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Abstract

Efficient mechanism-based design of antibiotics that are not susceptible to B-lactamases is hindered by
the lack of comprehensive knowledge on the energetic landscapes for the hydrolysis of various B-lactams.
Herein, we adopted efficient quantum mechanics/molecular mechanics simulations to explore the
acylation reaction catalyzed by CTX-M-44 (Toho-1) B-lactamase. We show that the catalytic pathways
for B-lactam hydrolysis are correlated to substrate scaffolds: using Glul66 as the only general base for
acylation is viable for ampicillin but prohibitive for cefalexin. The present computational workflow

provides quantitative insights to facilitate the optimization of future B-lactam antibiotics.
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Antibiotic resistance undermines the effective treatment of bacterial infections. The application of -
lactam drugs has elevated many bacterial strains to inactivate common B-lactam based antibiotics families.
One major source of B-lactam resistance stems from P-lactamases, bacterially-produced enzymes that
effectively hydrolyze B-lactam drugs.!= B-lactamases are generally classified into four groups: classes A,
C, D are serine-based, and class B are zinc-based. Class A serine -lactamases (ASPLs) represent a severe
threat due to their prevalence in infectious strains and affinity to a wide range of B-lactams.*> The
inactivation of B-lactams by ASPLs has been extensively explored by pioneering computational and
experimental studies. Conserved in most ASPBLs, a widely-accepted catalytic mechanism has been
proposed that B-lactamase-promoted hydrolysis is a serine-mediated acylation-deacylation process.®"°
The acylation pathways have shown flexibility as this process could be mediated by either Lys73 or
Glul66 acting as the general base (Fig 1a).® While the acylation process is believed to be conserved in
all ASBLs, their catalytic efficiency (kc./Kn) against different B-lactam substrates has been shown to be
diverse.>*? Among hundreds of B-lactam-based antibiotics being developed, the most successful efforts
involve engineering the B-lactam cyclic scaffold.?° In this regard, understanding the underlying interaction
landscapes resulting from modifications on substrate structures can be informative for future optimization

and design of novel antibiotic series.
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Figure 1. Mechanisms of acylation in ASBLs and structures of the model substrates. (a) The general
mechanism of B-lactam acylation mediated by ASBL; (b) Structures of ampicillin (AMP) and cefalexin

(CEX).

CTX-M is a representative ASBL group and has been identified as an immediate menace to commonly
prescribed B-lactam antibiotics.* The CTX-M enzyme class is characterized by its enhanced catalytic
efficiency (kca/Kum) against cephalosporin antibiotic families.> The hydrolysis of most cephalosporins
deviates from that of other B-lactams by bearing a leaving group at its C3’ position. Expelling the C3’
leaving group would trigger a series of rearrangements, allowing its dihydrothiazine nitrogen to stay as an
unprotonated imine after the acylation. However, an exception is cefalexin (CEX) which adopts a C3’
methyl as a poor leaving group (Fig. 1b); The protonation of the CEX cephem amine is thus inevitable.

CEX also poses enhanced resistance against CTX-M hydrolysis compared to other early generations of
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penicillin or cephalosporins. In particular, Nitanai et al.’ showed that the catalytic efficiency (kca/Kp) of
CEX hydrolysis mediated by Toho-1 (also known as CTX-M-44)is 0.119 pM-! s*!, which is 17-fold lower
than that of ampicillin (AMP, 2.11 uM-' s!). Whereas AMP and CEX structurally differ only in their
signature penam/cephem bicyclic rings (Fig. 1b), the cephem scaffold of CEX evidently showed higher
hydrolysis resistance even to the CTX-M enzyme class.

Pioneering computational efforts applying hybrid Quantum Mechanical/Molecular Mechanical
(QM/MM) techniques have provided fruitful insights into antibiotic resistance driven by ASBLs.®®
Compared to other methods, the QM/MM Chain-of-States (CoS) approaches?'* are inherently
advantageous for computational efficiency and accuracy. As the CoS methods optimize the transition path
in the original conformational space, exhaustive exploration in the reaction-coordinates or collective-
variables reduced space can be avoided. Moreover, we demonstrated in a recent study!! that the constraint-
based Replica Path Method?!*? optimized minimum energy pathways (MEPs) could provide barrier
heights that are compatible to experimentally determined k..: for ASPL-catalyzed hydrolysis. In this study,
the acylation pathways of AMP and CEX hydrolysis in Toho-1 was investigated using QM/MM CoS
calculations.

The high-resolution crystal structures of Toho-1/benzylpenicillin (PDB entry: SKMW, 1.10 A)!* and
Toho-1/cephalothin (PDB entry: 2ZQ9, 1.07 A)° acyl-enzyme complexes were used as template systems
to create structures for Toho-1/AMP and Toho-1/CEX complexes. The topology files of AMP and CEX
were derived from CHARMM General Force Field (CGenFF)?>~?7. The ligand topologies in the template
systems were then substituted to create initial structures for Toho-1/AMP and Toho-1/CEX complexes.
As Lys73 and Glul66 are both potential general bases during the acylation step, systems with alternative
protonation states on Lys73 and Glul66 were prepared to account for acylation pathways via different

general base residues: first with protonated Lys73 and deprotonated Glul66 (noted as R1), and the other
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with deprotonated Lys73 and protonated Glul66 (noted as R2). The protonation states of other titratable
residues are assigned referring to additional pKa calculations (Table S1) and neutron diffraction data of
the apo-state Toho-1'2. A total of 4 enzyme-ligand models were created, protonated, optimized, and
equilibrated using a semi-empirical QM/MM scheme with the third-order Density Functional Tight
Binding theory with the 30B parameter set (DFTB3/30B)?%?° as the QM potential and CHARMM?36
force field (C36)*° as the MM counterpart (see Supporting Information, SI, Fig. S1, Fig. S2 for details).
The interatomic distances between the key reacting heavy atoms during a 100 ps molecular dynamic
simulation using the DFTB3/30B/C36 potential are shown in Table 1; it is noted that the distribution of
key reacting distances does not significantly differ between the 2 systems. The initial structures of the
pathway calculations were selected as the snapshots that have the minimal inter-heavy-atom distances
between the reacting functional groups of the four residues (Ser70, Lys73, Ser130, and Glul66), the

catalytic water and the B-lactam.

Table 1. The mean interatomic distances between key reacting heavy atoms in the DFTB3/30B/C36

dynamics. Parenthesis denote the standard deviation (unit: A).

Atom pairs Toho/AMP:R1 Toho/CEX:R1 Toho/AMP:R2 Toho/CEX:R2
Ser70 Oy — AMP C7 or CEX C8  2.43 (0.17) 2.58 (0.18) 2.44 (0.17) 2.57(0.18)
Lys73 N{— Ser130 Oy 2.85(0.15) 2.95(0.32) 3.07 (0.25) 3.15(0.32)
Ser130 Oy — AMP N4 or CEX N5 3.60 (0.23) 3.86 (0.26) 3.67 (0.31) 3.63 (0.31)
Ser70 Oy — Waterca O 2.65 (0.10) 2.65 (0.09) - -
Glul66 Og2 — Watercat O 3.06 (0.23) 2.77 (0.17) - -
Ser70 Oy — Lys73 N{ - - 2.88 (0.13) 2.93(0.17)
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A total of 5 structures (noted as Toho/AMP: R1, R2, and Toho/CEX: R1, R1a, R2) were chosen from
the production trajectories. These 5 frames were then subjected to calculations at Density Functional
Theory (DFT) level. The DFT QM region covers important active site fragments: B-lactams, the catalytic
water, the surrounding residues (Ser70, Lys73, Ser130, Glul66, Asnl170, Lys234, Thr235, Ser237),
together with a surrounding solvent molecule for the reaction pathway calculations. The hybrid density
functional B3LYP3! was used in conjunction with Pople’s 6-31G double ( basis set*? for the QM atoms
(B3LYP/6-31G/C36). The experimentally known stable states (reactant and acyl-enzyme) were first
subjected to geometry optimizations at the DFT/MM level. The optimized states were then connected by
a series of replicated conformations (replicas) that linearly intercepted the Cartesian space. The Replica
Path Method with holonomic constraints?! implemented in CHARMM? was applied for all pathway
optimizations through its interface’* to Q-Chem®. In order to comprehensively explore the stable
intermediates along the reaction, the replicas on the initial MEPs were independently minimized to the
nearest local minimum states. The final MEPs were then obtained by re-optimizing the chain-of-replicas
that connects the local minimums identified from the initial pathways. The energetic profiles on the
B3LYP/6-31G/C36 optimized MEPs were further refined with the augmented 6-31++G** basis set®.
Lonsdale et al.*”38 proposed that the contribution from the dispersion effect is critical to accurately account
for enzymatic reaction profiles, therefore the D3 dispersion correction of Grimme3® was also applied in
the single point energy calculations (B3LYP-D3/6-31++G**/C36). The locations of the transition states
are approximated by the replica with the highest energy on the optimized minimal energy path. This dual-
level DFT/MM workflow has been previously validated for closely resembling the catalytic barriers in
similar ASBL systems.!" The ChEIPG scheme*® was employed for the charge population analysis along

the chain-of-states.
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Pioneering theoretical studies proposed that the acylation of B-lactams could be mediated by either
Glu166 along or concertedly with Lys73. Hermann et al.® first reported that the acylation reaction could
be mediated using Glul66 as the basic proton host in ASBL hydrolysis. In a similar ASBL/penam system,
Meroueh et al.® further proposed that Lys73 is a viable alternative for the general base that accepts the
Ser70 hydroxyl proton. Augmented by extensive Machine-Learning regression analysis, our previous
work'! on TEM-1 acylation pathways bridged the discrepancies between the energetics reported from the
above pioneer studies. In the present study, both pathways for acylation were investigated for AMP and
CEX.

The optimized reactant structures of Toho/AMP differ from Toho/CEX by the hydrogen bonding
networks between the penam/cephem carboxylate and the residues Thr235, Ser237 (Fig 2, Fig. S3).
Practically, the Ser237 hydroxyl is generally outside of the H-bonding region of the AMP carboxylic
group. The reactant configuration is therefore stabilized by a water molecule serving as the H-bond bridge
between the Ser237 hydroxyl and the AMP carboxylate (Toho/AMP:R1, Fig. 2a). Meanwhile, the CEX
adopts a more flexible binding pattern: the hydroxyl group from Ser237 could either form direct hydrogen
interacting to the substrate carboxyl group (Toho/CEX:R1, Fig. 2b) or to a solvent water molecule
(Toho/CEX:R1a, Fig. 2¢). The superimposed conformations of the reactant states show that the QM
residues, the substrates and the catalytic water share a similar orientation (Fig. S4), indicating that the
optimized reactant structures are in the equivalent stationary potential energy state. As for the product
acyl-enzyme states, Vandavasi et al.'> observed two Lys73 conformers in the perdeuterated acyl-enzyme
complex of Toho(Glul66Ala)/cefotaxime (PDB entry: 5A93, 2.20 A). In our study, the conformations of
all AE1 states agree with the B conformer that carries a deprotonated Lys73 amine with its sidechain
resting in an extended configuration (Fig. S5). Notably, we observed an alternative Lys73 deprotonated

acyl-enzyme local minimum state (AE2) on all acylation pathways. The AE2 states slightly differ from
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the AE1 states by the configuration of the deprotonated Lys73 amino (Fig. S6): the AE2 Lys73 N adopts
an extra hydrogen interaction to Ser70 Oy, while the AE1 Lys73 does not form the H-bonds to the acyl-
serine complex. While the conversion between AE1 and AE2 are found to be barrier-less on all acylation
pathways, we note that the AE1 states are shown to be slightly more energetically favorable as their

energies are generally 2-4 kcal mol! lower than the AE2 states (Table S2).

gy
g 1 -

g)/Siues b

Figure 2. Conformations of R1 reactant states. The conformations of (a) Toho/AMP:RI1; (b)

Toho/CEX:R1; (c) Toho/CEX:R1a. The hydrogen bonding interactions are noted as blue dashed lines.

Our calculated Toho/AMP acylation pathways (Fig. 3a) closely resemble the potential energy
landscapes reported by Merouch et al.®: the energy barrier for the acylation using Glul66 as general base
(14.0 kcal mol!) is moderately higher than that of Lys73/Glul66 concerted base (8.7 kcal mol™!). The
Toho/AMP acylation pathways agree with both acylation mechanisms, indicating that either Lys73 or
Glul66 could mediate the acylation process in Toho/AMP hydrolysis. The ChEIPG charge profiles of the
Toho/AMP pathways align with the intuitive understanding of the reaction mechanism. As shown in Fig.
3b and 3c, the decreasing charge population on AMP O7 between replica 20 to 27 is synergetic to the
increasing charge on Ser70 Oy, suggesting the formation of tetrahedral intermediate (with a formal charge

of -1 on AMP O7) during the serine addition. Furthermore, the locations of maximal charge profiles on



158  AMP N4 are also correlated with the replica with the highest energy along the reaction progress, showing
159  that the protonation of AMP N4 is strongly correlated with the rate of acylation, agreeing with previous

160  observations'!.
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163  Figure 3. Energy profiles and the ChEIPG charges of key atoms along the acylation pathways in
164  Toho-1 hydrolysis. (a) The acylation profiles of Toho/AMP; The ChEIPG charges along (b) the
165 Toho/AMP: R1 to AEI pathway, and (c) the Toho/AMP: R2 to AE1 pathway; (d) The energy profile and
166  the ChEIPG charge profiles of the refined Toho/CEX: Rla to AE1 pathways, which is calculated from
167  inserting 18 replicas between replica 24 and 31 (see SI); (e) The acylation profiles of Toho/CEX; The
168  ChEIPG charges along (f) the Toho/CEX: R1 to AE1 pathway, (g) the Toho/CEX: R2 to AE1 pathway,

169  and (h) the Toho/CEX: Rla to AE1 pathway. The vertical black solid lines in (a) and (d) indicate the
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location of AE1 and AE2. Numbers in parentheses and brackets denote the local minimum and maximum
values of important states along the reaction path. Note that only ChEIPG charge values of B-lactam
carbonyl carbon (blue) and nitrogen (orange) are shown in (b), (c), (f), (g), (h). See also Table S3-S7 for

detailed replica-wise energy components and ChEIPG charges on key atoms.

However, Toho/CEX acylation demonstrates a different catalytic mechanism, as shown in Fig. 3e. The
acylation barrier using Glul66 as the general base is prohibitively high (26.5 kcal mol!). In particular,
the corresponding barrier further increases to 52.4 kcal mol! when cefalexin substrate adopts a similar
binding pattern as ampicillin (Toho/CEX:R1a to AEI1, Fig. 3d). These leave Lys73 as the inevitable
candidate to mediate deprotonation of the Ser70 hydroxyl during CEX acylation, which confers an
energetic barrier of 13.7 kcal mol! (Toho/CEX:R2 to AE1). Further mechanistic insights can be derived
from the ChEIPG charge profiles. On the Glul66-mediated Toho/CEX acylation pathways (Fig. 3e, 3g,
3h), a stable tetrahedral intermediate indicated by the temporarily decreased charge on -lactam carbonyl
oxygen (as in the corresponding Toho/AMP pathways) is less synergetic to the formation of the tetrahedral
intermediate. Moreover, the charge on the cephem nitrogen is largely increased to 0.41 (Fig. 3e) and 0.22
(Fig. 3g) upon the barrier replica, which evidently suggests its poor proton affinity to accept the proton
transfer from Ser130. Alternatively, the dual-base mediated Toho/CEX: R2 to AE1 pathways (Fig. 3f)
demonstrates a similar charge profile to the corresponding AMP acylation pathway. Interestingly, an
increase of ChEIPG charge on CEX C8 is seen uniquely upon the formation of tetrahedral intermediate
on this pathway (Fig. 3f, replica 18). Intuitively, the lone pair on Ser70 Oy in the R2 configurations are
oriented towards the ligand carbonyl carbon, potentially activating the conjugated & orbital on the B-lactam
bicyclic. While the n-conjugation in AMP (N4-C7=08) is localized to the B-lactam scissile C-N bond, it

is extended along the cephem bicyclic (C3=C4-N5-C8=08) in CEX. The temporary charge increment on
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CEX C8 can therefore be interpreted as the consequence of breaking the more delocalized n-conjugation
on the cephem scissile bond during the nucleophilic attack of Ser70 Oy. Accordingly, this explanation is
also supported by the observation that the tetrahedral intermediates on Toho/AMP and Toho/CEX
pathways do not significantly differ from each other in terms of heavy atom conformations (Fig. S7).
The computational barriers are further correlated with experimental kinetic studies (Table 2). Nitanai
et al.’ reported that the catalytic barrier (calculated from ke.) of Toho/AMP hydrolysis is ~14.9 kcal mol-
I, slightly lower by ~1.7 kcal mol! than that of CEX (~16.6 kcal mol™"). In our calculations, both acylation
barriers for Toho/AMP are sufficiently lower than the experimentally determined catalytic barrier,
suggesting that the acylation mechanism previously developed for ASBLs are applicable to Toho-1/AMP
as well. In contrast, the only viable reaction pathway for CEX is the Lys73/Glul66 dual base mechanism.
The pathway that uses Glul66 as the only general base greatly exceeded the experimental barrier (16.6

kcal mol™) by 9.9 kcal mol-'.

Table 2. The catalytic barriers of ampicillin and cefalexin hydrolysis in Toho-1.

Source 12 Systems Energy barriers (kcal mol™') Method [
Shimizu-Ibuka et al.!- €] Toho-1/AMP 15.5 303.15K, Exp
Nitanai et al.’ Toho-1/AMP 14.9 303.15K, Exp
This study. Toho-1/AMP 8.7/14.0 B3LYP-D3, CoS
Nitanai et al. ° Toho-1/CEX 16.6 303.15K, Exp
This study. Toho-1/CEX 13.7/26.5 1 B3LYP-D3, CoS

[a] Bold entries are computational results from this study;
[b] The experimental (Exp) catalytic barrier of Toho/AMP were derived from k.. via the Eyring equations,

the acylation barrier of Toho/CEX were derived from the ratio of kca/Ku to Toho/AMP;

12
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[c] This study used the wild-type Toho-1 as the enzyme host while others used the Arg274Asn/Arg276Asn
Toho-1 mutant as the enzyme host;
[d] Values before “/” report the barrier of the Lys73/Glul66 concerted base acylation pathway. Values

after “/” report the Glul66 sole base acylation pathway.

In this study, we demonstrate that the AMP and CEX acylation energy landscapes differ from each
other during Toho-1 hydrolysis. Pioneering computational mechanistic studies®® suggested that acylation
could be mediated by either Glul66 solely or concertedly with Lys73 as the general proton acceptor(s).
In our calculations of both systems, the R1 pathway, which is mediated solely by Glul66 as the base,
confers a higher (potential) energy barrier than the R2 pathways. Using a cefotaxime bound Toho-1 system,
Langan et al.'* showed that the transition from R1 to R2 confers a free energy barrier of ~5 kcal mol’!,
suggesting fast transitions between R1 and R2. This observation leads to the question of whether the R1
acylation pathway is mechanistically important in Toho-1 (or other ASBLs) catalysis. Herein, the R1
acylation pathway is shown to be energetically prohibitive for CEX (Fig. 3e, Table 2), leaving the
Lys73/Glul66 dual base mechanism as the main viable pathway for its acylation. In the case of AMP,
whereas the investigated acylation barrier via the Glul66 sole base mechanism is sufficiently lower than
the experimentally determined kinetics (Table 2), the viability of the R1 pathway is not evidently clear
from the potential barrier alone. However, unlike Toho/CEX, we note that the ChEIPG charge profiles in
Toho/AMP acylation demonstrate a similar pattern for the R1 and R2 pathways (Fig. 3b, 3¢), suggesting
that the R1 acylation mechanism is at least competitive to the R2 alternatives. The viability of both R1
and R2 pathways in Toho-1 mediated B-lactam acylation was also supported by pioneering
computational®® and experimental'’ studies. In our assessment, the acylation mechanism developed for

ASBLs/benzylpenicillin, where both acylation pathways are accessible, is naturally transferable to

13



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Toho/AMP catalysis. However, the acylation pathway utilizing Glul66 as the general base was shown to
be kinetically prohibitive for Toho/CEX as a result of the extended delocalization on N5, which is
introduced by the C3=C4 double bond. The viable acylation pathway for CEX is thus the Lys73/Glul66
dual base mechanism.

Our calculations with CEX acylation also shed light onto the hydrolysis of other cephalosporins. As
noted above, CEX mechanistically stands out in the cephalosporin family as its B-lactam nitrogen has to
be protonated upon the formation of the acyl-enzyme product. However, common cephalosporins such as
cephalothin and cefotaxime show higher catalytic efficiency (ke./Ku)®'%!7, which suggests a much lower
acylation barrier than that of CEX. Such observations suggest that the cephem nitrogen may not be
protonated during the entire acylation processes of other cephalosporins. Through their crystallographic
study, Olmos et al.'® recently observed that the departure of the C3’ leaving group is clearly simultaneous
to the serine attack during the ASBLs/cefotaxime acylation, supporting the above hypothesis. In this regard,
the protonation of the cephem nitrogen, which was also previously validated as the rate limiting step'!,
could be avoided, and leading to the higher acylation rates observed in other early generations of
cephalosporins.

Currently, efficient mechanism-based development of new antibiotics is obstructed by the lack of
sufficient knowledge on the energetic landscapes of various -lactam hydrolysis. In the present study, we
report that one enzyme can adopt different acylation pathways responding to different substrate structures.
Using AMP and CEX as the model substrates and Toho-1 as the enzyme, our QM/MM CoS pathway
calculations demonstrated that the acylation mechanism of Toho-1 can be substrate-dependent. The
acylation pathways with Glul66 acting as the only general base are shown to be viable for AMP but
prohibitive for CEX. We attribute the low acylation activity in CEX to the lowered proton affinity of the

B-lactam nitrogen induced by the extended n-conjugation from the dihydrothiazine ring. In this regard, the
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reactivity of the scissile C—N bond could be engineered by introducing additional n-conjugations to the -
lactam. Accordingly, we note that similar structural features can also be seen on other robust B-lactam
variants (such as carbapenems and aza-B-lactams'**!). In conclusion, we report the distinct mechanistic
basis of the seemingly identical acylation barrier for Toho-1 mediated AMP and CEX hydrolysis. On the
basis of the comparative mechanistic analysis to Toho/AMP and Toho/CEX acylation profiles, it is
expected that the current study enlightens the flexibility of the ASPLs mediated B-lactam acylation and

could facilitate future optimization and development of B-lactam based antibiotic drugs.
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