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We uncover a new type of magic-angle phenomena when an AA-stacked graphene bilayer is twisted
relative to another graphene system with band touching. In the simplest case this constitutes a trilayer
system formed by an AA-stacked bilayer twisted relative to a single layer of graphene. We find multiple
anisotropic Dirac cones coexisting in such twisted multilayer structures at certain angles, which we call
“Dirac magic.” We trace the origin of Dirac magic angles to the geometric structure of the twisted
AA-bilayer Dirac cones relative to the other band-touching spectrum in the moiré reciprocal lattice.
The anisotropy of the Dirac cones and a concomitant cascade of saddle points induce a series of topological
Lifshitz transitions that can be tuned by the twist angle and perpendicular electric field. We discuss the
possibility of direct observation of Dirac magic as well as its consequences for the correlated states of
electrons in this moiré system.
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Introduction.—The discovery of correlated electronic
states in twisted bilayer graphene has ushered in a new
era of “twistronics” in stabilizing novel phases of quantum
matter in low dimensions [1–12]. A growing number of
twisted structures of layered van der Waals materials, such
as multilayer graphene [13–23] and transition metal dichal-
cogenides [24–29], have been studied theoretically and
experimentally. Some of these systems exhibit a series of
“magic angles,” characterized by low-lying bands of
bandwidth much smaller than the energy scales of the
original layers and their tunnel coupling. Interactions play a
prominent role in determining the electronic state when the
Fermi energy is in such a band [30–33].
The appearance of flatbands can be understood intui-

tively from the competition between the dispersive energy
scale of each layer, e.g., the Dirac cones in graphene, and
the tunneling energy scale modulated by the moiré pattern
of twisted strcuture. At small twist angles, the latter yields a
nearly periodic moiré superlattice or, equivalently, a small
moiré Brillouin zone repeated in the reciprocal space.
Magic angles are found when the energies of the twisted
bands at successive moiré Brillouin zones become com-
parable to the tunneling energy. This picture raises the
question of whether other interesting band reconstructions
can arise from competing energy scales. In particular, a
heterogeneous choice of the twisted layers broadens the
possibilities for twistronics [34–37].
In this Letter, we uncover a new type of twisted

band engineering in multilayer graphene, formed by an
AA-stacked graphene bilayer twisted relative to another
graphene layer with degenerate band touchings (D), such as
a single sheet of graphene with a Dirac cone in the simplest

case, Bernal-stacked graphene with quadratic band touch-
ing [38], or rhombohedral graphene trilayer with cubic
band touching [39,40]. The choice of AA stacking for the
bilayer is motivated by its close relation to the degenerate
graphene layer, effectively consisting of two Dirac cones
shifted to finite energies by the tunneling amplitude
between the layers. We find that this geometry hosts special
angles for which multiple Dirac cones coincide at the same
high symmetry points in a moiré Brillouin zone. We call
this phenomenon “Dirac magic.”

For an AA-stacked graphene bilayer twisted on a single
sheet of graphene, we find that on approaching Dirac
magic angles the energy bands near the Dirac point of the
single layer undergo significant reconstruction. This is a
result of a topological transition where the local maxi-
mum of the second band becomes a local minimum as
C3-symmetric saddle points merge. We find that this
process generates a cascade of saddle points that spiral
toward the Dirac point. As a result, a series of topological
Lifshitz transitions are induced by varying the Fermi level
near neutrality [41,42]. We show that in addition to
variations in the twist angle, these Lifshitz transitions
can be tuned by a perpendicular electric field. Thus, the
Dirac magic phenomena enable new types of twisted
band engineering and provide a rich platform for corre-
lated electronic states.
Model.—The general form of the Hamiltonian for the

system we study is

HAA=D ¼
� hAA;θ=2 T

T† hD;−θ=2

�
; ð1Þ

PHYSICAL REVIEW LETTERS 128, 026404 (2022)

0031-9007=22=128(2)=026404(7) 026404-1 © 2022 American Physical Society

https://orcid.org/0000-0002-6817-7561
https://orcid.org/0000-0003-1834-8286
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.026404&domain=pdf&date_stamp=2022-01-12
https://doi.org/10.1103/PhysRevLett.128.026404
https://doi.org/10.1103/PhysRevLett.128.026404
https://doi.org/10.1103/PhysRevLett.128.026404
https://doi.org/10.1103/PhysRevLett.128.026404


where hL;�θ=2 is the Hamiltonian of layer L ¼ AA, D at
twist angle �θ=2 and T is the tunneling between the
adjacent sheets of the layers. For concreteness, we consider
the simplest case of an AA-stacked bilayer twisted relative
to a single layer, see Fig. 1(a). Results for AA=AB and
AA=ABC twisted graphene multilayers are presented in the
Supplemental Material [43]. Following Bistritzer and
MacDonald [6], we model the trilayer system with

HAA=S ¼

2
64
hθ=2 − V TAA 0

T†
AA hθ=2 T

0 T† h−θ=2 þ V

3
75; ð2Þ

where hθ=2 ¼ −iℏvF∇ · σθ=2 is the low-energy single-layer
Hamiltonian with Fermi velocity vF and rotated Pauli
matrices σθ ≡ R†

θðσx; σyÞRθ, where Rθ ¼ eiθσz=2. Within
the AA bilayer we take

TAA ¼ γAA12 þ iγTW∇ · σθ=2; ð3Þ
where 12 is the 2 × 2 unit matrix, γAA is onsite tunneling,
and γTW the trigonal warping of the bilayer bands. The
tunneling matrix between the single layer and one of the
AA-stacked sheets is T ¼ P

3
n¼1 Tne−ikθqn·r,

Tn ¼ wðu12 þ qn · σπ=2Þ; ð4Þ

where q1 ¼ ð0;−1Þ and q2;3 ¼ ð� ffiffiffi
3

p
=2; 1=2Þ are the wave

vectors associated with the moiré superlattice in units of
kθ ¼ 8π sinðθ=2Þ=3a, a is the Bravais lattice spacing of
graphene, w and uw are the tunneling amplitudes between
the AB and AA regions of the moiré pattern. We have also
included the potential bias V to model an electric field
perpendicular to the layers. In our numerical results below
we take a ¼ 2.4 Å, ℏvF=a ¼ 2.425 eV, γAA ¼ 217 meV,
γTW ¼ 20 meV, w ¼ 110 meV and u ¼ 0.816 unless oth-
erwise noted [44].
Geometric origin of Dirac magic.—To understand the

origin of Dirac magic angles, we will use a perturbative
scheme in the moiré Brillouin zone as a function of w. We
note that in the absence of tunneling (w ¼ 0), and neglect-
ing trigonal warping (γTW → 0), the moiré pattern gives rise
to folded bands with zero-energy states at the K point of
the single layer and at circles of radius k0 ≡ γAA=ℏvF
centered at the K0 point of the shifted Dirac cones of
the bilayer. As shown in Fig. 1(b), upon lowering the
twist angle, these circles first pass through the K point
when k0 ¼ kθ1 for θ1 ¼ 2sin−1ð3aγAA=8πℏvFÞ ¼ 1.22°.
As illustrated in Fig. 2(a), this is the first of a series of
angles at which the zero-energy circles centered at K0
in higher-order moiré Brillouin zones intersect at the
K point, satisfying k0 ¼ rnkθn for a series of ratios

rn¼1;2;
ffiffiffi
7

p
;

ffiffiffiffiffi
13

p
;4;

ffiffiffiffiffi
19

p
; �� �. Since the angles are small,

we find θn ≈ θ1=rn.

For small w ≠ 0, the states of the bilayer and single
layer mix and, generically, split away from zero energy
governed by symmetry. Since the Hamiltonian (2) at
the K point has threefold rotational symmetry, C3 ¼
diagðR2π=3; R2π=3; R2π=3ÞR2π=3 with Rθ the spatial rotation
by θ around z axis, the mixing occurs within each
eigenvalue sector of SpecðC3Þ ¼ f1;φ;φ−1g, φ ¼ e2πi=3.
For u ¼ 0 the Hamiltonian is also chirally symmetric

fH;Cg ¼ 0 with C ¼ diagð−σz; σz; σzÞ for all w [11],
which restricts mixing within opposite chiral eigenvalues
�1. Since ½C;C3� ¼ 0, the zero-energy states can be taken
to be simultaneous eigenstates of C3 and C: the three
degenerate pairs of states of the AA bilayer at the K point
take all distinct eigenvalues of C3 and C, while those of
the single sheet have the pair of eigenvalues ðφ;þ1Þ and
ðφ−1;−1Þ, respectively, of ðC3; CÞ [31,45]. Thus, each C3

sector φ or φ−1 has three states, whose mixing will yield
one state at E1 ¼ 0 and a pair of states at energies
�E3 ∝ w. All of these energies are doubly degenerate
due to the mirror symmetry M1 with mirror plane K-Γ,
which satisfies M1C3M1 ¼ C−1

3 and maps the φ and φ−1

sectors to one another.

FIG. 1. Sketch of (a) the real-space geometry of the AA=S
twisted trilayer heterostructure and (b) the momentum-space
energy bands near the Dirac point of the single layer. In
(b) the three negative-energy cones of the AA-stacked bilayer
and the moiré Brillouin zones are shown at the matching
condition that originates the first Dirac magic angle.

FIG. 2. (a) Reciprocal lattice of the moiré superlattice with the
K point (red) at the origin and K0 points (green) at a distance rnkθ
for rn ¼ 1; 2;

ffiffiffi
7

p
;

ffiffiffiffiffi
13

p
; 4;

ffiffiffiffiffi
19

p
(circle, triangle, square, hexagon,

diamond, star). The dashed lines mark the K points connected to
the origin at a given OðwsÞ of tunneling matrix elements (solid
lines). (b) The energy splitting δEK ¼ E2 − E1 at K point at
Oðw9Þ for u ¼ 0.816.
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The pair of states in the C3 sector with eigenvalue 1 are
not protected against splitting by tunneling; however, since
they both reside in the AA bilayer for w ¼ 0, they can only
split by mixing with higher-energy states of the single
sheet. Thus their splitting results in energies �E2 ∝ w2.
Indeed, this splitting can be made very small by adjusting
the twist angle θ.
Numerics.—We now demonstrate the physics described

above by numerically diagonalizing the Hamiltonian in
Eq. (2) in a plane wave basis, using the reciprocal lattice
formed by q2 − q1 and q3 − q1. To achieve convergence as
the twist angle is lowered, we organize the increasing
number of wave vectors by a given number, s, of tunneling
matrix elements to produce perturbative results up to
OðwsÞ as shown in Fig. 2(a). We plot the calculated
energy difference E2 − E1 ≡ δEKðw; θÞ at the K point
for u ¼ 0.816 in Fig. 2(b). The loci of δEK minima
converge to the geometric values θn as w → 0 and reveal
the evolution of the Dirac magic angles for w > 0.
We find the minima of δEK ≈ 0.1–0.2 meV are 3 orders

of magnitude smaller than the tunneling energy scale
w ∼ 100 meV. Moreover, for w > 0 the tunnel coupling
of the zero-energy circles of the AA bilayer breaks them up
into arcs passing through the K point, resulting in a highly
anisotropic dispersion of nearly degenerate Dirac cones at
Dirac magic angles. Thus, we expect a rich spectral
topology at and near Dirac magic angles that can be tuned
by the twist angle as well as external fields.
Dirac magic spectra.—We focus on the second Dirac

magic angle, θ2 ¼ 0.826° forw ¼ 110 meV and u ¼ 0.816,
since it has a direct gap between positive- and negative-
energy bands away from the K point, allowing for clear
experimental signatures. (SeeSupplementalMaterial [43] for
the first Diracmagic angle θ1 ¼ 1.31° aswell as a calculation
of the Berry phase.)
The band spectra along symmetry lines are shown in

Fig. 3. The near degeneracy of the four central bands at the
K point in Fig. 3(a) is accompanied by significant
anisotropy in the K-M-K0 and K-Γ directions, and a small
flatband feature with a width of about 1.5 meV in the K-Γ
direction. Interestingly, there is a second band minimum
visible along the K-Γ. Thus, changing the electron density
away from neutrality (for example by a gate voltage) can
change the Fermi surface topology through a Lifshitz
transition.
Fermi surface topology can also be tuned by changing

the twist angle and/or applying a perpendicular electric
field. In Fig. 3(b), we show the band spectra at θ ¼ 0.85°,
showing the opening of the second band gap at the K point
while the near band crossing between the first and the
second band moves away from the K point and to nonzero
energies. Moreover, an additional first band minimum
develops along the K-M-K0 direction. Applying a
perpendicular electric field as in Figs. 3(c) and 3(d) also
opens a gap for the second band at the K point while also

accentuating the avoided band crossing away from the K
point. It also reshapes the band minima, thus providing an
additional knob to control the Fermi surface topology.
Lifshitz transitions.—To illustrate the Fermi surface

topology, we present the topography of the first and second
band spectra in the Brillouin zone in Fig 4. This makes the
anisotropy in the K-K0 and K-Γ directions plainly clear in
both bands. In the first band, in particular, a three-blade
propeller-shaped flatband region along the K-Γ direction
is evident. Strikingly, as shown by the zoomed panel in
Fig. 4(a) at Dirac magic angle, this propeller-shaped
structure repeats itself at lower energies at least three times
in our numerical resolution. This remarkable structure is
one of our main findings.
As a consequence of the repeated propeller-shaped

structure in this system, the approach to the Dirac magic
angle at θ ¼ 0.826° is accompanied by a cascade of saddle
points. This can also be seen in the density of states of the
two bands [43]. Thus, multiple Lifshitz transitions appear
as a function of density or Fermi energy. The second band,
by contrast, does not exhibit such an intricate saddle point
structure.
Applying a perpendicular electric field reshapes the

bands, as shown in Figs. 4(b) and 4(e). The propeller-
shaped contours of constant energy close to the K point
become less anisotropic, albeit still triangular. This termi-
nates the cascade of saddle points at low energies. The main
effect on the second band is to raise the overall energy scale
without introducing saddle points or additional degener-
acies with the first band.
Adjusting the angle away from the Dirac magic angle

also reshapes the bands; a typical example is shown in
Figs. 4(c) and 4(f). As with the perpendicular electric field,
the first band evolves here by merging saddle points and
developing a less anisotropic topography around the K

FIG. 3. Band spectra along symmetry lines of the moiré
Brillouin zone near the second Dirac magic angle for
(a) θ ¼ 0.826°, V ¼ 0, (b) θ ¼ 0.85°, V ¼ 0, (c) θ ¼ 0.826°,
V ¼ 72.75 meV, and (d) θ ¼ 0.85°, V ¼ 72.75 meV. In (a) the
minimum gap δEK ¼ 0.26 meV. In (b) the gap at band crossings
away from the K point is too small to report within our numerical
resolution.
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point. By contrast, the second band displays a maximum at
the K point and a contour of (near) degenerate states with
the first band away from it. This is necessarily accompanied
by additional saddle points around the K point in the
second band. Thus, different Lifshitz transitions appear in
higher bands near the K point.
Discussion.—The appearance of Lifshitz transitions

can, in principle, be observed in spectral probes of the
bands, e.g., angle-resolved photoemission spectroscopy
[46] or Landau level spectroscopy [47,48]. The change
in the Fermi surface topology can also be probed via
quantum oscillations. Saddle points slow the semiclassical
motion of electrons, introducing anomalous drops in the
frequency of these oscillations as a function of Fermi
energy [49–51].
A remarkable consequence of the saddle point cascade

supported by these AA-twisted systems is the expectation
that, with increasing magnetic field (and decreasing mag-
netic length), an increasingly fine structure associated with
the Lifshitz transitions should become evident near zero
energy, in contrast to single layer graphene, for which only
a single degenerate Landau level is present. Such a structure
could be revealed via compressibility measurements [52].
The propeller-shaped Fermi surfaces at the Dirac

magic angle create quasiparticle scattering wave vectors
yielding distinct quasiparticle interference patterns in
scanning tunneling spectroscopy [53–55]. The nesting of

the Fermi surface by these wave vectors could also open the
possibility of instabilities toward magnetic and/or charge
ordering in the system [56–59].
More generally, the van Hove singularities at the saddle

points can promote various correlated electronic phases.
The apparent proliferation of such saddle points at low
energy near Dirac magic angles points to a potentially rich
phase diagram of correlated states at low energies [60–63].
Our study of the band topology near the Dirac magic angle
and its evolution with the twist angle and perpendicular
electric field are a crucial first step toward understanding
correlated electronic states that can occur in this system. In
this regard, we note that while the existence of Dirac magic
angles is a robust feature of the AA-stacked twisted
multilayer graphene systems we have studied, details of
the band topology they support are sensitive to the values of
twist angle and perpendicular electric field. Thus, spatial
inhomogeneities in twist angle, local potential imbalance,
and electronic densities can result in coexistence of differ-
ent kinds of order in the same system.
Summary.—We have introduced a new design concept

for twisted moiré systems, in which the geometric matching
of a band touching point in one layer and degenerate Fermi
surfaces of an AA-stacked graphene bilayer, achieved at
certain Dirac magic twist angles, can lead to the appearance
of multiple near-degenerate, anisotropic Dirac cones. The
approach to these Dirac magic angles is accompanied by a

FIG. 4. Density plot of the first (top row) and second (bottom row) positive bands near the second Dirac magic angle for w ¼ 110 meV
and u ¼ 0.816. The stars mark the locations of saddle points. The K point is at the center and the left panels in (a) and (d) show the full
moiré Brillouin zone with contour lines separated by 1 meV. The rest of the panels are zoomed in around the K point with gray contour
lines that are separated by 0.3 meV and a few specifically labeled for illustration. The other parameters are (a), (d) θ ¼ 0.826°, V ¼ 0;
(b), (e) θ ¼ 0.826°, V ¼ 72.75 meV; (c), (f) θ ¼ 0.85°, V ¼ 0. The same color bar is used for all plots.
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cascade of saddle points and propeller-shaped constant-
energy contours in the low-energy bands. This opens the
possibility of engineering multiple Dirac cones and tunable
Lifshitz transitions in situ. We hope that these findings will
stimulate further theoretical and experimental studies of
correlated phases in this system.
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2105.07008.

[38] J. Jung and A. H. MacDonald, Accurate tight-binding
models for the π bands of bilayer graphene, Phys. Rev. B
89, 035405 (2014).

[39] F. Zhang, B. Sahu, H. Min, and A. H. MacDonald, Band
structure of abc-stacked graphene trilayers, Phys. Rev. B
82, 035409 (2010).

[40] H. Zhou, T. Xie, T. Taniguchi, K. Watanabe, and A. F.
Young, Superconductivity in rhombohedral trilayer gra-
phene, Nature (London) 598, 434 (2021).

[41] S. Carter, H. Pal, and M. Kindermann, Prediction of novel
‘magic’ angles and correlations for twisted bilayer graphene
in a perpendicular electric field, arXiv:1810.13323.

[42] K. Hejazi, C. Liu, H. Shapourian, X. Chen, and L. Balents,
Multiple topological transitions in twisted bilayer graphene
near the first magic angle, Phys. Rev. B 99, 035111
(2019).

[43] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.128.026404 for more
details of the band spectra, density of states, and the Berry
phase near Dirac magic angles, as well as band structure of
AA=S, AA=AB, and AA=ABC twisted heterostructures.

[44] I. Lobato and B. Partoens, Multiple Dirac particles in
AA-stacked graphite and multilayers of graphene, Phys.
Rev. B 83, 165429 (2011).

[45] I. F. Herbut, Explanation for the isotropy of the Dirac cone
in graphene, Phys. Rev. B 79, 193405 (2009).

[46] A. J. H. Jones, R. Muzzio, P. Majchrzak, S. Pakdel, D.
Curcio, K. Volckaert, D. Biswas, J. Gobbo, S. Singh, J. T.
Robinson, K. Watanabe, T. Taniguchi, T. K. Kim, C. Cacho,
N. Lanata, J. A. Miwa, P. Hofmann, J. Katoch, and S.
Ulstrup, Observation of electrically tunable van Hove

singularities in twisted bilayer graphene from NanoARPES,
Adv. Mater. 32, 2001656 (2020).

[47] A. Varlet, D. Bischoff, P. Simonet, K. Watanabe, T.
Taniguchi, T. Ihn, K. Ensslin, M. Mucha-Kruczyński,
and V. I. Fal’ko, Anomalous Sequence of Quantum Hall
Liquids Revealing a Tunable Lifshitz Transition in Bilayer
Graphene, Phys. Rev. Lett. 113, 116602 (2014).

[48] Y. Choi, H. Kim, Y. Peng, A. Thomson, C. Lewandowski,
R. Polski, Y. Zhang, H. S. Arora, K. Watanabe, T. Taniguchi,
J. Alicea, and S. Nadj-Perge, Correlation-driven topological
phases in magic-angle twisted bilayer graphene, Nature
(London) 589, 536 (2021).

[49] H. A. Fertig and B. I. Halperin, Transmission coefficient of
an electron through a saddle-point potential in a magnetic
field, Phys. Rev. B 36, 7969 (1987).

[50] M. A. Itskovsky and T. Maniv, de Haas–van Alphen effect in
a two-dimensional metal with Fermi energy near the van
Hove singularity, Phys. Rev. B 72, 075124 (2005).

[51] C.-K. Lu and H. A. Fertig, Magnetic breakdown in twisted
bilayer graphene, Phys. Rev. B 89, 085408 (2014).

[52] A. F. Young, C. R. Dean, I. Meric, S. Sorgenfrei, H. Ren, K.
Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, and P. Kim,
Electronic compressibility of layer-polarized bilayer gra-
phene, Phys. Rev. B 85, 235458 (2012).

[53] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Imaging
standing waves in a two-dimensional electron gas, Nature
(London) 363, 524 (1993).

[54] L. Chen, P. Cheng, and K. Wu, Quasiparticle interference in
unconventional 2D systems, J. Phys. Condens. Matter 29,
103001 (2017).

[55] D.-B. Zhang, Q. Han, and Z. D. Wang, Local and global
patterns in quasiparticle interference: A reduced response
function approach, Phys. Rev. B 100, 205112 (2019).

[56] D. Makogon, R. van Gelderen, R. Rold’an, and C. M.
Smith, Spin-density-wave instability in graphene doped
near the van Hove singularity, Phys. Rev. B 84, 125404
(2011).

[57] G. Long, S. Xu, T. Zhang, Z. Wu, W. K. Wong, T. Han,
J. Lin, Y. Cai, and N. Wang, Charge density wave
phase transition on the surface of electrostatically
doped multilayer graphene, Appl. Phys. Lett. 109, 183107
(2016).

[58] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney,
K. Watanabe, T. Taniguchi, M. A. Kastner, and D.
Goldhaber-Gordon, Emergent ferromagnetism near three-
quarters filling in twisted bilayer graphene, Science 365,
605 (2019).

[59] M. Fleischmann, R. Gupta, F. Wullschläger, S. Theil, D.
Weckbecker, V. Meded, S. Sharma, B. Meyer, and S.
Shallcross, Perfect and controllable nesting in minimally
twisted bilayer graphene, Nano Lett. 20, 971 (2020).

[60] Y. Sherkunov and J. J. Betouras, Electronic phases in
twisted bilayer graphene at magic angles as a result of
van hove singularities and interactions, Phys. Rev. B 98,
205151 (2018).

[61] T. Cea, N. R. Walet, and F. Guinea, Electronic band
structure and pinning of Fermi energy to van Hove singu-
larities in twisted bilayer graphene: A self-consistent ap-
proach, Phys. Rev. B 100, 205113 (2019).

PHYSICAL REVIEW LETTERS 128, 026404 (2022)

026404-6

https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevLett.121.087001
https://doi.org/10.1103/PhysRevLett.121.087001
https://doi.org/10.1103/PhysRevLett.122.246401
https://doi.org/10.1103/PhysRevLett.122.246401
https://doi.org/10.1126/science.aan8458
https://doi.org/10.1103/PhysRevB.102.155146
https://doi.org/10.1038/s41567-021-01174-7
https://arXiv.org/abs/2105.07008
https://arXiv.org/abs/2105.07008
https://doi.org/10.1103/PhysRevB.89.035405
https://doi.org/10.1103/PhysRevB.89.035405
https://doi.org/10.1103/PhysRevB.82.035409
https://doi.org/10.1103/PhysRevB.82.035409
https://doi.org/10.1038/s41586-021-03926-0
https://arXiv.org/abs/1810.13323
https://doi.org/10.1103/PhysRevB.99.035111
https://doi.org/10.1103/PhysRevB.99.035111
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.026404
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.026404
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.026404
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.026404
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.026404
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.026404
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.026404
https://doi.org/10.1103/PhysRevB.83.165429
https://doi.org/10.1103/PhysRevB.83.165429
https://doi.org/10.1103/PhysRevB.79.193405
https://doi.org/10.1002/adma.202001656
https://doi.org/10.1103/PhysRevLett.113.116602
https://doi.org/10.1038/s41586-020-03159-7
https://doi.org/10.1038/s41586-020-03159-7
https://doi.org/10.1103/PhysRevB.36.7969
https://doi.org/10.1103/PhysRevB.72.075124
https://doi.org/10.1103/PhysRevB.89.085408
https://doi.org/10.1103/PhysRevB.85.235458
https://doi.org/10.1038/363524a0
https://doi.org/10.1038/363524a0
https://doi.org/10.1088/1361-648X/aa54da
https://doi.org/10.1088/1361-648X/aa54da
https://doi.org/10.1103/PhysRevB.100.205112
https://doi.org/10.1103/PhysRevB.84.125404
https://doi.org/10.1103/PhysRevB.84.125404
https://doi.org/10.1063/1.4966953
https://doi.org/10.1063/1.4966953
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1021/acs.nanolett.9b04027
https://doi.org/10.1103/PhysRevB.98.205151
https://doi.org/10.1103/PhysRevB.98.205151
https://doi.org/10.1103/PhysRevB.100.205113


[62] E. Lake and T. Senthil, Reentrant superconductivity through
a quantum Lifshitz transition in twisted trilayer graphene,
Phys. Rev. B 104, 174505 (2021).

[63] S. Xu, M.M. Al Ezzi, N. Balakrishnan, A. Garcia-Ruiz, B.
Tsim, C. Mullan, J. Barrier, N. Xin, B. A. Piot, T. Taniguchi,

K. Watanabe, A. Carvalho, A. Mishchenko, A. K. Geim,
V. I. Fal’ko, S. Adam, A. H. C. Neto, K. S. Novoselov, and
Y. Shi, Tunable van Hove singularities and correlated states
in twisted monolayer–bilayer graphene, Nat. Phys. 17, 619
(2021).

PHYSICAL REVIEW LETTERS 128, 026404 (2022)

026404-7

https://doi.org/10.1103/PhysRevB.104.174505
https://doi.org/10.1038/s41567-021-01172-9
https://doi.org/10.1038/s41567-021-01172-9

