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ARTICLE INFO ABSTRACT
Keywords: This study is devoted to developing a platoon-based cooperative lane-change control (PB-CLC). It
connected and autonomous vehicles coordinates the trajectories of a CAV platoon under a platoon-centered platooning control to

cooperative lane-change
vehicle platooning
model predictive control

accommodate the CAV lane-change requests from its adjacent lane, aiming to reduce the negative
traffic impacts on the platoon resulting from lane-change maneuvers, on the premise of ensuring
hybrid system controller CAVs’ safety and mobility. Mathematically, the PB-CLC control is established using a hybrid
mixed integer nonlinear programming model predictive control (MPC) system. The hybrid MPC system involves an MPC-based mixed
supervised machine learning integer nonlinear programming optimizer (MINLP-MPC) for optimal lane-change decisions,
distributed branch and bound which considers multiple objectives such as traffic smoothness, driving comfort and lane-change
response promptness subject to vehicle dynamics and safety constraints. To ensure the feasible
lane-change, this study investigates and provides a lower bound of the lane-change time window
by analyzing the MINLP-MPC model feasibility. Apart from the optimal lane-change decision
consideration, the hybrid MPC system is well designed to ensure the control continuity and
smoothness. In particular, the hybrid MPC system control feasibility and stability are proved to
enable the platoon’s back-and-forth state switchings between car-following and lane-change ac-
commodation states. Next, we developed a machine learning aided distributed branch and bound
algorithm (ML-DBB) to solve the MINLP-MPC model within a control sampling time interval (< 1
second). Specifically, built upon computer simulation and the c-LHS sampling technique, su-
pervised machine learning models are developed offline to predict a reduced solution space of the
integer variables, which is further integrated into the distributed branch and bound method to
solve the MINLP-MPC model efficiently online. Extensive numerical experiments validate the
effectiveness and applicability of the ML-DBB algorithm and the PB-CLC control.

1. Introduction

The car-following and lane-change maneuvers often interweave with each other and play important roles to affect traffic safety,
efficiency and sustainability. Thus, they have attracted tremendous research interests in traffic operation and control. Especially in
recent years, advanced communication, information, and computation technologies have granted Connected and Autonomous
(Automated) Vehicles (CAVs) superior capabilities to exchange information, accept trajectory instructions, and even conduct in-
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vehicle driving decisions at different levels. These advanced capabilities stimulated extensive research interests in developing vehicle
platooning control, which instructs CAVs’ longitudinal car-following maneuvers to maintain a group of CAVs traveling closely and
safely at high speed. We classify the existing platooning control in literature into two categories, including (i) vehicle-centered reactive
control, which equips each vehicle with a car-following control reactive to its neighborhood vehicles’ movement (e.g., adaptive cruise
control (ACC) (Rudin-Brown and Parker, 2004; Lu and Aakre, 2018) and cooperative adaptive cruise control (CACC) (Dey et al., 2015;
Shladover et al., 2015) and (ii) platoon-centered platooning control, which implements a car-following control for the entire platoon so
that it systematically reacts to traffic disturbances. (e.g., MPC based control developed in Wang et al., 2014b; Gong et al., 2016; Gong
and Du, 2018; Wang et al., 2019). Both simulation and theoretical studies have shown that vehicle platooning control can improve
traffic safety, efficiency, and smoothness.

Furthermore, CAV technologies inspired significant interests in developing more complicated cooperative lane-change algorithms,
which coordinate CAVs’ car-following and lane-change movements on adjacent lanes, intending to ensure safe and efficient lane-
change maneuvers while mitigating negative traffic impacts (Hidas, 2002; Ammoun et al., 2007). Various models, control and al-
gorithms have been developed in the existing literature. For example, Wang et al. (2015) and Talebpour et al. (2015) proposed game
models for optimal lane-change decisions. Liu and Ozgi‘mer, (2015) and Liu et al. (2018) used model predictive control (MPC) ap-
proaches to control the vehicle convoy’s leading CAV movements for lane-change preparation, whereas Wang et al., (2016) employed
a MPC control framework to instruct smooth lane-change transitions while reducing the travel time delay. Balal et al., (2016) used
fuzzy logic approach to model driver’s decision to or not to execute a lane-change maneuver and Choi and Yeo, (2017) developed a cell
transmission model (CTM) to predict the future traffic condition around lane-change location. Gong and Du (2016) and Cao et al.
(2017) formulated optimization models to optimally determine where a lane-change instruction should be given to vehicles. Pue-
boobpaphan et al. (2010); Scarinci and Heydecker (2014); Xie et al. (2017) and Scarinci et al. (2017) used various model and control
schemes to study optimal on-ramp merging control, which is a special case of the lane-change maneuvers. Various hierarchical
cooperative lane-change frameworks, which typically include several control stages are developed in Nie et al. (2016); Li et al. (2020)
and Ni et al. (2020). Even though these existing studies showed good performance in different aspects, we noticed the following
research gaps, which thus motivate this study.

First, the existing cooperative lane-change control (e.g., Talebpour et al., 2015; Balal et al., 2016; Nie et al., 2016; Wang et al.,
2016;Choi and Yeo, 2017 ; Ni et al., 2020) mainly involve a few subject vehicles and their neighborhood vehicles (often less than 5
vehicles in total) in the lane-change model. Consequently, the impact of the lane-change maneuvers on the target traffic stream is
locally considered in a relatively short stretch. This study intends to scale up and involves a rather long stretch of a platoon in the target
lane so that the proposed cooperative lane-change control is applicable to a traffic stream in a broader range.

Second, the existing studies often assume the platoon in the target lane are under vehicle-centered reactive platooning control such
as ACC (Xie et al., 2017; Ni et al., 2020) or CACC (Pueboobpaphan et al., 2010; Liu and OZgﬁner, 2015; Liu et al., 2018), or even
free-control (Balal et al. 2016; Choi and Yeo, 2017) rather than a platoon-centered platooning control, even though the merit of the
platoon-centered platooning control compared with the vehicle-centered reactive platooning control has been well confirmed (Wang
etal., 2014b; Gong et al., 2016; Gong and Du, 2018; Wang et al., 2019). On the other hand, it has been noticed that a vehicle platooning
control covering a long stretch of traffic stream will block mobility needs (Darren Cottingham 2020), if it cannot efficiently accom-
modate lane-change requests. This research gap will significantly limit the application of advanced CAV platooning control techniques
in practice. Thus, motivated by bridging this gap, this study aims at developing a cooperative lane-change control, assuming that the
target platoon is under a platoon-centered platooning control.

Third, we noticed that few existing lane-change control algorithm considers the time windows required by the lane-change requests
and the associated feasibility issue, although Ni et al., (2020) addressed the lane-change feasibility problem from a different angle by
proposing feasibility judgement criterion. However, it is possible that the target CAV platoon in reality under specific platooning
control cannot accommodate lane-change requests within the required time window due to the traffic condition constraints. Thus,
investigating the feasibility under this context is critical for developing a proper lane-change accommodation control. It will guide the
platoon to accept or reject the lane-change requests appropriately. Moreover, the results will provide valuable insight into making
subject vehicle’s lane change decisions. This study intends to bridge this gap in the existing literature.

Last, the existing efforts mainly focused on lane-change decisions but overlooked the switching of different dynamic states that the
target platoon experiences when it accommodates the lane-change requests. Specifically, it is unclear whether the lane-change decision
can instruct a platoon to switch feasibly and smoothly from its original car-following control to lane-change accommodation control
and finally restore the initial car-following control. For example, suppose a lane-change decision model uses safe spacing lane-change
constraints that are more aggressive than the safety constraints under car-following control. In this case, the spacing between a subject
vehicle and its immediate leading and following platoon vehicles may not satisfy the safety distance constraints under the car-
following control right after the lane-change maneuver. Accordingly, the platoon may not be able to restore the initial car-
following control. This research gap will raise the difficulty of integrating the lane-change control and platooning control in prac-
tice. This study will thoroughly address the switching feasibility and stability of the hybrid dynamic system.

Motivated by the abovementioned research gaps, this study is devoted to developing a platoon-based cooperative lane-change
control (PB-CLC), seeking to instruct a long stretch and well-connected CAV platoon (e.g., more than 15 vehicles) under an MPC
based platoon-centered car-following control to accommodate multiple lane-change requests (> 2 subject vehicles) smoothly and
efficiently from the subject vehicles beside the platoon, within their required time windows. To achieve this research goal, we
contribute the following modeling, hybrid system dynamic analysis, and solution approaches, which address the research challenges
raised by the enhanced features of the proposed PB-CLC control.

First of all, this study develops an MINLP-MPC model to search the best timing and spacing for the platoon to accommodate the

105



H. Zhang et al. Transportation Research Part B 159 (2022) 104-142

lane-change requests without causing severe platoon stream fluctuations. To smoothly integrate the MINLP-MPC decision model into
the PB-CLC control, we further conducted the mathematical analysis as follows. Considering the lane-change requests coming with
time window requirements, the feasibility of the MINLP-MPC model becomes a critical issue. To address this challenge, we went
through a structured proof from Lemma 1 to Lemma 5. The results summarized in Theorem 1 demonstrate that the lane-change re-
quests can only be feasibly accommodated by the platoon if the prediction horizon P of the MINLP-MPC is no smaller than the derived
time window lower bound. Moreover, the MINLP-MPC model is different from the common lane-change decision model since it should
not only find the best lane-change spacing and timing but also consider the switching behaviors between car-following and lane-
change accommodation states (see Appendix-II for technical details).

Next, we consider that the platoon will physically experience three dynamic traffic states: car-following state, spacing preparation
state and restoration state during the entire lane-change process, which are mathematically carried out by three sequential MPC and
forms a hybrid MPC system. Specifically, the platoon is initially under the MPC-based platoon-centered car-following control devel-
oped by Gong et al. (2016) with well-validated system performance. It will switch to the spacing preparation state once receiving the
lane-change decision made by solving the MINLP-MPC model. After the subject vehicles cut in the platoon, the platoon will switch to
the restoration state and eventually return to the initial car-following state. Based upon the feasibility of the MINLP-MPC model, we
carefully designed the hybrid MPC system and mathematically proved its feasibility and stability. The theoretical proofs in Theorem 2
and Theorem 3 ensure the platoon runs smoothly and safely through the entire dynamic lane-change process under the provided
hybrid MPC control.

Moreover, the MINLP-MPC decision model is NP-hard, which often does not have an efficient solver with a polynomial computation
complexity. However, the real-time PB-CLC control requires solving the MINLP-MPC model within one control interval (< 1 sec) to
ensure the practical implementation of the hybrid MPC system involving three dynamic states. To address this challenge, we developed
a machine learning aided distributed branch and bound algorithm (ML-DBB) by taking advantage of the problem’s unique features.
Specifically, the ML-DBB algorithm employs a computer simulator and supervised machine learning approaches (Kotsiantis et al.,
2007; James et al., 2013) to capture the candidate optimal lane-change spacings and timings, which reduce the solution searching
space of integer variables relevant to lane-change decisions in the MINLP-MPC. Built upon the reduced solution space, a distributed
branch and bound method (Androulakis and Floudas, 1999; Djamai et al., 2010) is further used to split the computation loads and solve
the MINLP-MPC model efficiently. During the development of the ML-DBB algorithm, feature selection plays a critical role to ensure
the effectiveness of the machine learning model. This study developed a customized feature processing approach to improve the
applicability and prediction accuracy of the developed machine learning models.

Last, we carried out extensive numerical experiments to validate the effectiveness and merits of the ML-DBB algorithm in solving
the MINLP-MPC model. Besides, our numerical experiments demonstrate that the platoon using PB-CLC control can quickly accom-
modate the lane-change requests within the required time window and significantly improve traffic smoothness and efficiency,
compared with field traffic without platooning control and a recently developed cooperative lane-change control. Parameter sensi-
tivity analysis of the MINLP-MPC model is also conducted to provide insights into the parameter settings.

The organization of the remaining of this paper is as follows. Following the Introduction, Section 2 provides the preliminary
problem formulations and briefly introduces the hybrid MPC system. Section 3 mathematically develops the cooperative lane-change
decision model (MINLP-MPC). Next, we analyze the feasibility of the MINLP-MPC model in Section 4 and design the hybrid MPC
system, proving its feasibility and stability in Section 5. The solution approaches of the hybrid MPC system are discussed in Section 6.
The main focus is given to the development of the ML-DBB algorithm for the MINLP-MPC model. Section 7 further conducts numerical
experiments to validate the applicability and effectiveness of our approaches. The entire study and future work are summarized in
Section 8.

2. Problem Statement

This research is devoted to developing the PB-CLC control. Vehicles mentioned hereafter in this paper refer to CAVs. To conduct this
research rigorously, we first make the general clarifications and assumptions as follows, with more added along the development of the
mathematical models. Mainly, this study considers a two-lane highway road segment with pure CAV traffic flow (this assumption can
be relaxed, see Remark 1 in section 3). There are multiple CAVs on a subject lane requiring cutting in the adjacent target platoon due to
discretionary or mandatory reasons'. The CAV platoon is under a MPC based platoon-centered platooning control (i.e., car-following)
developed by Gong et al., (2016); Gong and Du (2018) because of its superior performance for sustaining traffic efficiency and
smoothness while exposed to traffic disturbances, compared with the vehicle-centered reactive control such as ACC and CACC. If the
spacing next to a subject vehicle is acceptable, the subject vehicle will smoothly shift in without extraneous assistance. Otherwise, the
PB-CLC control will coordinate the movements of the platoon and the subject vehicles to complete the lane-change requests with the
aim to minimize the negative impacts on the platoon. Once the subject vehicle is well positioned beside an acceptable target spacing,
the lateral lane-change movements can be conducted quickly within a sample time interval T < 1sec. Accordingly, this study mainly
focuses on the longitudinal platooning control for accommodating lane-change requests and ignores subject vehicles’ lateral move-
ments during cut-in maneuvers. However, we should note that the vehicles’ lateral cut-in dynamics can be easily incorporated into our
current model using steering control, that will not affect the longitude constraints or increase the mathematical complexity of the

1 The discretionary lane-change seeks to gain speed privilege, of which the time window is usually 6-11 seconds; The mandatory lane-change is
required according to the trip plan, such as moving to off-ramp, of which the time window is usually 1-3 seconds.
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Fig. 2. Hybrid MPC system.

MINLP-MPC model and the hybrid MPC system. The developed lateral control law also demonstrates that the lateral movements can be
fulfilled within a sample time interval (1 sec). Please see the mathematical demonstration in the Appendix-I.

It is also noticed that the neighborhood traffic around the subject vehicles or the platoon may cause the infeasibility for the platoon
to accommodate lane-change requests within a given time window. For example, there may exist uncontrolled vehicles around subject
vehicles or the platoon, which potentially limit the CAVs’ trajectory control. As a result, the CAV platoon may not be able to yield
spacings for the lane-change accommodation within a given time window. As the first attempt to integrate lane-change into platooning
control, this study assumes that the traffic conditions around subject vehicles and platoon are suitable during the accommodation
process so that the CAVs’ trajectory control is not constrained by surrounding traffic (i.e., uncontrolled vehicles). These more
complicated scenarios will be addressed in future work. In addition, we assume that no overtaking occurs between subject vehicles
during the relatively short lane-change accommodation process for safety and efficiency. Lastly, this study assumes that wireless
connections between all CAVs perform well, thus the communication delay and failures are neglected.

Using the example shown in Fig. 1, we formally introduce the problem setup as follows. We consider that it is very possible that
multiple vehicles require lane-change simultaneously. Thus, without loss of generality, this study considers m subject vehicles, denoted
by Iy,lo,..., I, respectively in Fig. 1 moving with the speed v, v2.., V"and the acceleration u!, ..., u™ respectively on the
subject Lane 2. They send lane-change requests to the platoon on the target lane which is Lane 1 in Fig. 1 simultaneously. Notation [ is
used to denote a subject vehicle while the set of the subject vehicles is denoted by L = {I3,L,..., I,}. Besides, without confusion, notation
lis also used to describe the index of a subject vehicle [ = 1, 2, ..., m while the index set is also denoted by L = {1, 2, ..., m}.

We consider there are n many CAVs in the platoon, and let x;, v; y; for i € I = {1, ..., n} respectively represent the longitudinal
position, speed, and acceleration of the ith platoon vehicle. Accordingly, notation i(l, 0) fori €I, € L is used to indicate a particular
platoon vehicle i that locates immediately in front of the subject vehicle [ at step p = 0. Here p = 0 represents the time step when the
platoon receives the lane-change requests, indicating the start of the lane-change accommodation control. The details of the notation p
and relevant concepts will be fully discussed in next section. We then introduce s € S = {1, ...n — 1} to label the spacings between two
adjacent platoon vehicles. Additionally, the notation s; fori € I = {1, ..., n} is used to label a spacing between two adjacent platoon
vehicles i and i + 1; notation s;q o) represents a particular spacing between two platoon vehicles i(l, 0) and i(, 0) + 1, which is initially
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Table 1

Notation list.
Notation Description Type
T Sample time interval Parameter
k Control time step Index
p Lane-change time step Index
i Platoon vehicle’s index Index
I Platoon vehicles index set Set
X; Platoon vehicle i’s longitudinal position Continuous variable
Vi Platoon vehicle i’s longitudinal speed Continuous variable
u; Platoon vehicle i's longitudinal acceleration Continuous variable
L; Platoon vehicle i’s vehicle length Continuous variable
Amin,i/ Amasx,i Platoon vehicle i’s acceleration/deceleration limits Continuous variable
1 Subject vehicle’s index & notation Index & notation
L Subject vehicles’ index & notation set Set
X Subject vehicle I's longitudinal position Continuous variable
W Subject vehicle I's longitudinal speed Continuous variable
ut Subject vehicle I's longitudinal acceleration Continuous variable
! Subject vehicle I's length Continuous variable
afﬂ in /g_{mu Subject vehicle I's acceleration/deceleration limits Continuous variable
S Spacing between platoon vehicle i and i + 1 Index & value
i(l, 0) A platoon vehicle located beside subject vehicle latp = 0 Index
Siq,0) A platoon spacing beside subject vehicle latp = 0 Index & value
Si(h) Subject vehicle I's target feasible lane-change spacing Index
i) Leading platoon vehicle ahead of spacing s;q) Index
yﬁ_p Subject vehicle I's lane-change decision, i.e. spacing s, step p Integer variable
s(D Subject vehicle I's target optimal lane-change spacing Index
p Subject vehicle I's target optimal lane-change time step Index

beside the subject vehicle [ at step p = 0; notation s;;) represents the feasible target spacing for subject vehicle [ to cut in between
platoon vehicles i(]) and i(]) + 1. s;q) is used in the feasibility proof for the MINLP-MPC model in section 4. In the meantime, notation s
(D) and p(D) describe subject vehicle I's optimal lane-change spacing and timing respectively, which are employed in section 5 and
section 6. Note that the notation s; is abused in certain context to also denote the value of the spacing between two platoon vehicles i
and i + 1 to avoid extra notation. The labels of vehicles and spacings increase from downstream to upstream and the origin of the
location coordinates is set at the tail of the platoon. The trajectory control is conducted at discrete time steps (k € Z, : = {0,1,2,...})
with an uniform duration t and the control variables u; (i = 1, ..., n) keep constant during an interval 7. In addition, we use k to
substitute tk for the notational simplicity hereafter.

Apart from the above-mentioned problem formulation, we formally introduce the hybrid MPC system, which is used to capture and
control the entire lane-change accommodation process. Specifically, the hybrid MPC system in Fig. 2 consists of the following three
dynamic states under sequential MPC control: car-following state under MPC-q platooning control — spacing preparation state under
MPC-q;for preparing spacing to accommodate lane-change requests — restoration state under MPC-q; for restoring the initial car-
following control qq after lane-change. The three MPC states are well linked by three switching signals 61, o2 and o3 and thus
forms a closed-loop cycle, indicating the platoon can go through the entire lane-change process smoothly. Specifically, the completion
of solving the cooperative lane-change decision model MINLP-MPC triggers the switching signal o; to start the switching from car-
following state gy to spacing preparation state g;. When the platoon under state g; finishes preparing the lane-change spacing,
well-positioned subject vehicles will smoothly cut in the platoon, which triggers the switching signal . Then the platoon switches to
the restoration state gs and will not return to the initial car-following state g until the car-following safe constraints are recovered
(switching signal 63). The mathematical formulations of the hybrid MPC system and the proofs of the closed-loop cycle feasibility and
stability are presented in Section 5

To facilitate the reading of the presented mathematical work, we summarize the notations introduced above as well as some
commonly used notations in Table 1 which will be mentioned later in the model formulation section. We will also define other no-
tations that are only used in some specific sections. To avoid a very long list, we do not include them in Table 1.

3. MINLP-MPC Mathematical Model for PB-CLC Control

This section first introduces the vehicle dynamics and constraints and then develops lane-change constraints. Built upon that, we
formulate the MINLP-MPC model to implement the lane change decision for the PB-CLC control.

3.1. Vehicle dynamics and constraints
We first formulate the constraints related to vehicle dynamics and car-following safety. The longitudinal dynamics of CAVs are
described by the double integrator model in Equations (1)-(4) for discrete time steps Vk € Z, :={0,1,2,...}. Specifically, Equations (1)

and (2) describe the subject vehicles’ dynamics while Equations (3) and (4) describe the platoon vehicles’ dynamics.
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2

A+ 1) =2 (k) +1v’(k)+%u’(k), leL )
V(k+1) =v'(k) +tu'(k), [€L (2)
xi(k+1) = x;(k) + 7vi (k) +T2—2u[(k), icl 3)
vilk+1) = vi(k) + t;(k), i € 1 ()]

In addition, we consider that the CAVs in the problem are subject to important state and control constraints summarized as follows
for any control sampling pointk € Z, :={0,1,2,...}

ing < i (K) < Gaxy Aoy S U'(k) <, i€, IEL 5)
Vinin S Vi(k) S Vinax; Vmin S Vl(k) S Vinaxy i€ 11 lelL (6)
i k — Vmin 2
Xi(k) — xi11(k) > LBisy + tvig (k) — %7 iel
" @
[V (k) = Vi)
X (k) — x" (k) > LB + ' (k) — By — {LI+1} €L

min

More exactly, Equation (5) limits vehicles’ control inputs within given acceleration/deceleration bounds, respectively denoted by
max,i/ Amin,i for platoon vehicle i and d,, /d.;, for subject vehicle . Equation (6) limits vehicles’ longitudinal speeds within the pre-
defined minimum and maximum speed, respectively denoted by Vmin, and vmay. Equation (7) presents the safety distance constraints. It
is modified from the conflict-free car-following constraint. It ensures traffic safety under the extreme condition that the leading vehicle
stops suddenly. Since the extreme condition barely occurs in reality, the conflict-free constraint is too conservative and cannot be used
to improve road capacity. We adopt the less conservative constraint in Equation (7), which maintains traffic safety under the condition
of vmin = 0, and allows a relatively small spacing to fully utilize the road capacity while ensuring the MPC’s sequential feasibility.
Notations LB; and LB' > 0 are constant values of platoon vehicle i and subject vehicle I respectively, which are related to the vehicle
length and the minimum car-following buffer spacing when vehicles come to a stop.

3.2. Lane-change Constraints

We next provide the formulations to model the lane-change maneuvers. To do that, we introduce another notation p to represent the
time step, at which a lane-change accommodation process proceeds. In addition, we consider the lane-change accommodation must be
completed in next P steps. Thus, we have p € P ={0, 1, ...P}. In addition, we assume several subject vehicles simultaneously send lane-
change requests at control time step k = k* (i.e., p = 0), indicating the begin of the lane-change accommodation process. Accordingly,
the control time step (k" 4+p) € Z, is the same step with the lane-change time step p for p € P.

To ensure safe and successful lane-change maneuvers, the PB-CLC control seeks to make lane-change decisions on two items: a) the
best spacings (s € S ={1, ...n — 1}) in the platoon to accommodate the subject vehicles, and (b) the best time steps to perform the lane-
change maneuvers. These two decisions should be optimally made with the aim to minimize the negative impact on the traffic effi-
ciency and smoothness of the platoon, while ensuring the safety of completing the lane-change maneuvers within a given time window.
Built upon the idea, this study considers the following constraints in Equations (8)-(11). Specifically, Equation (8) indicates that a lane-
change request can only be accommodated by one platoon spacing at one time step.

P n-l

SNV, =1, 1€l

p=1 s=1 (8)
={0,1}, s€S, peP,

Yo
where the binary variables y! p = 1 if the spacing s is selected for the subject vehicle [ to cut in at time step p < P. Otherwise, » » =0

Next, this study notes that the lane-change requests should be served in a limited time window (tP), which can be relatively flexible
for discretionary lane-changes but strict for mandatory lane-changes. For example, the mandatory lane-change request for exiting
highway to an off-ramp must be completed before the vehicle passing the exit point. Accordingly, we introduce the constraints in

Equation (9), which indicates that the acceptable spacings for lane-change have to be yielded within the time window tP.

+00
Sopy, <P lEL ©)

p=1

Considering the lane-change requests are accommodated and conducted in a relatively short time and the overtaking behavior is
unsafe and inefficient during lane-change maneuvers, this study regulates that no overtaking occurs between subject vehicles once
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they send the lane-change requests. Therefore, if the spacing s is selected for subject vehicle [, only the spacing after s (i.e., the
spacing s, s+ 1,...n — 1) can be selected for subject vehicle I + 1. This idea is mathematically illustrated in Equation (10) below.

>

p=1 =

n—1

P
syﬁvp < Z syﬁfp], {LLI+1}eL (10)

1 p=1 s=1

n—

Moreover, if the spacing s is selected for the subject vehicle [ to conduct the lane-change at step p, namely yip =1, then subject
vehicle [ should have arrived beside the target acceptable spacing s (i.e. s;) between platoon vehiclesi and i + 1 at step p, ready to
conduct the lane-change. Additionally, to ensure safe and smooth lane-change control (i.e., ensure the feasibility and stability of the
hybrid system controller in Section 5), this study makes the regulations that the subject vehicle I will keep the safe distance h away from
the immediate adjacent platoon vehicles after it cuts in the platoon until step P. These relationships are described in Equation (11)
below. Note that Equation (11) is different from common lane-change safety distance constraints in a lane-change decision model. It is
particularly designed when considering the feasibility of dynamic state switching under the hybrid MPC system. See Appendix-II for a
more comprehensive discussion.

P

A (p) = xi1(p) >h+M<Zyi.n—1>, seES, peP,leL,
e an
»

xi(p)xl(P)>h+M<Zyivvl>, seS, peP, lcL,

p=0

where M is a large positive number and h represents the constant safe leading and following distance between the subject vehicle and
its immediate leading and following platoon vehicles on the target lane so that a safe lane-change maneuver can be sustained. It is
noted that Equation (11) is trivial when the spacing s and time steps p € {0, 1, ...p} are not selected as optimal lane-change decision for
subject vehicle [ (i.e., Equation (11) is always true if Zﬁ:o}é,p = 0). Note that the lane-change study Roelofsen (2009) points out that
the safe lane-change distance h for human-drive vehicles should be a variable closely related to the leading and following vehicles’
speeds rather than a constant, aiming to ensure safe lane-change control even in extreme scenarios where the following uncontrolled
vehicle’s speed is far smaller than that of the leading uncontrolled vehicle. However, the rigorous mathematical formulation of safe
lane-change distance h is unclear in the current literature. And in this study, the leading and following vehicles are CAVs under our
platooning control. Therefore, this study adopts the constant safe lane-change distance and further regulates the safe lane-change
distance h will hold after lane change, which avoids the extreme scenarios and thus ensures safe lane-change control. In fact, this
regulation achieves the same safety performance as using a variable lane-change distance and will potentially facilitate the devel-
opment of the hybrid system controller in Section 5.

3.3. Mixed Integer Nonlinear Programming Based Model Predictive Control

Based upon the constraints above, this section proposes the P-step MINLP-MPC model. Mainly, by taking vehicles’ current states
as initial inputs, the P-step MINLP-MPC model generates the optimal lane- change decisions along with the longitudinal vehicle
trajectory instructions in next P steps, so that safe and smooth lane-change maneuvers are ensured to be completed at the best
spacings and timings without significantly impairing the platoon’s traffic efficiency and smoothness. Below, we present the MINLP-
MPC model in detail. Note that according to the feasibility analysis and proofs in Section 4, the prediction horizon P of the MINLP-
MPC model should be greater or equal to a lower bound P of the lane-change time window. For discussion convenience, we let P
equal to the lower bound P in this study.

Considering the potential insertion of lane-change subject vehicles, the spacing error at s; and relative speed for platoon vehicle i at
step p are modeled by Equation (12) and (13) respectively at lane-change time step p € P: ={0, 1, ...P}, subject to the dynamics in
Equations (1) and (4).

P

Ax, (p) = xi(p) = xi1(p) — s <1 +ZZy£,p>, SIES, pEP, (12)
1 p=1

AV!'(P) = Vi(P) 7V[+l(p)7 i€ I\{”}v JAS Ps (13)

where s4 is the constant desired spacing of the platoon on the target lane. Equation (12) indicates that if m many subject vehicles cut in
the same spacing s; before the time step p (i.e. Xl: > y;__p = m), the desired spacing at s; is nisy at step p.

According to Equations (12) and (13), the control dynamics during lane-change maneuvers are defined in Equations (14) and (15).

2(p) == (Ax, (), ..., Aty (p) € R (14)

Z(p) = (An (p), ..., Av,_ 1 (p)) € R (15)
Wrapping up the constraints above, the optimizer of the MPC at step p = 0 is given by the MINLP-MPC model below in Equations
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(1)-(16), with the control variables u = {u;(p), u'(p), i€, le &, peP} e R"™ y = {yl forseS, pePle L} eRMD"™
MINLP-MPC

P 2 n—1 P
Min I(u,y) = Z{; 000+ £ () Q2 )] o ulp = 1) I3 + DRWI (16)

Subject to: for eachp € P: ={1, ..., P}, Eq (1)-(15), where Q,: :QTD(XQ and Qy: :QTDﬁQ are symmetric and positive definite matrices
and u(p) = {w(p),i € I} € R". Qis an orthogonal matrix which characterizes the interaction of the CAVs under the platooning control.
The diagonal matrices Dy = diag(ay, ..., o) and Dy = diag(Ps, ..., fn), where o; > 0 and f; > 0 are penalty weights for each spacing error
and relative speed term respectively (i.e.,i =1, -, n — 1). Let oz =(at,..., &, — 1) and p: =(B,..., fn — 1)- The selection of o and p will
affect the stability performance of the platoon and has been fully investigated in Gong et al. (2016).

The objective function I' seeks to make a balance between minimization of the traffic flow oscillations and the promptness of the
lane-change accommodation by putting proper penalty weights Q,,Q», 1,02 respectively on the following four penalty terms: (i) the
errors between desired vehicle spacings and actual spacings; (ii) the fluctuations of the spacings between adjacent platoon vehicles, i.
e., the relative speed between adjacent vehicles; (iii) the variations of vehicle speeds, i.e., acceleration /deceleration; and (iv) the lane-
change accommodation promptness. In reality, we can assign a relatively small penalty weight wy for a discretionary lane-change
request so that the control mainly focuses on platoon smoothness, whereas a large penalty weight o, for a mandatory lane-change
request such that the control gives higher priority to a prompt response. The constraints in Equations (1)-(11) represent the con-
straints related to vehicle dynamics and the lane-change maneuver. Equations (12)-(15) describe the control dynamics and the
interdependent relationships between variables in the objective function. Note that the MINLP-MPC model is only activated at step p =
0 when the platoon receives the lane-change requests.

Remark 1. The MINLP-MPC model can be easily extended to the case of three-lane highway. Specifically, consider lane-change
requests are sent from both two side lanes beside the platoon, denoted by lane R; and Ry respectively. In this case, we can apply
the safety distance constraints in Equation (7) and the non-overtaking constraints in Equation (10) to subject vehicles on both lane Ry
and lane R,. Since no additional complicated variables or constraints are involved, it will not bring in new conceptual and compu-
tational challenges.

4. MINLP-MPC Model Feasibility

It is noticed that if the lane-change time window P is too small or the platoon and the subject vehicles are not properly positioned,
the target platoon may not be able to yield spacings to accommodate the lane-change requests within the duration of the time window.
This means that the MINLP-MPC model is infeasible. This section thus investigates a lower bound of the lane-change time window P by
analyzing the feasibility of the MINLP-MPC model, charactering the initial states of the platoon and subject vehicles. The feasibility
analysis will also facilitate the development of the hybrid MPC system and solution approaches later. In addition, this study observed
that the presentation of the feasibility proof is tremendously complicated as more subject vehicles are involved. Thus, without loss of
generality, this study first proves the MINLP-MPC model feasibility only considering two subject vehicles (m = 2), and then extends the
proof to more general cases involving more subject vehicles (m > 2) using the same approaches. To simplify the proof process and
better illustrate the key ideas of the proof, this section considers the homogenous case that all vehicles share the same vehicle length
and buffer safe distance constant LB as well as deceleration/acceleration limits amin/a@max, but our proof can be easily extended to the
heterogeneous cases. Below we illustrate the main ideas of the proofs.

To prove the feasibility of the MINLP-MPC model, we essentially need to demonstrate the intersection of the constraint sets in
Equations (1)-(15) is not empty at any lane-change time step p € P, given that it starts from a feasible scenario at step p = 0. Note that
the control dynamic constraints in Equations (12)-(15) are naturally feasible once the constraints in Equations (1)-(11) are feasible.
Thus we omit Equations (12)-(15) and only consider Equations (1)-(11) in our following proofs. By analyzing the features of the
MINLP-MPC model, we further recognized that it is hard to directly prove the feasibility of the constraints in Equations (1)-(11) due to
the involvement of integer variables in the lane-change constraints in Equations (8)-(11). To solve this difficulty, we separate the
constraint sets into two parts as follows.

@A) -71(u(p)) : Itis the convex constraints set in Equations (1)-(7) for capturing the vehicle dynamics, acceleration, speed and safety
constraints atstepp € P. Besides, .71 (u;(p)) and .7, (u!(p)) represent the platoon vehicle i and subject vehicle I's constraints set
respectively in Equations (1)-(7) at step p € P. Mathematically, .71 (u(p)) = {71 (wi(p)), 71 (ul(p)), i€ I,l€ L}.

() 72 (ul), ¥ ) ¢ It is the lane-change related constraints set in Equations (8)-(11) involving integer variables at step p € P.

Built upon the abovementioned two separate constraints sets, we prove the feasibility of the MINLP-MPC under the case with two
subject vehicles by the idea as follows. First, we prove the constraints set .1 (u(p)) is not empty at every step p € P. Then, we prove that
with a proper P, for every step p € P, there exists at least one feasible solution in .7; (u(p)), which also satisfies .7» (u(p), ¥ p)- Namely,
for Vp € P,3 u(p) € 71 (u(p)), and {u(p), yip} € .Y u(p), yﬁp). This entire proof is structured and achieved by Lemma 1-Lemma 5
and then Theorem 1. Below we introduce Lemma 1 first, which proves the platoon’s sequential feasibility, given it starts from a
feasible initial state at step p = 0.
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Lemma l. Forke Z, :={0,1,2,...} and i € [, if 71 (u;(k —1)) is feasible, then .7 (u;(k)) is feasible and compact. In addition, the
feasible control inputs profile S; (u;(k)) for platoon vehicle i at step k is given below:

u;(k) € Si(ui(k)) = [max{“m,»,,,m(w}v“‘i“{“mﬁ(k)s @a(k)} a7
Where,
aiy (k) :M;(k_l)ﬁo (17.1)
(k) = Lr(k_l) >0 17.2)
3 min
m(k) = iamin + @ - aTz B(k) (173)

B(k) — (vi(k - 1) B vm[n) 12 + 13(Vi(k - l) - Vm[,,) _,’_2,1,4 + ( 2’12 ) |:(v[—l(k - 1; +vi—l(k) _me>1+‘()¢1(ui(k7 1)) Z 0 (17.4)

2
Arpin —Amin 4 —pin

Proof:

Lemma 1 has been proved and the mathematical representations in Equations (17) and 17.1)-(17.4) are accordingly formulated by
the lemma 4.1 of Gong and Du (2018). The main idea of the proof is to show the intersection of the constraints in Equations (1)-((7) is
nonempty at control step k if the platoon is running under the feasible constraints at control stepk— 1, k€ Z,.m

Using the results in Lemma 1, this study wants to further prove that there exsits feasible control inputs which satisfies both
1(u(p)) and 7 (u(p), }’i,p) for V. p e P.Itis equivalent to saying that we are able to find feasible control inputs for the platoon to
adjust its spacings so that the lane-change requests can be successfully completed within the lane-change time window P. To do that, it
is noticed that the numerical value of the lane-change time window P will affect the feasibility. For example, a short time window may
not provide enough time for the platoon to adjust its spacings and then accommodate the lane-change requests. Built upon this note,
the main idea of the following proof is to find a lower bound for the lane-change time window P, denoted by Pg, so that the feasibility of
the MINLP-MPC model can be sustained if the platoon and subject vehicles are initially under general feasible scenarios (E). Lemma 2-
Lemma 5 below complete this proof. Mainly, we first define an extreme scenario (E) for the platoon and subject vehicles, and then
Lemma 2 proves that any other general scenario (F) can be transferred to this extreme scenario (E) in finite steps (say J(E(k") — E)),
using the feasible control input from S, (u(k)). Here k* represents the control time step when lane change requests are received (atp =
0) and k represents the control time steps in the transition process. Following that, Lemma 3-Lemma 5 further prove that there exists
an lower bound Pg, which ensures the feasibility of the MINLP-MPC model under the extreme scenario (E). Then we can induce that
there exists a lower bound P = Py + J(E(k") — E), which ensures the feasibility of the MINLP-MPC under general scenario (E). This
study first formally defines the scenario (E) and (E) below and then introduce Lemma 2.

(B): Vimin < vi& V' < Vmax, q; <0 and ¢! <0, Viel, 1€ L, which are equivalent to the speed and safety distance constraints in

Equations (6) and (7). Specifically, g; and g are derived from Equation (7): q; = LBi11 + 7Vit1 — %7 (x; — Xi11), gf = LB +
+1_ 2
¢ zal\_'"lm] — (o — xH1).

(E):v; & V' = Vmin, q; <Oand ' <0 forV iel lelL.

Mainly, a general scenario (E) represents a feasible car-following scenario satisfying the constraint set .71 (u(p)), whereas the
extreme scenario (E) indicates that all platoon vehicles and subject vehicles are running at minimum speed with safe inter-vehicle
spacings.

Lemma 2. For k" € Z, := {0,1,2,...}, there exists a control input profile u(E(k") — E) € S; (u(k)) so that a platoon and subject

vehicles under the scenario E(k") can be converted to the extreme scenario (E) in the number of time steps: J(E(k’) — E) = {MJ .

—TAmin

Proof. This study proves that any other scenario E(k’) at step k* can be transferred to this extreme scenario (E) using the feasible

control inputs in  s;(u(k)) for k € {k*, ...k, k* + P} within the number of steps {”’TWJJ . Below we can construct a control input

profile u(E(k’) — E) = {u;(E(k*) — E)u!(E(k") — E)for i € I, 1 € L} € S;(u(k)) to make all vehicles simultaneously decelerate, which
transfers the scenario E(k *) to (E).

Apmin lf V[(k) 2 Vimin — TQmin

Vmin  — 7Vi(k) € sS (u(k))’

w(E(k) = E) =
s if Vypin < Vi(k) < Vmin — Tlmin
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e ]
Apin s lf 4 (k) Z Viin — TAmin

min T !(k € gSl(u(k))"
Vi‘}() if Vi < Vl(k) < Vimin = Tapin

where k € {k*, A {%J } When the vehicle’s speed at step k (vi(k) or V(k)) is larger than Vmin — Tamin, the vehicle de-

celerates at the maximum deceleration ap;,. As the speed gets close to v, specifically when vy, <vi(k) or Vit < Vmin — Tmin, the

——vi(k)
T

. . . . . . . . Yl
vehicle cannot sustain the maximum deceleration a;, so that it will decelerate with u; = Ymi» = """“71”")

or u!
Accordingly, the maximum number of the deceleration time steps needed for a platoon and subject vehicles under a general
scenario [E(k") converting to the extreme scenario E is given in Equation (18).

Vimax — Vimin
JERK) > E) = { . J (18)

With the results above, we complete the proof for Lemma 2. m

Built upon the results of Lemma 2, this study next seeks to find the feasible lower bound Pz under the extreme scenario (E). To
achieve this goal, we start from Lemma 3, which introduces a sequential acceleration strategy to ensure the platoon has target lane-
change spacings large enough to accommodate subject vehicles’ lane change, utilizing the feasible control inputs. Then we investigate
a simple case with only one subject vehicle requiring for lane change in Lemma 4. Lemma 5 further extends the results to the case
involving two subject vehicles and the following Theorem 1 summarize the results. Remark 2 finally generalizes the results to the
cases involving more than two subject vehicles. Note that Lemma 2 above is applied under scenario E(k") at control time stepk” € Z, :

={0,1,2...}, when the lane-change requests are received. Accordingly, any general scenario E(k") which starts at control step k* has
been transferred to extreme scenario (E) at step k" + {WJ . For simplicity, we drop the control time step index k" + {WJ but
use the lane change time step p € P: ={0, 1...P} for extreme scenario (E) in the following proofs.

Lemma 3. Assume that the platoon and m subject vehicles are under extreme scenario (E) at p = 0, and subject vehicles intend to cut
in different target spacings, a sequential acceleration strategy u € S;(u) in Equation (19) can be constructed for platoon vehicles to
yield safe spacings s;(p*) > 2h (for Vi € \N{n},p" € {(i + 1)*m,...P}) to accommodate subject vehicles’ lane-change requests, where m =

Ymax —Vmin
TAmax :

i={up)pePicl}eSiuk), up) = {a'"é” T e

otherwise 19

Proof. Recall that all vehicles are initially under the extreme scenario (E), V; = Vmin, ; <0, V i € IUL. By applying the 1, the
platoon vehicles will sequentially accelerate their speed from Vp,, to Vimgy by the acceleration apgy inthe orderofi=1,2,...n. More
exactly, it means that the first leading vehicle in the platoon labeled as i = 1 will accelerate first. After its speed reaches vyqy, the second
vehicle i = 2 start to accelerate, and the same acceleration process continues until the last vehicle i = n reaches speed v;;,qx. Note that the

time steps needed for a vehicle accelerating from vpin to Vimax with the acceleration ayqy is measured by m = {WJ . As aresult, the

speed profile of the platoon vehicles can be described by Equation (20).

Vinin ifpel0, i—1)mnz
Viel, vi(p) =< Viin + (p — (i = 1)*m)t*ay,  ifp€[i—1)*m, i*m|NZ (20)
Vinax if peli*fm, PINZ

Specifically, by the definition of u, for any platoon vehicle i € I, u(p) = 0 at time steps Vp € [0, (i — 1)*m] N Z, vehicle i
maintains v, and will not accelerate until all the leading vehicles reach vy, at time step p = (i—1)*m. After that vehicle i takes
m-many time steps to make its speed reach vpq at p = i*nt. Afterwards, platoon vehicle i keeps its speed at Vpqy constantly for the time
stepsp € [i*m, P|NZ.

Based upon Equation (20), we first prove that s(p*) > 2h for Vi € I\ {n}, Vp" € {(i + 1)*m,...P}. To conduct the proof, we define
Asi(p*) as the increased inter-vehicle spacing s; between vehicles i and i + 1 resulted from the control input u by the time step p*. Then
si(p*) can be described in Equation (21):

5;(p") = 5:(0) + Asi(p") (21)

Notice that by the stepp” € {(i + 1)*m,...P}, the platoon vehicles i and i + 1 both have finished acceleration process sequentially.
According to Equation (20), during the time interval [(i — 1)*m, i*m], vehicle i accelerates from Vyin t0 Vimax With amqyx while vehicle i +
1 keeps speed Vpin. During the time interval [i *m, (i+1)*m], vehicle i drives at speed Vg, while vehicle i + 1 accelerates from vy, to
Vmax With amgy. During other time intervals, vehicle i and i + 1 have the same speed profile. Besides, platoon vehiclesiandi+ 1 share
the same acceleration dynamics and thus run the same distance during acceleration. Therefore, the increased inter-vehicle spacing
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(a): scenario B, (b): scenario B,

Fig. 3. Two scenarios B, B, of one subject vehicle lane-change case.

Asi(p*) between platoon vehicles i and i + 1 is induced by the dynamic difference that vehicle i drives at speed Vpg during
[i*m, (i+1)*m] for m time steps whereas vehiclei+ 1 drives at speed Vyi, during the time interval [(i—1)*m, i*m] for another
m time steps. Then we have

Asi(p") = MT(Vax — Viin) (22)

Under extreme scenario (E), s{(0) > LB; 1 1 + TVmin is derived from the definition of (E) and the safety distance constraints in
Equation (7). Then combining Equations (21) and (22) above, immediately we have:

Si(P*) > LBt + ™Wyin + MT(Vinax — Vinin) (23)

According to the references Manual (2000), Roelofsen (2009) and Bokare and Maurya (2017), we examine this distance is safe for a
lane-change maneuver by considering the practical numerical values of the parameters as follows. h < 35m; Vg = 33 m/s;  Vpin =

21m/s;  Amax < 3.7M/$% —Qmin > 3m/s%,3m  <LB;< 5.9m, t=1s. Thenm = {%J > 4;2h < 70m. From the Equation (23) and

the parameters above, we have si(p*) > 72m > 2h.

Recall that we want to show the sequential acceleration strategy u is feasible, namely it satisfies constraints in Equations (1)-(7) (i.e.
u € S1(u)). It suffices to prove the safety constraints in Equation (7) can be satisfied in u because all the other constraints in Equation
(1)-(6) are naturally satisfied in the construction process of u. Mathematically, we need to prove s;(p") > LBi; + i1 (p") —

% Notice that under our assumptions, LB;.1 + 7vi11(p") — % < LBi1 + ™Vmax — % <62.9m < 72m < 5;(p").
Therefore, we complete the proof for Lemma 3. m

Using the sequential acceleration strategy u defined in Lemma 3, this study next investigates the feasible lower bound P; g(I) of the
lane-change time window by Lemma 4, considering the case with only one subject vehiclel=1; or [ requiring for a lane change (m
= 1) under the extreme scenario (E).

Lemma 4. Assume that the platoon and two subject vehicles {l;, [} are under extreme scenario (E) at p = 0 and only one subject
vehicle requires to cut in the target spacing siq) € S between the platoon vehicle i(D) and i() + 1, P1 g(si¢)|B) defined below can ensure

the model feasibility.

X 0)+h)—x(0) m .
( (I)ZI(‘(/’”)M - 3n1in) ( ) + E + m(g(l)} e= Bl : Xi(l)+l(0) o Z XI(O)

@O +h) ~xip(0) | (i(l) - %)m} if B=B,: x(0) > x,)(0) — h

T(Vmax - vmm)

max{ i) + 1)ym,
Pre(sio|B) =

max{(i(l) + m,

whered(l;) =1 and 8(I;) =0;B;and B, define two scenarios respectively that the subject vehicle [ cuts in the spacing s which is
before and after the subject vehicle [ (see Fig. 3 (a) and (b)).

Proof. This proof considers that a lane-change maneuver consists of two procedures, which are respectively defined by [; and (5 as
follows.

[; : The platoon adjusts the target spacing at s;;) and make it larger than 2h so that it can accommodate the lane-change maneuver.
We denote the number of the time steps needed to finish the procedure of [; as J1(siqy — 2h).

[5: The subject vehicle [ adjusts its speed to approach the target spacing s;;. We denote the number of the time steps needed to finish
[5 as Jo( = si)-
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Notice that the two procedures [;and [, are conducted simultaneously to complete a lane change maneuver. Therefore, the lower
bound of the lane-change time window equals to the larger number of steps of completing (; or [, i.e., P g(sipB) = max{ Jy(s;) — 2h)

,J2(— si))} According to Lemma 3, by applying the sequential acceleration strategy i1, we can ensure a safe spacing s;g) € S for the lane

change at the time step p* € {(i(I) + 1)*m,...P}. Correspondingly, the number of time steps needed for the procedure [; is bounded by
Equation (24). Namely, the platoon needs (i(I) + 1)m time steps to enlarge the spacing sy;) to be larger than 2h.

Ji(siy = 2h) > (i(1) + )m (24)

Next, this study analyzes the number of the time steps Jao( — sj)) for a subject vehicle to approach the target spacing sy (i.e.,
complete the procedure [,). To do it, we consider two scenarios, B and B separately, in which the subject vehicle [ is initially running
behind or ahead of the target spacing s;;. We use different acceleration strategies for B; and By. More exactly, the subject vehicle [
under scenario B; tends to accelerate to catch up the platoon vehicle i(l) + 1 ahead of it, while under scenario By, the subject vehicle [
tends to maintain the v,;;; speed to wait for the platoon vehicle i() to catch up.

We first discuss the number of time steps Jo( — si|B1) under scenario B;. To finish the lane-change maneuver, the subject vehicle [
is required to arrive s;q) and run ahead of the platoon vehicle i(]) + 1 on the target lane with a safe lane change distance h by the time
step Jo( — sipB1). Notice that the procedure of [; guarantees that the target spacing si) has double safe lane change spacing 2h.
Therefore, once the subject vehicle [ can run ahead of the platoon vehicle i(l) + 1 with a safe lane change spacing h by time step Jo( - s;
®B1), we ensure that the subject vehicle [ can simultaneously run behind of the platoon vehicle i(l) with a safe lane change spacing h by
the time step Jo( — sj;yB1). Mathematically, this consideration is presented by Equation (25).

K (L= siB1)) > xia (T = siBr)) +h (25)

Combining Equation (25) and the vehicle dynamics in Equations (1)-(4), the following deductions in Equation (26) provides the
lower bound of the needed time steps Jo( — sipB1) by applying the strategy u to platoon vehicles 1, 2..., i(D), and [ = L:

H (L= iy |B1)) > xip1 (o (= sigy|B1)) + 1 © ¥(0) — (xi31(0) + h)+

Vimax + Vimin
rT—

> + (2( = sigy|B1) — m)tiax — Jo (= 8i) [B1)TViin >

> (26)
(i) +1(0) + k) — X" (0) 4+

mdy( = i) |B1) >
2( Ul)‘ l) T(Vmavamin) 2

To facilitate the articulation hereafter, we denote the sequential acceleration strategy applied by the platoon vehicles 1, 2..., i(])
and subject vehicle [ above as up, € u. Mathematically,ug, (I) : & — {1,2,...,i(I) Ul}, which indicates that U, is applied to the subject
vehicle [ and the leading platoon vehicles 1, 2, ...i(I), not to the following platoon vehiclesi(l) + 1, ...n. Therefore, the platoon vehicle
i(D) + 1 and its following vehicles maintain the speed vy, for the subject vehicle I to catch up. In addition, Equation (26) considers
that the subject vehicle [ is the leading subject vehicle [; so that subject vehicle [ can start to accelerate the speed at time step p = 0. If
the subject vehicle is the following subject vehicle, [ = I, according to u, the subject vehicle I, should start to accelerate the speed after
m steps by which the subject vehicle [; reaches the speed of Vg, Therefore, an additional nt number of time steps should be added to
the Equation (26). Accordingly, we have Equation (27) for the case of [ = I below.

(i) +1(0) + 1) —x2(0) 3

J. i)B1) > —m 27
2(= si)B1) > e — Vo) +2 27)

Combining Equation (24) for Ji(siqy — 2h) and Equations (26), (27) for Jo( — sipyB1), Iﬁ(si(l)Bl) is calculated under situation By
mathematically by the Equations (28) and (29) respectively for the subject vehicle l =1 and | = I,.

. o 41(0) +h) —x"1(0) m
ﬁ(“i(lu)Bl) = max{J,(si,) = 2hBy), Jo( = si1B1)} = max{(z(ll) +1)m, (X1+;gv) 7)‘} ))C ( )Jr?} (28)
i+1(0) +h) —x2(0) 3
E(S[(/Z”Bl) = max{Jl (S[(/Z) g 2]’!31), Jz( g Si(lz)Bl)} = max{(i(lz) + l)m, (x (l'):’_l(f} ) J’; 3 - )X ( )+§m} (29)

Using the similar approach, we study the number of the time steps needed Jo( — si|B2) under B, scenario, using the acceleration
strategy Up, € U. The details of the analysis can be seen in Appendix-III. Then, P, x(si;|B2) under scenario By can be mathematically

determined by the following Equation (49).

ﬁ(s,-(,)\Bz) = max{J (siy) = 2hB,), Jo( = siyB2)} = max{(i(l) + I)IIT7W+ (i(l) — %) m} (30)
Wrapping the results in Equations (28), (29) and (30), we complete the proof for Lemma 4. m
Built upon the results in Lemma 4, we next construct the lower bound P, g for the case involving two-subject vehicles requiring for
lane change in Lemma 5 to ensure the feasibility of the MINLP-MPC model. To develop this lemma, we consider four scenarios
regarding the lane-change maneuvers of two subject vehicles.
C1: Xi)+1(0) +h> X1 (0); Xiy)+1(0) +h > x2(0), which represents the case that both the subject vehicles I; and I, cut in front (i.
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Flow direction
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n o on-1 Mw.qz)ﬂ i) i+l i) 1 n -1 Ti) 1 i) T+ i) o

Lane 2: sub]ect vehicles 1€ {I,1

Flow direction

— =~
I
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non-1 ) +1 i) i) +1 i) 1 Tl +1 i) i) +1 i(h) 1

(c) scenario Cs (d): scenario C,

Fig. 4. Four scenarios C;,C»,C3,C4 of two subject vehicles lane-change case.

e., under scenario B;), see Fig. 4 (a);
Cs : Xi)+1(0) + h > x1 (0); x2(0) > x4,)(0) — h, which represents the case that the subject vehicle [ cuts in front (under B;), while

the subject vehicle I, cuts in back (under By), see Fig. 4 (b);
Cs: xX1(0) > Xi1,)(0) — h; Xi,)41(0) + h > x(0), whch represents the case that the subject vehicles I cuts in back (under Bs),

while the subject vehicle Iy cuts in front (under B,), see Fig. 4 (c);
C4 : x1(0) > xy4,)(0) — h; x2(0) > xy4,(0) — h, which represents the case that both the subject vehicles [ and I cut in back (under

By), see Fig. 4 (d).

Lemma 5. Assume that (i) the platoon and the lane change subject vehicles are under extreme scenario (E) at p = 0; (ii) two subject
vehicles I1,l>, which intend to cut in the spacing s, ) respectively between platoon vehicles i(l;) and i(I;) + 1 and s;;,) between platoon
vehicles i(lo) and i(lo) + 1 in the platoon on the target lane, s;;,) < Siq,), Sity) & Sit,) € S- Then we have the lower bound of P2 z as follows

to ensure the model feasibility.

Pri(sia)|B1), Pre(siw) |B1)

+e(C) if C=C

~

+8(C2) lf C= Cz

1.£(Si) |B1)s PLE(S[(m B))

sin) [B2), Pre(si, )|B1) ¢ +€(Cs) if C=0Cs

i
Pos(siay), i [C) =

] £
maX{

where €(C1),e(C2),e(C3), and €(Cy) are the delay terms to fix the conflicts caused by applying acceleration strategies ug,, Up, € U
from Lemma 4 so that we can construct @ The mathematical representations of €(C1),e(C2),e(C3),e(C4) are shown below.

|“ \“’\

EGiu)|B2)s Pre(sin)|B2) ¢ +€(Ca) if C=Cy

AJ]( [l —) 2h|Bl)
C) = ALV > 7V|By) =
£(C) = AJ (sig)— 2h|By) = max{J, (V" - V|B,) 7./1(s;(,|)—> 2h|By),0}
AL (V2 > 7¥(B;) =0
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A (si0)— 2h|By) = o
(O = AL (VY - VIBy) =
£(C) = AJ\ (si45)~ 2h|B,) = max{J,(v" > V|B, ) Ji (Sig— 2h|By),0}
A, (vl’ = V|By) = max{,(v" - V[By) — Ji(si0,)— 2h|B:),0}

AJI(( PR 2h|B)2) = AJI(( = zh|3;) =

_ AL (V' = 7|B, —0 ) AR 9B, —0

e(G) = AJy (10~ 2h|B)) = and &(Cy) = AV sy — 2h|By) =
AL (V> > v|B ) =L > v|Bz) AL (V2 > V|B,) = 0

Proof. Notice that P;; in Lemma 4 is developed for the case that only one of the two subject vehicles requires lane-change
accommodation. To find the time window lower bound P, for the scenarios involving two subject vehicles’ requests, we can use a

naive approach. If there are two subject vehicles simultaneously using the same acceleration strategies as those in Lemma 4 without
conflicts, then the P, is equal to the maximum one of the lower bounds P, ; for the two subject vehicles. Thus according to Lemma 4,

we have

max{ Py g(sia)|B), Pl,E(Si(lg)‘Bl)

max {ﬂ Si)|B1)s PI,E(Si(Iz)‘BZ)
P (sie): 51 [C) =
ma: {

maxq Pie(si)|B2), Pre(sio|B2) ¢ if C=Cy
max{J; (Sig,)= 2h|B1), J2( = sia)|B1). J1 (i) = 2h1B1), J2( = iy |B1)} if €= C,
_ ) max{J (st~ 2h|B1), Jo( = sia)|B1), Ty (Sity) = 2h|B2), o= sig)|B2)} if C = G, 31
max{J; (si,)~ 2h|B2),J2( = siy)[B2), Ji (Si) = 2h[B1), J2( = sii)|B1) } if C=C5
max{J; (Sig)= 21(B2), J2( = i) Ba): Ji (i)~ 2h1B2), o ( = Sii) |B2)} if C = Cy

However, in traffic reality, the acceleration strategies of the two subject vehicles adopted in Lemma 4 may cause conflicts. Below
we demonstrate the conflicts, and then derive the mathematical formulation for the corrections: £(C1),e(C2),e(C3),e(C4) so that we can
fix the solution in Equation (31) which uses the naive approach.

Notice that each delay term e(.)has four components {AJy (s~ 2h|B),AJ2(V!* — V|B),AJ1 (si,)— 2h|B),AJ2(V2 — V|B)}, which are
respectively the delays corresponding to four lane-change procedures {J; (syz,)— 2h|B),J2(= si,) |B) J1(8i)— 2h|B),J2 (= si1,)|B)} in
the maximum function in the Equation (31), where B=B; or Ba.

For the scenario Cy, both the subject vehicles [; and I; tend to cut in front. They are under scenario B; defined in Lemma 4. Thus we
consider they respectively apply the acceleration strategy iz, (1) : u — {1,2...,i(l1),1} and up, (L) : u — {1,2...,i(lx),1, 5} to com-
plete the cut-in maneuvers simultaneously. From Equation (9) and the assumptions in Lemma 5, we have the target spacing of the
subject vehicle I; is ahead of the subject vehicle I;’s target spacing: s;;,) < Siq,)- It also indicates that i(l;) < i(lz). Namely, the platoon
vehicle i(l;) is running before platoon vehicle i(ly).

The conflicts will potentially arise at the platoon vehicles denoted by i(l; <) € {i(l4) + 1, ...i(lp)} if the platoon yields a lane-
change spacing for subject vehicle [; earlier than it arrives at the target spacing, i.e., J2(—= sj3)|B1) > J1(syz,)— 2h|B1). Specifically,
to accommodate the subject vehicle [;’s lane-change request by following ug, (I; ), platoon vehicles i(l; <) are required to stay speed
Vmin until the subject vehicle I; reaches the target spacing sy, by the time step J2(— s;,)|B1). However, to accommodate the subject
vehicle I;’s lane change by following i, (I2), platoon vehicles i(l; <l3) are required to sequentially accelerate to prepare the spacing s;,)
for accommodating vehicle I starting from the end of the time step J; (s;z,)— 2h|B1). Consequently, if Jo(— siq,)|B1) > J1(siq,)— 2h|B1),
the conflict takes place. More exactly, platoon vehicles i(l; <1,) are required to stay speed vmn by U, (1) since subject vehicle [; has not
reached the target spacing s;;,) yet. On the other hand, they are also instructed by i, (I2) to accelerate since the process to prepare a
spacing for subject vehicle I’s lane-change request has been triggered by the end of the time step J1 (siq,)— 2h|B1). Therefore, during
the time steps {J1 (si;,)— 2h|B1),...,J2(= s;1)|B1)}, any platoon vehicle i(l; ) will receive two conflict instructions.

To resolve the conflict, we let the platoon vehiclesi(l1 <o) € {i(1) +1, ...i(I2)} first stay speed Vpn from time step Ji (siq,)— 2h|B1)
until the time step J(V* — V|B;) by which the subject vehicle Ij arrives at target spacing Si)- This leads to a time delay
AJ1(Sig,)— 2h|B1) = Ja(= si1,)|B1) — J1(siq,)— 2h|By) for the subject vehicle Io’s lane-change procedure [;. Notice that if J5(— s;4,)|B1)
<J (51(11 — 2h|B1), AJ1(siq,)— 2h|B;1) = 0. Namely, no such conflict and there is no time delay in the subject vehicle I,’s procedure [;.
Combine these two together, AJy (s;z,)— 2h|B1) = max{Ja(— siq,)|B1) — J1(sj;)— 2h|B1),0}. Furthermore, we can examine and find
that no time delay exists in the other three lane-change procedures under Bi:{Ji(si;,)— 2h|B1), J2(= $i1,)|B1), J2(= Sig,)|B1)}
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Specifically, subject vehicle [;’s original lane-change acceleration strategy u, (I1) is not sacrificed to address the conflicts, thus there is
no delay term in subject vehicle I;’s two lane-change procedures [y, [>. Namely, AJy(siq,)— 2h|B1) = 0; AJz(— siq,)|B1) = 0. For the
subject vehicle ly’s lane change procedures [, according to the acceleration strategy ug, (), subject vehicle I, accelerates after subject
vehicle l; in order to catch up with the platoon vehicle i(ly) + 1, which keeps speed vy, all the time. Therefore, the modification we
made above has no impact on the subject vehicle I;’s lane change procedures (5. There is no time delay term. Namely, AJ>(— sig,)|B1)
= 0. We have the delay term &(C;) in Equation (32):

A]l (Si(ll)_) 2h|Bl) = 0
e(Cy) = ATy (= sig|Br) =
AJ(Siw)= 2h|B1) = max{J>( > S;([,)|B|) Ji(Sigy)— 2h|B,),0}
A]z( - S[(lz)IBl) = O

(32)

Recall that these four components above corresponds to the formulation of scenario C; in Equation (31):max{J;(syz,)— 2h|B1),
J,(V' = V|By), I (Sigp)— 2h|B1),J> (v2 — V|B;)}. For the next three scenarios C, C3, C4, we will discuss the conflict terms €(Cb),e
(C3),e(Cy4) in the similar way. Here, we directly give the results, but provide detailed analysis in Appendix-IV.

AT\ (sig,)—> 2h[By) =

€(C): AJZ(—>s,-(,,>|Bl):0
: AJ(Sig) = 2h|B2) = max{J2( = si@,)|B1) — Ji (si,)~ 2h|B,), 0}
AL ( = S |B2) = max{J>( = siq)|B1) — Ji (st~ 2h[By), 0}

(33)

AJ] (Si(h)_’ 2/’l|Bz) =0
A.Iz( - §; l|)|BZ) = 0
AJ, (sl(, — 2h|B ) =
AL (= sigy) \B )= (—’ it1)1B2)

AJ] (Si(ll)_) 2h|32) =0

_ )] AL(=si))B) =0
€(C4) - AJI (si(lz)_) 2h|Bz) =0 (35)

AJ2( = Si(ly) Bz) =0

Wrapping up the discussions above, we complete the proof for Lemma 5. m

Notice that we assume the two subject vehicles [; and I cut in different target spacings, which is the most common case of lane
change maneuver. For the case where the two subject vehicles [; and I, cut in the same spacing, similar strategies can be utilized and we
do not show the detailed proof here.

Lemma 5 provides the lower bound Py £ (si,), Sig,) |C) needed for the case with two subject vehicles requiring for lane change under
extreme scenario (E). Finally, by summarizing the results from Lemma 1 to Lemma 5, we present the lower bound P;; in Theorem 1

to ensure the feasibility of the MINLP-MPC model, considering a platoon is running under a general scenario (E).

Theorem 1. Assume that (i) a platoon and two subject vehicles I,l; are under a general scenario [ at control time step k* (ii) subject
vehicles I,l> intend to cut in the spacing s;;,) and s;(,) respectively, s;,) 7 Sia); Si@)& Sig,) € S. Then the lower bound of Py under
scenarios C; to C4 are summarized as follows.

Xi 0) +h) —x" (0 ) ) 1
(it +1(0) ) ( )+ i(h) —i(l) + = ) m,
T(Viax = Vin) ) o
max L Jmax  Tmin ae F
—TApin
(xx(lz +1(0) -+ h) (O) ﬂ
@(‘c"al)’ Si(ly) ‘Cl) T(me — me 2 7
(i(L) + 1)m
F: Vimax — Vmin h .
max (Xi)+1(0) + h) — e otherwise
T(vmax - me
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a :'I(EJ?,‘):_ hz,,,;)x © + (i(lz) —i(h) + %)m:
max{ (¥2(0) +h) = i) (0) + (xig)+1(0) +h) —x"(0) L 4 Vmax = Vmin 3 5
T(Viax = Vimin) ~Tumin
Pa(si): i) | C2) = +(i(l2) —i(ly))m} ’
(i 1(0) +7) =x(0) 'm
T(Vmax - Vm[n) 27
max (i(h) + L)m, + vmi(ri;vmm otherwise
(x2(0) + ) — xi1,) (0) . 1
W + <l(12) - E)m
(i(L)+ )m
Pag(siw), Si)|C3) = max T(Vyar — v,m,,) + ( (1) 2> ) + [ﬁw
(i) 11(0) 4+ h) — %2 (0) + (" (0) + ) — @u“m_n}

T(Vmax - me)

(i(L) + 1)m
(x2(0) +h) = xi4)(0) <_ v
RalL LI L\ S i(L)—=|m

C4) = max T(Vmav me)

Lﬁ%);ﬁﬁ9+@m—gm

T(Vinax Vlm'n)

Pa(sin)» Sin)

where condition J : Ja(— Sity)[B1) > J1(siq,)— 2h|By).

Proof. According to Equation (18) in Lemma 2, a general scenario (E) can be transferred into extreme scenario (E) within {%J

time steps. Therefore, Py, E(sl 1) Sils |C =Py, E(sl 1)»Si()|C) + [%-‘ where the mathematical descriptions of Py g(si(,), Si1,)|C) are

givenin Lemma 5. Since Py g(Si, ), Sit,) |C) is derived from the maximum functions, we compare the elements in the maximum functions

with given information and present the results in Theorem 1. We omit the detailed discussions here. m

Theorem 1 above finds a conservative lower bound of the P value: P, to ensure the feasibility of the MINLP-MPC model so that

two subject vehicles [; and I, can complete lane changes at different target spacings while the platoon is initially under a general
feasible scenario. Therefore, if we pick a time window P > Py, the MINLP-MPC model is able to find a feasible trajectory control

solution to complete this task for two subject vehicles cutting in different spacings. For the case where the subject vehicles [; and
I cut into the same target spacing, modified similar strategies could be applied and we need to accordingly modify the results in
Lemma 4, Lemma 5 and Theorem 1. We do not present the detailed results here.

Remark 2. Our proofs above can be extended to analyze the feasibility of the cases involving more than two subject vehicles: [ € {l;,
lo,..., ln}, m>2.Notethat Lemma 1-Lemma 4 can be directly applied for more than two subject vehicles cases. Recall that Lemma 4
investigates two different lane-change maneuvers (Bj,Bs) of one subject vehicle case. Lemma 5 considers the interferences of the
lane-change maneuvers between two subject vehicles, differentiate them into four different scenarios C;,C5,C3,C4, and then introduces
the corresponding delay terms £(C1),e(C2),e(C3), ¢€(C4), which are integrated into the results in Lemma 4 to find out the lane-change
time window. When it comes to m subject vehicles cases (m > 2), utilizing the similar analysis approach used in Lemma 5, there are 2™
different scenarios Cy, Cz, ...., Con involved and 2™ corresponding delay terms &(C1),&(Cs), ...,£(Can). Using the same approach as we
analyze €(C1),e(C2),e(Cs), €(C4) in Lemma 5, we can determine the mathematical representations of the delay terms ¢(C; ),&(Cz), ...,
&(Cqm). Due to the complexity resulted from the high dimensionality, we omit these detailed discussions here. More importantly, it is
not common in real traffic to have many individual subject vehicles simultaneously requiring for lane-change accommodation for a
platoon in a short time period. If this occurs, it is equivalent to the problem that one subject platoon (not individual vehicle) cuts in
another target platoon. We propose to develop new approach to address this complicated case in the future work. #

The mathematical formulation of the P, in Theorem 1 indicates that P,y will increase when the two elements increase: the

required safe distance to accommodate lane-change requests (i.e., h), and the initial distance between subject vehicle [ and its target
lane-change spacing (i.e., |xiq + 1(0) — xl(0)|). Specifically, if a larger safe lane-change spacing h is required, then it takes the platoon
more time steps to generate the acceptable spacings to accommodate the lane-change requests. On the other hand, if the subject vehicle
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Fig. 5. Hybrid MPC system (m = 2).

[ is instructed to cut in a target spacing that is far away from its initial location, naturally it needs more time for coordinating the
movements of a subject vehicle I and the platoon. Therefore, it can only be done within a larger time window. Our numerical ex-
periments find that the optimal spacings for subject vehicles to cut in are often selected near subject vehicles’ initial locations.
Therefore, we may choose a smaller time window P, which helps reduce the computation loads. Moreover, by plugging well-accepted
values for the parameters in the mathematical formulation in Theorem 1, we find that P, ; < 15 often holds. Thus, P=15 isa proper

lane-change time window to ensure the MINLP-MPC model feasibility. We validate it by our extensive numerical experiments as well.
In addition, this experimental time window also gives an instruction for the lead time of requiring mandatory lane-change accom-
modation. Wrapping the thoughts above, the model feasibility analysis and Theorem 1 provide us good insights to set up the value of
the lane-change time window P in this PB-CLC control so that we can balance the model feasibility and computation load. In the
meantime, the feasibility proof further facilitates the development of the hybrid system controller and solution approach. We will
discuss the details in the corresponding sections.

5. Hybrid MPC System

This section formally presents the mathematical formulations of the hybrid MPC system and proves the hybrid control feasibility
and stability. It is noted that the hybrid MPC system will get very complicated as the number of subject vehicles increases. Thus without
loss of generality, we first construct a hybrid MPC system considering two subject vehicles I;,l requiring for lane-change (m = 2) and
then proves the feasibility and stability of this m = 2 hybrid MPC system. Finally, this study generalizes the m = 2 hybrid MPC system to
make it applicable for the case of more subject vehicle (m > 2).

5.1. Hybrid System construction

As two subject vehicles are involved in the PB-CLC, the corresponding hybrid MPC system initially illustrated in Fig. 2 will be
further complicated shown in Fig. 5, where q; (i = 0, 1, 2) represent three different states illustrated in the problem formulation section,
@21 and g2 are sub-states of restoration state gqq. 6; (i = 1, 2, 3) represents the switching signal between different states and 65 ;
represents the switching signal between sub-states g2 1 and g 2. More exactly, qq is the state that the CAVs in the platoon (not including
the subject vehicles I € L) follow the car-following movements under the control instruction from the MPC-q given below for the
control time step k € Z,(qo) = {0, 1, ...k* — 1}.

MPC-qo:

Min T'(u(k)) = % [ (k+1)Quz(k+ 1) + (2 (k+ 1) Q2 (k+1)] + %’zn u(k) |I;

s.t. Constraints in Equations (1)-(7)N{i € I}, (12)-(15)

Note that MPC-q can be obtained by removing integer variables y that are relevant to lane-change maneuvers from the MINLP-
MPC model. After removing y, the prediction time horizon P can be set to 1 and thus the MINLP-MPC turns to a systematical car-
following (platooning) control which was first adopted in Gong et al. (2016). Once the platoon under MPC-qq receives the
lane-change requests from subject vehicles at time step k*, they cooperatively determine the optimal cut-in timing and spacing for each
subject vehicle (i.e., determine s() and p(I), [ € {l3,l5}) through solving the MINLP-MPC model within one sample time interval. The
end of this process activates the switching signal 61, which instructs the system to switch from the state g to the new state q; starting
from the step k*.

Accordingly, the state q; describes the process that the target platoon manages its spacings to accommodate the lane-change re-
quests with given optimal lane-change decisions in timing and spacing generated by the MINLP-MPC model. The state g starts from
the time step k* until one of the subject vehicles shifts in the time step min  {p(l;),p(l2)}. Accordingly, the platoon control model under
the state q; is given by MPC-q;, which is implemented at every control step k € Z,(q1) = {k*, ..., k* + min {p(l1),p(I2)}}.

MPC-q;:
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Min Tuy) = {3 000 + 0102 0] + 5wt~ 1) 13

p=1
s.t. for time steps p € P: Constraints in Equations (1)-(7) n{i e L L € {l,I5}}, (12)-(15)

yi(l);w =1, yﬁ_‘p =0; le{l,bL}, VseS,s#s(l), peP,p#p(l) (36)

X (p) = xi1(p) > h, xipy(p) —X'(p) > h; Vp € {17(1)7 ---77’}7 Le{l,b}, (37)

where p(l) = p(l) — (k —k") is the dedicated time step of the lane-change maneuver at each platoon control step k after k*. Namely, as
the control under MPC-q; proceeds, the dedicated time step of the lane-change maneuver decreases. Equation (36) and Equation (37)
are obtained by respectively integrating the optimal lane change decisions (i.e., the optimal solutions of ! pVs € S,p € P) into Equation

(8) and Equation (11). P=P— (k —k* —1) in Equation (37) is the updated lane-change time window P. Note that Equation (37) is only
activated when a safe lane-change spacing is ready and will force the safe lane-change spacing keep active until the end of the updated
lane-change time window P. Thus, MPC-q; is derived from the MINLP-MPC model but specifies the lane-change decision values y
which are relevant to the lane change maneuvers.

Next, the state g3 including g2 and g2 o in the hybrid system functions as an intermediate state for the platoon to smoothly switch
from state g; back to state go. The state g3 is necessary for two reasons. First, neither qo nor g fits the state that only one of the subject
vehicles has cut in the platoon, but the other is still proceeding the lane-change maneuver. Therefore, we design the substate g5 1,
which is trigged by the switching signal 65 when one of the subject vehicles finishes the lane-change maneuver at the time step k* +
min {p(l}),p(l2)}. Second, it is not feasible for the system to directly switch to state g from state g; since MPC-q and MPC-q; use
different types of safety constraints. Specifically in MPC-qy, at control time step k > k* + p(l), the subject vehicle [, which has cut in the
spacing between vehicles i() and i(l) + 1 in the platoon, should satisfy the safety distance constraints in Equations (38) and (39), which
are derived from Equation (7). But this cannot happen automatically. More exactly, when the subject vehicle [ just finishes the lane
change at the time step k* + p(1), the spacings between the subject vehicle [ and its neighbors are only ensured to be larger than the safe
lane-change distance h (see Equation (11) or Equation (37)). However, the lane-change safe distance h is usually smaller than the safety
distance, which is the right-hand side of the Equations (38) and (39) below.

Vi k) = Vinin :
X (k) = i1 (k) > LBigys1 + wvigya (k) — [U)z\'(# (38)
Apmini(l)4+1
] [ ! W (P*) - Vmin}z
xip (k) —x (k) 2 LB+ (k) ——— 7 (39)

2a!

‘min
Therefore, the safety feasibility is not secured for the platoon to directly switch from the state q; to state go. We need the inter-

mediate state g, which consists of two sub-states ga.1 and ga.2. The first sub-state gy ; describes the state, when one of the subject
vehicles has finished the lane change while the other subject vehicle has not. The second sub-state g3 > describes the following state

when both two subject vehicles have finished lane-change maneuvers. More exactly, denote the subject vehicle I € [ is the first one to

finish the lane-change maneuver at control time step k™ -+ p(1) in the target spacing s(I), which is between the platoon vehicles i(I) and
i(l) + 1. Mathematically, I = argmin._, ;,;{p(l1),p(l2)}. Then the other subject vehicle is denoted by I= 1\ I, with its corresponding
optimal lane change spacing and timing denoted by s(1), k* + p(1) respectively. In summary, the first sub-state g» 1 describes the state
during control time steps {k'+ p() + 1, ..., k' + p(l)}, whereas the second sub-state gz 2 describes the situation starting from the
control time step k* + p(I) + 1 until the system receives the switching signal o.

Correspondingly, the platoon control model under sub-state g ; is given by MPC— @5 1, which is implemented at the control time
stepk € Z,(g21) = {k* +pD) +1,...,k +p(l)}.

MPC-g2 1:

P

Min Tu3) = 303 [ 0)0200) + € ()02 )] + 55 1ty = 1) 1)

p=1

s.t. for time steps p € P: Constraints in Equations (1)-(6) N{i € I, l € {l;,15}}, (7)n{i € I}, (12)-(15) , Equations (36) and (37) for [ =1,

X (k) = i1 (k) > h, 1 =1, (40)
xi (k) =X (k) > h, 1 =1, (41)

where Equations (40) and (41) applied to subject vehicle I are the spacing constraints for safe lane-change, which are formulated
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according to the Equation (37). Accordingly, the safety constraints in Equation (7) are not employed for the spacing s(I). Equations (36)
and (37) describe the lane-change process of subject vehicle I. In summary, MPC-q5 ; is derived from the MPC-q; but removes one
subject vehicle’s lane-change decision variable y since it has finished the lane-change maneuver.

The platoon control model under sub-state g 2 is given by MPC— g3 2, which is implemented at the control time step k € Z. (q22) =

{k* +p(l) +1,....k +p(ag)}.
MPC-q3
Min T(0) = > {3 [ (0)0.206) + € (1) 022 ()] + 511t~ 1)}

p=1

s.t. for time steps p € P: Constraints in Equations (1)-(6) N{i € I, I € {I3,lx}}, (7)n{i € I}, (12)-(15), Equations (40) and (41) for l =1L,1,
where k* + p(o3) represents the control time step when the system receives the switching signal 63; Equations (40) and (41) for [ = 11
indicate that both two subject vehicles employ the lane-change spacing constraints right after the lane change maneuver. Thus, MPC-
g2.2 is also derived from the MPC-q; but completely removes the lane-change decision variable y since both two subject vehicles have
finished the lane-change maneuvers.

The control instruction of MPC— g2 > will enlarge the immediate preceding and following spacings of each subject vehicle (will
show it in persistent feasibility proof later). Once the safety distance constraints in Equations (38) and (39) are re-satisfied for all
subject vehicles, the system triggers the switching signal o3 for the switch from intermediate sub-state g 5 to the car-following state qq.
Up to this time step, the platoon completes a PB-CLC control cycle to accommodate the lane change requests.

Notice that it is possible that the two subject vehicles simultaneously finish the lane change at the same step. In this situation, the
system should directly switch from state q; to sub-state go 5, skipping the sub-state g2 1. To simplify the hybrid system, we do not
introduce new switching signal to describe this switching. Instead, we consider the system still goes through sub-state g ; but will
immediately switch to sub-state g5 ». Besides, if the platoon is under stable condition and the desired spacing s4 is very large, then the
safety distance constraints in Equations (38) and (39) are likely to be directly satisfied after two subject vehicles finish the lane-change
maneuvers, so that both sub-state gy 1 and g5 2 should be skipped. We can apply the same abovementioned trick to simplify the hybrid
system.

5.2. Persistent feasibility analysis of the hybrid system

This study notes the importance to prove the persistent feasibility of the MPC-based hybrid system since each state of the hybrid
system corresponds to a MPC model (Bridgeman et al., 2016, Zhang et al., 2016). Mainly, the persistent feasibility of a hybrid system
consists of two parts: (i) Each state of the hybrid system is individually feasible; (ii) The switchings between states are feasible. Along
with the feasibility analysis, the closure property of the cycle in the hybrid system (such as qo — q1 — g2.1 = g2.2 — qo in this study) is
often discussed. This sub-section first proves the feasibility of the hybrid system and further proves the cycle of the hybrid system is
closed in Theorem 2.

Theorem 2. The hybrid system is feasible and the cycle go — g1 — q2.1 = g2.2 — qo is closed, if the following three conditions hold. (i)
State q is initially feasible at control time step k = 0; (ii) Theorem 1 holds, which ensures the feasibility of the MINLP-MPC; (iii) The
prediction horizon P > p(o3).

Proof. To prove this theory, we first show the feasibility of each individual state in the hybrid system and then prove that each
necessary switching from one state to another is feasible. Combining these two results, we conclude the feasibility of the hybrid system.
To do that, we note that the sequential feasibility of state gy was proved in Gong et al., 2016, given that the condition (i) holds: gy is
initially feasible at k = 0. Besides, the feasibility of the state q;, sub-states g2 1 and g3 » are all indicated by the feasibility analysis of the
MINLP-MPC model in Section 4. Namely, if the MINLP-MPC model can determine a feasible solution to conduct the lane change
maneuvers when the prediction horizon P satisfies the inequalities in Theorem 1, then the sequential feasibility of the state g,
sub-states g2 and ga 2 are secured. Following this idea, we provide the proof in detail as follows.

Recall that the MINLP-MPC model predicts the vehicles’ trajectories for next P steps, i.e. the control time step k € Z, (MINLP —
MPC) = {k*, ...k* + P}, where k* is the time step that the lane-change accommodation is required. Given the condition (iii) P > p(c3),
wehave Z.(q1), Z:(q21), Z.(q2.2) € Z,(MINLP — MPC), which indicates that the P-step trajectory predictions given by the MINLP-
MPC model completely cover the control time steps of the state g; and sub-states 2.1, q2..

Next, we show that the constraints setsinq;, ¢g21 and g2 are all derived from Equations (1)-(15), which are the constraints of
the MINLP-MPC model. Specifically, state q; has the constraints in Equations (36) and (37), apart from the other constraints contained
in Equations (1)-(15). Note that Equations (36) and (37) are derived from the lane-change constraints in Equations (8)-(11). Thus, the
constraints set in state q; is derived from the constraints set of the MINLP-MPC model. Taking the same idea, sub-states g21 and g2.»
have constraints in Equations (40) and (41) that are different from Equations (1)-(15) and (36), (37). Notice that Equations (40) and
(41) are the safe lane-change constraints derived from Equation (11), which is designed in particular to ensure that the subject vehicle
keeps the safe distances h with the adjacent platoon vehicles after lane change. Wrapping above, the constraints sets of g1, g2.1, ¢2.2
are all subsets derived from the constraints set of the MINLP-MPC model. Consequently, given that the second condition (ii) Theorem 1
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holds, which means the MINLP-MPC model is feasible, state g; and sub-states g21, ¢2.2 are all feasible.

Then, we show that the switchings between states are feasible. The switching signal 61: qo — q; is feasible because states go and q;
share the same constraint set at the switching time step k*. The state switchings such as 62: 1 = g2.1, 021: 2.1 — 2.2 are all feasible
for the same reason that two states share the same constraint sets at the switching time step. The feasibility of the switching signal oc3:

g2.2 = qo is proved next together with the proof of the cycle closure property.

To prove the cycle of the hybrid system go — g1 — 2.1 = g2.2 = qo is closed, which means that the hybrid system will go through the
cycle in finite time steps. Notice that the hybrid system is state-dependent. That is to say, the state switchings will happen when certain
conditions are satisfied. According to the hybrid system construction process in Section 5.1, the state switchings go = q1 — g2.1 — q2.2
always hold. Specifically, the switching gy — q; takes place when the lane-change requests are received and the lane-change decisions y
are specified by the MINLP-MPC model at step k*. The switching q; — g2.1 and g2.1 — g2.2 happen respectively when one subject vehicle
first finishes lane-change and both two subject vehicles finish lane-change.

Therefore, to prove the cycle of the hybrid system is closed, we only need to show the switching g2 2 — qo will finish in finite time
steps. Note that the switching g2 5 — qo completes if the safety distance constraint in Equation (7)N{i € I} are re-satisfied from the lane-
change safe constraints in Equations (40) and (41). Given that the sub-state g5 » is stable (Gong and Du, 2018), the sub-state gz 2 will

enter the steady-state below in finite steps such as at the time step k, according to the MPC-g5 > model.

Ay (k) = A (K) = .. = A (k) = &0 (k) = B (k) = oo = Ay (§) = 50,
Av, (%) — Av, (%) = ... = Ay (Z) — A (Z) = Avip (%) — L =Av,, (Z) -0,

If we make the desired spacing sq satisfy sq > LB + 7V — W, then consequently sq > LB + v (k") — M, for Vi e IUL

2,
Atstep E, we have that Axy (E) and AxX! (E) = sq will satisfy the safety distance constraints in Equations (38) and (39) (i.e. Equation (7))

for VI € {lh,l5} at the time step k. Then, sub-state ga 2 switches to state qo triggered by switching signal o3. With this, we prove the
feasibility of the switching g2 5 — qo. Wrapping the arguments above, we conclude that the hybrid system is feasible and the cycle gy —
q1 = q2.1 — q2.2 = qo is closed. It completes the proof for Theorem 2. m

5.3. Stability analysis of the hybrid system

The stability of a hybrid system is another important aspect to evaluate the applicability of the PB-CLC control in practice. A system
is stable if it can reach and stay the steady-state after it got affected by undesired disturbances. In this sub-section, the stability of the
hybrid system is proved by Theorem 3 below.

Theorem 3. If each state in the hybrid system is asymptotically stable, then the whole hybrid system is asymptotically stable.

Proof. Suppose states gy, ¢; and sub-states g2 1 and g » are asymptotically stable (AS), and the CAV platoon is initially in state qo
with an arbitrary feasible condition. Since state qq is AS, the trajectory along state qq is bounded over all steps k < k* (when there is no
switching). At control time step k* + 1, state g switches to state q; and thus g; starts from a finite initial condition at step k*+1. Since
q1 is AS, it follows from the same argument that the trajectory along state q; is bounded over all step k” + 1 < k < k" + p(I). Suppose q;

switches to gz at control time step k” + p(I) + 1 and further switches to gy ; at control time step k™ + p(l). We can repeat the above

argument for sub-states g3 1 and g2 ». Finally, when g 2 — qo, state qq starts from some finite initial condition at step k* + p(c3). Since qo
is AS, this state converges to zero in (z, 2’) as control time step k tends to be infinity. Hence, a trajectory of the entire process is
bounded and converges to zero. This gives rise to the asymptotic stability of the entire process. We complete the proof for Theorem 3. m

Notice that the stability of state gy has been discussed in Gong et al. (2016) and the stability of states q; and g5 have been discussed
in Section 6 in Gong and Du (2018). Together Theorem 3, we prove the stability of the whole hybrid system.

Remark 3. We can construct a MPC-based hybrid system (m > 2) for more than two subject vehicles lane-change cases using the
similar approaches. The MPC-based hybrid system (m > 2) shares the same structure with two subject vehicles (m = 2) case in Fig. 5,
where state g has more sub-states such as q21, ¢2.2,..., qa2.m to describe the m subject vehicles’ sequentially finished lane-change
maneuvers. Then the feasibility and stability of the hybrid system (m > 2) can be proved using the same strategies in Theorem 2 and
Theorem 3 with the MINLP-MPC model feasibility (m > 2) discussions in Remark 2.#

The rigorous proofs for feasibility and stability analysis above indicate that the MINLP-MPC model (function as switching signal ;)
needs to be solved within a sample time interval t (< 1sec) to ensure the control smoothness and safety. Besides, the desired platoon
spacing s4 should be larger than the upper bound of the conservation safe distance in constraint Equation (7) to sustain the feasibility
and cycle closure property of the MPC-based hybrid system. It is also observed that the feasible switching from the lane-change ac-
commodation state to the car-following state may not occur naturally in general. Therefore, it is significantly important to introduce a
well-designed hybrid system controller to facilitate the feasible state restoration. Built upon the MINLP-MPC model in Section 3 and its
feasibility proof in Section 4, we provided a well-designed MPC-based hybrid system controller and proved its persistent feasibility and
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Table 2
Summary of the features and target variables.
Feature Set SI seS,iel le s
Platoon Ax,(0) vi(0) LB; Amasi Amin,i n
Subject vehicles Si,0) W(0) LB aiﬂ ax aiﬂ i
Target variables s(D (D
Table 3
Parameter settings for sampling.
Parameters Values
MPC prediction horizon P 15 (steps)
Lane-change safe distance h 30 (m)
Desired distance s4 50 (m)
Sample time interval © 1(s)
Minimum speed Vi, 22 (m/s)
Maximum speed Vpax 31(m/s)
Penalty weight o 1
Penalty weight oy n%p
Penalty weight o; 0.1*n% — 0.6%(n + 1 — 1)
Penalty weight f; 0.3*n% — 1.2*(n + 1 — i)

stability in this section. All these insights reinforce the effectiveness and merits of our MINLP-MPC model from the perspective of the
mathematical rigorousness.

6. Solution Approach

This section develops efficient distributed optimization algorithms to solve the optimizers in the hybrid MPC system. Note that the
MPC-qp, MPC-q; and MPC-q, are convex optimization problems, and can be efficiently solved by the distributed optimization ap-
proaches developed in Gong et al., (2016) and Gong and Du, (2018). Hence, the research challenge of the solution approach for the
hybrid MPC system is to solve the large-size MINLP-MPC model within a very short time interval t (< 1sec) so that we can ensure the
continuity and smoothness of the real-time hybrid MPC control. Traditional algorithms (e.g., branch and bound algorithm (Wolsey,
1998; Morrison et al., 2016) apparently cannot meet the real-time computation requirement. By taking advantages of the unique
features of the MINLP-MPC model, this study develops a machine-learning aided distributed branch and bound approach (ML-DBB) to
address this difficulty. We present the key idea as follows.

The main computation obstacle for solving the MINLP-MPC model is to determine the values of integer variables. Once these values
are known, the MINLP reduces to a convex optimization problem, which can be solved efficiently by the existing algorithms. Moreover,
the integer variables represent the proper timing and spacing for the platoon to accommodate the lane-change requests, which are
closely related to the initial states of the platoon and subject vehicles. For example, if a subject vehicle is close to the head of the
platoon, it will not be considered to cut in a spacing near the tail of the platoon, due to the traffic smoothness and the efficiency. Hence,
spacings not pertaining to this subject vehicle can be removed from the solution space to improve computation efficiency without
impacting on the solution optimality.

Inspired by these observations, this study develops a machine-learning aided distributed branch and bound approach (ML-DBB) by
integrating the unique features mentioned above. Mainly, we develop machine learning models to predict good candidate lane-change
spacings and time steps for accommodating the lane-change requests, based on the features such as the initial relative positions of the
subject vehicles to the platoon, and the initial states of the platoon and subject vehicles. Note that these predicted candidate lane-
change spacings and time steps refer to a reduced solution space containing a set of candidate optimal binary solutions of y in the
MINLP-MPC model. Next, the distributed branch and bound method (DBB) will assign these candidate optimal binary solutions to
different ‘workers’ (such as each platoon vehicle) and thus split the computation loads. With the given solutions of the binary variables,
the MINLP is reduced to a convex programming, which can be solved by each worker efficiently. Combining the local optimal solution
from each worker, the DBB algorithm can quickly find the global optimal (or near optimal) solution within the short sample time
interval. We present the technical details as follows.

6.1. Supervised machine learning

The optimal lane-change decisions obtained by solving the MINLP-MPC model are closely related to the initial states of the target
platoon and subject vehicles, such as vehicle length constants, acceleration /deceleration limits and initial spacing, speeds. Hence, this
study considers the input variables (also named as features) and output variables (also named as target variables) defined in the set of
SIin Table 2 to develop the machine learning models.

Specifically, the features regarding the initial states of the platoon are captured by the platoon size n, spacing Ax(0), vehicle
speed v;(0), vehicle length LB; and the acceleration/deceleration limits mqxi, aminifors €S, iel The features associated with the
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initial states of the subject vehicles are described by speed vl(O), longitudinal relative position to the target platoon s;(,), acceler-
ation/ deceleration limits a.,,, d.;, and length LB for I € L. The features of the platoon and the subject vehicles together form the
feature set SI. Recall that s;q 0y represents a spacing between the platoon vehicles i(l, 0) and i(l, 0) + 1 that longitudinally covers the
position of the subject vehicle l at step p = 0. Thus, it characterizes the initial relative position between subject vehicle [ and the target
platoon.

We consider s(l), p(D) forl e L (see them in Table 2), the optimal spacing and time step, at which subject vehicle [ will conduct the
lane-change maneuver, as the target variables. Accordingly, for each subject vehicle I, there are two individual machine learning
models that need to be developed, which respectively predict lane-change spacings s(I) and time steps p(l) for [ € L, using the input
features. With the solutions of {s(I), p(D), 1< L}, we can easily refer the solution of the binary variable sety = {yi p SE S,pePlel}
in the MINLP-MPC model. Note that the physical values of {s(), p(D, [ € L} are bounded by the platoon size n and the lane-change
time window P. Thus, using the bounded integer variables sets {s(I), p(l), [ € L} rather than the binary variable set y with the size
equal to (P x S)' as the target variables will help to reduce the dimensionality and then facilitate the development of the machine
learning models.

On the other hand, the MINLP-MPC also involves some engineering parameters (see them in Table 3). Even though these pa-
rameters also affect the target variables, some of them are pre-determined by the engineering experiences and others have the same
setup for the platooning control under different platoon conditions. For example, the sample time interval t of the MPC often takes a
value less than human’s reaction time; minimum speed v;;;; and maximum speed Vo, are determined by the speed limit of the highway
road. Moreover, the penalty weight a;, f; are carefully designed to ensure the control stability and smoothness according to the
formulations developed in Gong et al. (2016). The penalty weight o, is chosen to make a trade-off between the traffic smoothness and
the lane-change promptness. These penalty weights are only related with the specific feature: platoon size n, Therefore, this study will
not consider these parameters as the features in our machine learning models. Instead, our numerical experiments in Section 7.3 will
test the influence of these parameters on optimal lane-change decisions and traffic smoothness by analyzing the parameter sensitivity.

Based upon the features, target variables and parameter settings above, this study develops supervised machine learning models
using the following techniques. First, it is noticed that no existing sample data for the features and target variables are available. To
address this issue, the MINLP-MPC model-based computer simulator is employed to scientifically generate sample data for the features
and target variables using the c-LHS sampling technique. Next, this study further processes the feature set SI to generate selective
features so that we can generalize the usage of the machine learning models and improve the prediction performance. Lastly, different
machine learning models are established to explore the best-fit relationships between the target variables and features. Adjusted R2,
cross-validated mean square error (CV-MSE) and accuracy are used as performance metrics to examine the fitting goodness of the
candidate models. The following sub-sections discuss the technical details to build up the machine learning models, including data
sampling, feature processing and machine learning model development.

6.1.1. c-LHS Sampling

To develop the machine learning models, our first task is to collect the sample data for the input features and corresponding target
variables. However, it is very expensive (or impossible) to get either field data or simulation data for these variables. This is because the
CAV platooning control is still an emerging technology and it is hard to do either field experiments or simulation by existing simulators.
To address this difficulty, this study uses the computer experimental simulator based upon the MINLP-MPC model to do the data
sampling. In the meantime, it is observed that numerous features are involved in this problem and each feature has innumerable
choices within their lower & upper bounds. A scientific computer experiments design technique is thus critical to ensure all essential
scenarios are sampled, using a limited amount of the sample data, according to the existing study Santner et al., 2003). Moreover, given
that some features are involved in constraints in Equations (6) and (7), the constrained simple random sampling technique (c-SRS) is a
potential sampling approach. However, it is known that c-SRS has poor space filling properties: it may leave large empty space and
generate very close data points. According to Petelet et al., (2010), the constrained Latin hypercube sampling technique (c-LHS) avoids
the disadvantage of c-SRS and requires fewer data samples to explore the whole data space. Holistically considering these factors, this
study adopts c-LHS sampling technique to generate the sample data for the features of the platoon and subject vehicles. For
completeness, we introduce the steps to do ¢-LHS in Appendix-V. Specifically, this study uses the c-LHS algorithm to do the sampling
for the features in Table 1 with sample data size N = 1000 for each platoon size n € {16, 17, ..., 23, 24} with two subject vehicles case
(m = 2). Next, the sample data of the features combined with the engineering parameters in Table 3 are implemented as the initial
inputs to the MINLP-MPC model so that we can find the corresponding optimal lane-change decisions {s(l), p(l), l € L}, which are used
as the sample data of the target variables to develop the machine learning models. Putting together these 9000 sample data for the
features and target variables, we move further to do the feature processing in next sub-section.

6.1.2. Feature processing

The c-LHS sampling data is generated for a platoon with specific size (n). This study noticed that if the full set of features within SI
are used for developing the machine learning models, we will have to train different machine learning models for every scenario with
possible platoon size for each subject vehicle. Besides, the number of features can become tremendously large when the value of n
increases. The machine learning models will have the difficulty in generalization.

To address this limitation, we further process the sample data by the following two procedures. First, it is observed that those
platoon vehicles and spacings in the vicinity of the subject vehicles have stronger impacts on the lane-change decision on s(I) and p()
than others do. Motivated by this view, this study considers only selecting the features of a sub-platoon near the subject vehicle to
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develop the machine learning models. Namely, we use the pruned features set: SI: g(l)cS, I(I)cI, 1 € L, where g(l) and I(1) respectively
represent the sets of the spacing and platoon vehicles near subject vehicle I’s initial location s;). Note that SI is initially selected as a
large set, which includes features of eight neighboring platoon vehicles and seven spacings around subject vehicle L If there are not
enough neighboring platoon vehicles making some features unavailable, for example, the subject vehicle is located at the head or the
tail of the platoon, we will manually assign large values, such as 200 m, to the missing spacing features and zeros to the speed, ac-
celeration/deceleration features, in view of the fact that there is no platoon vehicle there. In next Section 6.1.3, we will justify that it is
enough to include these many features in SI, by using the feature selection technique. Briefly, the feature selection technique will select
the most important features in SI. The selection results in Table 4 indicate that only features of five platoon vehicles and four spacings
nearby have significant impacts on the lane-change decisions (target variables).

Next, we introduce the second feature processing procedure. To differentiate notations, s*(I), p*(l) are used to describe the
machine learning models’ predicted results on optimal lane-change spacing s(!) and time step p(l) respectively. Our experiments show
that the pruned features in ST work well to predict s(D), L € L, but not p(l), [ € L. Note that p(l) is strongly correlated with the selected s(l).
Therefore, this study considers using the predicted optimal spacings s*(l), l € L as one additional feature to predict optimal p(l).
Moreover, this study considers a new feature p(l), which represents the least time steps needed to accommodate a lane-change request
if only considering the subject vehicle and its immediate adjacent vehicles on the target lane. Mathematically, p(l) is obtained by
solving a small size optimization program, in which only a subject vehiclel (=14, b ... or I and two immediate adjacent
platoon vehicles i*(I) and i*(I) + 1 around the predicted optimal spacing s*(I) are considered. Our study indicates that p is a sig-
nificant factor to improve the prediction accuracy of the optimal lane-change time step. Besides, it only takes a very short time (~0.002
sec) to solve the optimization model.

Min /ﬁ(l) = Zﬁ:ﬂ’i«(w*P
Subject to: Equations (1)-(7) fori =i*(D), i*() + 1; =10 or Iy or .. or Iy

| L
D Vewp =15 Yo, €401}, peP

p=1
XI(P) — X1 (p) > b+ M(y]s“(z).p - 1)

xro(p) —x'(p) > h+ M<y.{"(1).p - 1)

Taking these new features (5(1),s" (1)) into consideration, we have another selective feature set SI: S(I)cS,T(I)cI, I € L, where S(I)
and T(1) respectively represent the sets of the neighboring spacings and platoon vehicles around the optimal s*() predicted by SI. Note
that ST is also a large enough set which includes features of eight platoon vehicles and seven spacings. Using the features set SI and the
extra feature p(1), the optimal lane-change step p*(l) can be predicted much more accurately.

In short, this section further processes the ¢-LHS sampling data and obtains two pruned feature sets SI and SI to improve the
prediction performance of the machine learning approach. These procedures also make the machine learning model applicable for
general scenarios with different sizes of platoons. More exactly, the optimal lane-change spacing (i.e., s(), 1€ L) is first predicted

using the feature set SI, whereas the optimal lane-change time steps (i.e., p(l), 1€ L) are predicted using the feature set SI combined
with the new features s*(I) and p(l).

6.1.3. Machine learning models

We test six different machine learning models, including linear regression, linear discriminant analysis, random forests regression,
random forests classification, support vector machine, and support vector regression. The test results show that linear regression gives
the best performance from a combined view of simplicity, interpretability, accuracy to generate prediction interval. For the paper
length concern, we mainly introduce the development of the linear regression models in this section.

To develop the linear regression models, we first do the feature selection using the forward stepwise selection algorithm, which is a
computationally efficient alternative to the best subset selection method?. Built upon the selected features, we developed the linear
regression models s(D)and p(l) respectively for s() and p(1),l € {l;,lo}. For illustration, we take subject vehicle [; as an example and
show the corresponding linear regression models s(I;) and p(l;) as well as the models’ performance in Table 4, where the selected
features and their coefficients, standard error, t-test, p value (Pr(>|t|)) as well as adjusted R2, 10 fold cross-validated mean square error
(CV-MSE) and accuracy are presented. For completeness, we put subject vehicle Iy’s linear regression models s(l), p(l2) in Appendix-
VI. The CV-MSE and the accuracy are calculated using the following Equations.

2 The best subset method is not used due to its low efficiency in this application with a large number of features. The forward stepwise selection
method demonstrates satisfying performance, although it has theoretical drawbacks.
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Table 4
Linear regression models s(l;), p(l;).
Selected features (s(l;)) Coefficients Standard Error t value Pr(>|t])
(Intercept) -7.275e-01 7.645e-02 -9.515 < 2e-16
Ay, 0 -5.273e-03 3.036e-04 -17.364 < 2e-16
A% 4 -1.741e-03 1.919¢-04 -9.073 < 2e-16
AXy, 1 -1.635e-03 3.272e-04 -4.996 5.98e-07
AXy, 2 -1.422e-04 1.802e-05 -7.891 3.34e-15
Vi -1 9.082e-03 1.385e-03 6.558 5.76e-11
B2 1.156e-02 1.350e-03 8.564 < 2e-16
Vi -3 6.532e-03 1.383e-03 4.721 2.38e-06
Sih.0) 9.990e-01 9.994¢-04 999.594 < 2e-16
yh -3.409e-02 1.347e-03 -25.308 < 2e-16
Performance of s(l;) Adjusted R? CV-MSE Accuracy
0.9923 0.0972 0.9032
Selected features (p(L4)) Coefficients Standard Error t value Pr(>|t])
(Intercept) 3.054e+00 1.853e-01 16.486 < 2e-16
AXy 0 -1.231e-02 8.153e-04 -15.101 < 2e-16
ARy 1 -1.052e-02 8.237e-04 -12.769 < 2e-16
AXy, 2 -7.090e-03 8.199e-04 -8.646 < 2e-16
V1 -2.709e-02 3.603e-03 -7.518 6.10e-14
V2 -2.161e-02 3.636e-03 -5.944 2.88e-09
Gmacts.2 -5.003e-02 1.665e-02 -3.005 2.66e-03
Si(,.,0) -2.661e-03 2.784e-04 -9.560 < 2e-16
s*(l) -9.710e-02 1.394e-02 -6.968 3.45e-12
ph) 1.070e+00 6.910e-03 154.858 < 2e-16
Performance of p(l;) Adjusted R? CV-MSE Accuracy
0.7568 0.7891 0.4253
N
CV — MSE = i* i (r. — ?.>2< accuracy = n:[r’]
- N, i i ? y - N, b

i=1

where N, is the testing data sample size (i.e., N, = 900); r; represents the actual value of the target variable, whereas 7; represents the
linear regression model’s prediction value of the target variable. ;] is the value by rounding 7; to the nearest integer since 7; is likely to
be a decimal. Nn=[7:] represents the number of the testing data where r; = [7;]: the prediction result [7;] accords with the actual value r;.

Table 4 presents the linear regression models s(l;) and p(l;) for predicting s(l;) and p(ly) respectively. More exactly, AX;, Jo Vi, J»
Amax, j belong to the pruned feature set SI and represent jth-unit neighboring platoon vehicle’s initial states around subject vehicle ;s
initial location s;;,), whereas AXy j, Vi, j> Gmaxy, j Delong to the pruned feature set S and represent jth-unit neighboring platoon vehicle’s
initial states around subject vehicle I;’s predicted lane-change spacing s*(l;). It is observed that after using the forward stepwise feature
selection technique, only five platoon vehicles’ initial states (j = —3, —2, —1, 1, 2)and four spacings j = —1,—2, 0, 1)nearby
are selected from the feature sets ST and SI, which initially includes eight platoon vehicles’ initial states (j = +4, +3, +2, +1) and seven
spacings (j = £3, £2, &1, 0). This observation validates that platoon vehicles and spacings that are more than 3 units far away from the
subject vehicle [ have few impact on subject vehicle I’s lane-change decisions. It also demonstrates the effectiveness and correctness of
setting up the pruned feature sets SI and SI in Section 6.1.2.

Apart from the observations above, it is observed that in model s(l;), the p value of the feature s;;, ¢ is small (< 2e-16) and its t
value equals to 999.594, which is extraordinarily larger than other features’ t values. This indicates that subject vehicle [;’s lane-
change spacing s(ly) is strongly influenced by the subject vehicle [;’s initial location sy, o). Similarly in model p(l1), the t value of the
feature p(l;) is 154.858 greater than the other t values, which implies that subject vehicle I;’s lane-change time step p(l;) is strongly
affected by the newly introduced feature p(l;). These results also justify the importance of the feature processing in Section 6.1.2.
Besides, using the similar method to analyze the t values and p values of the other features, we find that subject vehicle I;’s speed v and
its neighboring platoon vehicles’ spacings, speeds such as AXy, o, AX;, 1, Vj, -2 have some impacts on s({;), whereas subject vehicle I's
initial location sy, ) and spacing like AXy, 0, AXy, -1, AXy, o can influence the lane-change decision on p(l;). It is noted that other
features such as vehicle length L; or L', acceleration/deceleration limit Amax,i (aﬁ}m), amm‘i(af}lm) and platoon size n are mostly ruled

out using the feature selection technique in Table 4, which shows that these types of features have minor impacts on lane-change
decisions.
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Fig. 6. ML-DBB framework.

As for the model performance in Table 4, the adjusted R? of linear regression model s(l;) reaches 0.99, which is strongly perfect,
whereas the adjusted R? of linear regression model p(l;) is substantially good as 0.75. Moreover, CV-MSE and accuracy values of s(l;)
also validate the model’s performance. Although the accuracy of model p(l;) as 0.42 is not high, the CV-MSE which is less than 1
indicates that the average prediction error for lane-change step p(l;) is within 1 time step. Besides, to obtain global optimal or
improved solutions, the prediction interval® given by the linear regression models are used in our ML-DBB approach to further mitigate
the minor effect of the low accuracy on model p(l;). We will illustrate the details in next sub-section.

Our experiments also found that using the random forests (classification) model improves the accuracy of predicting lane-change
time step p(ly) significantly to 0.6702. However, it is hard to use the classification models to generate the prediction intervals, which
are needed for the ML-DBB algorithm. As for the other machine learning regression models, minor improvements can be achieved
compared with the linear regression models. Apart from the reasons above, linear regression model has many other advantages. For
example, it has good interpretability and needs less storage space compared with non-parametric machine learning models. This study
thus adopts the linear regression models (i.e., s(I), p(])) to generate the prediction intervals denoted by 3$(I), p(l) in the ML-DBB
algorithm.

6.2. Machine learning based distributed branch and bound (ML-DBB)

The ML-DBB algorithm in this study integrates the prediction intervals generated online using the offline-built linear regression
models into the distributed branch and bound algorithm (DBB), aiming to address the computation challenges of the MINLP-MPC.
Specifically, the DBB algorithm is a modified version of the branch and bound algorithm to realize the distributed computation,
which includes ‘manager’ and ‘workers’. The ‘manager’ assigns branches (computation loads) to each ‘worker’ and then summarizes
the computation results from the ‘workers’. This study considers one of the subject vehicles as the ‘manager’ and platoon vehicles as
the ‘workers’. Fig. 6 presents the framework of the ML-DBB.

Mainly, once the lane-change requests are received, the platoon will send its initial states to the subject vehicles. One of the subject
vehicles (‘manager’) uses the well-established offline machine learning models such as linear regression models (see in Section 6.1.3)

3 The prediction is given by the following general formula: prediction point + (t-multiplier ~x  standard error of the prediction). Prediction
interval is an estimate of an interval where a future observation may fall, with a certain probability. It is similar in spirit to confidence interval, but
considers more uncertainty of new random target variable and thus fits better in predicting a new target variable.
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to quickly generate the prediction intervals 3(1), p(1),l € L for the optimal lane-change decisions. And then the ML-DBB integrates the

prediction intervals into the MINLP-MPC model. More exactly, it removes those lane-change decisions outside the prediction intervals

considering they are not good candidates to be selected by the MINLP-MPC. This step significantly reduces the searching space of the

feasible lane-change decisions from the number of (n — 1)"P™/m! to ./ = []|3(])| x |p(])|, where |3()|, |p(})|, I € L represent the
1

number of integers in the intervals $(I), p(l) respectively. Following that, the ‘manager’ enumerates the lane-change decisions in the
prediction intervals and uniformly assigns these ./” many candidate lane-change decisions to the ‘workers’ for further evaluation. Note
that each lane-change decision corresponds to a set of integer variable solutions for the MINLP-MPC. Given one set of integer variable
solutions, the MINLP is degraded to a convex NLP, which can be solved efficiently. Therefore, each ‘worker’ accomplishes its job by
repeatedly referring one set of the integer variable solutions (i.e., lane-change decision), solving the corresponding NLP and finally
sending the computational results back to the ‘manager’, including the vehicle trajectory instructions, the objective value and the
referred lane-change decision. Last, the ‘manager’ compares the objective values from the ‘workers’ and finds the best local optimal
lane-change decision with the vehicle trajectory instructions as the final solution. In summary, the offline-built machine learning
models help lock a reduced searching space for the integer variables in the MINLP-MPC. Then the DBB uses the distributed compu-
tation resources to enumerate the integer variable solutions in the reduced search space and then solves the degraded MINLP (convex
NLP) efficiently.

Note that the computation time of using the ML-DBB algorithm will be larger than the sample time interval (such as 1 sec) when the
platoon size and subject vehicles size get very large to some extent. Under this situation, rather than using the ML-DBB, we will directly
use the machine learning models to estimate the optimal lane-change decision, such as using the linear regression prediction on {s*(I),

l € L} and random forest (classification) prediction on {p*(I), [ L}. We will discuss its details in numerical experiments in Section
7.1.

7. Numerical Experiments

This section conducts three sets of numerical experiments: Experiment-I, Experiment-II and Experiment-III to verify the perfor-
mance of our approaches from the following three aspects. (i) Validate the efficiency and merits of the ML-DBB algorithm, including
the solution optimality and computation performance (Experiment-I). (ii) Demonstrate the effectiveness of the PB-CLC control to
accommodate the lane-change requests while ensuring traffic efficiency and smoothness (Experiment-II, Experiment-III and
Experiment-IV). (iii) Conduct the parameter sensitivity analysis on lane-change decisions and traffic smoothness (tuning parameters
based on Experiment-II and Experiment-III).

Specifically, using the sampling approaches introduced in Section 6.1.1, Experiment-I generates two sets of sample data: each with
9000 scenarios for the case of two subject vehicles (m = 2) and the case of three subject vehicles (m = 3). The platoon size for each case
varies from 16 to 24, i.e., n € {16, ..., 24}. Experiment-II chooses a case including 2 subject vehicles and a platoon with 21 vehicles to
implement the PB-CLC control, while Experiment-III further extends the test to a case involving 3 subject vehicles and a platoon with
24 vehicles. The initial states of the platoons and subject vehicles in the Experiment-II and Experiment-III are obtained from the NGSIM
field data, which was collected on the eastbound of the I-80 in San Francisco Bay at Emeryville, California, 4:00 pm to 4:15 pm on April
15, 2005. It is noted that the platoons in Experiment-II and Experiment-III using the field data are not in steady-state. Hence, this study
conducts Experiment-IV, which uses two subject vehicles and a stabilized platoon with 22 vehicles. Furthermore, we compare the
proposed PB-CLC control with the cooperative lane-change control developed in Ni et al., (2020) in this scenario. The physical pa-
rameters of Experiment-II, Experiment-III and Experiment-IV follow the same in Table 3. Besides, the acceleration /deceleration limits
are set as amax,i(afnax) =5 (m/s?), ami,,,i(aﬁnm): -6 (m/s?), according to the NGSIM field data and Acceleration Parameters, Police Radar
Information Center 2020. Based on the original parameter setting above, various parameters are tuned to test the parameter sensitivity
on the lane-change decisions and traffic smoothness. We will present the parameter tuning details in Section 7.3.

7.1. Solution Optimality and Computation performance

To examine the computation performance of the ML-DBB, Experiment-I solved all the scenarios of the case with two subject ve-
hicles and the case with three subject vehicles, using four different solution approaches, including commercial solver Gurobi 8.0 (BB
algorithm), the ML-DBB algorithm integrating @ = 90% and & = 99% machine learning prediction interval, (they are labeled by ML-
DBB-90 and ML-DBB-99 respectively), and the direct machine learning point prediction based approach (it is labeled by ML-PP).
Mainly, the ML-PP approach directly uses the predicted lane-change decision (i.e., s*(I), p*(])) as the optimal decision and then
degrades the MINLP-MPC model to a NLP model, which can be solved efficiently to provide the corresponding trajectory control
instructions by a distributed algorithm developed in Gong and Du (2018). Experiment-I is implemented on the computer with the
following processor: Intel(R) Core (TM) i7-7700K CPU @4.20GHz and Ram: 16.0GB. The DSRC communication time refers to the
existing study in Kenney, (2011). The solution optimality and computation performance for the case of two subject vehicles are
summarized in Table 5.

We first discuss the performance of the ML-DBB using the prediction intervals with different confidence levels (i.e., @ = 90%, @ =
99%). The results in Table 5 show that both the ML-DBB-90 and ML-DBB-99 can efficiently solve the MINLP-MPC and provide a
satisfactory solution by a computation time (0.1904sec or 0.3292sec) less than the sample time interval (t = 1 sec). They both
significantly reduce the computation time as compared with that using the solver Gurobi 8.0 (3.011sec). In addition, Table 5 shows
that using the ML-DBB-90 has 84.80% chance to end with global optimal solutions and this probability can be further increased to
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Table 5

Solution Optimality and Computation Performance of Experiment-I for I € {l;, l}.
Solution optimality ML-PP ML-DBB-90 ML-DBB-99
Global optimal 38.79% 84.80% 94.00%
0-5% optimal 46.82% 10.60% 5.98%
5-10% optimal 8.91% 2.83% 0.02%
10-20% optimal 1.08% 0.40% 0.00%
Infeasible 4.40% 1.37% 0.00%
Total 100% 100% 100%
Computation performance Gurobi 8.0 ML-PP ML-DBB-90 ML-DBB-99
Computation time(s) 3.011 0.0632 0.1904 0.3292

The time includes both DSRC communication time (Kenney, 2011) and the computation time.

94.00% by using the ML-DBB-99. This solution optimality gain accompanies with a computation cost increment from 0.1904sec to
0.3292sec. Therefore, using wider prediction intervals in the ML-DBB algorithm improves the solution optimality but sacrifices the
computation time. This is reasonable since a wider prediction interval includes more solution candidates for exploring optimal lane-
change decision. Accordingly, it will reduce the chance of missing the optimal solution but incur more computation loads to the ML-
DBB algorithm. In addition, our study noticed that the ML-DBB algorithm is applicable for the cases where the platoon size is less than
30 (i.e., n < 30) and the subject vehicles size is less than 5 (i.e., m < 4), which covers most of the general traffic conditions.

For the extreme cases involving a long platoon (n > 30) and many subject vehicles (m > 4), we suggest directly using the ML
prediction point results (i.e., s*(1), p*(D) as the lane-change decision (ML-PP). The results in Table 5 demonstrate the merits of this
ML-PP approach. It has 38.79% chance to obtain the global optimal solutions and 46.82% chance to end with good solutions within 5%
optimal gap, while the average computation time is only 0.0632sec. Thus, we conclude that the ML-PP approach will work reasonably
well for a case that involves a long platoon and many subject vehicles requiring lane-change accommodation simultaneously. It is
aware that the limitation of this approach is that it has relatively low chance to end with global optimal solutions and has certain risk
(4.40%) to end with infeasible solutions.

The experiment results in Experiment-I for the case involving three subject vehicles are summarized in Table 6 below.

The results in Table 6 indicate that the ML-DBB approaches still show superior performance in the solution optimality and
computation time, though slightly inferior as compared with the results in Table 5. This is mainly because three subject vehicles cases
involve one extra subject vehicle’s lane-change uncertainties and prediction results, which will naturally have negative impacts on the
overall solution optimality. It is foreseeable that as the number of subject vehicles increases, the solution optimality performance will
keep going down, especially the chances of obtaining global optimal solutions. However, we also noted that the chances of achieving
good solutions within 5% optimal gap increase a lot to make up the losses of the chances to get global optimal solutions. In other words,
the chances of obtaining global optimal solutions or good solutions within 5% optimal gap for three subject vehicles cases are com-
parable to that for two subject vehicles cases.

As for the computation performance, it is observed that involving one extra subject vehicle in the problem will increase the
computation time from 3.011 seconds to 10.273 seconds by using the branch and bound method in Gurobi 8.0. This is because one
extra subject vehicle will lead to (n — 1)*P many extra integer variables, which greatly complicates the branching process. However, by
using the ML-DBB-90 and ML-DBB-99, the computation time can be reduced to 0.3720 second and 0.5482 second respectively. When
using the ML-PP approach, the computation time further decreases to 0.0656 second. They all outperform the solver Gurobi 8.0, but
are slightly worse than the result in Table 5. It is foreseeable that as the number of subject vehicles increases, the computation time of
ML-DBB will finally increases out of the control sampling time interval (1 second). In this situation, we would suggest using ML-PP
approach to quickly find a good reasonable solution rather than global optimal solution.

Table 6
Solution Optimality and Computation Performance of Experiment-I for I € {l, I,ls}.

Solution optimality ML-PP ML-DBB-90 ML-DBB-99
Global optimal 22.27% 78.00% 90.10%
0-5% optimal 58.66% 14.70% 7.96%
5-10% optimal 11.93% 4.92% 1.94%
10-20% optimal 1.34% 0.83% 0.00%
Infeasible 5.80% 1.55% 0.00%
Total 100% 100% 100%
Computation performance Gurobi 8.0 ML-PP ML-DBB-90 ML-DBB-99
Computation time(s) 10.273 0.0656 0.3720 0.5482

The time includes both DSRC communication time (Kenney, 2011) and the computation time.
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7.2. Cooperative platoon control effectiveness

Next, this study examines the traffic efficiency and smoothness under the PB-CLC control as it is specifically implemented by the
hybrid MPC system in Experiment-II, Experiment-III and Experiment-IV. Fig. 7, Fig. 8 and Fig. 9 respectively demonstrate their results,
where Fig. 7 and Fig. 8 plot the corresponding NGSIM field data with 0.1 second resolution as a benchmark and Fig. 9 compares the
proposed PB-CLC control with a cooperative lane-change control in Ni et al., (2020). Additionally, Fig. 7, Fig. 8 and Fig. 9 all use the
red (or orange-red) dashed lines to represent subject vehicles’ speeds and following spacings after cutting in the platoon. And the green
dashed-dotted lines are employed to represent the target spacings as well as the speeds of the platoon vehicles that are immediately
behind the target spacings. All the other platoon vehicles are represented by blue lines. The emergence of a red dashed line indicates
that a subject vehicle just cuts in the platoon.

Fig. 7 demonstrates that the PB-CLC control can smoothen the lane-change accommodation as compared with the field traffic
without control. Specifically, it is observed from Fig. 7 (a), (b) that the lane-change maneuvers can be accommodated in 7 time steps®
in field traffic without lane-change and platooning coordination control, whereas Fig. 7 (c), (d) show that the PB-CLC control ac-
celerates the lane-change accommodation process so that two subject vehicles can cut in the platoon safely within the first time step (1
second after the request). Moreover, Fig. 7 (a) and (c) demonstrate that the PB-CLC control significantly mitigates the spacing fluc-
tuations as compared with field traffic without lane-change and platooning coordination control. More exactly, the spacings under the
PB-CLC control vary approximately from 30 (m) to 100 (m) and quickly converge to the desired spacing s4 in 15 seconds. Besides, the
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Fig. 7. Non-control vs. PB-CLC control of Experiment-II.

* The field traffic also indicates that the target lane takes about 5-6 seconds to yield the lane-change spacing, while the subject vehicles only take

about 1 second to conduct lateral movements and cut in (see spacing changes on target lanes). This observation supports our assumption about the
lateral movement in Section 2.
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Fig. 8. Non-control vs. PB-CLC control of Experiment-III.

spacing fluctuations dampen along the control steps. In contrast, the spacings of field traffic range from 30 (m) to 150 (m) and fluctuate
widely. On the other hand, Fig. 7 (b) and (d) indicate that vehicles’ speeds under the PB-CLC control vary from 20 (m/s) to 34 (m/s),
but quickly converge to a certain speed in 15 seconds. Although the initial speed fluctuations are large for adjusting the target spacings
to accommodate lane-change requests, the following speed fluctuations are reduced smoothly and quickly until the convergence. The
PB-CLC control significantly improves the traffic smoothness as compared with the chaotic uncontrolled field traffic.

Fig. 8 shows the same merits of the PB-CLC control as Fig. 7 in Experiment-III. The results in Fig. 8 indicate that the lane-change
requests are accommodated a lot earlier by the PB-CLC control as compared with the filed data. Besides, the spacing and speed
fluctuations are tremendously mitigated under the PB-CLC control. An interesting observation in Fig. 8 (d) is that vehicles’ speeds
cannot converge to a certain speed within the experimental time interval: 15 seconds. This is because one extra subject lane-change
vehicle is involved in Experiment-III so that it needs more time for the platoon to adjust and go back to a stable speed. However, it is
foreseeable that the speeds will converge within several extra steps.

Fig. 9 validates the effectiveness and merits of the PB-CLC control under the scenario that the platoon is initially in a stable state and
two subject vehicles send lane-change requests at the 4™ second in the experiments. Built upon this scenario, we also compared the
performance of the PB-CLC with an existing study Ni et al., (2020), which develops a simple reactive cooperative lane change. Fig. 9
(a), (c) and (e) shown that the platoon under the PB-CLC control needs 3 seconds (from the 4™ second to the 7™ second) to adjust
spacings and accommodate the lane-change requests. After that, it takes 13 seconds to fully re-stabilize the whole platoon. On the other
hand, Fig. 9 (b), (d) and (f) show that platoon under the reactive lane-change control developed by Ni et al., (2020) takes 4 seconds
(from the 4™ gecond to the 8™ second) to finish lane-change maneuvers and then spends more than 90 seconds to re-stabilize the whole
platoon. Note that the reactive lane-change control by Ni et al., (2020) computes several neighboring platoon vehicles’ optimal
movements around subject vehicles to accommodate lane change and uses an optimum velocity ACC system for the other platoon
vehicles. Although individual CAV’s mobility and safety can be ensured, the traffic stream performance under this reactive control is
not as good as the PB-CLC control.
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Fig. 9. Ni et al., (2020) vs. PB-CLC control of Experiment-IV.

7.3. Parameter sensitivity analysis

This study noticed that the optimal lane-change decisions are significantly influenced by some parameters in Table 3, which may
vary widely if only to ensure the MINLP-MPC model feasibility and PB-CLC control stability. However, improper parameter settings
may either weaken the safety of lane-change maneuvers, delay the lane-change maneuvers, or reduce the traffic smoothness if lane-
change requests are accommodated too hastily. This study thus conducts the sensitivity analysis to investigate the parameter tuning
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effects on the performance of the PB-CLC control based on the Experiment-II and Experiment-III. The insights will help us to set up
proper parameter settings for accommodating lane-change requests under the PB-CLC control.

7.3.1. Sensitivity analysis on lane-change decisions

This study finds that the optimal lane-change decisions including both spacings s(I) and time steps p(l) are strongly affected by the
lane-change safe distance h and penalty weight w, compared with other parameters in Table 3. Specifically, the lane-change safe
distance h is tuned in an ascending sequence {15, 20, 25, ..., 65, 70} (m). Recall that the penalty weight w5 corresponds to the penalty
term: the lane-change promptness and is set as @, = n?*P in Table 3. Therefore, u = P*n? is set as a tuning unit and then the penalty
weight w5 is tuned in an ascending sequence {0.01u, 0.05u, 0.1u, 0.2u, 0.4u, 0.6u, 0.8y, 1u, 2u, 5u} to see how the lane change
decisions are influenced. The results of tuning the lane-change safe distance h and penalty weight @, are shown in Figs. 10 and 11
respectively.

The results in Fig. 10 (a) and (c) indicate that the optimal lane-change spacing s(I) only varies slightly when the lane-change safe
distance h is tuned. It is always around the spacing where the subject vehicle is initially located. Thus, the optimal lane-change spacing
is also not sensitive to the selection of the lane-change safe distance h. On the other hand, Fig. 10 (b) and (d) demonstrate that the
optimal lane-change time steps increase as the lane-change safe distance h increases. This is reasonable because the platoon needs more
time to adjust spacing for lane-change accommodation with larger lane-change safe distance h. Apart from above, although large lane-
change safe distance h may delay the lane-change maneuvers, h is supposed to be large enough (such as h > 30m) to sustain safe lane-
change maneuvers according to Roelofsen (2009).

The results in Fig. 11 (a) and (c) indicate that the optimal lane-change spacing s(l) is also not sensitive to the selection of the penalty
weight wy. In fact, s() is insensitive to other parameters in Table 3 as well. This observation is consistent to our intuition. Spacings near
the subject vehicle are naturally good candidates for the platoon to accommodate a lane-change request quickly, if these spacings are
reasonably large such as in Experiment II and III. On the other hand, the results in Fig. 11 (b) and (d) demonstrate that the optimal lane-
change time steps p(]) increase as the penalty weight o increases. Therefore, by tuning the penalty weight 0,, the MINLP-MPC can
work efficiently for both short (such as mandatory lane-change) and long lane-change (discretionary lane-change) time window.
Specifically, for the mandatory lane-change, penalty weight @, can be tuned larger such as to 5*P*n? which forces the platoon to
quickly accommodate lane-change maneuvers. Whereas for discretionary lane-change, penalty weight wy may be tuned smaller to
0.1*P*n? so that lane-change maneuvers will not be accommodated too hastily to harm the traffic smoothness. It is interesting to
observe that in Fig. 11 (a) and (b), subject vehicle I5’s optimal lane-change spacing and time step keep unchanged ats =20 andp =1
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Fig. 11. Sensitivity analysis of the penalty weight w-.

respectively. It is because the initial platoon’s spacing at s = 20 in Experiment-II is extremely large (about 100 m) so that this spacing
near subject vehicle I, is always preferred and the lane-change request can be accommodated very soon.

7.3.2. Sensitivity analysis on traffic smoothness

Next, this study examines the sensitivity of traffic smoothness based on Experiment-II. According to the parameters given in
Table 3, four Tests are set up as follows. Test (a) uses the same parameters setup in Section 7.2 (setup in Table 3). It will be used as the
benchmark. Test (b) changes the penalty weight ; from 1 used in Test (a) to 100. Namely, larger penalty is put on the control inputs in
the objective function to ensure traffic smoothness. Test (c) lowers the maximum acceleration/deceleration from Test (a) (amin = —6m/
2 e =5 M/$D) 10 Ain = —4m/s?, Gmax = 3 m/s%, which can reduce speed fluctuations and improve driving comfort and is the
common acceleration/deceleration driving behavior according to Bokare and Maurya (2017). Test (d) expands the lane-change safe
distance h from 30 (m) in Test (a) to 50 (m) to test if the traffic smoothness may be improved or impaired under strict lane-change
requirement. The experiment results including traffic speed and spacing fluctuations are given in Figs. 12 and 13 respectively below.

The results in Fig. 12 compared the traffic speed fluctuation under four tests. More exactly, the results show that the stream traffic
in Test (b) is smoother than in Test (a) but it needs more time to restore the stable speed after accommodating the lane-change requests.
It is consistent to our expectation that tuning the penalty weight of the control inputs in the objective function will help us to balance
the stream smoothness and control efficiency under PB-CLC. Similarly, Test (c) confirms that it slightly smoothens the stream traffic by
observing slightly smaller subject vehicles’ speed fluctuations (red dashed line) when the acceleration/deceleration limits amqyx, Gmin
are tuned 2m/s? smaller. Accordingly, the control efficiency in Test (c) is slightly sacrificed because the speeds in Test (c) converge a
little slower than Test (a). The results in Test (d) indicate that larger lane-change safe distance h has more negative impacts on both
traffic smoothness and PB-CLC control efficiency because the speeds in Test (d) fluctuate more widely and converge more slowly than
they do in Test (a). It accords with our intuition because larger lane-change safe distance h means the larger spacings in platoon need to
be generated to accommodate the lane change within a given lane-change time window P. Therefore, the lane-change safe distance h is
set as a moderate proper value h = 30(m) in Table 3, which is neither too large to harm the traffic smoothness and control efficiency nor
too small to sacrifice the lane-change safety.

Following the results in Fig. 12, Fig. 13 compared the traffic spacing fluctuations under these four tests. Specifically, spacings in
Fig. 13 Test (b) and Test (c) converge slower than in Test(a) because of the sacrificed control efficiency (smaller speed variations in
Fig. 12 Test (b) and Test (c)) so that platoon needs more time to adjust spacings to reach desired spacing. whereas the spacings in
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Fig. 13 Test (d) converge faster because the speeds vary widely in Fig. 12 Test (d). These accord with the conclusion we draw from
Fig. 12 that the control efficiency under PB-CLC control is sacrificed to improve traffic smoothness. Besides, it is interesting to note that
the lane-change safe distance h in Test (d) is just equal to the desired distance s4: h = s = 50(m), so that the platoon does not need to
adjust the spacings after the subject vehicles cut in.

Overall, to mitigate the traffic fluctuations and improve traffic smoothness in the sacrifice of the PB-CLC control efficiency, the
penalty weight o1 can be tuned larger and the acceleration/deceleration limits can be tuned smaller. The lane-change safety distance h
should be set to a moderate value, which improves the traffic smoothness and control efficiency while ensuring the safe lane-change at
the same time.

8. Conclusion and Future Work

Even though extensive studies have demonstrated the importance of vehicle platooning and cooperative lane-change control, these
two are often individually developed without coordinating each other, which limits their applications in the real traffic. To address this
research gap, this study develops the PB-CLC control, which is mathematically implemented by the proposed MINLP-MPC model and
solved by the ML-DBB algorithm. The PB-CLC control helps vehicle platooning control cooperatively accommodates lane-change
requests and achieves platoon-level traffic efficiency and smoothness. To guarantee feasible PB-CLC control, the feasibility of the
MINLP-MPC model is proved by investigating a lower bound of the lane-change time window for the PB-CLC control. Moreover, to
facilitate the PB-CLC control safety and efficiency, a MPC-based hybrid system controller is carefully designed. The proofs of the
persistent feasibility and stability of the hybrid system ensure the efficient and feasible back-and-forth switchings between car-
following state and lane-change accommodation state under the PB-CLC control. Furthermore, to sustain the PB-CLC control’s con-
tinuity and smoothness, this study particularly develops the machine learning aided distributed branch and bound (ML-DBB) algorithm
to efficiently solve the MINLP-MPC model within a control sampling time interval. Specifically, the linear regression models are
established offline to reduce the solution space of the MINLP-MPC model by giving a prediction interval online including the can-
didates of the optimal lane-change decisions. The distributed branch and bound method (DBB) enumerates the candidate lane-change
decisions in the prediction interval and solves the MINLP-MPC in a distributed manner. Extensive numerical experiments demonstrate
that the ML-DBB algorithm can efficiently solve the MINLP-MPC by achieving global optimal (or near optimal) solutions in most of the
cases. Besides, the experiments based on the field data validate the effectiveness and merits of the PB-CLC control on facilitating lane-
change and reducing traffic fluctuations. Finally, the proper parameter settings of the MINLP-MPC model are investigated by con-
ducting parameter sensitivity analysis based upon the field data experiments. It facilitates proper implementation of the PB-CLC
control for different types of lane-change maneuvers (i.e., mandatory and discretionary lane change) and different driving goals (i.
e., control efficiency and driving comfort).

There are several interesting future research topics motivated by this study. One of our future research topics intends to factor the
interference of neighborhood uncontrolled traffic around subject vehicles or the platoon in PB-CLC control. This extension will make
the PB-CLC control more applicable in real traffic, but it brings in the complexity of predicting the movement of neighborhood un-
controlled traffic. Second, the PB-CLC control can become resilient by involving the dynamic uncertainties, communication delay and
error. These uncertainties will raise the complexity of the MPC and the corresponding solution approaches. Third, an adjustable desired
distance sq rather than a conservative constant is needed to make the PB-CLC control applicable in urban roads and improve the road
capacity. By doing that, the MPC and hybrid system controller should be re-designed in a more complicating way to ensure control
safety and smoothness. Lastly, other topics about vehicle platooning can be potentially explored, such as how a platoon optimally
merges into another platoon, how a platoon exit the ramp with uncontrolled traffic around and how a platoon smoothly passes the
intersections with traffic lights. We propose to address these challenges in our future work.
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Appendix
Appendix-1. Extensions to incorporate subject vehicles’ lateral movements during cut-in movement

This study develops the subject vehicles’ lateral control during their cut-in maneuvers. Note that this lateral control is separated
from the longitude control. It is only activated during a sample time interval T (< 1 sec) that a subject vehicle is right beside the spacing

and ready to cut in. Specifically, we use Equations (42)-(44) derived by Rajamani, (2011) for the steering control during the time
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interval T time.
¥ (z) = V'sin(6,) (42)

Equations (42) represents the subject vehicle I's lateral speed, where V! is the subject vehicle’s average speed during time interval
[p*, p* + 1] and 6y is the steering angle served as the lateral movement control input. By taking the integral of the lateral speed, the
subject vehicle I's lateral position is derived in Equation (43) as follows.

y(1) = / y(0)dt (43)

I

For lateral control smoothness, we describe the subject vehicle’s lateral steering control law within time domain T as follows in
Equation (44).

6Wt O<t<T
W - T2

=<{ W T

"Ny TeisT, (44)
0 t>T,

where W is the road width (m) and § is the control gain which will be carefully designed to reach the control goal (i.e., complete the

lateral lane-change movements W within T). In the first {O, %] time interval of Equation (44), we consider the subject vehicle [ starts

increasing the steering angle 6, for lateral movements to cut in the platoon. Whereas in the second {%, T} time interval, subject vehicle ]
will gradually decrease the steering angle 6; so that it will complete the lateral control at time T (< 1 sec) and make steering angle 6, =

0 when t > T. Based on this control law, this study finds that the optimal control gain coefficient § = 3 ﬁ,—"} to make the subject vehicle [

finish the lateral lane-change movements W(m) within time interval T. Below we provide the proof.

Proof. Plug Equations (42) and (44) into Equation (43), we can derive the subject vehicle I's lateral position yl(t) as follows in
Equation (47).

T T
T
Y (1) = / V' ()dt = / Visin(6,)dt = 25W<l —cos (5%)) (45)
V
=0 =0
Note the § ‘;"—Vf is generally very small for highway scenarios. Then we can take the Taylor expansion approximation of the cos (5 ‘;V—VT)

in Equation (46).

2
5M>
5H) :( v ] 46)

1— -
COS( 2 2 25

Combining Equations (47) and (46), we have yl(t) = W and reach our control goal. This result further demonstrates that our
assumption that the lateral cut-in maneuvers can be conducted within one MPC sample time interval is feasible and reasonable.

Appendix-II. Unique features of the safety constraint for ensuring control feasibility

It should be noticed that the lane-change constraints in the MINLP-MPC model are different from the lane-change constraints in a
general optimal decision model. Particularly, to ensure the feasibility of the hybrid system, we modified the lane-change constraints
from Equation (47) to Equation (48). Our proofs in Theorem 2 show that the Equation (47) cannot ensure the feasibility of the hybrid
MPC system, even though it is sufficient for a lane-change decision model to identify the optimal spacing and timing to cut in. Below we
provide more detailed discussions.

/ !
x(p)—xprl(p)Zh-‘rM(nyl)? seS, peP, leL,

(47)
xi(p)—x](p)Zh—&-M(yi‘p—l), seS, peP, lelL,
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)4
X (p) = xia1(p) zh+M<Zyi,u - 1>, sES, peP, I€L,
p=0

(48)
P
x,ﬂ(p)—x](p)>h+M<Zy{_m—l>, seS, peP, lelL,

p=0

To clarify the detail, we first describe the hybrid dynamic system a little bit more. Recall that the MINLP-MPC is triggered by the
subject vehicles’ lane-change requests and functions once in a time interval (say at step p = 0) to determine the optimal spacing and
timing for the platoon to accommodate the lane-change requests with a prediction of the platoon dynamics in next P steps. After step p
= 0, the platoon switches to the spacing preparation state under the control of MPC-q;. It takes the platoon’s movements from step 1 to
step p* to enlarge the spacing s* for the subject vehicle [ cutting in. Once subject vehicle  is accommodated, the platoon switches to the
restoration state under the control of the MPC-g, which uses xl(p) —x; +1(p) >k xi(p) — xl(p) >hforp=p*+1,.... as the constraints
for subject vehicle I to keep safe distance with its immediate leading or following vehicles in the platoon until it goes back to car-
following state (MPC-qg).

When using Equation (47) in the MINLP-MPC model, we note that the safe constraints are only active at step p*(becomes xl(p*) —X;
+100%) > kb xi(p*) — x{(p*) > h). In other words, we do not consider the safety constraints for the subject vehicle [ in the following steps
p =p*+1,... when making the lane-change decision. However, these safety constraints must be involved when the platoon is in the
restoration state (MPC-q,). This inconsistence between the lane-change decision model (MINLP-MPC) and the following platooning
control (MPC-g5) will potentially cause infeasibility. For example, there exists a scenario at the optimal time step p*, the speed of the
subject vehicle [ is much larger than the speed of its immediate leading platoon vehicle, whereas the spacing between them is just the
safe distance h: xj(p*) — xl(p*) =h, vl(p*‘) > vi(p*). Then the safe distance constraint at step p* + 1 is infeasible: x;(p* + 1) — xl(p* +1D<
h because of the speeds’ inertia.

The MINLP-MPC model using Equation (48) will select the best lane-change timing and spacing while considering the active safe
constraints from the optimal time step p* to the end of the prediction horizion P (become xl(p) —xi+1() >k xi(p) — xl(p) >hforp =

p*, ..., P).Inother words, the lane-change decision is determined considering the safety constraints after the time steps p*. It is
consistent with the safe constraints in the platooning control under the restoration state (q2). Thus, it will ensure the feasibility of this
state, and work well for the hybrid MPC system.

Appendix-III: Analyzing scenarios By in Lemma 4

Proof. We analyzed the number of the time steps needed J2( — s;(;)|B2) under B scenario, in which the subject vehicle [ tries to cut in
the spacing s; which is initially behind it. To finish the lane-change maneuver, the subject vehicle [ is required to arrive at spacing s
and run behind of platoon vehicle i with a safe lane change spacing in Jo( — sj| B2) time steps. Similarly, the procedure of [; guarantees
that the target spacing s;i) has double safe lane change spacing 2h. Therefore, once the subject vehicle [ can run behind of the platoon
vehicle i with a safe lane change spacing h by time step Jo( — si)B2), we ensure that the subject vehicle [ can simultaneously run ahead
of the platoon vehicle i with a safe lane change spacing h by time step J2( — s;B2). Mathematically, this consideration is presented by
Equation (49).

K (= siBa)) < xi(a( = sipB2)) —h (49)

Combining Equation (49) and the vehicle dynamics in Equations (1)-(4), the following deduction in Equation (50) provides the
lower bund of J( — sipB2) by applying strategy & to all platoon vehicles 1, 2..., n:

(= siBa)) < xi(a( = siyBa)) — h

Vinin + Vimax

& x(0) = (i (0) — ) + Jo( = 5i)B2) Vs — ((i(l) — Dz, +me

+ (o = siBa) — i(l)m)rvm) <0

x'(0) + h) — x;(0 . 1
o L( = siB2) > H + <t(l) 75) m (50)

To facilitate the articulation hereafter, we denote the acceleration strategy applied by all platoon vehicles 1, 2, ..., n above as uz, €
u. Mathematically, ug, : u — {1,2...,n}. Notice that g, is applied to all platoon vehicles but not the subject vehicles I. Therefore, the
subject vehicle [ keeps the speed vy, for the platoon vehicle i to catch up during the whole procedure. Combining Equation (24) for
J1(si = 2h), and Equation (50) for Jo( — s;;)B2), we can calculate Iﬁ(sim |B2) under scenario By mathematically by the Equation (51).

1 — X
ﬁ(s[(,)\Bz) = max{/,(siyy = 2hB,), Jr( = siyB2)} = max{(i(l) + 1)111,W+ (i(l) — %) HI} (51)
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Appendix-1V: Proving scenarios Cz — C4 in Lemma 5

Proof. Following the proof of the scenario Cj, this appendix provides the discussion for the scenarios C2 — C4 in Lemma 4. For the
scenario Co, subject vehicle [; tends to cut in a spacing ahead (under scenario B;) and applies the sequential acceleration strategy
ug, (b) : u — {1,2...,i(L1), L }, whereas subject vehicle I, tends to cut in a spacing behind (under scenario B;) and applies sequential
acceleration strategy g, (I;) : U — {i=1,2...,n} The conflict of these two strategies arise for the same reason that we have discussed
under scenario C;. To solve the conflict, we employ the same method as that under scenario C;. That is, if
J2(= si1,)[B1) > Ji(siq,)— 2h|B1), let platoon vehicles {i(l;) + 1, ...i(I2)} first stay speed vm, from time step Ji (siq,)— 2h|B1) until
Jo(—= si,)|B1). Namely, to avoid the conflict, we delay the procedure of [; for the subject vehicle Iy by AJy(si,)— 2h|B2) = J2(—
Siw)|B1) — J1(sig,)— 2h|By). Different from scenario Cy, the procedure [5, by which the subject vehicle I, is required to approach target
spacing and satisfy speed constraints, may also be delayed by the same conflict. According to the discussions of the procedure [, under
scenario By in Lemma 4, the platoon vehicles {i(l;) + 1, ...i(I3)} are required to sequentially accelerate for the platoon vehicle i(l5) to
catch up with the subject vehicle l,. However, this process cannot start before the subject vehicle [;’s lane change procedure [; finishes
by time step Ja(— si,)|B1), if J2(— si1,)|B1) > J1(Sir,)— 2h|B1). Therefore, the same time delay is also applied to subject vehicle Iy’s
lane change procedure [,. Furthermore, no other time delay exists in the other lane change procedures. We have the description of the
delay term €(Cy) in Equation (33):

AJ] (S,'(h)—) 2h|Bl) =0

AJz( - Si(ll)IBl) = O
ATy (Sigy)— 2h|By) = max{J>( = si4,)|B1) — Ji(sia)— 2h|By), 0}
ALy (= i) |B2) = max{J>( = siu)|B1) — Ji (si)— 2h|B1),0}

e(C) =

For the scenario Cs, subject vehicles [; tends to cut in a spacing behind (under scenario By) and applies strategy i, () : u — {1,2...,
n}, whereas subject vehicle [, tends to cut in a spacing ahead (under scenario B;) and applies strategy up, (o) : u— {1,2...,i(Lz),I1,l2}.
The conflict arises in the subject vehicle . For subject vehicle I;’s lane change maneuver following the strategy ug, (I ), the subject
vehicle [; is required to maintain speed vy, from time step p = 0 until it approaches the target spacing s;;) by the time step of
Jo(— si1,)|B2), whereas for the subject vehicle I;’s lane-change purpose under strategy i, (I2), both subject vehicles I; and I, are
required to sequentially accelerate from time step p = 0 to make subject vehicle I, approach its target spacing. Consequently, the
conflict takes places under this scenario, in which the subject vehicle [; is required to stay speed vp;, and accelerate simultaneously
during time steps {0,..., Ja(— si,)|B2)}, which is impossible.

To solve the issue, we let subject vehicle [; stay at the speed v,;, from time step p = 0 until it approaches the target spacing by the
time step of J2>(— s;q,)|B2). Then the subject vehicles I and I> can sequentially accelerate at the time step of Jo(— s;;,)|B2). As aresult, a
time delay AJy(— s;1,)|B1) = J2(— si1,)|B2) is caused in the subject vehicle I’s lane-change procedure [5, by which the subject vehicle I,
manages its speed to approach target spacing, satisfying speed constraints. Furthermore, no other time delay exists in the other lane
change procedures. Mathematically, the conflict term €(C3) is described as:

Ay (si)= 2h|By) = 0
AJz( - S,-([l)|32) = O
A]l (Si(lg)_’ 2h|Bl) =0

A (= sigy) [Br) = L2 = s |B2)

€(C3) =

For the scenario C4, both the subject vehicles [; and I, tend to cut in a spacing behind (under scenario By) and apply the strategies
Ug, (L) =1up, (L) : u— {1,2...,n}. Notice that under strategies uis,, platoon vehiclesi =1, ...n are required to accelerate sequentially.
There is no conflict term. Therefore, £¢(C4) = 0 at every component. We present the description of €(C4) in Equation (35).

AJ] (Si(ll)_) 2h|Bz) =0
A ( = si,)|B2) =0
AJ] (Si(lg)_’ 2h|Bz) = 0
AJ>( = si1,)[B2) =0

E(C4) =

Appendix-V: c¢-LHS sampling approach
The c-LHS sampling approaches involves two critical steps as follows.

Stepl. LHS initialization. First, LHS considers each variable X], j € J has a range and partitions each variable’ range simulta-
neously into N equally intervals, where N represents sample size. By randomly select sample from each partitioned interval,

one-per-stratum for each variable Xj, LHS obtains N samples. We denote the ks random selection sample for X; as Xj(k). Mathe-

matically, we generate X;’Q by the equation below.
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(k) (k)
W _ (5 TE )
X" =F, (T>,]€J7k€N,

where ; is independent uniform random permutation of the integers {1, 2, ..., N}; ¢j is independent random variable within [0, 1].
Step 2. Permutations. The sampling in Step 1 does not necessarily satisfy any constraints. Step 2 of c-LHS focuses on doing per-
mutations to enforce monotonic constraint such as X; > R;. To do that, the sampling process first sorts both sides of the monotonic

constraint in a descent order and obtain new sets )~(J = {X;U,X}Z), ...,X}N)} and 1~2j = {R}”,R}z), ...,RJ(N)}, in which Xj(l) > X}z) > ..
> Xj(N) and R]O) > R;Z) > > R;N). Then, starting from the largest element in ﬁ,-, which is R;l), the algorithm finds all the elements
in the set)?j that satisfies X;k> > R;l) , k=1,2...mand randomly select X;m‘) where 1 < m* < mamong them to form a pair with X}l) .
Therefore, a pair (X;"ﬁ, R;l)) satisfying the constraint is obtained and is stored in a set denoted as XR. In the meanwhile, we update
the )~(J and ﬁj by removing the element (Xl(mt) ,R§1>). This process repeats until all the elements in X; and R; successfully form pairs and

are transferred into the set of XR. The set XR stores all the (Xj, Rj) pairs that satisfies the monotonic constraint. In our study, the

sample data of initial spacings should satisfy safety distance constraints in Equation (7). It can be transferred as monotonic con-
2

straint  X; > R;, where  Xj = Ax;(0);Rj = Lyt + 7v141(0) — % for  platoon  vehicles i € I

while X; = Ax!(0); R; = L + n/H+1(0) — ng%f'"“"]z for subject vehicles [ € . And then the sampling process in Step 2 can be

conducted.

Appendix-VI: Linear regression models s(lz), p(lz) and their performance

Selected features (s(l) Coefficients Standard Error t value Pr(>|t)
(Intercept) -2.011e+00 9.630e-02 -20.886 < 2e-16
AXy, 0 2.377e-03 3.072e-04 7.738 1.12e-14
AXp, 1 8.482e-04 1.941e-04 4.370 1.26e-05
AXy, 1 1.763e-03 3.175e-04 5.553 2.88e-08
Vi, -1 1.036e-02 1.366e-03 7.589 3.55e-14
Viy—2 2.015e-02 1.356e-03 14.868 < 2e-16
Vi,,-3 1.033e-02 1.359e-03 7.598 3.31e-14
Vi, -4 5.701e-03 1.359e-03 4.194 2.76e-05
Vi, 2 -6.124e-03 1.648e-03 -3.715 2.04e-04
Silty.0) 1.001e+00 1.025e-03 975.770 < 2e-16
v -3.161e-02 1.362e-03 -23.198 < 2e-16
Amax 1,2 2.203e-02 3.617e-03 6.091 1.17e-09
a1y 1 -2.682e-02 5.787e-03 -4.635 3.63e-06
Performance of s(ly) Adjusted R? CV-MSE Accuracy
0.9944 0.0958 0.9049
Selected features (p(l2)) Coefficients Standard Error t value Pr(>|t])
(Intercept) 1.838e+00 1.425e-01 12.901 < 2e-16
AXp, 0 -5.569e-03 7.461e-04 -7.464 9.21e-14
AXy, 1 -5.805e-03 7.465e-04 -7.775 8.36e-15
AXp, 2 -2.950e-03 7.835e-04 -3.764 1.68e-04
AXp, 2 -2.320e-04 4.105e-05 -5.650 1.65e-08
V2 -9.445e-03 3.434e-03 -2.751 5.96e-03
V-2 -1.153e-02 3.245e-03 -3.553 3.83e-04
s*(lp) 1.476e-01 1.286e-02 11.480 < 2e-16
p(l2) 1.064e+00 5.949¢-03 178.935 < 2e-16
Performance of p(l) Adjusted R? CV-MSE Accuracy
0.7633 0.7765 0.4312
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