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Abstract. In 1993, Holt and Lawton introduced a stochastic model of two
host species parasitized by a common parasitoid species. We introduce and an-

alyze a generalization of these stochastic difference equations with any number

of host species, stochastically varying parasitism rates, stochastically varying
host intrinsic fitnesses, and stochastic immigration of parasitoids. Despite the

lack of direct, host density-dependence, we show that this system is dissipa-

tive i.e. enters a compact set in finite time for all initial conditions. When
there is a single host species, stochastic persistence and extinction of the host

is characterized using external Lyapunov exponents corresponding to the aver-

age per-capita growth rates of the host when rare. When a single host persists,
say species i, a explicit expression is derived for the average density, P ∗

i , of the

parasitoid at the stationary distributions supporting both species. When there

are multiple host species, we prove that the host species with the largest P ∗
i

value stochastically persists, while the other host species are asymptotically

driven to extinction. A review of the main mathematical methods used to

prove the results and future challenges are given.

1. Introduction. Volterra [54] proved that competition for a single, limiting re-
source results in competitive exclusion via the R∗ rule: the competing species that
suppresses the resource to the lowest equilibrium density excludes the other com-
peting species [52]. Volterra’s mathematical derivation was for ordinary differential
equation models where the per-capita growth rates of the competing species are
linear functions of resource availability (see discussion in [13]). Since this work of
Volterra, MathSciNet lists 279 publications on the “competitive exclusion princi-
ple” of which 19 appeared in Discrete and Continuous Dynamical Systems: Series
B [21, 29, 40, 51, 22, 4, 56, 53, 27, 39, 38, 19, 55, 7, 1, 26, 2, 25, 50]. These
19 papers proved new principles of competitive exclusion for a diversity of situa-
tions including spatial chemostat models [21], within-host competition of multiple
viral types [39], competing technologies [38], epidemiological models of competing
disease strains [2], stoichiometric models of tumor growth [25], and discrete-time,
size-structured chemostat models [50].

Nearly fifty years after Volterra’s paper, Holt [15] inverted Volterra’s model by
considering non-competing prey who share a predator. For ordinary differential
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equation models, Holt [15] showed that the addition of a new prey species to
a predator-prey system could reduce the equilibrium density of the original prey
species or even drive it extinct. This reduction or exclusion arises as an indirect
effect by which the novel prey increases the predator density and, thereby, increases
predation pressure on the original prey species. Holt [15] termed this indirect effect,
“apparent competition” as to an observer unaware of the shared predator species,
the prey appear to be competing. Despite the fundamental ecological importance of
this interaction [16, 46], MathSciNet only list 18 publications on “apparent competi-
tion” of which 6 appear in mathematics journals [28, 42, 33, 36, 57, 20]. All 6 of these
publications use ordinary differential equation models which assume overlapping
generations of the prey and predator species. However, some of the most important
examples of apparent competition occur in host-parasitoid systems [14, 5, 35, 16].

Due to the tight coupling of their life-cycles, host-parasitoid systems can have
discrete, synchronized generations and, consequently, are modeled using difference
equations [9, 34, 8]. As the dynamics of these models can be exceedingly complex,
there are few mathematical theorems about their dynamics (see, however, [18, 30]).
To model apparent competition in host-parasitoid systems, Holt and Lawton [17]
introduced stochastic difference equations with two, non-competing, host species
sharing a common parasitoid. These host species experienced stochastic fluctua-
tions in their intrinsic fitnesses, and the parasitoid species had a stochastic source
of immigration. Using a mixture of time-averaging arguments and numerical simu-
lations, Holt and Lawton [17] derived a P ∗-rule: the host species that can support
the higher, average parasitoid density excludes the other host species. Regarding
their derivation, Holt and Lawton [17] wrote “we have doubtless ignored subtleties
in specifying how the parameters must be constrained in their temporal evolution,
so that densities are ensured to be bounded away from zero. Numerical simulations
suggest that our conclusions hold for reasonable patterns of temporal variability.”

Here, we provide a mathematically rigorous analysis of an extension of Holt and
Lawton [17]’s model to allow for any number of host species and stochastic variation
in the parasitism rates. The analysis includes mathematical proofs of the stabilizing
effect of parasitoid immigration, a characterization of persistence for a single host
species and the associated P ∗ value, and the P ∗ rule. The stochastic, difference-
equation model is introduced in Section 2. The main results about this model are
presented in Section 3. The results are also illustrated numerically and followed by
a discussion of future challenges. To prove the results, we use methods developed
by Benäım and Schreiber [3] whose key elements are summarized in Section 4.
The proofs of the two main theorems for the host-parasitoid models are given in
Sections 5 and 6.

2. The model and assumptions. We assume that there are k ≥ 1 host species
with densities x = (x1, . . . , xk) and one parasitoid species with density y. Let z(t) =
(x(t), y(t)) be the state of the host-parasitoid community in the t-th generation
where xi(t) ≥ 0 for all i and y(t) ≥ 0. Each individual of host species i escapes
parasitism with probability exp(−ai(t)y(t)) in the t-th generation i.e. the parasitoid
attacks are Poisson distributed with mean ai(t)y(t) on host i where ai(t) is the
attack rate of the parasitoid on host i in the t-th generation. Each individual of
host species i that escapes parasitism produces Ri(t) offspring that emerge in the
next generation. Hosts that do not escape parasitism become parasitoids in the
next generation. In addition to this production of parasitoids, there is “recurrent
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Figure 1. Stochastic persistence and the P ∗ rule for the host-
parasitoid model (1). In A, there is k = 1 host species and the
condition for stochastic persistence is met. In B, there are k = 4
host species which only differ in the variance of their Ri(t) terms.
Parameter values: ai(t) = 0.1 for all i and t, Ri(t) = 0.9+1.1βRi (t)
where βRi (t) are β distributed with both scale parameters = k+1−i,
and I(t) = 0.1 + 0.9βI(t) where βI(t) are β distributed with both
scale parameters = 2.

immigration by the parasitoid from outside the local community”[17] with I(t)
immigrants entering the parasitoid population at the end of the t-th generation.
Thus, the community dynamics are

xi(t+ 1) =Ri(t)xi(t) exp(−ai(t)y(t)) i = 1, 2, . . . , k

y(t+ 1) =
k∑
i=1

xi(t)(1− exp(−ai(t)y(t))) + I(t).
(1)

This model generalizes Holt and Lawton [17]’s model by allowing for more than two
host species and by allowing the attack rates ai(t) to stochastically vary.

To complete the specification of the model, we make the following assumptions
about the Ri(t), ai(t) and I(t):

A1: For each 1 ≤ i ≤ k, Ri(0), Ri(1), Ri(2), . . . is a sequence of independent
and identically distributed (i.i.d.) random variables taking values in [R, R̄]
where R̄ ≥ R > 0.

A2: For each 1 ≤ i ≤ k, ai(0), ai(1), ai(2), . . . is a sequence of i.i.d. random
variables taking values in [a, ā] where ā ≥ a > 0.

A3: I(0), I(1), I(2), . . . is an i.i.d. sequence taking values in [I, Ī] where Ī ≥
I > 0.

Remark 1. For several of our main results, the i.i.d. assumption can be relaxed to
certain types of stationary sequences (see Remark 3 in Section 4). Moreover, recent
work by Hening et al. [11] allows for relaxing the compactness assumptions.

3. Results and discussion. Our first result is to show that solutions of (1) enter
a compact set after a finite amount of time. In contrast, without parasitoid immi-
gration, k = 1 host species, and constant Ri and ai, equation (1) is the Nicholson-
Bailey model whose solutions exhibit unbounded oscillations whenever both species
are present [30]. The following proposition proves that immigration stabilizes these
unbounded oscillations.
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Proposition 1. There exists a compact set S ⊂ [0,∞)k × [I,∞) such that

(x(t), y(t)) ∈ S for all t ≥ 4

whenever (x(0), y(0)) is non-negative i.e. xi(0) ≥ 0 for all i and y(0) ≥ 0.

Proof. Let x(0) = (x1(0), . . . , xk(0)), y(0) be non-negative. Then

y(t) ≥ I for all t ≥ 1 and y(t) ≥
k∑
j=1

xj(t− 1)(1− exp(−aI)) for t ≥ 2.

Define α = (1− exp(−aI)). For t ≥ 3,

xi(t) ≤R̄xi(t− 1) exp

−ai(t− 1)α
k∑
j=1

xj(t− 1)


≤R̄xi(t− 1) exp (−aαxi(t− 1))

≤ R̄

aαe

Thus, for t ≥ 4,

y(t) ≤ k R̄

aαe
+ Ī .

Setting

S =

[
0,

R̄

aαe

]k
×
[
I, k

R̄

aαe
+ Ī

]
completes the proof of the proposition.

To characterize whether the host persists or not in the presence of the parasitoid,
we use two notions of stochastic persistence (see reviews in [43, 45]). The first notion
corresponds to what Chesson [6] called stochastically bounded coexistence and takes
an ensemble point of view. This form of persistence, as shown in equation (2) below,
implies that probability of a small species density far into the future is small. The
second form of stochastic persistence, introduced in [47], takes the perspective of a
single, typical realization of the Markov chain. This form of persistence, as shown
in equation (3) below, implies that the fraction of time spent below small species
densities is small. Figure 1A illustrates the host-parasitoid dynamics in the case of
stochastic persistence. For a set A, let #A denote the cardinality of the set.

Theorem 3.1. Assume k = 1 and assumptions A1–A3 hold. If E[lnR1(t)] <
E[a1(t)]E[I(t)] and x1(0) > 0, then

lim sup
t→∞

1

t
lnx1(t) < 0 with probability one.

If E[lnR1(t)] > E[a1(t)]E[I(t)], then there exist α, β > 0 such that for any δ > 0

lim sup
t→∞

P [x1(t) ≤ δ] ≤ αδβ (2)

and

lim sup
t→∞

#{1 ≤ s ≤ t : x1(s) ≤ δ}
t

≤ αδβ with probability one (3)

whenever x1(0) > 0 and y(0) ≥ 0. Moreover,∫
yµ(dx, dy) = E[lnR1(t)]/E[a1(t)] (4)
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for any invariant measure µ(dx, dy) supported on (0,∞)2; the existence of such
invariant measures follows from (3).

Beyond characterizing host persistence, Theorem 3.1 via (4) provides a mathe-
matical proof of one of Holt and Lawton [17]’s conclusions even when the attack rates
fluctuate: “in a fluctuating environment the long-term average parasitoid density
[P ∗] is proportional to the long-term average logarithmic host growth rate.” The
definition of an invariant measure is given in section 4.

Provided that each host species can persist with the parasitoid, our next theorem
shows that these long-term average parasitoid densities determine the winner of
apparent competition.

Theorem 3.2. Assume assumptions A1–A3 hold and

E[lnRi(t)] > E[ai(t)]E[I(t)] for i = 1, 2, . . . , k.

Define

P ∗i := E[lnRi(t)]/E[ai(t)] for i = 1, 2, . . . , k.

If P ∗1 > P ∗i for i = 2, . . . , k, then there exist α, β > 0 such that for any δ > 0

lim sup
t→∞

1

t
ln max

2≤i≤k
xi(t) < 0 with probability one

and

lim sup
t→∞

#{1 ≤ s ≤ t : x1(s) ≤ δ}
t

≤ αδβ with probability one for δ ≤ 1

and

lim sup
t→∞

P [x1(t) ≤ δ] ≤ αδβ for δ ≤ 1

whenever
∏k
i=1 xi(0) > 0.

Thus, this theorem mathematically confirms Holt and Lawton [17]’s conclusion:
“regardless of the exact cause of the fluctuations, the outcome should be no different
than that expected in a constant environment with stable populations: one host
tends to displace alternative hosts from the assemblage, and the winner is the host
sustaining the highest average parasitoid density.”

Discussion. As noted by Holt and Lawton [17], fluctuations in Ri(t) can influence
the winner of apparent competition. For example, suppose that there are two host
species with the same mean intrinsic fitness and experiencing the same attack rates
i.e. E[R1(t)] = E[R2(t)] and a1(t) = a2(t) for all t. However, host 2 experiences
variation in its intrinsic fitness (i.e. Var[R2(t)] > 0) while host 1 experiences no
variation (i.e. Var[R1(t)] = 0). As ln is a concave function, Jensen’s inequality
implies that E[lnR1(t)] > E[lnR2(t)]. Thus, P ∗1 > P ∗2 and Theorem 3.2 implies
that host species 2 is excluded due to having greater variation in its intrinsic fitness.
This phenomena is illustrated in Figure 1B with k = 4 host species that only differ
in the variances of their intrinsic fitness, Var[Ri(t)].

Theorems 3.1 and 3.2 are largely possible due to the exponential form of the
Poisson escape function (i.e. exp(−aiy) due to Nicholson and Bailey [37]) and
the absence of host-density dependence. In particular, the Poisson escape func-
tion assumes that parasitoids are not time-limited and their attacks are randomly
distributed among the hosts. Thus, future mathematical challenges include under-
standing whether or not the P ∗ rule holds when the escape function accounts for
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aggregated parasitoid attacks (e.g. the negative binomial form (1 + aiy/k)−k intro-
duced by May [31]), the escape function accounts for parasitoid time-limitation (e.g.
exp(−aiy/(1 + bixi)) as introduced by Hassell et al. [10]), or the hosts experience
direct density-dependence (e.g. Ri(t) exp(−cixi − aiy) as developed by May et al.
[32]).

Another avenue for future research is to account for feedback between ecology
and evolution in the model [41]. For deterministic, continuous-time models of two
prey sharing a predator, evolution of the predator’s attack rate can, by reducing
the effects of apparent competition, mediate coexistence but could also lead to
oscillatory and chaotic dynamics [48, 49]. Whether similar phenomena arise for the
discrete-time, stochastic host-parasitoid model considered here remains to be seen.

4. Main tools from Benäım and Schreiber [3]. To prove Theorems 3.1 and
3.2, we used methods developed by Benäım and Schreiber [3]. These methods apply
to models with a mixture of ecological and auxiliary variables (see Remark 3 and
the proofs in Sections 5,6 for more details). The ecological variables correspond to
the densities of n species given by u = (u1, u2, . . . , un) ∈ [0,∞)n =: Rn+. The species
dynamics interact with the auxiliary variable v which lies in (−∞,∞)m =: Rm. In
the proof of Theorem 3.1 the parasitoid density is treated as an auxiliary variable,
while in the proof of Theorem 3.2 the densities of host species 2 through k also are
used as auxiliary variables.

The ecological and auxiliary variables may be influenced by stochastic forces
captured by a sequence of independent and identically distributed (i.i.d.) random
variables ξ(1), ξ(2), . . . taking values in a Polish space Ξ i.e. a separable completely
metrizable topological space. The stochastic difference equations considered by
Benäım and Schreiber [3] are of the form:

ui(t+ 1) = ui(t)fi(u(t), v(t), ξ(t)) i = 1, 2, . . . , n (species densities)

v(t+ 1) = G(u(t), v(t), ξ(t)) (auxiliary variables).
(5)

with standing assumptions:

B1: For each i = 1, 2, . . . , n, the fitness function fi(z, ξ) is continuous in z =
(u, v), measurable in (z, ξ), and strictly positive.

B2: The auxiliary variable update function G is continuous in z = (u, v) and
measurable in (z, ξ).

B3: There is a compact subset S of Rn+ × Rm such that all solutions z(t) =
(u(t), v(t)) to (1) satisfy z(t) ∈ S for t sufficiently large.

B4: For all i = 1, 2, . . . , n, supz,ξ | log fi(z, ξ)| <∞.

Beyond (1), many finite-dimensional, discrete-time population models satisfy as-
sumptions B1–B4 (see, e.g., [3, 44]).

Remark 2. For the proofs of Theorems 3.1 and 3.2, host species 1 of (1) is always
treated as a species density (e.g. u1 = x1), the parasitoid density is always treated as
an auxiliary variable (e.g v1 = y), the host species 2 through k are treated either as
species densities (e.g. ui = xi for i = 2, . . . , k) or as auxiliary variables (e.g. vi = xi
for i = 2, . . . , k), and the i.i.d. random variables ξ(t) equal (Ri(t), ai(t), I(t)). Our
assumptions A1–A3 and Proposition 1 ensure that assumptions B1-B4 hold for
(1).

Remark 3. One can also account for temporal correlations in Ri(t), ai(t), and I(t)
using additional auxiliary variables. For example, vi(t) = lnRi(t) could be modeled
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as a first-order autoregressive process given by vi(t+ 1) = αivi(t) + ξi(t+ 1) where
the ξi(t) are i.i.d. Provided that |αi| <∞ and ξi(t) take values in a compact set, the
assumptions B1–B4 hold. Alternatively, one can model the fluctuations in Ri(t)
using a finite-state Markov chain. To see how, suppose that Ri(t) takes on a finite
number of distinct,positive values, r1, . . . , r`, with transition probabilities pij i.e.
P[Ri(t+1) = rj |Ri(t) = ri] = pij . One can represent this Markov chain vi(t) = Ri(t)
as a composition of random maps by defining ξ(t) = (ξ1(t), . . . , ξ`(t)) to be a random
vector such that P[ξi(t) = rj ] = pij , and defining Gi(vi, ξ) = ξπ(vi) where π(ri) = i
for 1 ≤ i ≤ `. Proposition 1 holds when temporal correlations in the Ri(t), ai(t), I(t)
are modelled in this way. The first two conclusions about exclusion and stochastic
persistence of Theorem 3.1 holds when E[lnR1(t)] < E[a1(t)I(t)] and E[lnR1(t)] >
E[a1(t)I(t)], respectively. However, equation (4) of Theorem 3.1 need not hold if the
attack rates ai(t) exhibit temporal autocorrelations and, consequently, Theorem 4.2
need not hold in this case.

To evaluate whether species are increasing or decreasing when rare, we consider
their per-capita growth rate averaged over the fluctuations in u(t), v(t), and ξ(t+1).
To this end, recall that a Borel probability measure µ on S is an invariant probability
measure if for all continuous functions h : S → R∫

S
h(z)µ(dz) =

∫
S
E[h(Z(1))|Z(0) = z]µ(dz).

An invariant probability measure µ is an ergodic probability measure if it can not be
written as a non-trivial convex combination of invariant probability measures. For
any invariant probability measure µ, define ri(µ) as the realized per-capita growth
rate of population i:

ri(µ) =

∫
S
E[log fi(z, ξ(t))]µ(dz). (6)

For any ergodic probability measure µ, define the species supported by µ, denoted
S(µ), to be the unique subset I ⊂ {1, 2, . . . , n} such that µ({(u, v) ∈ S : ui > 0
iff i ∈ I}) = 1. The following proposition implies that ri(µ) = 0 for all i ∈ S(µ).
Alternatively, for i /∈ S(µ), ri(µ) need not be zero in which case ri(µ) measures the
rate of growth of species i when introduced at infinitesimally small densities. For
i /∈ S(µ), ri(µ) is also known as the external Lyapunov exponent of µ. The following
result is proven in [3, Proposition 1].

Proposition 2. Let µ be an ergodic probability measure. Then ri(µ) = 0 for all
i ∈ S(µ).

Following the approach introduced by Josef Hofbauer [12, 13], the following The-
orem from [3, Theorem 1] gives a sufficient condition for stochastic persistence. We
make use of this theorem for the proofs of both Theorems 3.1 and 3.2. To state this
theorem, define the extinction set as

S0 = {(u, v) ∈ S :
n∏
i=1

ui = 0}.

Theorem 4.1. If

there exist positive p1, . . . , pn s.t.
∑
i

piri(µ) > 0 for all ergodic µ with µ(S0) = 1.

(7)
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holds, then there exist a, b > 0 such that for all δ ≤ 1 and Z(0) = z ∈ S \ S0

(persistence in probability) lim sup
t→∞

P
[

min
1≤i≤n

ui(t) ≤ δ
]
≤ a(δ)b

and

(almost-sure persistence) lim supt→∞
#{1≤s≤t:min1≤i≤n ui(s)≤δ}

t ≤ a(δ)b almost surely.

To identify when species are driven extinct, we consider the case when there is a
subset I ⊂ {1, 2, . . . , n} of species that can not be invaded. Define

SI := {(u, v) ∈ S|uj = 0 whenever j /∈ I}

and for δ > 0, define

SI,δ := {(u, v) ∈ S|uj ≤ δ whenever j /∈ I}.

We say SI is accessible if for all δ > 0, there exists γ > 0 such that

P[z(t) ∈ SI,δ for some t ≥ 1] ≥ γ

whenever Z(0) = (u, v) satisfies
∏
i ui > 0. Intuitively, this accessibility conditions

states that with probability one, the process will eventually enter any neighbor-
hood of SI . As the process is Markov, this implies that the process will enter this
neighborhood infinitely often. The following Theorem follows from [3, Thm. 3].

Theorem 4.2. Let I be a strict subset of {1, 2, . . . , n}. Assume

(i) (1) restricted SI satisfies that there exist pi > 0 for i ∈ I and
∑
i∈I piri(µ) > 0

for ergodic µ with µ(SI0 ) = 1 where SI0 := {z = (u, v) ∈ SI :
∏
i∈I ui = 0},

(ii) rj(µ) < 0 for any j /∈ I and ergodic µ satisfying S(µ) = I, and
(iii) SI is accessible.

Then

P
[
lim sup
t→∞

1

t
log dist(z(t),S0) < 0

]
= 1 whenever Z(0) = z ∈ S. (8)

Condition (i) in Theorem 4.2 ensures the set of species in I coexist in the sense
of stochastic persistence. Condition (ii) implies that the per-capita growth rates are
negative for all of the species not in I. Conditions (i) and (ii) are sufficient to ensure
the local attractivity of SI in a stochastic sense–see Theorem 2 in [3]. Condition
(iii) ensures the global attractivity with probability one.

5. Proof of Theorem 3.1. Assume that α := E[lnR1(t)] − E[a1(t)]E[I(t)] < 0.
As y(t) ≥ I(t− 1) for all t ≥ 1, it follows that for all t ≥ 1

x1(t+ 1) ≤R1(t)x1(t) exp(−a1(t)I(t− 1))

≤x1(0)R̄
t∏

s=1

R1(s) exp(−a1(s)I(s− 1)).

The strong law of large numbers implies that with probability one

lim supt→∞
ln x1(t+1)

t+1 ≤ limt→∞
1
t+1

(
ln R̄x1(0) +

∑t
s=1 (lnR1(s)− a1(s)I(s− 1))

)
= α < 0.

Now assume α := E[lnR1(t)]−E[a1(t)]E[I(t)] > 0. We will use Theorem 4.1 with
n = 1, u1 = x1 and v1 = y in (5). On S0 = {(x1, y) ∈ S : x1 = 0}, the dynamics are
given by x1(t) = 0 for all t and y(t) = I(t) for all t ≥ 0. As the I(t) are i.i.d., the
only ergodic invariant measure µ(dx, dy) for the dynamics on S0 is determined by
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the law m(dy) of I(t) i.e.
∫
{0}×A µ(dx, dy) =

∫
A
m(dy) for any Borel set A ⊂ [0,∞).

For this invariant measure, the per-capita growth rate of the host equals

r1(µ) =

∫ ∞
0

E[lnR1(t)]− a1(t)y]m(dy) = α > 0.

Hence, Theorem 4.1 implies the first two conclusions for the case of α > 0. For
the final conclusion, let ν(dx1, dy) be any ergodic measure such that ν(S \ S0) = 1.
Then, Proposition 2 implies

0 = r1(ν) =

∫
E[lnR1(t)− a1(t)y]ν(dx1, dy) = E[lnR1(t)]−E[a1(t)]

∫
yν(dx1, dy).

(9)
By the ergodic decomposition theorem [24, Theorem 4.1.12], every invariant proba-
bility measure µ satisfying µ(S\S0) = 1 is a convex combination of ergodic measures
ν satisfying ν(S \ S0) = 1. (9) applied to each of these ergodic measures ν in the
decomposition of µ implies the final conclusion of the case α > 0.

6. Proof of Theorem 3.2. First, we show that host species 1 is stochastically
persistent. To this end, we use Theorem 4.1 with u = x1 and v = (x2, . . . , xk, y) in
(5) i.e. the other host species and the parasitoid are treated as auxiliary variables.
For these choices, the extinction set is S0 = {(x, y) ∈ S : x1 = 0}. Let µ(dx, dy)
be an ergodic invariant probability measure on S0. Then either µ(dx, dy) supports
no host species in which case r1(µ) = E[lnR1(t)]− E[a1(t)]E[I(t)] > 0 or µ(dx, dy)
supports at least one host species i ≥ 2. In the latter case, Proposition 2 implies
that

0 = ri(µ) = E[lnRi(t)]− ai(t)
∫
yµ(dx, dy)

and therefore
∫
yµ(dx, dy) = E[lnRi(t)]/E[ai(t)]. On the other hand,

r1(µ) = E[lnR1(t)]− E[a1(t)]

∫
yµ(dx, dy) = E[lnR1(t)]− E[a1(t)]

E[lnRi(t)]

E[ai(t)]

As P ∗1 = E[lnR1(t)]/E[a1(t)] > E[lnRi(t)]/E[ai(t)] = P ∗i , it follows that r1(µ) >
0. As we have shown that r1(µ) > 0 for all ergodic measures supported by S0,
Theorem 4.1 with p1 = 1 implies stochastic persistence as claimed.

Next, we show that for i ≥ 2

lim sup
t→∞

lnxi(t)

t
< 0 with probability one

whenever xi(0)x1(0) > 0. To prove this conclusion, we verify the conditions of
Theorem 4.2 with u = (x1, . . . , xk) and v = y (i.e. only the parasitoid is an
auxiliary variable) in (5), and I = {1} in conditions (i)–(iii) in Theorem 4.2. For
these choices, SI = {(x, y) ∈ S : x2 = · · · = xk = 0}. Theorem 3.1 applied to the
x1 − y subsystem implies condition (i) of Theorem 4.2. Next, we verify condition
(ii) i.e. ri(µ) < 0 for all 2 ≤ i ≤ n and ergodic probability measures µ such that
S(µ) = {1} = I. Let µ be such an ergodic measure. Theorem 3.1 implies that for
i ≥ 2

ri(µ) = E[lnRi(t)]− E[ai(t)]
E[lnR1(t)]

E[a1(t)]
= E[ai(t)](P

∗
i − P ∗1 ) < 0

as we have assumed that P ∗1 > P ∗i . Next we verify assumption (iii) of Theorem 4.2.

Consider any initial condition (x(0), y(0)) ∈ S such that x1(0) > 0 and
∑k
i=2 xi(0) >
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0. Define the occupational measure

Πt =
1

t

t∑
s=1

δz(s)

where δz is a Dirac measure at z i.e. for any Borel set A ⊂ S, δz(A) = 1 if z ∈ A
and 0 otherwise. By Lemma 4 of [3] and the stochastic persistence of host species
1 from the first part of this proof, the weak* limit points µ of Πt as t → ∞ are,
with probability one, invariant probability measures that satisfy µ({(x, y) ∈ S :
x1 = 0}) = 0 and r1(µ) = 0. Hence, for these weak* limit points µ, we have∫
yµ(dx, dy) = P ∗1 . For such a µ, we claim that µ({(x, y) : x1 > 0, x2 = · · · = xn =

0}) = 1. Suppose, to the contrary, that for some i ≥ 2, µ({(x, y) ∈ S : x1 > 0, xi >
0}) > 0. Then, by the ergodic decomposition theorem [24, Theorem 4.1.12], there
is an ergodic probability measure ν such that ν({(x, y) ∈ S : x1 > 0, xi > 0}) = 1.
By Proposition 2,

0 = ri(ν)/E[ai(t)] = E[lnRi(t)]/E[ai(t)]− E[lnR1(t)]/E[a1(t)] = P ∗i − P ∗1 ,

a contradiction to our assumption that P ∗1 > P ∗i . Hence, with probability one,
the weak* limit points µ of Πt as t → ∞ satisfy µ({(x, y) ∈ S : x1 > 0, x2 =
· · · = xn = 0}) = 1 as claimed. In particular, this implies for any neighborhood
U of {(x, y) ∈ S : x1 > 0, x2 = · · · = xn = 0}, z(t) enters U infinitely often with
probability one. Hence, condition (iii) of Theorem 4.2 is satisfied and (8) implies

lim sup
t→∞

1

t
ln max

2≤i≤k
xi(t) < 0 with probability one

as claimed.
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Journal of Mathematical Biology , 62 (2011), 655–683.

[48] S. J. Schreiber, R. Bürger and D. I. Bolnick, The community effects of phenotypic and genetic

variation within a predator population, Ecology , 92 (2011), 1582–1593.
[49] S. J. Schreiber and S. Patel, Evolutionarily induced alternative states and coexistence in

systems with apparent competition, Natural Resource Modelling , 28 (2015), 475–496.

[50] H. L. Smith and X. Q. Zhao, Competitive exclusion in a discrete-time, size-structured chemo-
stat model, Discrete and Continuous Dynamical Systems–Series B , 1 (2001), 183–191.

[51] D. Tang, Dynamical behavior for a Lotka-Volterra weak competition system in advective ho-

mogeneous environment, Discrete and Continuous Dynamical Systems–Series B , 24 (2019),
4913–4928.

[52] D. Tilman, Resource Competition and Community Structure, Monographs in Population Bi-
ology, vol. 17, Princeton University Press, Princeton, NJ, 1982.

[53] J. X. Velasco-Hernández, M. Núñez López, G. Ramı́rez-Santiago and M. Hernández-Rosales,

On carrying-capacity construction, metapopulations and density-dependent mortality, Dis-
crete and Continuous Dynamical Systems–Series B , 22 (2017), 1099–1110.

[54] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature,
119 (1927), 12–13.

[55] H. Wang, K. Dunning, J. J. Elser and Y. Kuang, Daphnia species invasion, competitive

exclusion, and chaotic coexistence, Discrete and Continuous Dynamical Systems–Series B ,

12 (2009), 481–493.
[56] Y. Wu, N. Tuncer and M. Martcheva, Coexistence and competitive exclusion in an SIS model

with standard incidence and diffusion, Discrete and Continuous Dynamical Systems–Series
B , 22 (2017), 1167–1187.

[57] H. Yu, S. Zhong, and R. P. Agarwal, Mathematics and dynamic analysis of an apparent

competition community model with impulsive effect, Mathematical and Computer Modelling ,

52 (2010), 25–36.

Received July 2020; revised November 2020.

E-mail address: sschreiber@ucdavis.edu

http://www.ams.org/mathscinet-getitem?mr=MR3327904&return=pdf
http://dx.doi.org/10.3934/dcdsb.2014.19.3299
http://dx.doi.org/10.3934/dcdsb.2014.19.3299
http://www.ams.org/mathscinet-getitem?mr=MR3327906&return=pdf
http://dx.doi.org/10.3934/dcdsb.2014.19.3341
http://dx.doi.org/10.3934/dcdsb.2014.19.3341
http://www.ams.org/mathscinet-getitem?mr=MR3986255&return=pdf
http://dx.doi.org/10.3934/dcdsb.2018314
http://dx.doi.org/10.3934/dcdsb.2018314
http://dx.doi.org/10.1126/science.1193954
http://dx.doi.org/10.1126/science.1193954
http://www.ams.org/mathscinet-getitem?mr=MR2025192&return=pdf
http://dx.doi.org/10.1016/S0022-0396(03)00169-4
http://www.ams.org/mathscinet-getitem?mr=MR2956051&return=pdf
http://dx.doi.org/10.1080/10236198.2011.628662
http://www.ams.org/mathscinet-getitem?mr=MR3700056&return=pdf
http://dx.doi.org/10.1016/j.tpb.2019.09.006
http://www.ams.org/mathscinet-getitem?mr=MR2786721&return=pdf
http://dx.doi.org/10.1007/s00285-010-0349-5
http://dx.doi.org/10.1890/10-2071.1
http://dx.doi.org/10.1890/10-2071.1
http://www.ams.org/mathscinet-getitem?mr=MR3423349&return=pdf
http://dx.doi.org/10.1111/nrm.12076
http://dx.doi.org/10.1111/nrm.12076
http://www.ams.org/mathscinet-getitem?mr=MR1821409&return=pdf
http://dx.doi.org/10.3934/dcdsb.2001.1.183
http://dx.doi.org/10.3934/dcdsb.2001.1.183
http://www.ams.org/mathscinet-getitem?mr=MR3986226&return=pdf
http://dx.doi.org/10.3934/dcdsb.2019037
http://dx.doi.org/10.3934/dcdsb.2019037
http://www.ams.org/mathscinet-getitem?mr=MR3639157&return=pdf
http://dx.doi.org/10.3934/dcdsb.2017054
http://dx.doi.org/10.1038/119012b0
http://www.ams.org/mathscinet-getitem?mr=MR2525150&return=pdf
http://dx.doi.org/10.3934/dcdsb.2009.12.481
http://dx.doi.org/10.3934/dcdsb.2009.12.481
http://www.ams.org/mathscinet-getitem?mr=MR3639160&return=pdf
http://dx.doi.org/10.3934/dcdsb.2017057
http://dx.doi.org/10.3934/dcdsb.2017057
http://www.ams.org/mathscinet-getitem?mr=MR2645916&return=pdf
http://dx.doi.org/10.1016/j.mcm.2009.11.019
http://dx.doi.org/10.1016/j.mcm.2009.11.019
mailto:sschreiber@ucdavis.edu

	1. Introduction
	2. The model and assumptions
	3. Results and discussion
	Discussion

	4. Main tools from Benaïm and Schreiber benaimschreiber2019
	5. Proof of Theorem 3.1
	6. Proof of Theorem 3.2
	REFERENCES

