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Spontaneous self-propulsion and nonequilibrium
shape fluctuations of a droplet enclosing active
particles
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Active particles, such as swimming bacteria or self-propelled colloids, spontaneously

assemble into large-scale dynamic structures. Geometric boundaries often enforce different

spatio-temporal patterns compared to unconfined environment and thus provide a platform

to control the behavior of active matter. Here, we report collective dynamics of active par-

ticles enclosed by soft, deformable boundary, that is responsive to the particles’ activity. We

reveal that a quasi two-dimensional fluid droplet enclosing motile colloids powered by the

Quincke effect (Quincke rollers) exhibits strong shape fluctuations with a power spectrum

consistent with active fluctuations driven by particle-interface collisions. A broken detailed

balance confirms the nonequilibrium nature of the shape dynamics. We further find that

rollers self-organize into a single drop-spanning vortex, which can undergo a spontaneous

symmetry breaking and vortex splitting. The droplet acquires motility while the vortex

doublet exists. Our findings provide insights into the complex collective behavior of active

colloidal suspensions in soft confinement.
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Active (self-driven) particles such as motile colloids present
novel opportunities for the engineering of smart materials
that can self-heal or change properties on demand1,2. The

reconfigurability of active materials stems from the propensity of
active particles to self-organize into large-scale dynamic struc-
tures that can be modulated by external cues such as electric or
magnetic fields3–10, light11,12, or chemical reactions13–15. The
spatio-temporal patterns can be also manipulated by geometric
boundaries. For example, while unconfined suspensions of bac-
teria exhibit turbulent-like flow16–19, confinement into a long and
narrow macroscopic “racetrack” geometry stabilizes bacterial
motion into a steady unidirectional circulation20,21, and when
subjected to 2D arrays of vertical pillars arranged in a square
pattern bacterial suspensions transforms into a lattice of hydro-
dynamically bound vortices with a long-range antiferromagnetic
order22. Inside of a droplet, the bacteria form a macro-scale
bidirectional vortex23,24. Similar behaviors are also observed with
synthetic microswimmers. For example, the Quincke rollers,
which are powered by a spontaneous electro-rotation of a
dielectric sphere exposed to a static electric field, self-organize
into a long, polar band and undergo directional motion in the
racetrack microfluidic channel25, while in strong confinement
(rectangular geometries), the band state is replaced by a single
macroscopic vortex26.

A confinement that is responsive to the particles activity adds
another degree of freedom that can unlock novel collective states
and dynamics. Active matter confined in drops can exhibit spon-
taneous symmetry breaking27,28 leading to droplet motility29,30.
Active droplets also mimic cell behaviors such as growth, division,
and reshaping31,32. Bacteria and self-propelled colloids encapsulated
in a droplet or a vesicle (bilayer membrane sac) drive strong shape
deformations32–35 and can cause net motion33,36–40.

Here, we explore the relation between the particle’s activity,
deformations and motility of the soft confining container. As
active particles we employ the Quincke rollers since their speed
and locomotion pattern can be easily manipulated41,42. We use a
soft container comprised of a liquid droplet sandwiched between
two electrodes, which creates quasi two-dimensional geometry.
We find that at low activity (quantified by the speed of the rollers)
the droplet contour fluctuates, while the droplet stays nearly
stationary, and the rollers self-organize into a vortex spanning the
whole system. Increasing the activity leads to a growth of the
shape fluctuations that exhibit a power spectrum consistent with
active fluctuations driven by particle-interface collisions. Cou-
pling of activity and soft boundary fluctuations often results in
bursts of the droplet translation in a randomly selected direction.
The net propulsion is driven by a spontaneous formation of a
vortex doublet composed of two counter-rotating vortices.

Results
Particle dynamics inside the droplet. The experimental system
consists of 40 μm polystyrene spheres dispersed in hexadecane/
AOT medium (see “Methods” section for details). A small volume
of the solution (approx. 5 μL) is sandwiched between two indium
tin oxide (ITO) coated glass electrodes spaced 150 μm apart to
form a liquid bridge with a high aspect ratio that produces a
quasi-two-dimensional droplet (Figs. 1a and 2a). The particles are
allowed to sediment on the bottom electrode before the appli-
cation of a uniform DC electric field E between the electrodes.
Above a threshold magnitude EQ particles develop a steady
rotation due to the Quincke effect25,43 (see Supplementary note I
for an overview of the phenomenon) and start to roll on the
bottom surface.

Hydrodynamic and electrostatic interactions between the
rollers promote alignment of their translational directions and

result in a formation of multiple transient flocks and vortices of
particles (Fig. 1b, c). Eventually, multiple vortices and flocks
merge to form a macroscopic global vortex inside the droplet, see
Fig. 2b, c. Similarly to vortices formed by magnetic rollers44,45,
the vortex spontaneously selects its handedness (clockwise or
counterclockwise) that changes from experiment to experiment.
The particles velocity fields in the droplet reveal a dramatic
change in its appearance compared to rollers confined by a solid
boundary26, where the rollers accumulate near the confining
interface. In the droplet system, the rollers are distributed
throughout the droplet interior being more packed in the center
of the droplet and less densely packed towards the drop edge.
This is most clearly seen in Fig. 2c as one bright blur in the center
of the droplet—a big crowd of rollers rotating as one vortex—and
several bright blurs around—flocks orbiting in the direction of
the rotation. Equal direction of rotation for the whole system
is confirmed by a single central peak in the vorticity field of
Fig. 2c. For comparison, in Fig. 2b, where the system is in the
intermediate state, there are several large off-center bright blurs—
crowds of rollers creating vortical flows with clock or counter-
clock wise as illustrated by the local minima and a maxima in the
vorticity field of Fig. 2b (for a closer inspection see Supplementary
Movie 2). The different structure of the vortex confined by solid
and soft boundary likely results from interface deformability and
mobility. The droplet shape constantly fluctuates and even if the
deformations are small, they may be sufficiently strong to push
rollers away from the boundary.

The equilibrium droplet contour in the absence of activity
(below the onset of Quincke rotation) is a circle (Fig. 2a). Once
the rollers become motile, the interface begins to fluctuate and
during the process of vortex formation the droplet shape can
become very non-circular (see Fig. 2b and Supplementary
Movie 1). Even when the vortex is formed the shape continues
to fluctuate (see Fig. 2c, Supplementary Movie 2, and Supple-
mentary Fig. S1). We quantify the droplet deformations by the
asphericity parameter Δ (see “Methods” section), with Δ= 0
corresponding to a perfect circle. Figure 2d shows that once the
system is energized, the droplet undergoes pronounced shape
deformations until a macroscopic vortex is formed and Δ
decreases back to nearly pre-activation values (nevertheless shape
fluctuations are still present). The gradual growth of the
macroscopic vortex is illustrated by a correlation length, rcorr,
defined as the first zero crossing of the spatial velocity correlation
function, Cnorm(r) (Fig. 2d inset). rcorr exhibits a monotonic
growth while the individual rollers organize into flocks and
transient vortices (the velocity fluctuations phase), and it reaches
a plateau when the globally correlated state (vortex) is formed.

Nonequilibrium shape fluctuations. The shape of the active
droplet undergoes strong fluctuations with amplitude reaching
10–15% of the initial droplet radius, see Fig. 3a. The deviation
from the equilibrium circular shape, h(s, t)= rs(s, t)− Rdrop,
where rs is the droplet interface position at arclength s, is fitted
with Fourier series, hðs; tÞ ¼ ∑hqðtÞ expðiqsÞ (see “Methods”
section). The power spectrum of the shape fluctuations exhibits a
power-law dependence on wavenumber q, 〈∣hq∣2〉 ~ q−4 (Fig. 3b).
Thermal fluctuations of the droplet interface would exhibit a
power spectrum with q−2 capillary scaling for surface-tension-
controlled shape relaxation, suggestive that the origin of the
fluctuations is non-equilibrium.

The temporal behavior of the shape fluctuations also indicates
out-of-equilibrium dynamics. In the active state, the relaxation
time obtained from the time autocorrelation function,

h hqð0Þ h�qðtÞi ¼ hjhqj2i exp � t
τq

� �
, displays a power-law decay

with q with exponent close to −3/2, see Fig. 3c. In equilibrium
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systems, thermal shape fluctuations with mean-squared amplitude
~q−4 are exhibited by bilayer membranes and semiflexible
polymers and are due to bending rigidity. The bending forces
drive relaxation with rates ~q3 for membranes and ~q4 for
polymers46–48. However, in non-equilibrium systems the excitation
and relaxation need not to have same driving forces. The q−4-law
of the power spectrum is observed for vesicle shape fluctuations
due to particle-interface collisions32,35 and active ring polymer49.
In the latter system, the relaxation times are predicted to be ~q−2

and q−4 for tension and bending controlled modes, respectively.
In our system, the fluctuations are driven by the strong flows
generated by the Quincke rollers. The deformations are opposed by
the surface tension and the relaxation rates are set by dissipation

due to the motion of the contact line50,51. An estimate based on the
balance of surface tension γ and viscous dissipation by viscosity μ
gives for the relaxation time τq= μ/γθ3q, where θ is the contact
angle50. This 1/q dependence of relaxation time is weaker than
the experimentally observed one, suggesting that the relaxation is
not purely driven by contact line elasticity and likely impacted by
the activity.

To quantify the non-equilibrium nature of the fluctuations, we
test for broken detailed balance in the transitions between
microscopic configurations52 (see “Methods” section). The
configurations correspond to the shapes defined by different
Fourier modes. In equilibrium, it is equally likely for the forward
and backward transition to occur between any two different

Fig. 1 Quincke rollers in a droplet. a A sketch of the experimental system: A small amount of weakly conductive liquid (hexadecane) surrounded by air
forms a bridge between two planar electrodes. Inside of the quasi-two-dimensional drop are polystyrene spheres that start to roll upon application of a
uniform DC electric field, E. Quincke rollers initially move in random directions along the surface of the bottom electrode. Blue and green arrows indicate
the direction of translation and rotation of the rollers, respectively. The image shows the top view of the drop and enclosed rollers. b The monolayer of
rolling particles generates an essentially two dimensional flow. Streamlines reveal the formation of transient vortices throughout the droplet. c Snapshot of
the velocity field inside the droplet as determined by particle image velocimetry (PIV). Experimental parameters: packing fraction of the Quincke rollers
φ= 0.58 ± 0.11, droplet area is Adrop= 11.05 ± 0.03mm2, the driving electric field E= 3.193 ± 0.007MVm−1.

Fig. 2 Shape fluctuations of a droplet enclosing Quincke rollers. a A droplet in the absence of the electric field, E= 0. b Regime of transient flocks and
vortices (velocity fluctuations phase). Rollers velocity and vorticity fields in the droplet. Both clockwise (blue) and counter-clockwise (red) vorticity is
simultaneously present indicative of transient vortices. Even though the time-variation of the asphericity Δ appears periodic, this behavior is specific for this
particular experiment and it is not universally observed. c Globally correlated state (vortex phase). Velocity and vorticity fields indicate the presence of a
single macroscopic vortex. d Evolution of the droplet shape characterized by the asphericity, Δ (cyan circles, left scale). The right scale presents the time
evolution of the correlation length rcorr on the same dataset, as defined in the inset from Cnorm(r), the normalized spatial correlation of velocity field, first
zero crossing, normalized by the drop radius Rdrop. The inset shows Cnorm(r) computed from the data in the velocity fluctuations (#) and vortex (*) phases.
The dashed lines delineate the regimes of velocity fluctuations, transition to vortex, and developed vortex. The error bars are the standard error of the
mean and the purple line is a running average of the data points to guide the eye. When error bars are not visible they are smaller than the symbols.
Experimental parameters: rollers packing fraction φ= 0.18 ± 0.04, droplet area Adrop= 13.56 ± 0.03mm2 and electric field strength
E= 5.104 ± 0.008MVm−1.
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Fourier modes. A non-equilibrium system, however, would
display a probability flux in the phase space of shapes. Figure 3d,
e show the probability density map for two Fourier modes of the
fluctuating droplet. The probability is defined as the ratio of the
time spent at a given state. The arrows indicate the currents
across box boundaries determined by counting transitions
between boxes. A nonzero value of the contour integral of the

probability current, Ω ¼
H

C
j�dlH

C
jjj dl, indicates out of equilibrium

dynamics (Fig. 3f). The broken detailed balance analysis also
reveals that the modes gradually go out of equilibrium, starting
with the short wavelengths. The longest wavelength modes are in
equilibrium early in the velocity fluctuation phase (Fig. 3d, f) and
become nonequilibrium in the vortex phase (Fig. 3e, f). This
reflects the structure evolution: rollers cluster into aggregates with
growing size that eventually become the droplet-spanning vortex.

Activity enhancement of the shape fluctuations. Thermally-
driven droplet shape fluctuations are negligible in our system due
to strong surface tension. For an oil/air interface the surface ten-
sion is γ= 10mNm−1, which corresponds to interfacial energy
far exceeding the thermal energy, ~1012kBT, for a droplet ` with
radius of 1 mm; the amplitude of the fluctuations calculated from
〈∣hq∣2〉= kBT/γq2L2, where the contour length is L= 2πRdrop, is
below a nanometer even for the lowest wavemode. However, in
the active state the rollers generate flows that can be strong
enough to overcome surface tension and deform the interface. An
individual roller with radius a moves with speed a _G, where the

generated flow strain rate is _G ¼ τ�1
mw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=EQ

� �2 � 1
q

(see SI for

details). In our system, the Maxwell-Wagner time is τmw ~ 1ms.
The flow can exert stress on the interface in the order of
μ _G � 1 Pa, which is comparable to the capillary stress γq. Since
the flow is created by the rollers, the active shape fluctuations are
expected to increase if either the rollers velocity or number
increases.

To quantify the effects of the activity, we define an effective
energy of the system from velocity fluctuations53

U ¼ 1
2
∑
N
mNu

2
N ð1Þ

where the index N runs over the individual rollers, and
uN= vN− v is the difference between the individual roller velocity,
vN, and the macroscopic flow, v. Experimentally, however, we have
access neither to the individual particle trajectories nor the detailed
hydrodynamic flow, therefore we consider v to be the instanta-
neous velocity of the droplet center and vN the velocity field pixel
from PIV velocity fields of the particles. PIV procedure is based on
image contrast correlations and detects only the movement of
the particles in the droplet making the velocity field a good
approximation for the actual particle velocities as long as the
packing fraction φ is large. Assuming that all particles have equal
mass mN=mp and replacing the summation by the temporal
average value of the square of the velocity fluctuations hu2Ni yields
for the energy density

e ¼ U=Adroplet ¼
2
3
φaρhu2Ni; ð2Þ

where ρ is the buoyant density of particles. In our system the
velocity of individual particles depends on the driving electric field

Fig. 3 Analysis of the shape fluctuations. a A snapshot of the contour h around the equivalent circle radius Rdrop. The coordinate s runs along the
circumference of the equivalent circle (inset, green). The liquid-air interface is deformed (inset, black) by the activity inside the droplet and deviates from
Rdrop by h. b A time-averaged power spectrum 〈∣hq∣2〉 dependence on the wave number q for two cases: fluctuating velocity regime and fully developed
vortex regime. In both cases the decay of the power spectrum falls off as q−4. c Relaxation time of the autocorrelations as a function of the wavenumber q.
The inset shows the autocorrelation functions for three modes. The fit of the data results in power law with exponent≃−3/2 shown as a dashed line (the
exact fit gives the exponent −1.41 ± 0.08 shown as a solid line). d, e Probability distribution (color) and flux map (arrows) in phase space spanned by
Fourier modes 2 and 4 in d the velocity fluctuation and e vortex phases. Arrows length corresponds to the magnitude of the fluxes. The plots for the other
modes are shown on Supplementary Fig. S6 and Fig. S7. f The contour integral of the probability current, Ω, histograms for d, e show different values in the
velocity fluctuations phase (blue, Ω= 0.01 ± 0.17) and vortex phase (orange, Ω= 0.32 ± 0.22). Error bars are the standard error of the mean. In b, c error
bars are smaller than the symbols.
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E25,54, thus we have an external control over the velocity
fluctuations. The hu2Ni linearly increases with ðE=EQÞ2 � 1 (see
Fig. 4a inset) and, as a result, the energy density e is proportional to
ðE=EQÞ2 � 1 (Fig. 4a). The energy density also follows a linear
dependence on the packing fraction φ as predicted by Eq. (2)
(Fig. 4b), demonstrating that addition of active agents is directly
reflected in increased energy injection into the droplet.

Activity is known to enhance fluctuations of ring polymers49

and vesicles55–59. However in these systems the active particles
are located at the interface, while in our system the active particles
are in the bulk, and the interface deforms in response to both
direct particle collisions and flow due to the collective motion of
the rollers. The magnitude of the active shape fluctuations in our
system scales as 〈∣hq∣2〉= αq−4 (Fig. 3b), in agreement with the
scaling predicted for fluctuations due to particle collisions with a
fluid interface governed by surface tension35. The active pressure
associated with the particle collisions is a volumetric energy
density, thus the theory suggests that α should scale quadratically
with the energy density, which is in agreement with our
experimental results (Fig. 4c). A quadratic increase of the
fluctuations magnitude with activity, quantified by the Peclet
number, is also predicted for the ring polymer system49. It is
intriguing that different systems (e.g., our system is dense and
particle motions are strongly correlated, while the model of ref. 35

considers uncorrelated collisions) display qualitatively similar
behavior.

Spontaneous droplet self-propulsion. The shape fluctuations are
accompanied by a motion of the droplet as a whole. The behavior
of the mean square displacement (MSD) 〈Δr2〉 for the center of
the droplet exhibits a typical diffusive behavior at the long time
scales (see Fig. 5a), and it is in agreement with the behavior
observed with droplets enclosing bacteria38 or active nematics30,
and predicted by simulations for microswimmers in a vesicle33.
As activity increases, the droplet shape fluctuations grow and the
system occasionally undergoes a symmetry-breaking instability.
The global vortex spontaneously splits into two counter-rotating
entities that drive a significant elongation of the droplet (as
illustrated by the changes in the droplet perimeter shown in
Fig. 5b and Supplementary Movie 3) along the line connecting the
centers of the new vortices. Such events result in bursts of per-
sistent motion of the droplet in a randomly chosen direction
reminiscent of the Levy flights. During the vortex pair formations
the maximal Feret diameter of the droplet is always perpendicular

to the direction of the droplet travel (corresponding angle to
β ≈ π/2), see the inset of Fig. 5b) in contrast to the regular droplet
excursions that do not show correlations between β and velocity
of the droplet (see Supplementary Fig. S1). The droplet transla-
tion persist for about 2–3 s after which the vortex pair recombines
into the global vortex and the droplet restores its nearly-circular
shape. The events of spontaneous splitting of the self-assembled
vortex into two entities leading to a droplet elongation and
subsequent bursts of self-propulsion are probabilistic and statis-
tically rare compared to the regular behavior but the phenom-
enon is robust.

Conclusions
In this work, we experimentally explored the dynamics of
motile colloids in soft confinement. We employ Quincke rollers
in a droplet as a model system, with the rollers speed easily
controlled by the applied field strength. We find that the
interplay between deformable confinement and activity-driven
flow gives rise to several previously unobserved phenomena. At
low activity, the rollers form a vortex spanning the whole
droplet, in contrast to rollers in solid-wall confinement, where
the particles accumulate near the boundary. The droplet con-
tour fluctuates about a circular shape and the fluctuations
power spectrum is consistent with active fluctuations driven by
particle-interface collisions. The non-equilibrium nature of the
shape fluctuations is revealed by a broken detailed balance of
the shape dynamics. While the interface deformation is driven
by the particle-induced flow, the relaxation appears mainly
controlled by surface tension as evidenced by the time corre-
lations of the shape fluctuations. Shape fluctuations grow with
the activity and can result in a spontaneous extension of the
droplet in one direction driven by a formation of the vortex
doublet. The spontaneous droplet elongations are accompanied
by bursts of persistent self-propulsion in a direction perpen-
dicular to the extension axis. The vortex splitting and recovery
lasts for few seconds during which time the droplet can travel a
distance of several droplet radii. The timing of the excursion
and the direction of motion are randomly chosen. Their control
requires understanding of the symmetry-breaking mechanism
that leads to the vortex doublet formation. Our results provide
insights into the complex dynamic behavior of active colloidal
suspensions confined by a deformable boundary and provide
new directions for future research in the engineering of self-
propelled micromachines.

Fig. 4 Activity enhances droplet shape fluctuations. a The energy per area, e, dependence on electric field E, ðE=EQÞ2 � 1, with EQ= 1.50 ± 0.03MVm−1.
Inset: Linear dependence of the square average of velocity fluctuations hu2Ni on ðE=EQÞ2 � 1. In both cases the line is a least squares fit to the experimental
points. All experiments were performed on the same droplet with packing fraction φ= 0.58 ± 0.11 and droplet area Adrop= 11.05 ± 0.03mm2. b As
predicted by Eq. (2), the energy density e is linearly dependent on φ. The line is a least squares fit to the experimental points. These experiments were
performed at the same E= 4.25 ± 0.01MVm−1 but different droplets with Adrop in the range from 8.97mm2 to 11.25 mm2. c A graph of the power
spectrum slope α, defined as 〈∣hq∣2〉= αq−4, versus e demonstrates a quadratic dependence (red line). The experimental points were obtained from several
realizations of the active droplet: E from 3.19 to 4.52MVm−1; φ from 0.13 to 0.58; and Adrop from 8.97 to 11.25 mm2. Error bars are the standard error of
the mean.
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Methods
Experimental system. Spherical polystyrene particles (d= 2a= 40 μm diameter,
Phosphorex) and density 1.06 g cm3 in hexadecane (ρhexadecane= 0.77 g cm3) are
dispersed in hexadecane with 0.1 mol L−1 dioctyl sulfosuccinate sodium (AOT) salt
(Sigma Aldrich). A small amount of the solution with the particles (approx. 5 μL) is
sandwiched between two indium tin oxide (ITO) coated glass slides to form a
liquid bridge with a high aspect ratio. The distance between the electrodes is set by
glass spheres with diameter 150 μm (Novum Glass) embedded in vacuum grease.
Particles are allowed to sediment on the bottom electrode. We explore several
packing fractions φ, ranging from 0.13 to 0.58, of Quincke rollers inside droplets.
The packing fraction is determined by a thresholding method described in details
in Supplementary Note II.

Imaging and droplet shape analysis. The recordings are made with a fast CMOS
camera (IDT) at 300 fps and 500 fps mounted on a stereoscope (Leica). Velocity,
vorticity fields and streamlines reflect the motion of the Quincke rollers and were
obtained by a particle image velocimetry (PIV) package MatPIV for Matlab.
Velocity fields together with the movement of the entire liquid bridge served as the
input to calculate the energy per unit area Etot/Adrop of the system.

To characterize the droplet contour fluctuations each image was automatically
thresholded by Otsu’s method in Matlab to obtain the border outline. The center of

the droplet Rc
!

was determined as the mean coordinates of the droplet area pixels,

Adrop, and equivalent radius was calculated Rdrop ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Adrop=π

q
. The perimeter of

the equivalent circle with Rdrop around Rc
!

served as the baseline for the coordinate
s and the radial deviations form the equivalent circle h(s) were determine from the
images (Fig. 3a inset). We used the square of the fast Fourier transform algorithm
in Matlab to compute the power spectrum of the fluctuations and averaged it over
time. The number of frames to calculate the temporal averages of all the measured
quantities was >2000, error bars represent the standard error of the mean value.

The droplet radius of gyration Rg and asphericity Δ were determined by the

gyration tensor Q ¼ 1
N ∑

N
n¼1ðRn

!� Rc
!Þ� ðRn

!� Rc
!Þ, where index n runs over all

area pixels of the liquid bridge drop (N in total). Q has eigenvalues λ1 and λ2 which
define Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 þ λ2

p
and Δ ¼ ðλ1 � λ2Þ2=ðλ1 þ λ2Þ2.

Detailed balance analysis of the shape fluctuations. The methodology follows
ref. 52 to analyze the transitions between microscopic configurations defined as
the shapes corresponding to different Fourier modes. We compute the trajectory
in the phase space spanned by the two modes from the time series of their
amplitudes. Then the phase space is discretized into equally sized, rectangular
boxes each of which represents a discrete state. The probability is defined as the
ratio of the time spent at a given state and the total trajectory time. The arrows
indicate the currents across box boundaries determined by counting transitions
between boxes. The transitions between neighboring discrete states occur when
the system trajectory crosses box boundaries. Computing the contour integral of

the probability current, Ω ¼
H

C
j�dlH

C
jjj dl, shows a non-zero circulation for a system is

out of equilibrium. Details of the methodology can be found in Supplementary
Note III.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
All relevant code used in this study is available from the corresponding author upon
reasonable request.
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