), and NAS Parallel

Benchmarks (NAS-PB) [41]–[44]. The detailed configuration

of the testing environment is listed in Table III. We compiled

the aforementioned test suites using the RISC-V GCC 8.3.0

compiler and simulate them on the RISC-V Spike and SST

simulators to compare the xBGAS performance against Open-

SHMEM. For OpenSHMEM, we utilized the OSHMEM im-

plementation included as part of the OpenMPI 4.0.1 package.
2) Performance Analysis: We first measure and compare

the runtime statistics of the xBGAS and OpenSHMEM to

study the performance impact of the xBGAS. As shown in

Figure 7, xBGAS achieves impressive performance enhance-

ments over the tested workloads. Particularly, the performance

of the GATHER, GUPS (Giga-Updates Per Second), RAND-

PUT, and SCATTER benchmarks are improved by over 30%.

On average, xBGAS boosts the performance of the tested

workloads by 21.96% (up to 37.29%).

460

Fig. 13: Portability Analysis Data

These performance enhancements can be attributed to the

xBGAS micro-architecture support that significantly reduces

the overhead of redundant software in communication. As

such, we measure the proportion of network I/O latency and

software overhead when conveying 1B∼1MB data trunks with

xBGAS get and put operations. As shown in Figures 8 and

9, the trends of increasing network I/O latency proportion are

observed as payload size increases for both the xBGAS get and

put operations. Noticeably, xBGAS significantly reduces the

software cost of loading a remote register-width data element

to 9.72%, which implies a software overhead reduction of

78.43%, as compared to the OpenSHMEM get operations

presented in Figure 1. Similarly, xBGAS put operations with

small payloads only induce 9.70% of the software overhead

during the inter-node communication, which further exhibits

the performance impacts of xBGAS on irregular data-intensive

workloads that produce small and sparse memory requests.

We also capture the executed instruction counts during the

process of remote data operations with xBGAS and OpenSH-

MEM. We then derive the proportion of instructions reduced

by xBGAS. The results are shown in Figure 10. We observe

that xBGAS dramatically eliminates the software communi-

cation overhead in each test suite. Overall, xBGAS reduces

redundant instruction execution by 69.26% on average, which

effectively reduces the latency of inter-node communications.

3) Payload Analysis: As reported in Figure 11, we record

the instruction counts of broadcasting distinct payload sizes

between six nodes using the xBGAS and OpenSHMEM,

respectively. Overall, the xBGAS model invokes fewer in-

structions (between 3.41x and 22.01x less) as compared to

OpenSHMEM. Following the payload size increases from 8B

to 32KB, the software cost of broadcasting in xBGAS remains

more stable than that of OpenSHMEM, as the instruction count

increases by 2x instead of 9.95x.

Further, each request/response message transferred via the

NoC is broken up into one or more packets. Each message

contains a 32-bit header with the message type and length.

Using this protocol, each pair of request and response trans-

actions require 8B of network control overhead in addition to

the actual payload. As such, the request size can have great

impacts on network resource utilization, e.g. bandwidth and

buffer space. This behavior is observable in Figure 12, where

we show the proportions of payload and control overhead,

when employing different request granularities. Following the

Fig. 14: Instruction Per Cycle

request size increases from 1B to 1KB, the percentage of

bandwidth consumed by the payload grows from 11.11%

to 99.22%. This observation implies that it will waste the

majority of the bandwidth and network resources on network

control overhead to dispatch small requests (1B∼8B) to ac-

complish large data transfer. Therefore, large requests require

bulk transactions to effectively eliminate redundant network

traffic and use bandwidth efficiently.

4) Portability Analysis: Furthermore, we also analyze the

portability of the xBGAS. As the xBGAS API is both seman-

tically and syntactically similar to the OpenSHMEM interface,

the application porting procedure is greatly simplified. In order

to quantify the degree of portability of xBGAS applications,

we count the number of converted functions in lines of

code and derive the percentage of modified lines in each

test suite. As presented in Figure 13, only 4.99% lines of a

program are modified on average to port benchmarks from the

OpenSHMEM to xBGAS. These observations reveal a high

degree of xBGAS program portability, which enhances the

generalizability of the xBGAS solution.

B. RTL Based Simulation

1) Baseline Analysis: In order to evaluate the xBGAS

against existing DMA and RDMA architectures, we com-

pare the number of instructions executed, network protocol

differences, and total transfer latency of different systems in

Sections VI-B2, VI-B3 and VI-B4, respectively. The tested

systems are: 1) a baseline DMA system, 2) an xBGAS system

that does not leverage the bulk transfer interface, and 3) an

xBGAS system that does leverage the bulk transfer interface.

The baseline DMA system is a Xilinx Zynq XC7Z020 SoC

with two ARM Cortex-A9 processors clocked at 666.6MHz

[45]. This baseline was chosen because no RISC-V based

architecture with a DMA engine was available to the authors

at the time of writing. ARM was chosen over other available

architectures (including x86) because it was the only available

RISC architecture with a DMA engine. As RISC-V and ARM

are both RISC ISAs, their executed instruction counts will be

similar for tasks without specialized instructions.

To ensure the baseline DMA system is similar to the

xBGAS core, we compare the baseline DMA system’s IPC

with the average IPC of the xBGAS core presented in Table II.

Figure 14 presents the results. Note that for transfers of up to

256B, the IPCs of the xBGAS core and baseline DMA system

461

In
st

ru
ct

io
ns

 E
xe

cu
te

d

1

10

100

1k

10k

100k

Transfer Size (Bytes)

8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k

Baseline DMA System
xBGAS without bulk transfer interface
xBGAS with bulk transfer interface

Fig. 15: Instruction Counts

A
ve

ra
g

e
La

te
nc

y
(u

s)

1

10

100

1,000

10,000

Transfer Size (Bytes)

8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k

Bulk Transfer
Single Word Transfer

Fig. 16: NoC Latency

La
te

nc
y

(μ
s)

1

10

100

1,000

10,000

Transfer Size (Bytes)

8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k

Baseline DMA System
xBGAS without Bulk Transfer Interface
xBGAS with Bulk Transfer Interface

Fig. 17: Total Latency

are identical. The IPCs remain similar for transfers of up to

2KB. The IPC of the baseline system starts to drop as transfers

exceed the 4KB DMA packet limit.

2) Instruction Analysis: In order to measure the number of

executed instructions on the baseline DMA system, 10 million

DMA transfers of each transfer size were executed with a

“bare metal” C program. The average length of each transfer is

calculated by recording the length of time needed to complete

all DMA transfers. The system’s IPC performance counter is

recorded for the duration of the DMA transfers. The IPC,

runtime of the test, and the system clock frequency are used to

compute the number of instructions executed during the test.

The number of instructions executed in both xBGAS systems

(with and without the bulk transfer interface) are calculated

statically based on the xBGAS runtime library assembly code.

Figure 15 plots the instructions executed for each of the three

systems at transfer sizes ranging from 8B to 128KB.

The baseline DMA system limits DMA packet sizes to 4KB

and uses multiple packets for larger transfers. This packet size

limitation is evident in the plot as the instructions executed per

baseline DMA transfer stays flat for transfer sizes less than

4KB and grows linearly for transfer sizes of 4KB and larger.

The instructions executed per xBGAS bulk transfer also grows

linearly after 4KB because our static analysis of the xBGAS

runtime library assumes the DMA engine behind the xBGAS

bulk transfer interface has the same 4KB packet size limit.

Figure 15 shows that for transfers of 64B or less, the xBGAS

single-element transfer interface requires the fewest executed

instructions. For transfers greater than 64B, the xBGAS bulk

transfer interface completes transfers with the fewest executed

instructions. The baseline DMA system always requires more

instructions to complete a transfer than the xBGAS bulk trans-

fer interface. Moreover, even xBGAS transfers without the

bulk transfer interface can complete transfers up to 32KB with

fewer executed instructions than the baseline DMA system.

Although the xBGAS bulk transfer interface requires more

instructions for small transfers, after a transfer is initialized,

an xBGAS core is free to execute other instructions instead

of waiting for issued global loads or stores to complete,

albeit data dependencies are satisfied. On the other hand, if

contention occurs in the bulk transfer, performing transfers

without it may yield lower latency. The optimal transfer

method is highly dependent on the transfer size and current

system load. Providing the xBGAS runtime library with two

techniques to complete transfers (the single-element or bulk

transfer interface) allows it to select the best option based on

the current system load and resource usage.

3) Network Protocol Analysis: In addition to lower in-

struction counts, bulk transfers with a regular DMA engine

or xBGAS bulk transfer interface can provide reduced net-

work latency because of their lower network overhead. If the

xBGAS runtime library must use individual load and store

instructions to execute a transfer, each instruction will be sent

over the network as an individual message with all of the

associated network control overhead. As shown in Figure 12,

most of the data transmitted by small messages is network

control overhead. Leveraging bulk transfers leads to larger

message sizes, lower network control overheads, and more

efficient network resource utilization.

We measure the latency of various network transfers to

demonstrate the impact of bulk messages on network latency.

Transfers initiated by the baseline DMA system or xBGAS

bulk transfer interface perform transfers with one or more

packets up to 4KB in size. Transfers initiated by xBGAS that

do not leverage the bulk transfer interface transmit as many

one word (4B) packets as needed to transfer a whole message.

The latency of transfers is measured with a NoC RTL

simulation. The NoC is configured as an 8x8 mesh. The

NoC routers are clocked at 75MHz. Each node in the mesh

repeatedly performs transfers of a constant size to a random

address. A simulation is performed for each transfer size. Each

simulation runs for 10,000 cycles. The transfer latencies are

recorded and averaged at the end of the simulation. Figure 16

plots the average latency for bulk packets and single word

transfers. As expected, the larger messages with bulk transfers

lead to lower latencies because of the lower network control

overhead, resulting in more efficient network resource usage.

4) End-to-End Latency Analysis: In order to estimate trans-

fer latency, the network transmission latency in Figure 16 is

added to the computed instruction execution runtime based on

instruction counts presented in Figure 15. Instruction counts

are converted to runtimes based on the clock frequency and

IPC of the xBGAS core presented in Table II. Estimating

runtime with xBGAS IPC models the execution time of the

baseline DMA transfers on an xBGAS system with a DMA

engine or bulk transfer interface. A 75MHz clock is used to

ensure the core operates below its Fmax reported in Table II.

Figure 17 plots the total latency for different transfer sizes.

The xBGAS system without the bulk transfer interface pro-

vides the lowest latency transfers for 8B messages. However,

462

the overhead of single word NoC messages quickly catches

up to the system. Without using the bulk transfer interface,

xBGAS can provide lower latency transfers than the baseline

DMA system for transfers up to 128B. Of the three systems,

for transfers larger than 8B, the xBGAS bulk transfer interface

provides the lowest latency transfers because of its efficient

interface and use of large packets in the NoC.

VII. CONCLUSION

In this work, we have presented xBGAS, a novel RISC-

V ISA extension providing a scalable global address space

for HPC systems. The xBGAS maps discrete shared resources

into an extended global address space (up to 128 bits)

for efficient inter-component communication. We presented

and analyzed a new ISA-level communication methodology,

micro-architecture designs, and an associated programming

model utilizing extended xBGAS instructions and registers.

Further, we also designed the xBGAS runtime library as an

interface to enhance the portability and programmability of

xBGAS. As demonstrated by our evaluations, xBGAS reduces

69.26% of the instructions generated by communication calls

and exhibits a 21.96% performance improvement on average,

as compared to OpenSHMEM. These results and observations

illustrate the potential impact of xBGAS on scalable HPC

system design.

REFERENCES

[1] Ed Anderson, Jeff Brooks, Charles Grassl, and Steve Scott. Performance
of the Cray T3E multiprocessor. In SC. ACM, 1997.

[2] Yuichiro Ajima, Takahiro Kawashima, Takayuki Okamoto, Naoyuki
Shida, Kouichi Hirai, Toshiyuki Shimizu, Shinya Hiramoto, Yoshiro
Ikeda, Takahide Yoshikawa, Kenji Uchida, et al. The Tofu Interconnect
D. In CLUSTER. IEEE, 2018.

[3] Jian Zhang, Chunbao Zhou, Yangang Wang, Lili Ju, Qiang Du, Xuebin
Chi, Dongsheng Xu, Dexun Chen, Yong Liu, and Zhao Liu. Extreme-
scale phase field simulations of coarsening dynamics on the sunway
taihulight supercomputer. In SC. IEEE, 2016.

[4] Min Xie, Yutong Lu, Kefei Wang, Lu Liu, Hongjia Cao, et al. Tianhe-1a
interconnect and message-passing services. IEEE Micro, 2011.

[5] John D Leidel, Xi Wang, Frank Conlon, Yong Chen, David Donofrio,
Farzad Fatollahi-Fard, and Kurt Keville. xbgas: Toward a risc-v isa
extension for global, scalable shared memory. In MCHPC, 2018.

[6] Jianbo Dong, Rui Hou, Michael Huang, Tao Jiang, Boyan Zhao, Sally A
McKee, Haibin Wang, Xiaosong Cui, and Lixin Zhang. Venice:
Exploring server architectures for effective resource sharing. In HPCA.
IEEE, 2016.

[7] Guojing Cong, George Almasi, and Vijay Saraswat. Fast PGAS
implementation of distributed graph algorithms. In SC. IEEE, 2010.

[8] Michail Alvanos, Montse Farreras, Ettore Tiotto, José Nelson Amaral,
and Xavier Martorell. Improving communication in PGAS environ-
ments: Static and dynamic coalescing in UPC. In ICS. ACM, 2013.

[9] Yili Zheng, Amir Kamil, Michael B Driscoll, Hongzhang Shan, and
Katherine Yelick. UPC++: a PGAS extension for C++. In IPDPS.
IEEE, 2014.

[10] GenZ Consortium. http://genzconsortium.org. Accessed: 2018-11-28.
[11] CCIX Consortium. https://www.ccixconsortium.com. Accessed: 2019-

1-10.
[12] OpenCAPI Consortium. https://opencapi.org. Accessed: 2019-4-7.
[13] xBGAS GNU Compiler Toolchain.

https://github.com/tactcomplabs/xbgas-gnu-toolchain.
[14] xBGAS LLVM Compiler Toolchain.

https://github.com/tactcomplabs/xbgas-llvm.
[15] xBGAS Assembly Test Suite. https://github.com/tactcomplabs/xbgas-

asm-test.
[16] xBGAS Benchmarks. https://github.com/tactcomplabs/xbgas-bench.
[17] xBGAS Machine-Level Runtime Library.

https://github.com/tactcomplabs/xbgas-runtime.

[18] xBGAS Simulation Toolchain. https://github.com/tactcomplabs/xbgas-
tools.

[19] TOP500 List of Supercomputers. Technical report, November 2019.
https://www.top500.org/lists/2019/11/.

[20] RV128 Specification. Technical report, 2018. https://github.com/riscv/
riscv-isa-manual/blob/master/src/rv128.tex.

[21] Hung-Hsun Su, Max Billingsley, and Alan D George. Parallel per-
formance wizard: A performance analysis tool for partitioned global-
address-space programming. In IPDPS. IEEE, 2008.

[22] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawai,
Austin Rovinski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao, Steve
Dai, et al. The Celerity open-source 511-core RISC-V tiered accelerator
fabric: Fast architectures and design methodologies for fast chips. IEEE
Micro, 2018.

[23] Dai Cheol Jung, Scott Davidson, Chun Zhao, Dustin Richmond, and
Michael Bedford Taylor. Ruche networks: Wire-maximal, no-fuss nocs:
Special session paper. In NOCS, 2020.

[24] UCS Profiling Tool for OpenUCX. Technical report, February 2019.
[25] Sam Ainsworth and Timothy M Jones. Software prefetching for indirect

memory accesses. In CGO. IEEE Press, 2017.
[26] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim,

and Parthasarathy Ranganathan. Meet the walkers: Accelerating index
traversals for in-memory databases. In MICRO. ACM, 2013.

[27] Snehasish Kumar, Arrvindh Shriraman, Vijayalakshmi Srinivasan, Dan
Lin, and Jordon Phillips. SQRL: hardware accelerator for collecting
software data structures. In PACT. ACM, 2014.

[28] RH Arpaci, DE Culler, A Krishnamurthy, SG Steinberg, and K Yelick.
Empirical evaluation of the CRAY-T3D: a compiler perspective. In ISCA.
IEEE, 1995.

[29] Vijay Karamcheti and Andrew A Chien. A Comparison of Architectural
Support for Messaging in the TMC CM-5 and the Cray T3D. In ISCA.
IEEE, 1995.

[30] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. Scale-out NUMA. In ASPLOS. ACM, 2014.

[31] Steven L Scott. Synchronization and communication in the t3e multi-
processor. In ACM SIGPLAN Notices. ACM, 1996.

[32] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic.
The RISC-V Instruction Set Manual, Volume I: Base User-level ISA. UC
Berkeley, Tech. Rep. UCB/EECS-2011-62, 116, 2011.

[33] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi
Zhou, Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne,
Xiaohua Liang, et al. Openpiton: An open source manycore research
framework. In ACM SIGARCH Computer Architecture News, 2016.

[34] John D Leidel, Xi Wang, and Yong Chen. Goblincore-64: A risc-v based
architecture for data intensive computing. In HPEC. IEEE, 2018.

[35] Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini, Germain
Haugou, Eric Flamand, Frank K Gurkaynak, and Luca Benini. Pulpino:
A small single-core risc-v soc. In 3rd RISCV Workshop, 2016.

[36] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), pages 857–874, 2016.

[37] xBGAS Architecture Specification. https://github.com/tactcomplabs/xbgas-
archspec, 2018.

[38] Xi Wang, Brody Williams, John D Leidel, Alan Ehret, Michel Kinsy,
and Yong Chen. Remote Atomic Extension (RAE) for Scalable High
Performance Computing. In DAC. IEEE, 2020.

[39] Arun F Rodrigues, K Scott Hemmert, Brian W Barrett, Chad Kersey,
Ron Oldfield, Marlo Weston, Rolf Risen, Jeanine Cook, Paul Rosenfeld,
E CooperBalls, et al. The structural simulation toolkit. SIGMETRICS
Performance Evaluation Review, 38(4):37–42, 2011.

[40] Sahan Bandara, Alan Ehret, Donato Kava, and Michel Kinsy. Brisc-
v: An open-source architecture design space exploration toolbox. In
FPGA’19, New York, NY, USA, 2019. ACM.

[41] OpenSHMEM Example Test Suites. https://github.com/openshmem-
org/openshmem-examples.

[42] Oak Ridge OpenSHMEM Benchmarks. https://github.com/ornl-
languages/osb.

[43] David Bader and Kamesh Madduri. Design and Implementation of the
HPCS Graph Analysis Benchmark on Symmetric Multiprocessors. HiPC
2005, 3769:465–476, 2005.

[44] D. H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon. NAS Parallel
Benchmark Results. In SC. IEEE Computer Society Press, 1992.

[45] Xilinx. Zynq-7000 SoC Technical Reference Manual, July 2018.

463

