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A B S T R A C T   

This study is devoted to developing a platoon-based cooperative lane-change control (PB-CLC). It 
coordinates the trajectories of a CAV platoon under a platoon-centered platooning control to 
accommodate the CAV lane-change requests from its adjacent lane, aiming to reduce the negative 
traffic impacts on the platoon resulting from lane-change maneuvers, on the premise of ensuring 
CAVs’ safety and mobility. Mathematically, the PB-CLC control is established using a hybrid 
model predictive control (MPC) system. The hybrid MPC system involves an MPC-based mixed 
integer nonlinear programming optimizer (MINLP-MPC) for optimal lane-change decisions, 
which considers multiple objectives such as traffic smoothness, driving comfort and lane-change 
response promptness subject to vehicle dynamics and safety constraints. To ensure the feasible 
lane-change, this study investigates and provides a lower bound of the lane-change time window 
by analyzing the MINLP-MPC model feasibility. Apart from the optimal lane-change decision 
consideration, the hybrid MPC system is well designed to ensure the control continuity and 
smoothness. In particular, the hybrid MPC system control feasibility and stability are proved to 
enable the platoon’s back-and-forth state switchings between car-following and lane-change ac
commodation states. Next, we developed a machine learning aided distributed branch and bound 
algorithm (ML-DBB) to solve the MINLP-MPC model within a control sampling time interval (< 1 
second). Specifically, built upon computer simulation and the c-LHS sampling technique, su
pervised machine learning models are developed offline to predict a reduced solution space of the 
integer variables, which is further integrated into the distributed branch and bound method to 
solve the MINLP-MPC model efficiently online. Extensive numerical experiments validate the 
effectiveness and applicability of the ML-DBB algorithm and the PB-CLC control.   

1. Introduction 

The car-following and lane-change maneuvers often interweave with each other and play important roles to affect traffic safety, 
efficiency and sustainability. Thus, they have attracted tremendous research interests in traffic operation and control. Especially in 
recent years, advanced communication, information, and computation technologies have granted Connected and Autonomous 
(Automated) Vehicles (CAVs) superior capabilities to exchange information, accept trajectory instructions, and even conduct in- 
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vehicle driving decisions at different levels. These advanced capabilities stimulated extensive research interests in developing vehicle 
platooning control, which instructs CAVs’ longitudinal car-following maneuvers to maintain a group of CAVs traveling closely and 
safely at high speed. We classify the existing platooning control in literature into two categories, including (i) vehicle-centered reactive 
control, which equips each vehicle with a car-following control reactive to its neighborhood vehicles’ movement (e.g., adaptive cruise 
control (ACC) (Rudin-Brown and Parker, 2004; Lu and Aakre, 2018) and cooperative adaptive cruise control (CACC) (Dey et al., 2015; 
Shladover et al., 2015) and (ii) platoon-centered platooning control, which implements a car-following control for the entire platoon so 
that it systematically reacts to traffic disturbances. (e.g., MPC based control developed in Wang et al., 2014b; Gong et al., 2016; Gong 
and Du, 2018; Wang et al., 2019). Both simulation and theoretical studies have shown that vehicle platooning control can improve 
traffic safety, efficiency, and smoothness. 

Furthermore, CAV technologies inspired significant interests in developing more complicated cooperative lane-change algorithms, 
which coordinate CAVs’ car-following and lane-change movements on adjacent lanes, intending to ensure safe and efficient lane- 
change maneuvers while mitigating negative traffic impacts (Hidas, 2002; Ammoun et al., 2007). Various models, control and al
gorithms have been developed in the existing literature. For example, Wang et al. (2015) and Talebpour et al. (2015) proposed game 
models for optimal lane-change decisions. Liu and Özgüner, (2015) and Liu et al. (2018) used model predictive control (MPC) ap
proaches to control the vehicle convoy’s leading CAV movements for lane-change preparation, whereas Wang et al., (2016) employed 
a MPC control framework to instruct smooth lane-change transitions while reducing the travel time delay. Balal et al., (2016) used 
fuzzy logic approach to model driver’s decision to or not to execute a lane-change maneuver and Choi and Yeo, (2017) developed a cell 
transmission model (CTM) to predict the future traffic condition around lane-change location. Gong and Du (2016) and Cao et al. 
(2017) formulated optimization models to optimally determine where a lane-change instruction should be given to vehicles. Pue
boobpaphan et al. (2010); Scarinci and Heydecker (2014); Xie et al. (2017) and Scarinci et al. (2017) used various model and control 
schemes to study optimal on-ramp merging control, which is a special case of the lane-change maneuvers. Various hierarchical 
cooperative lane-change frameworks, which typically include several control stages are developed in Nie et al. (2016); Li et al. (2020) 
and Ni et al. (2020). Even though these existing studies showed good performance in different aspects, we noticed the following 
research gaps, which thus motivate this study. 

First, the existing cooperative lane-change control (e.g., Talebpour et al., 2015; Balal et al., 2016; Nie et al., 2016; Wang et al., 
2016;Choi and Yeo, 2017 ; Ni et al., 2020) mainly involve a few subject vehicles and their neighborhood vehicles (often less than 5 
vehicles in total) in the lane-change model. Consequently, the impact of the lane-change maneuvers on the target traffic stream is 
locally considered in a relatively short stretch. This study intends to scale up and involves a rather long stretch of a platoon in the target 
lane so that the proposed cooperative lane-change control is applicable to a traffic stream in a broader range. 

Second, the existing studies often assume the platoon in the target lane are under vehicle-centered reactive platooning control such 
as ACC (Xie et al., 2017; Ni et al., 2020) or CACC (Pueboobpaphan et al., 2010; Liu and Özgüner, 2015; Liu et al., 2018), or even 
free-control (Balal et al. 2016; Choi and Yeo, 2017) rather than a platoon-centered platooning control, even though the merit of the 
platoon-centered platooning control compared with the vehicle-centered reactive platooning control has been well confirmed (Wang 
et al., 2014b; Gong et al., 2016; Gong and Du, 2018; Wang et al., 2019). On the other hand, it has been noticed that a vehicle platooning 
control covering a long stretch of traffic stream will block mobility needs (Darren Cottingham 2020), if it cannot efficiently accom
modate lane-change requests. This research gap will significantly limit the application of advanced CAV platooning control techniques 
in practice. Thus, motivated by bridging this gap, this study aims at developing a cooperative lane-change control, assuming that the 
target platoon is under a platoon-centered platooning control. 

Third, we noticed that few existing lane-change control algorithm considers the time windows required by the lane-change requests 
and the associated feasibility issue, although Ni et al., (2020) addressed the lane-change feasibility problem from a different angle by 
proposing feasibility judgement criterion. However, it is possible that the target CAV platoon in reality under specific platooning 
control cannot accommodate lane-change requests within the required time window due to the traffic condition constraints. Thus, 
investigating the feasibility under this context is critical for developing a proper lane-change accommodation control. It will guide the 
platoon to accept or reject the lane-change requests appropriately. Moreover, the results will provide valuable insight into making 
subject vehicle’s lane change decisions. This study intends to bridge this gap in the existing literature. 

Last, the existing efforts mainly focused on lane-change decisions but overlooked the switching of different dynamic states that the 
target platoon experiences when it accommodates the lane-change requests. Specifically, it is unclear whether the lane-change decision 
can instruct a platoon to switch feasibly and smoothly from its original car-following control to lane-change accommodation control 
and finally restore the initial car-following control. For example, suppose a lane-change decision model uses safe spacing lane-change 
constraints that are more aggressive than the safety constraints under car-following control. In this case, the spacing between a subject 
vehicle and its immediate leading and following platoon vehicles may not satisfy the safety distance constraints under the car- 
following control right after the lane-change maneuver. Accordingly, the platoon may not be able to restore the initial car- 
following control. This research gap will raise the difficulty of integrating the lane-change control and platooning control in prac
tice. This study will thoroughly address the switching feasibility and stability of the hybrid dynamic system. 

Motivated by the abovementioned research gaps, this study is devoted to developing a platoon-based cooperative lane-change 
control (PB-CLC), seeking to instruct a long stretch and well-connected CAV platoon (e.g., more than 15 vehicles) under an MPC 
based platoon-centered car-following control to accommodate multiple lane-change requests (≥ 2 subject vehicles) smoothly and 
efficiently from the subject vehicles beside the platoon, within their required time windows. To achieve this research goal, we 
contribute the following modeling, hybrid system dynamic analysis, and solution approaches, which address the research challenges 
raised by the enhanced features of the proposed PB-CLC control. 

First of all, this study develops an MINLP-MPC model to search the best timing and spacing for the platoon to accommodate the 
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lane-change requests without causing severe platoon stream fluctuations. To smoothly integrate the MINLP-MPC decision model into 
the PB-CLC control, we further conducted the mathematical analysis as follows. Considering the lane-change requests coming with 
time window requirements, the feasibility of the MINLP-MPC model becomes a critical issue. To address this challenge, we went 
through a structured proof from Lemma 1 to Lemma 5. The results summarized in Theorem 1 demonstrate that the lane-change re
quests can only be feasibly accommodated by the platoon if the prediction horizon P of the MINLP-MPC is no smaller than the derived 
time window lower bound. Moreover, the MINLP-MPC model is different from the common lane-change decision model since it should 
not only find the best lane-change spacing and timing but also consider the switching behaviors between car-following and lane- 
change accommodation states (see Appendix-II for technical details). 

Next, we consider that the platoon will physically experience three dynamic traffic states: car-following state, spacing preparation 
state and restoration state during the entire lane-change process, which are mathematically carried out by three sequential MPC and 
forms a hybrid MPC system. Specifically, the platoon is initially under the MPC-based platoon-centered car-following control devel
oped by Gong et al. (2016) with well-validated system performance. It will switch to the spacing preparation state once receiving the 
lane-change decision made by solving the MINLP-MPC model. After the subject vehicles cut in the platoon, the platoon will switch to 
the restoration state and eventually return to the initial car-following state. Based upon the feasibility of the MINLP-MPC model, we 
carefully designed the hybrid MPC system and mathematically proved its feasibility and stability. The theoretical proofs in Theorem 2 
and Theorem 3 ensure the platoon runs smoothly and safely through the entire dynamic lane-change process under the provided 
hybrid MPC control. 

Moreover, the MINLP-MPC decision model is NP-hard, which often does not have an efficient solver with a polynomial computation 
complexity. However, the real-time PB-CLC control requires solving the MINLP-MPC model within one control interval (< 1 sec) to 
ensure the practical implementation of the hybrid MPC system involving three dynamic states. To address this challenge, we developed 
a machine learning aided distributed branch and bound algorithm (ML-DBB) by taking advantage of the problem’s unique features. 
Specifically, the ML-DBB algorithm employs a computer simulator and supervised machine learning approaches (Kotsiantis et al., 
2007; James et al., 2013) to capture the candidate optimal lane-change spacings and timings, which reduce the solution searching 
space of integer variables relevant to lane-change decisions in the MINLP-MPC. Built upon the reduced solution space, a distributed 
branch and bound method (Androulakis and Floudas, 1999; Djamai et al., 2010) is further used to split the computation loads and solve 
the MINLP-MPC model efficiently. During the development of the ML-DBB algorithm, feature selection plays a critical role to ensure 
the effectiveness of the machine learning model. This study developed a customized feature processing approach to improve the 
applicability and prediction accuracy of the developed machine learning models. 

Last, we carried out extensive numerical experiments to validate the effectiveness and merits of the ML-DBB algorithm in solving 
the MINLP-MPC model. Besides, our numerical experiments demonstrate that the platoon using PB-CLC control can quickly accom
modate the lane-change requests within the required time window and significantly improve traffic smoothness and efficiency, 
compared with field traffic without platooning control and a recently developed cooperative lane-change control. Parameter sensi
tivity analysis of the MINLP-MPC model is also conducted to provide insights into the parameter settings. 

The organization of the remaining of this paper is as follows. Following the Introduction, Section 2 provides the preliminary 
problem formulations and briefly introduces the hybrid MPC system. Section 3 mathematically develops the cooperative lane-change 
decision model (MINLP-MPC). Next, we analyze the feasibility of the MINLP-MPC model in Section 4 and design the hybrid MPC 
system, proving its feasibility and stability in Section 5. The solution approaches of the hybrid MPC system are discussed in Section 6. 
The main focus is given to the development of the ML-DBB algorithm for the MINLP-MPC model. Section 7 further conducts numerical 
experiments to validate the applicability and effectiveness of our approaches. The entire study and future work are summarized in 
Section 8. 

2. Problem Statement 

This research is devoted to developing the PB-CLC control. Vehicles mentioned hereafter in this paper refer to CAVs. To conduct this 
research rigorously, we first make the general clarifications and assumptions as follows, with more added along the development of the 
mathematical models. Mainly, this study considers a two-lane highway road segment with pure CAV traffic flow (this assumption can 
be relaxed, see Remark 1 in section 3). There are multiple CAVs on a subject lane requiring cutting in the adjacent target platoon due to 
discretionary or mandatory reasons1. The CAV platoon is under a MPC based platoon-centered platooning control (i.e., car-following) 
developed by Gong et al., (2016); Gong and Du (2018) because of its superior performance for sustaining traffic efficiency and 
smoothness while exposed to traffic disturbances, compared with the vehicle-centered reactive control such as ACC and CACC. If the 
spacing next to a subject vehicle is acceptable, the subject vehicle will smoothly shift in without extraneous assistance. Otherwise, the 
PB-CLC control will coordinate the movements of the platoon and the subject vehicles to complete the lane-change requests with the 
aim to minimize the negative impacts on the platoon. Once the subject vehicle is well positioned beside an acceptable target spacing, 
the lateral lane-change movements can be conducted quickly within a sample time interval τ < 1sec. Accordingly, this study mainly 
focuses on the longitudinal platooning control for accommodating lane-change requests and ignores subject vehicles’ lateral move
ments during cut-in maneuvers. However, we should note that the vehicles’ lateral cut-in dynamics can be easily incorporated into our 
current model using steering control, that will not affect the longitude constraints or increase the mathematical complexity of the 

1 The discretionary lane-change seeks to gain speed privilege, of which the time window is usually 6-11 seconds; The mandatory lane-change is 
required according to the trip plan, such as moving to off-ramp, of which the time window is usually 1-3 seconds. 
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MINLP-MPC model and the hybrid MPC system. The developed lateral control law also demonstrates that the lateral movements can be 
fulfilled within a sample time interval (1 sec). Please see the mathematical demonstration in the Appendix-I. 

It is also noticed that the neighborhood traffic around the subject vehicles or the platoon may cause the infeasibility for the platoon 
to accommodate lane-change requests within a given time window. For example, there may exist uncontrolled vehicles around subject 
vehicles or the platoon, which potentially limit the CAVs’ trajectory control. As a result, the CAV platoon may not be able to yield 
spacings for the lane-change accommodation within a given time window. As the first attempt to integrate lane-change into platooning 
control, this study assumes that the traffic conditions around subject vehicles and platoon are suitable during the accommodation 
process so that the CAVs’ trajectory control is not constrained by surrounding traffic (i.e., uncontrolled vehicles). These more 
complicated scenarios will be addressed in future work. In addition, we assume that no overtaking occurs between subject vehicles 
during the relatively short lane-change accommodation process for safety and efficiency. Lastly, this study assumes that wireless 
connections between all CAVs perform well, thus the communication delay and failures are neglected. 

Using the example shown in Fig. 1, we formally introduce the problem setup as follows. We consider that it is very possible that 
multiple vehicles require lane-change simultaneously. Thus, without loss of generality, this study considers m subject vehicles, denoted 
by l1,l2,…, lm respectively in Fig. 1 moving with the speed v1, v2,…, vm and the acceleration u1, u2,…, um respectively on the 
subject Lane 2. They send lane-change requests to the platoon on the target lane which is Lane 1 in Fig. 1 simultaneously. Notation l is 
used to denote a subject vehicle while the set of the subject vehicles is denoted by L = {l1,l2,…, lm}. Besides, without confusion, notation 
l is also used to describe the index of a subject vehicle l = 1, 2, …, m while the index set is also denoted by L = {1, 2, …, m}. 

We consider there are n many CAVs in the platoon, and let xi, vi ui for i ∈ I = {1, …, n} respectively represent the longitudinal 
position, speed, and acceleration of the ith platoon vehicle. Accordingly, notation i(l, 0) for i ∈ I, l ∈ L is used to indicate a particular 
platoon vehicle i that locates immediately in front of the subject vehicle l at step p = 0. Here p = 0 represents the time step when the 
platoon receives the lane-change requests, indicating the start of the lane-change accommodation control. The details of the notation p 
and relevant concepts will be fully discussed in next section. We then introduce s ∈ S = {1, …n − 1} to label the spacings between two 
adjacent platoon vehicles. Additionally, the notation si for i ∈ I = {1, …, n} is used to label a spacing between two adjacent platoon 
vehicles i and i + 1; notation si(l,0) represents a particular spacing between two platoon vehicles i(l, 0) and i(l, 0) + 1, which is initially 

Fig. 1. Lane-change process.  

Fig. 2. Hybrid MPC system.  
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beside the subject vehicle l at step p = 0; notation si(l) represents the feasible target spacing for subject vehicle l to cut in between 
platoon vehicles i(l) and i(l) + 1. si(l) is used in the feasibility proof for the MINLP-MPC model in section 4. In the meantime, notation s 
(l) and p(l) describe subject vehicle l’s optimal lane-change spacing and timing respectively, which are employed in section 5 and 
section 6. Note that the notation si is abused in certain context to also denote the value of the spacing between two platoon vehicles i 
and i + 1 to avoid extra notation. The labels of vehicles and spacings increase from downstream to upstream and the origin of the 
location coordinates is set at the tail of the platoon. The trajectory control is conducted at discrete time steps (k ∈ Z+ := {0,1,2,…}) 
with an uniform duration τ and the control variables ui (i = 1, …, n) keep constant during an interval τ. In addition, we use k to 
substitute τk for the notational simplicity hereafter. 

Apart from the above-mentioned problem formulation, we formally introduce the hybrid MPC system, which is used to capture and 
control the entire lane-change accommodation process. Specifically, the hybrid MPC system in Fig. 2 consists of the following three 
dynamic states under sequential MPC control: car-following state under MPC-q0 platooning control → spacing preparation state under 
MPC-q1for preparing spacing to accommodate lane-change requests → restoration state under MPC-q2 for restoring the initial car- 
following control q0 after lane-change. The three MPC states are well linked by three switching signals σ1, σ2 and σ3 and thus 
forms a closed-loop cycle, indicating the platoon can go through the entire lane-change process smoothly. Specifically, the completion 
of solving the cooperative lane-change decision model MINLP-MPC triggers the switching signal σ1 to start the switching from car- 
following state q0 to spacing preparation state q1. When the platoon under state q1 finishes preparing the lane-change spacing, 
well-positioned subject vehicles will smoothly cut in the platoon, which triggers the switching signal σ2. Then the platoon switches to 
the restoration state q2 and will not return to the initial car-following state q0 until the car-following safe constraints are recovered 
(switching signal σ3). The mathematical formulations of the hybrid MPC system and the proofs of the closed-loop cycle feasibility and 
stability are presented in Section 5 

To facilitate the reading of the presented mathematical work, we summarize the notations introduced above as well as some 
commonly used notations in Table 1 which will be mentioned later in the model formulation section. We will also define other no
tations that are only used in some specific sections. To avoid a very long list, we do not include them in Table 1. 

3. MINLP-MPC Mathematical Model for PB-CLC Control 

This section first introduces the vehicle dynamics and constraints and then develops lane-change constraints. Built upon that, we 
formulate the MINLP-MPC model to implement the lane change decision for the PB-CLC control. 

3.1. Vehicle dynamics and constraints 

We first formulate the constraints related to vehicle dynamics and car-following safety. The longitudinal dynamics of CAVs are 
described by the double integrator model in Equations (1)-(4) for discrete time steps ∀k ∈ Z+ := {0,1,2,…}. Specifically, Equations (1) 
and (2) describe the subject vehicles’ dynamics while Equations (3) and (4) describe the platoon vehicles’ dynamics. 

Table 1 
Notation list.  

Notation Description Type 

τ Sample time interval Parameter 
k Control time step Index 
p Lane-change time step Index 
i Platoon vehicle’s index Index 
I Platoon vehicles index set Set 
xi Platoon vehicle i’s longitudinal position Continuous variable 
vi Platoon vehicle i’s longitudinal speed Continuous variable 
ui Platoon vehicle i’s longitudinal acceleration Continuous variable 
Li Platoon vehicle i’s vehicle length Continuous variable 
amin,i/amax,i Platoon vehicle i’s acceleration/deceleration limits Continuous variable 
l Subject vehicle’s index & notation Index & notation 
L Subject vehicles’ index & notation set Set 
xl Subject vehicle l’s longitudinal position Continuous variable 
vl Subject vehicle l’s longitudinal speed Continuous variable 
ul Subject vehicle l’s longitudinal acceleration Continuous variable 
Ll Subject vehicle l’s length Continuous variable 
al

min /al
max  Subject vehicle l’s acceleration/deceleration limits Continuous variable 

si Spacing between platoon vehicle i and i + 1 Index & value 
i(l, 0) A platoon vehicle located beside subject vehicle l at p = 0 Index 
si(l,0) A platoon spacing beside subject vehicle l at p = 0 Index & value 
si(l) Subject vehicle l’s target feasible lane-change spacing Index 
i(l) Leading platoon vehicle ahead of spacing si(l) Index 
yl

s,p  Subject vehicle l’s lane-change decision, i.e. spacing s, step p Integer variable 

s(l) Subject vehicle l’s target optimal lane-change spacing Index 
p(l) Subject vehicle l’s target optimal lane-change time step Index  
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xl(k+ 1) = xl(k) + τvl(k) +
τ2

2
ul(k), l ∈ L (1)  

vl(k+ 1) = vl(k) + τul(k), l ∈ L (2)  

xi(k+ 1) = xi(k) + τvi(k) +
τ2

2
ui(k), i ∈ I (3)  

vi(k+ 1) = vi(k) + τui(k), i ∈ I (4) 

In addition, we consider that the CAVs in the problem are subject to important state and control constraints summarized as follows 
for any control sampling point k ∈ Z+ := {0,1,2,…}

amin,i ≤ ui(k) ≤ amax,i; al
min ≤ ul(k) ≤ al

max, i ∈ I, l ∈ L (5)  

vmin ≤ vi(k) ≤ vmax; vmin ≤ vl(k) ≤ vmax, i ∈ I, l ∈ L (6)  

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xi(k) − xi+1(k) ≥ LBi+1 + τvi+1(k) −
[vi+1(k) − vmin]

2

2amin,i
, i ∈ I

xl(k) − xl+1(k) ≥ LBl+1 + τvl+1(k) −
[
vl+1(k) − vmin

]2

2al+1
min

, {l, l + 1} ∈ L

(7) 

More exactly, Equation (5) limits vehicles’ control inputs within given acceleration/deceleration bounds, respectively denoted by 
amax,i/amin,i for platoon vehicle i and al

max/al
min for subject vehicle l. Equation (6) limits vehicles’ longitudinal speeds within the pre

defined minimum and maximum speed, respectively denoted by vmin and vmax. Equation (7) presents the safety distance constraints. It 
is modified from the conflict-free car-following constraint. It ensures traffic safety under the extreme condition that the leading vehicle 
stops suddenly. Since the extreme condition barely occurs in reality, the conflict-free constraint is too conservative and cannot be used 
to improve road capacity. We adopt the less conservative constraint in Equation (7), which maintains traffic safety under the condition 
of vmin = 0, and allows a relatively small spacing to fully utilize the road capacity while ensuring the MPC’s sequential feasibility. 
Notations LBi and LBl > 0 are constant values of platoon vehicle i and subject vehicle l respectively, which are related to the vehicle 
length and the minimum car-following buffer spacing when vehicles come to a stop. 

3.2. Lane-change Constraints 

We next provide the formulations to model the lane-change maneuvers. To do that, we introduce another notation p to represent the 
time step, at which a lane-change accommodation process proceeds. In addition, we consider the lane-change accommodation must be 
completed in next P steps. Thus, we have p ∈ P = {0, 1, …P}. In addition, we assume several subject vehicles simultaneously send lane- 
change requests at control time step k = k* (i.e., p = 0), indicating the begin of the lane-change accommodation process. Accordingly, 
the control time step (k* +p) ∈ Z+ is the same step with the lane-change time step p for p ∈ P. 

To ensure safe and successful lane-change maneuvers, the PB-CLC control seeks to make lane-change decisions on two items: a) the 
best spacings (s ∈ S = {1, …n − 1}) in the platoon to accommodate the subject vehicles, and (b) the best time steps to perform the lane- 
change maneuvers. These two decisions should be optimally made with the aim to minimize the negative impact on the traffic effi
ciency and smoothness of the platoon, while ensuring the safety of completing the lane-change maneuvers within a given time window. 
Built upon the idea, this study considers the following constraints in Equations (8)-(11). Specifically, Equation (8) indicates that a lane- 
change request can only be accommodated by one platoon spacing at one time step. 

⎧
⎪⎪⎨

⎪⎪⎩

∑P

p=1

∑n− 1

s=1
yl

s,p = 1, l ∈ L,

yl
s,p = {0, 1}, s ∈ S, p ∈ P,

(8)  

where the binary variables yl
s,p = 1 if the spacing s is selected for the subject vehicle l to cut in at time step p ≤ P. Otherwise, yl

s,p = 0. 
Next, this study notes that the lane-change requests should be served in a limited time window (τP), which can be relatively flexible 

for discretionary lane-changes but strict for mandatory lane-changes. For example, the mandatory lane-change request for exiting 
highway to an off-ramp must be completed before the vehicle passing the exit point. Accordingly, we introduce the constraints in 
Equation (9), which indicates that the acceptable spacings for lane-change have to be yielded within the time window τP. 

∑+∞

p=1
pyl

s,p ≤ P, l ∈ L (9) 

Considering the lane-change requests are accommodated and conducted in a relatively short time and the overtaking behavior is 
unsafe and inefficient during lane-change maneuvers, this study regulates that no overtaking occurs between subject vehicles once 
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they send the lane-change requests. Therefore, if the spacing s is selected for subject vehicle l, only the spacing after s (i.e., the 
spacing s, s + 1,…n − 1) can be selected for subject vehicle l + 1. This idea is mathematically illustrated in Equation (10) below. 

∑P

p=1

∑n− 1

s=1
syl

s,p ≤
∑P

p=1

∑n− 1

s=1
syl+1

s,p , {l, l+ 1} ∈ L (10) 

Moreover, if the spacing s is selected for the subject vehicle l to conduct the lane-change at step p, namely yl
s,p = 1, then subject 

vehicle l should have arrived beside the target acceptable spacing s (i.e. si) between platoon vehicles i and i + 1 at step p, ready to 
conduct the lane-change. Additionally, to ensure safe and smooth lane-change control (i.e., ensure the feasibility and stability of the 
hybrid system controller in Section 5), this study makes the regulations that the subject vehicle l will keep the safe distance h away from 
the immediate adjacent platoon vehicles after it cuts in the platoon until step P. These relationships are described in Equation (11) 
below. Note that Equation (11) is different from common lane-change safety distance constraints in a lane-change decision model. It is 
particularly designed when considering the feasibility of dynamic state switching under the hybrid MPC system. See Appendix-II for a 
more comprehensive discussion. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xl(p) − xi+1(p) ≥ h + M

(
∑p

p=0
yl

s,p − 1

)

, s ∈ S, p ∈ P, l ∈ L,

xi(p) − xl(p) ≥ h + M

(
∑p

p=0
yl

s,p − 1

)

, s ∈ S, p ∈ P, l ∈ L,

(11)  

where M is a large positive number and h represents the constant safe leading and following distance between the subject vehicle and 
its immediate leading and following platoon vehicles on the target lane so that a safe lane-change maneuver can be sustained. It is 
noted that Equation (11) is trivial when the spacing s and time steps p ∈ {0,1,…p} are not selected as optimal lane-change decision for 
subject vehicle l (i.e., Equation (11) is always true if 

∑p
p=0yl

s,p = 0). Note that the lane-change study Roelofsen (2009) points out that 
the safe lane-change distance h for human-drive vehicles should be a variable closely related to the leading and following vehicles’ 
speeds rather than a constant, aiming to ensure safe lane-change control even in extreme scenarios where the following uncontrolled 
vehicle’s speed is far smaller than that of the leading uncontrolled vehicle. However, the rigorous mathematical formulation of safe 
lane-change distance h is unclear in the current literature. And in this study, the leading and following vehicles are CAVs under our 
platooning control. Therefore, this study adopts the constant safe lane-change distance and further regulates the safe lane-change 
distance h will hold after lane change, which avoids the extreme scenarios and thus ensures safe lane-change control. In fact, this 
regulation achieves the same safety performance as using a variable lane-change distance and will potentially facilitate the devel
opment of the hybrid system controller in Section 5. 

3.3. Mixed Integer Nonlinear Programming Based Model Predictive Control 

Based upon the constraints above, this section proposes the P-step MINLP-MPC model. Mainly, by taking vehicles’ current states 
as initial inputs, the P-step MINLP-MPC model generates the optimal lane- change decisions along with the longitudinal vehicle 
trajectory instructions in next P steps, so that safe and smooth lane-change maneuvers are ensured to be completed at the best 
spacings and timings without significantly impairing the platoon’s traffic efficiency and smoothness. Below, we present the MINLP- 
MPC model in detail. Note that according to the feasibility analysis and proofs in Section 4, the prediction horizon P of the MINLP- 
MPC model should be greater or equal to a lower bound P of the lane-change time window. For discussion convenience, we let P 
equal to the lower bound P in this study. 

Considering the potential insertion of lane-change subject vehicles, the spacing error at si and relative speed for platoon vehicle i at 
step p are modeled by Equation (12) and (13) respectively at lane-change time step p ∈ P: ={0, 1, …P}, subject to the dynamics in 
Equations (1) and (4). 

Δxsi (p) = xi(p) − xi+1(p) − sd

(

1+
∑

l

∑p

p=1
yl

i,p

)

, si ∈ S, p ∈ P, (12)  

Δvi(p) = vi(p) − vi+1(p), i ∈ I\{n}, p ∈ P, (13)  

where sd is the constant desired spacing of the platoon on the target lane. Equation (12) indicates that if m many subject vehicles cut in 
the same spacing si before the time step p (i.e. 

∑

l

∑p
p=1yl

si ,p
= m), the desired spacing at si is msd at step p. 

According to Equations (12) and (13), the control dynamics during lane-change maneuvers are defined in Equations (14) and (15). 

z(p) := (Δx1(p),…,Δxn− 1(p))T
∈ Rn− 1 (14)  

z′

(p) := (Δv1(p),…,Δvn− 1(p))T
∈ Rn− 1 (15) 

Wrapping up the constraints above, the optimizer of the MPC at step p = 0 is given by the MINLP-MPC model below in Equations 
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(1)-(16), with the control variables u = {ui(p), ul(p), i ∈ I, l ∈ L , p ∈ P} ∈ Rn+m, y = {yl
s,p for s ∈ S, p ∈ P, l ∈ L } ∈ R(n− 1)*P*m. 

MINLP-MPC 

Min Γ(u, y) =
∑P

p=1

{
1
2
[
zT(p)Qzz(p)+ (z′

(p))T Qz′ z
′

(p)
]
+ω1

τ2

2
‖ u(p − 1) ‖2

2

}

+ ω2

∑

l∈L

∑n− 1

s=1

∑P

p=1
pyl

s,p (16) 

Subject to: for each p ∈ P: ={1, …, P}, Eq (1)-(15), where Qz: =ΩTDαΩ and Qz′: =ΩTDβΩ are symmetric and positive definite matrices 
and u(p) = {ui(p),i ∈ I} ∈ Rn. Ω is an orthogonal matrix which characterizes the interaction of the CAVs under the platooning control. 
The diagonal matrices Dα = diag(α1,…, αn) and Dβ = diag(β1,…, βn), where αi > 0 and βi > 0 are penalty weights for each spacing error 
and relative speed term respectively (i.e., i = 1, ⋅⋅⋅, n − 1). Let α: =(α1,…, αn − 1) and β: =(β1,…, βn − 1). The selection of α and β will 
affect the stability performance of the platoon and has been fully investigated in Gong et al. (2016). 

The objective function Γ seeks to make a balance between minimization of the traffic flow oscillations and the promptness of the 
lane-change accommodation by putting proper penalty weights Qz,Qz′, ω1,ω2 respectively on the following four penalty terms: (i) the 
errors between desired vehicle spacings and actual spacings; (ii) the fluctuations of the spacings between adjacent platoon vehicles, i. 
e., the relative speed between adjacent vehicles; (iii) the variations of vehicle speeds, i.e., acceleration /deceleration; and (iv) the lane- 
change accommodation promptness. In reality, we can assign a relatively small penalty weight ω2 for a discretionary lane-change 
request so that the control mainly focuses on platoon smoothness, whereas a large penalty weight ω2 for a mandatory lane-change 
request such that the control gives higher priority to a prompt response. The constraints in Equations (1)-(11) represent the con
straints related to vehicle dynamics and the lane-change maneuver. Equations (12)-(15) describe the control dynamics and the 
interdependent relationships between variables in the objective function. Note that the MINLP-MPC model is only activated at step p =
0 when the platoon receives the lane-change requests. 

Remark 1. The MINLP-MPC model can be easily extended to the case of three-lane highway. Specifically, consider lane-change 
requests are sent from both two side lanes beside the platoon, denoted by lane R1 and R2 respectively. In this case, we can apply 
the safety distance constraints in Equation (7) and the non-overtaking constraints in Equation (10) to subject vehicles on both lane R1 
and lane R2. Since no additional complicated variables or constraints are involved, it will not bring in new conceptual and compu
tational challenges. 

4. MINLP-MPC Model Feasibility 

It is noticed that if the lane-change time window P is too small or the platoon and the subject vehicles are not properly positioned, 
the target platoon may not be able to yield spacings to accommodate the lane-change requests within the duration of the time window. 
This means that the MINLP-MPC model is infeasible. This section thus investigates a lower bound of the lane-change time window P by 
analyzing the feasibility of the MINLP-MPC model, charactering the initial states of the platoon and subject vehicles. The feasibility 
analysis will also facilitate the development of the hybrid MPC system and solution approaches later. In addition, this study observed 
that the presentation of the feasibility proof is tremendously complicated as more subject vehicles are involved. Thus, without loss of 
generality, this study first proves the MINLP-MPC model feasibility only considering two subject vehicles (m = 2), and then extends the 
proof to more general cases involving more subject vehicles (m > 2) using the same approaches. To simplify the proof process and 
better illustrate the key ideas of the proof, this section considers the homogenous case that all vehicles share the same vehicle length 
and buffer safe distance constant LB as well as deceleration/acceleration limits amin/amax, but our proof can be easily extended to the 
heterogeneous cases. Below we illustrate the main ideas of the proofs. 

To prove the feasibility of the MINLP-MPC model, we essentially need to demonstrate the intersection of the constraint sets in 
Equations (1)-(15) is not empty at any lane-change time step p ∈ P, given that it starts from a feasible scenario at step p = 0. Note that 
the control dynamic constraints in Equations (12)-(15) are naturally feasible once the constraints in Equations (1)-(11) are feasible. 
Thus we omit Equations (12)-(15) and only consider Equations (1)-(11) in our following proofs. By analyzing the features of the 
MINLP-MPC model, we further recognized that it is hard to directly prove the feasibility of the constraints in Equations (1)-(11) due to 
the involvement of integer variables in the lane-change constraints in Equations (8)-(11). To solve this difficulty, we separate the 
constraint sets into two parts as follows.  

(i) S 1(u(p)) : It is the convex constraints set in Equations (1)-(7) for capturing the vehicle dynamics, acceleration, speed and safety 
constraints at step p ∈ P. Besides, S 1(ui(p)) and S 1(ul(p)) represent the platoon vehicle i and subject vehicle l’s constraints set 
respectively in Equations (1)-(7) at step p ∈ P. Mathematically, S 1(u(p)) = {S 1(ui(p)), S 1(ul(p)), i ∈ I, l ∈ L}.  

(ii) S 2(u(p), yl
s,p) : It is the lane-change related constraints set in Equations (8)-(11) involving integer variables at step p ∈ P. 

Built upon the abovementioned two separate constraints sets, we prove the feasibility of the MINLP-MPC under the case with two 
subject vehicles by the idea as follows. First, we prove the constraints set S 1(u(p)) is not empty at every step p ∈ P. Then, we prove that 
with a proper P, for every step p ∈ P, there exists at least one feasible solution in S 1(u(p)), which also satisfies S 2(u(p), yl

s,p). Namely, 
for ∀p ∈ P, ∃ u(p) ∈ S 1(u(p)), and {u(p), yl

s,p} ∈ S 2(u(p), yl
s,p). This entire proof is structured and achieved by Lemma 1-Lemma 5 

and then Theorem 1. Below we introduce Lemma 1 first, which proves the platoon’s sequential feasibility, given it starts from a 
feasible initial state at step p = 0. 
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Lemma 1. For k ∈ Z+ := {0,1, 2,…} and i ∈ I, if S 1(ui(k − 1)) is feasible, then S 1(ui(k)) is feasible and compact. In addition, the 
feasible control inputs profile S1(ui(k)) for platoon vehicle i at step k is given below: 

ui(k) ∈ S1(ui(k)) =
[

max
{

amin, ai,v(k)
}

,min
{

amax, ai,v(k), ai,d(k)
}
]

(17)  

Where, 

ai,v(k) =
vmin − vi(k − 1)

τ ≤ 0 (17.1)  

ai,v(k) =
vmax − vi(k − 1)

τ ≥ 0 (17.2)  

ai,d(k) =
3
2
amin + ai,v −

amin

τ2

̅̅̅̅̅̅̅̅̅
B(k)

√
(17.3)  

B(k) =
(vi(k − 1) − vmin)

2τ2

a2
min

+
τ3(vi(k − 1) − vmin)

− amin
+

9
4

τ4 +

(
2τ2

− amin

)[(
vi− 1(k − 1) + vi− 1(k)

2
− vmin

)

τ+S 1(ui(k − 1))
]

≥ 0 (17.4) 

Proof: 
Lemma 1 has been proved and the mathematical representations in Equations (17) and 17.1)-(17.4) are accordingly formulated by 

the lemma 4.1 of Gong and Du (2018). The main idea of the proof is to show the intersection of the constraints in Equations (1)-((7) is 
nonempty at control step k if the platoon is running under the feasible constraints at control step k − 1, k ∈ Z+. ▪ 

Using the results in Lemma 1, this study wants to further prove that there exsits feasible control inputs which satisfies both 
S 1(u(p)) and S 2(u(p), yl

s,p) for ∀ p ∈ P. It is equivalent to saying that we are able to find feasible control inputs for the platoon to 
adjust its spacings so that the lane-change requests can be successfully completed within the lane-change time window P. To do that, it 
is noticed that the numerical value of the lane-change time window P will affect the feasibility. For example, a short time window may 
not provide enough time for the platoon to adjust its spacings and then accommodate the lane-change requests. Built upon this note, 
the main idea of the following proof is to find a lower bound for the lane-change time window P, denoted by PE, so that the feasibility of 
the MINLP-MPC model can be sustained if the platoon and subject vehicles are initially under general feasible scenarios (E). Lemma 2- 
Lemma 5 below complete this proof. Mainly, we first define an extreme scenario (E) for the platoon and subject vehicles, and then 
Lemma 2 proves that any other general scenario (E) can be transferred to this extreme scenario (E) in finite steps (say J(E(k*) → E)), 
using the feasible control input from S1(u(k)). Here k* represents the control time step when lane change requests are received (at p =
0) and k represents the control time steps in the transition process. Following that, Lemma 3-Lemma 5 further prove that there exists 
an lower bound PE, which ensures the feasibility of the MINLP-MPC model under the extreme scenario (E). Then we can induce that 
there exists a lower bound PE = PE + J(E(k*) → E), which ensures the feasibility of the MINLP-MPC under general scenario (E). This 
study first formally defines the scenario (E) and (E) below and then introduce Lemma 2. 

(E): vmin ≤ vi& vl ≤ vmax, gi ≤ 0 and gl ≤ 0, ∀ i ∈ I, l ∈ L, which are equivalent to the speed and safety distance constraints in 

Equations (6) and (7). Specifically, gi and gl are derived from Equation (7): gi = LBi+1 + τvi+1 −
[vi+1 − vmin ]

2

2amin,i+1
− (xi − xi+1), gl = LBl+1 +

τvl+1 −
[vl+1 − vmin ]

2

2al+1
min

− (xl − xl+1).

(E): vi & vl = vmin, gi ≤ 0and gl ≤ 0 for ∀ i ∈ I, l ∈ L. 
Mainly, a general scenario (E) represents a feasible car-following scenario satisfying the constraint set S 1(u(p)), whereas the 

extreme scenario (E) indicates that all platoon vehicles and subject vehicles are running at minimum speed with safe inter-vehicle 
spacings. 

Lemma 2. For k* ∈ Z+ := {0, 1, 2, …}, there exists a control input profile u(E(k*) → E) ∈ S1(u(k)) so that a platoon and subject 

vehicles under the scenario E(k*) can be converted to the extreme scenario (E) in the number of time steps: J(E(k*) → E) =
⌊

vmax − vmin
− τamin

⌋

. 

Proof. This study proves that any other scenario E(k*) at step k* can be transferred to this extreme scenario (E) using the feasible 

control inputs in s1(u(k)) for k ∈ {k*, …k, k* + P} within the number of steps 
⌊

vmax − vmin
− τamin

⌋

. Below we can construct a control input 

profile u(E(k*) → E)= {ui(E(k *) → E),ul(E(k*) → E)for i ∈ I, l ∈ L} ∈ S1(u(k)) to make all vehicles simultaneously decelerate, which 
transfers the scenario E(k *) to (E). 

ui(E(k*) → E) =

⎧
⎨

⎩

amin, if vi(k) ≥ vmin − τamin

vmin − − vi(k)
τ , if vmin ≤ vi(k) < vmin − τamin

⎫
⎬

⎭
∈ sS1(u(k)),
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ul(E(k*) → E) =

⎧
⎪⎨

⎪⎩

amin, if vl(k) ≥ vmin − τamin

vmin − − vl(k)
τ , if vmin ≤ vl(k) < vmin − τamin

⎫
⎪⎬

⎪⎭
∈ sS1(u(k)),

where k ∈

{

k*, k*,…, k* +

⌊
vmax − vmin
− τamin

⌋}

When the vehicle’s speed at step k (vi(k) or vl(k)) is larger than vmin − τamin, the vehicle de

celerates at the maximum deceleration amin. As the speed gets close to vmin, specifically when vmin ≤ vi(k) or vl(k) < vmin − τamin, the 
vehicle cannot sustain the maximum deceleration amin so that it will decelerate with ui =

vmin − − vi(k)
τ or ul =

vmin − − vl(k)
τ .

Accordingly, the maximum number of the deceleration time steps needed for a platoon and subject vehicles under a general 
scenario E(k*) converting to the extreme scenario E is given in Equation (18). 

J(E(k*) → E) =
⌊

vmax − vmin

− τamin

⌋

(18) 

With the results above, we complete the proof for Lemma 2. ▪ 
Built upon the results of Lemma 2, this study next seeks to find the feasible lower bound PE under the extreme scenario (E). To 

achieve this goal, we start from Lemma 3, which introduces a sequential acceleration strategy to ensure the platoon has target lane- 
change spacings large enough to accommodate subject vehicles’ lane change, utilizing the feasible control inputs. Then we investigate 
a simple case with only one subject vehicle requiring for lane change in Lemma 4. Lemma 5 further extends the results to the case 
involving two subject vehicles and the following Theorem 1 summarize the results. Remark 2 finally generalizes the results to the 
cases involving more than two subject vehicles. Note that Lemma 2 above is applied under scenario E(k*) at control time step k* ∈ Z+ :

= {0,1,2…}, when the lane-change requests are received. Accordingly, any general scenario E(k*) which starts at control step k* has 

been transferred to extreme scenario (E) at step k* +

⌊
vmax − vmin
− τamin

⌋

. For simplicity, we drop the control time step index k* +

⌊
vmax − vmin
− τamin

⌋

but 

use the lane change time step p ∈ P: ={0, 1…P} for extreme scenario (E) in the following proofs. 

Lemma 3. Assume that the platoon and m subject vehicles are under extreme scenario (E) at p = 0, and subject vehicles intend to cut 
in different target spacings, a sequential acceleration strategy ũ ∈ S1(u) in Equation (19) can be constructed for platoon vehicles to 
yield safe spacings si(p*) ≥ 2h (for ∀i ∈ I\{n},p* ∈ {(i + 1)*m,…P}) to accommodate subject vehicles’ lane-change requests, where m =
⌊

vmax − vmin
τamax

⌋

. 

ũ = {ui(p), p ∈ P, i ∈ I } ∈ S1(u(k)), ui(p) =
{

amax if p ∈ [(i − 1)*m, i*m] ∩ Z

0 otherwise (19)  

Proof. Recall that all vehicles are initially under the extreme scenario (E), vi = vmin, gi ≤ 0, ∀ i ∈ I ∪ L. By applying the ũ, the 
platoon vehicles will sequentially accelerate their speed from vmin to vmax by the acceleration amax in the order of i = 1, 2, …n. More 
exactly, it means that the first leading vehicle in the platoon labeled as i = 1 will accelerate first. After its speed reaches vmax, the second 
vehicle i = 2 start to accelerate, and the same acceleration process continues until the last vehicle i = n reaches speed vmax. Note that the 

time steps needed for a vehicle accelerating from vmin to vmax with the acceleration amax is measured by m =

⌊
vmax − vmin

τamax

⌋

. As a result, the 

speed profile of the platoon vehicles can be described by Equation (20). 

∀i ∈ I, vi(p) =

⎧
⎨

⎩

vmin if p ∈ [0, (i − 1)*m] ∩ Z

vmin + (p − (i − 1)*m)τ*amax if p ∈ [(i − 1)*m, i*m] ∩ Z

vmax if p ∈ [i*m, P] ∩ Z

(20)  

Specifically, by the definition of ũ, for any platoon vehicle i ∈ I, ui(p) = 0 at time steps ∀p ∈ [0, (i − 1)*m] ∩ Z, vehicle i 
maintains vmin and will not accelerate until all the leading vehicles reach vmax at time step p = (i − 1)*m. After that vehicle i takes 
m-many time steps to make its speed reach vmax at p = i*m. Afterwards, platoon vehicle i keeps its speed at vmax constantly for the time 
steps p ∈ [i *m, P] ∩ Z. 

Based upon Equation (20), we first prove that si(p*) ≥ 2h for ∀i ∈ I \ {n}, ∀p* ∈ {(i + 1)*m,…P}. To conduct the proof, we define 
Δsi(p*) as the increased inter-vehicle spacing si between vehicles i and i + 1 resulted from the control input ̃u by the time step p*. Then 
si(p*) can be described in Equation (21): 

si(p*) = si(0) + Δsi(p*) (21) 

Notice that by the step p* ∈ {(i + 1)*m,…P}, the platoon vehicles i and i + 1 both have finished acceleration process sequentially. 
According to Equation (20), during the time interval [(i − 1)*m, i *m], vehicle i accelerates from vmin to vmax with amax while vehicle i +
1 keeps speed vmin. During the time interval [i *m, (i+1)*m], vehicle i drives at speed vmax while vehicle i + 1 accelerates from vmin to 
vmax with amax. During other time intervals, vehicle i and i + 1 have the same speed profile. Besides, platoon vehicles i and i + 1 share 
the same acceleration dynamics and thus run the same distance during acceleration. Therefore, the increased inter-vehicle spacing 

H. Zhang et al.                                                                                                                                                                                                         



Transportation Research Part B 159 (2022) 104–142

114

Δsi(p*) between platoon vehicles i and i + 1 is induced by the dynamic difference that vehicle i drives at speed vmax during 
[i *m, (i+1)*m] for m time steps whereas vehicle i + 1 drives at speed vmin during the time interval [(i − 1)*m, i *m] for another 
m time steps. Then we have 

Δsi(p*) = mτ(vmax − vmin) (22) 

Under extreme scenario (E), si(0) ≥ LBi + 1 + τvmin is derived from the definition of (E) and the safety distance constraints in 
Equation (7). Then combining Equations (21) and (22) above, immediately we have: 

si(p*) ≥ LBi+1 + τvmin + mτ(vmax − vmin) (23) 

According to the references Manual (2000), Roelofsen (2009) and Bokare and Maurya (2017), we examine this distance is safe for a 
lane-change maneuver by considering the practical numerical values of the parameters as follows. h ≤ 35m; vmax = 33 m/s; vmin =

21m/s; amax ≤ 3.7m/s2; − amin ≥ 3m/s2; 3m ≤ LBi ≤ 5.9m, τ = 1s. Then m =

⌊
vmax − vmin

τamax

⌋

≥ 4; 2h ≤ 70m. From the Equation (23) and 

the parameters above, we have si(p*) ≥ 72m ≥ 2h. 
Recall that we want to show the sequential acceleration strategy ̃u is feasible, namely it satisfies constraints in Equations (1)-(7) (i.e. 

ũ ∈ S1(u)). It suffices to prove the safety constraints in Equation (7) can be satisfied in ̃u because all the other constraints in Equation 
(1)-(6) are naturally satisfied in the construction process of ũ. Mathematically, we need to prove si(p*) ≥ LBi+1 + τvi+1(p*) −

(vi+1(p*)− vmin)
2

2amin,i+1
. Notice that under our assumptions, LBi+1 + τvi+1(p*) −

(vi+1(p*)− vmin)
2

2amin,i+1
≤ LBi+1 + τvmax −

(vmax − vmin)
2

2amin,i+1
≤ 62.9m ≤ 72m ≤ si(p*). 

Therefore, we complete the proof for Lemma 3. ▪ 
Using the sequential acceleration strategy ̃u defined in Lemma 3, this study next investigates the feasible lower bound P1,E(l) of the 

lane-change time window by Lemma 4, considering the case with only one subject vehicle l = l1 or l2 requiring for a lane change (m 
= 1) under the extreme scenario (E). 

Lemma 4. Assume that the platoon and two subject vehicles {l1, l2} are under extreme scenario (E) at p = 0 and only one subject 
vehicle requires to cut in the target spacing si(l) ∈ S between the platoon vehicle i(l) and i(l) + 1, P1,E(si(l)|B) defined below can ensure 
the model feasibility. 

P1,E(si(l)|B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
{

(i(l) + 1)m,
(xi(l)+1(0) + h) − xl(0)

τ(vmax − vmin)
+

m
2
+ mδ(l)

}

if B = B1 : xi(l)+1(0) + h ≥ xl(0)

max
{

(i(l) + 1)m,
(xl(0) + h) − xi(l)(0)

τ(vmax − vmin)
+

(

i(l) −
1
2

)

m
}

if B = B2 : xl(0) ≥ xi(l)(0) − h  

where δ(l2) = 1 and δ(l1) = 0; B1 and B2 define two scenarios respectively that the subject vehicle l cuts in the spacing si(l) which is 
before and after the subject vehicle l (see Fig. 3 (a) and (b)). 

Proof. This proof considers that a lane-change maneuver consists of two procedures, which are respectively defined by l1 and l2 as 
follows. 

l1 : The platoon adjusts the target spacing at si(l) and make it larger than 2h so that it can accommodate the lane-change maneuver. 
We denote the number of the time steps needed to finish the procedure of l1 as J1(si(l) → 2h). 
l2: The subject vehicle l adjusts its speed to approach the target spacing si(l). We denote the number of the time steps needed to finish 
l2 as J2( → si(l)). 

Fig. 3. Two scenarios B1, B2 of one subject vehicle lane-change case.  
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Notice that the two procedures l1and l2 are conducted simultaneously to complete a lane change maneuver. Therefore, the lower 
bound of the lane-change time window equals to the larger number of steps of completing l1 or l2, i.e., P1,E(si(l)B) = max{ J1(si(l) → 2h)
, J2(→ si(l))} According to Lemma 3, by applying the sequential acceleration strategy ̃u, we can ensure a safe spacing si(l) ∈ S for the lane 
change at the time step p* ∈ {(i(l)+ 1)*m,…P}. Correspondingly, the number of time steps needed for the procedure l1 is bounded by 
Equation (24). Namely, the platoon needs (i(l) + 1)m time steps to enlarge the spacing si(l) to be larger than 2h. 

J1(si(l) → 2h) ≥ (i(l)+ 1)m (24) 

Next, this study analyzes the number of the time steps J2( → si(l)) for a subject vehicle to approach the target spacing si(l) (i.e., 
complete the procedure l2). To do it, we consider two scenarios, B1 and B2 separately, in which the subject vehicle l is initially running 
behind or ahead of the target spacing si(l). We use different acceleration strategies for B1 and B2. More exactly, the subject vehicle l 
under scenario B1 tends to accelerate to catch up the platoon vehicle i(l) + 1 ahead of it, while under scenario B2, the subject vehicle l 
tends to maintain the vmin speed to wait for the platoon vehicle i(l) to catch up. 

We first discuss the number of time steps J2( → si(l)|B1) under scenario B1. To finish the lane-change maneuver, the subject vehicle l 
is required to arrive si(l) and run ahead of the platoon vehicle i(l) + 1 on the target lane with a safe lane change distance h by the time 
step J2( → si(l)B1). Notice that the procedure of l1 guarantees that the target spacing si(l) has double safe lane change spacing 2h. 
Therefore, once the subject vehicle l can run ahead of the platoon vehicle i(l) + 1 with a safe lane change spacing h by time step J2( → si 

(l)B1), we ensure that the subject vehicle l can simultaneously run behind of the platoon vehicle i(l) with a safe lane change spacing h by 
the time step J2( → si(l)B1). Mathematically, this consideration is presented by Equation (25). 

xl(J2( → si(l)B1)) ≥ xi+1(J2( → si(l)B1)) + h (25) 

Combining Equation (25) and the vehicle dynamics in Equations (1)-(4), the following deductions in Equation (26) provides the 
lower bound of the needed time steps J2( → si(l)B1) by applying the strategy ũ to platoon vehicles 1, 2…, i(l), and l = l1: 

xl(J2( → si(l1)|B1)) ≥ xi+1(J2( → si(l1)|B1)) + h ⇔ xl(0) − (xi+1(0) + h)+

mτ vmax + vmin

2
+ (J2( → si(l1)|B1) − m)τvmax − J2( → si(l)|B1)τvmin ≥

mJ2( → si(l1)|B1) ≥
(xi(l1)+1(0) + h) − xl1 (0)

τ(vmax − vmin)
+

m
2

(26) 

To facilitate the articulation hereafter, we denote the sequential acceleration strategy applied by the platoon vehicles 1, 2…, i(l) 
and subject vehicle l above as ũB1 ∈ ũ. Mathematically,ũB1 (l) : ũ → {1,2,…, i(l) ∪ l}, which indicates that ũB1 is applied to the subject 
vehicle l and the leading platoon vehicles 1, 2, …i(l), not to the following platoon vehicles i(l) + 1, …n. Therefore, the platoon vehicle 
i(l) + 1 and its following vehicles maintain the speed vmin for the subject vehicle l to catch up. In addition, Equation (26) considers 
that the subject vehicle l is the leading subject vehicle l1 so that subject vehicle l can start to accelerate the speed at time step p = 0. If 
the subject vehicle is the following subject vehicle, l = l2, according to ̃u, the subject vehicle l2 should start to accelerate the speed after 
m steps by which the subject vehicle l1 reaches the speed of vmax. Therefore, an additional m number of time steps should be added to 
the Equation (26). Accordingly, we have Equation (27) for the case of l = l2 below. 

J2( → si(l2)B1) ≥
(xi(l2)+1(0) + h) − xl2 (0)

τ(vmax − vmin)
+

3
2

m (27) 

Combining Equation (24) for J1(si(l) → 2h) and Equations (26), (27) for J2( → si(l)B1), P1,E(si(l)B1) is calculated under situation B1 

mathematically by the Equations (28) and (29) respectively for the subject vehicle l = l1 and l = l2. 

P1,E(si(l1)B1) = max{J1(si(l1) → 2hB1), J2( → si(l1)B1)} = max
{

(i(l1)+ 1)m,
(xi1+1(0) + h) − xl1 (0)

τ(vmax − vmin)
+

m

2

}

(28)  

P1,E(si(l2)|B1) = max{J1(si(l2) → 2hB1), J2( → si(l2)B1)} = max
{

(i(l2)+ 1)m,
(xi(l2)+1(0) + h) − xl2 (0)

τ(vmax − vmin)
+

3
2

m

}

(29) 

Using the similar approach, we study the number of the time steps needed J2( → si(l)|B2) under B2 scenario, using the acceleration 
strategy ũB2 ∈ ũ. The details of the analysis can be seen in Appendix-III. Then, P1,E(si(l)|B2) under scenario B2 can be mathematically 
determined by the following Equation (49). 

P1,E(si(l)|B2) = max{J1(si(l) → 2hB2), J2( → si(l)B2)} = max
{

(i(l)+ 1)m,
(xl(0) + h) − xi(l)(0)

τ(vmax − vmin)
+

(

i(l) −
1
2

)

m

}

(30) 

Wrapping the results in Equations (28), (29) and (30), we complete the proof for Lemma 4. ▪ 
Built upon the results in Lemma 4, we next construct the lower bound P2,E for the case involving two-subject vehicles requiring for 

lane change in Lemma 5 to ensure the feasibility of the MINLP-MPC model. To develop this lemma, we consider four scenarios 
regarding the lane-change maneuvers of two subject vehicles. 

C1 : xi(l1)+1(0)+ h ≥ xl1 (0); xi(l2)+1(0)+ h ≥ xl2 (0), which represents the case that both the subject vehicles l1 and l2 cut in front (i. 
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e., under scenario B1), see Fig. 4 (a); 
C2 : xi(l1)+1(0)+ h ≥ xl1 (0); xl2 (0) ≥ xi(l2)(0) − h, which represents the case that the subject vehicle l1 cuts in front (under B1), while 

the subject vehicle l2 cuts in back (under B2), see Fig. 4 (b); 
C3 : xl1 (0) ≥ xi(l1)(0) − h; xi(l2)+1(0)+ h ≥ xl2 (0), whch represents the case that the subject vehicles l1 cuts in back (under B2), 

while the subject vehicle l2 cuts in front (under B1), see Fig. 4 (c); 
C4 : xl1 (0) ≥ xi(l1)(0) − h; xl2 (0) ≥ xi(l2)(0) − h, which represents the case that both the subject vehicles l1 and l2 cut in back (under 

B2), see Fig. 4 (d). 

Lemma 5. Assume that (i) the platoon and the lane change subject vehicles are under extreme scenario (E) at p = 0; (ii) two subject 
vehicles l1,l2, which intend to cut in the spacing si(l1) respectively between platoon vehicles i(l1) and i(l1) + 1 and si(l2) between platoon 
vehicles i(l2) and i(l2) + 1 in the platoon on the target lane, si(l1) < si(l2), si(l1) & si(l2) ∈ S. Then we have the lower bound of P2,E as follows 
to ensure the model feasibility. 

P2,E(si(l1), si(l2)|C) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{

P1,E(si(l1)|B1), P1,E(si(l2)|B1)

}

+ ε(C1) if C = C1

max
{

P1,E(si(l1)|B1), P1,E(si(l2)|B2)

}

+ ε(C2) if C = C2

max
{

P1,E(si(l1)|B2), P1,E(si(l2)|B1)

}

+ ε(C3) if C = C3

max
{

P1,E(si(l1)|B2), P1,E(si(l2)|B2)

}

+ ε(C4) if C = C4

,

where ε(C1),ε(C2),ε(C3), and ε(C4) are the delay terms to fix the conflicts caused by applying acceleration strategies ũB1 , ũB2 ∈ ũ 
from Lemma 4 so that we can construct P2,E. The mathematical representations of ε(C1),ε(C2),ε(C3),ε(C4) are shown below. 

ε(C1) =

⎧
⎪⎪⎨

⎪⎪⎩

ΔJ1(si(l1)→ 2h|B1) = 0
ΔJ2
ʀ
vl1 → ṽ|B1

)
= 0

ΔJ1(si(l2)→ 2h|B1) = max
{

J2
ʀ
vl1 → ṽ|B1

)
− J1(si(l1)→ 2h|B1), 0

}

ΔJ2
ʀ
vl2 → ṽ|B1

)
= 0

⎫
⎪⎪⎬

⎪⎪⎭

Fig. 4. Four scenarios C1,C2,C3,C4 of two subject vehicles lane-change case.  
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ε(C2) =

⎧
⎪⎪⎨

⎪⎪⎩

ΔJ1(si(l1)→ 2h|B1) = 0
ΔJ2
ʀ
vl1 → ṽ|B1

)
= 0

ΔJ1(si(l2)→ 2h|B2) = max
{

J2
ʀ
vl1 → ṽ|B1

)
− J1(si(l1)→ 2h|B1), 0

}

ΔJ2
ʀ
vl2 → ṽ|B2

)
= max

{
J2
ʀ
vl1 → ṽ|B1

)
− J1(si(l1)→ 2h|B1), 0

}

⎫
⎪⎪⎬

⎪⎪⎭

,

ε(C3) =

⎧
⎪⎪⎨

⎪⎪⎩

ΔJ1(si(l1)→ 2h|B2) = 0
ΔJ2
ʀ
vl1 → ṽ|B2

)
= 0

ΔJ1(si(l2)→ 2h|B1) = 0
ΔJ2
ʀ
vl2 → ṽ|B1

)
= J2

ʀ
vl1 → ṽ|B2

)

⎫
⎪⎪⎬

⎪⎪⎭

and ε(C4) =

⎧
⎪⎪⎨

⎪⎪⎩

ΔJ1(si(l1)→ 2h|B2) = 0
ΔJ2
ʀ
vl1 → ṽ|B2

)
= 0

ΔJ1(si(l2)→ 2h|B2) = 0
ΔJ2
ʀ
vl2 → ṽ|B2

)
= 0

⎫
⎪⎪⎬

⎪⎪⎭

Proof. Notice that P1,E in Lemma 4 is developed for the case that only one of the two subject vehicles requires lane-change 
accommodation. To find the time window lower bound P2,E for the scenarios involving two subject vehicles’ requests, we can use a 
naïve approach. If there are two subject vehicles simultaneously using the same acceleration strategies as those in Lemma 4 without 
conflicts, then the P2,E is equal to the maximum one of the lower bounds P1,E for the two subject vehicles. Thus according to Lemma 4, 
we have 

P2,E(si(b), si(c)|C) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{

P1,E(si(l1)|B1), P1,E(si(l2)|B1)

}

if C = C1,

max
{

P1,E(si(l1)|B1), P1,E(si(l2)|B2)

}

if C = C2,

max
{

P1,E(si(l1)|B2), P1,E(si(l2)|B1)

}

if C = C3,

max
{

P1,E(si(l1)|B2), P1,E(si(l2)|B2)

}

if C = C4  

=

⎧
⎪⎪⎨

⎪⎪⎩

max{J1(si(l1)→ 2h|B1), J2( → si(l1)|B1), J1(si(l2)→ 2h|B1), J2( → si(l2)|B1)} if C = C1,

max{J1(si(l1)→ 2h|B1), J2( → si(l1)|B1), J1(si(l2)→ 2h|B2), J2( → si(l2)|B2)} if C = C2,

max{J1(si(l1)→ 2h|B2), J2( → si(l1)|B2), J1(si(l2)→ 2h|B1), J2( → si(l2)|B1) } if C = C3,

max{J1(si(l1)→ 2h|B2), J2( → si(l1)|B2), J1(si(l2)→ 2h|B2), J2( → si(l2)|B2)} if C = C4

(31)  

However, in traffic reality, the acceleration strategies of the two subject vehicles adopted in Lemma 4 may cause conflicts. Below 
we demonstrate the conflicts, and then derive the mathematical formulation for the corrections: ε(C1),ε(C2),ε(C3),ε(C4) so that we can 
fix the solution in Equation (31) which uses the naïve approach. 

Notice that each delay term ε(.)has four components {ΔJ1(si(l1)→ 2h|B),ΔJ2(vl1 → ṽ|B),ΔJ1(si(l2)→ 2h|B),ΔJ2(vl2 → ṽ|B)}, which are 
respectively the delays corresponding to four lane-change procedures {J1(si(l1)→ 2h|B), J2(→ si(l1)|B), J1(si(l2)→ 2h|B), J2(→ si(l2)|B)} in 
the maximum function in the Equation (31), where B = B1 or B2. 

For the scenario C1, both the subject vehicles l1 and l2 tend to cut in front. They are under scenario B1 defined in Lemma 4. Thus we 
consider they respectively apply the acceleration strategy ũB1 (l1) : ũ → {1,2…, i(l1), l1} and ũB1 (l2) : ũ → {1,2…, i(l2), l1, l2} to com
plete the cut-in maneuvers simultaneously. From Equation (9) and the assumptions in Lemma 5, we have the target spacing of the 
subject vehicle l1 is ahead of the subject vehicle l2’s target spacing: si(l1) < si(l2). It also indicates that i(l1) < i(l2). Namely, the platoon 
vehicle i(l1) is running before platoon vehicle i(l2). 

The conflicts will potentially arise at the platoon vehicles denoted by i(l1↔l2) ∈ {i(l1) + 1, …i(l2)} if the platoon yields a lane- 
change spacing for subject vehicle l1 earlier than it arrives at the target spacing, i.e., J2(→ si(l1)|B1) > J1(si(l1)→ 2h|B1). Specifically, 
to accommodate the subject vehicle l1’s lane-change request by following ũB1 (l1), platoon vehicles i(l1↔l2) are required to stay speed 
vmin until the subject vehicle l1 reaches the target spacing si(l1) by the time step J2(→ si(l1)|B1). However, to accommodate the subject 
vehicle l2’s lane change by following ̃uB1 (l2), platoon vehicles i(l1↔l2) are required to sequentially accelerate to prepare the spacing si(l2)

for accommodating vehicle l2 starting from the end of the time step J1(si(l1)→ 2h|B1). Consequently, if J2(→ si(l1)|B1) > J1(si(l1)→ 2h|B1), 
the conflict takes place. More exactly, platoon vehicles i(l1↔l2) are required to stay speed vmin by ̃uB1 (l1) since subject vehicle l1 has not 
reached the target spacing si(l1) yet. On the other hand, they are also instructed by ũB1 (l2) to accelerate since the process to prepare a 
spacing for subject vehicle l2’s lane-change request has been triggered by the end of the time step J1(si(l1)→ 2h|B1). Therefore, during 
the time steps {J1(si(l1)→ 2h|B1),…,J2(→ si(l1)|B1)}, any platoon vehicle i(l1↔l2) will receive two conflict instructions. 

To resolve the conflict, we let the platoon vehicles i(l1↔l2) ∈ {i(l1) + 1, …i(l2)} first stay speed vmin from time step J1(si(l1)→ 2h|B1)

until the time step J2(vl1 → ṽ|B1) by which the subject vehicle l1 arrives at target spacing si(l1). This leads to a time delay 
ΔJ1(si(l2)→ 2h|B1) = J2(→ si(l1)|B1) − J1(si(l1)→ 2h|B1) for the subject vehicle l2’s lane-change procedure l1. Notice that if J2(→ si(l1)|B1)

≤ J1(si(l1)→ 2h|B1), ΔJ1(si(l2)→ 2h|B1) = 0. Namely, no such conflict and there is no time delay in the subject vehicle l2’s procedure l1. 
Combine these two together, ΔJ1(si(l2)→ 2h|B1) = max{J2(→ si(l1)|B1) − J1(si(l1)→ 2h|B1),0}. Furthermore, we can examine and find 
that no time delay exists in the other three lane-change procedures under B1:{J1(si(l1)→ 2h|B1), J2(→ si(l1)|B1), J2(→ si(l2)|B1)} . 
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Specifically, subject vehicle l1’s original lane-change acceleration strategy ̃uB1 (l1) is not sacrificed to address the conflicts, thus there is 
no delay term in subject vehicle l1’s two lane-change procedures l1, l2. Namely, ΔJ1(si(l1)→ 2h|B1) = 0; ΔJ2(→ si(l1)|B1) = 0. For the 
subject vehicle l2’s lane change procedures l2, according to the acceleration strategy ̃uB1 (l2), subject vehicle l2 accelerates after subject 
vehicle l1 in order to catch up with the platoon vehicle i(l2) + 1, which keeps speed vmin all the time. Therefore, the modification we 
made above has no impact on the subject vehicle l2’s lane change procedures l2. There is no time delay term. Namely, ΔJ2(→ si(l2)|B1)

= 0. We have the delay term ε(C1) in Equation (32): 

ε(C1) =

⎧
⎪⎪⎨

⎪⎪⎩

ΔJ1(si(l1)→ 2h|B1) = 0
ΔJ2( → si(l1)|B1) = 0

ΔJ1(si(l2)→ 2h|B1) = max{J2( → si(l1)|B1) − J1(si(l1)→ 2h|B1), 0}
ΔJ2( → si(l2)|B1) = 0

⎫
⎪⎪⎬

⎪⎪⎭

(32) 

Recall that these four components above corresponds to the formulation of scenario C1 in Equation (31):max{J1(si(l1)→ 2h|B1),

J2(vl1 → ṽ|B1), J1(si(l2)→ 2h|B1), J2(vl2 → ṽ|B1)}. For the next three scenarios C2, C3, C4, we will discuss the conflict terms ε(C2),ε 
(C3),ε(C4) in the similar way. Here, we directly give the results, but provide detailed analysis in Appendix-IV. 

ε(C2) =

⎧
⎪⎪⎨

⎪⎪⎩

ΔJ1(si(l1)→ 2h|B1) = 0
ΔJ2( → si(l1)|B1) = 0

ΔJ1(si(l2)→ 2h|B2) = max{J2( → si(l1)|B1) − J1(si(l1)→ 2h|B1), 0}
ΔJ2( → si(l2)|B2) = max{J2( → si(l1)|B1) − J1(si(l1)→ 2h|B1), 0}

⎫
⎪⎪⎬

⎪⎪⎭

(33)  

ε(C3) =

⎧
⎪⎪⎨

⎪⎪⎩

ΔJ1(si(l1)→ 2h|B2) = 0
ΔJ2( → si(l1)|B2) = 0

ΔJ1(si(l2)→ 2h|B1) = 0
ΔJ2( → si(l2)|B1) = J2( → si(l1)|B2)

⎫
⎪⎪⎬

⎪⎪⎭

(34)  

ε(C4) =

⎧
⎪⎪⎨

⎪⎪⎩

ΔJ1(si(l1)→ 2h|B2) = 0
ΔJ2( → si(l1)|B2) = 0

ΔJ1(si(l2)→ 2h|B2) = 0
ΔJ2( → si(l2)|B2) = 0

⎫
⎪⎪⎬

⎪⎪⎭

(35) 

Wrapping up the discussions above, we complete the proof for Lemma 5. ▪ 
Notice that we assume the two subject vehicles l1 and l2 cut in different target spacings, which is the most common case of lane 

change maneuver. For the case where the two subject vehicles l1 and l2 cut in the same spacing, similar strategies can be utilized and we 
do not show the detailed proof here. 

Lemma 5 provides the lower bound P2,E(si(l1), si(l2)|C) needed for the case with two subject vehicles requiring for lane change under 
extreme scenario (E). Finally, by summarizing the results from Lemma 1 to Lemma 5, we present the lower bound P2,E in Theorem 1 
to ensure the feasibility of the MINLP-MPC model, considering a platoon is running under a general scenario (E). 

Theorem 1. Assume that (i) a platoon and two subject vehicles l1,l2 are under a general scenario E at control time step k* (ii) subject 
vehicles l1,l2 intend to cut in the spacing si(l1) and si(l2) respectively, si(l2) ∕= si(l1), si(l1)& si(l2) ∈ S. Then the lower bound of P2,E under 
scenarios C1 to C4 are summarized as follows. 

P2,E(si(l1), si(l2)|C1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(xi(l1)+1(0) + h) − xl1 (0)
τ(vmax − vmin)

+

(

i(l2) − i(l1) +
1
2

)

m,

(xi(l2)+1(0) + h) − xl2 (0)
τ(vmax − vmin)

+
m
2
}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+
vmax − vmin

− τamin
if J̃

max

⎧
⎪⎪⎨

⎪⎪⎩

(i(l2) + 1)m,

(xi(l2)+1(0) + h) − xl2 (0)
τ(vmax − vmin)

+
m
2

⎫
⎪⎪⎬

⎪⎪⎭

+
vmax − vmin

− τamin
otherwise

,
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P2,E(si(l1), si(l2)|C2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xi(l1)+1(0) + h) − xl1 (0)
τ(vmax − vmin)

+

(

i(l2) − i(l1) +
1
2

)

m,

(xl2 (0) + h
)
− xi(l2)(0) + (xi(l1)+1(0) + h) − xl1 (0)

τ(vmax − vmin)

+(i(l2) − i(l1))m}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
vmax − vmin

− τamin
if J̃

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xi(l1)+1(0) + h) − xl1 (0)
τ(vmax − vmin)

+
m
2
,

(i(l2) + 1)m,

(xl2 (0) + h
)
− xi(l2)(0)

τ(vmax − vmin)
+

(

i(l2) −
1
2

)

m

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
vmax − vmin

− τamin
otherwise

,

P2,E(si(l1), si(l2)|C3) = max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i(l2) + 1)m,

(xl1 (0) + h
)
− xi(l1)(0)

τ(vmax − vmin)
+

(

i(l1) −
1
2

)

m,

(xi(l2)+1(0) + h) − xl2 (0) +
ʀ
xl1 (0) + h

)
− xi(l1)(0)

τ(vmax − vmin)
+ (i(l1) − 1)m}

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+

⌈
vmax − vmin

− τamin

⌉

,

P2,E(si(l1), si(l2)|C4) = max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i(l2) + 1)m

(xl2 (0) + h
)
− xi(l2)(0)

τ(vmax − vmin)
+

(

i(l2) −
1
2

)

m

(xl1 (0) + h
)
− xi(l1)(0)

τ(vmax − vmin)
+

(

i(l1) −
1
2

)

m}

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+

⌈
vmax − vmin

− τamin

⌉

,

where condition J̃ : J2(→ si(l1)|B1) > J1(si(l1)→ 2h|B1). 

Proof. According to Equation (18) in Lemma 2, a general scenario (E) can be transferred into extreme scenario (E) within 
⌊

vmax − vmin
− τamin

⌋

time steps. Therefore, P2,E(si(l1), si(l2)
⃒
⃒C) = P2,E(si(l1), si(l2)|C)+

⌈
vmax − vmin
− τamin

⌉

, where the mathematical descriptions of P2,E(si(l1), si(l2)|C) are 

given in Lemma 5. Since P2,E(si(l1), si(l2)|C) is derived from the maximum functions, we compare the elements in the maximum functions 
with given information and present the results in Theorem 1. We omit the detailed discussions here. ▪ 

Theorem 1 above finds a conservative lower bound of the P value: P2,E to ensure the feasibility of the MINLP-MPC model so that 
two subject vehicles l1 and l2 can complete lane changes at different target spacings while the platoon is initially under a general 
feasible scenario. Therefore, if we pick a time window P ≥ P2,E, the MINLP-MPC model is able to find a feasible trajectory control 
solution to complete this task for two subject vehicles cutting in different spacings. For the case where the subject vehicles l1 and 
l2 cut into the same target spacing, modified similar strategies could be applied and we need to accordingly modify the results in 
Lemma 4, Lemma 5 and Theorem 1. We do not present the detailed results here. 

Remark 2. Our proofs above can be extended to analyze the feasibility of the cases involving more than two subject vehicles: l ∈ {l1, 
l2,…, lm}, m > 2. Note that Lemma 1-Lemma 4 can be directly applied for more than two subject vehicles cases. Recall that Lemma 4 
investigates two different lane-change maneuvers (B1,B2) of one subject vehicle case. Lemma 5 considers the interferences of the 
lane-change maneuvers between two subject vehicles, differentiate them into four different scenarios C1,C2,C3,C4, and then introduces 
the corresponding delay terms ε(C1),ε(C2),ε(C3), ε(C4), which are integrated into the results in Lemma 4 to find out the lane-change 
time window. When it comes to m subject vehicles cases (m > 2), utilizing the similar analysis approach used in Lemma 5, there are 2m 

different scenarios C1,C2,….,C2m involved and 2m corresponding delay terms ε(C1),ε(C2),…,ε(C2m ). Using the same approach as we 
analyze ε(C1),ε(C2),ε(C3), ε(C4) in Lemma 5, we can determine the mathematical representations of the delay terms ε(C1),ε(C2),…,

ε(C2m ). Due to the complexity resulted from the high dimensionality, we omit these detailed discussions here. More importantly, it is 
not common in real traffic to have many individual subject vehicles simultaneously requiring for lane-change accommodation for a 
platoon in a short time period. If this occurs, it is equivalent to the problem that one subject platoon (not individual vehicle) cuts in 
another target platoon. We propose to develop new approach to address this complicated case in the future work. # 

The mathematical formulation of the P2,E in Theorem 1 indicates that P2,E will increase when the two elements increase: the 
required safe distance to accommodate lane-change requests (i.e., h), and the initial distance between subject vehicle l and its target 
lane-change spacing (i.e., |xi(l) + 1(0) − xl(0)|). Specifically, if a larger safe lane-change spacing h is required, then it takes the platoon 
more time steps to generate the acceptable spacings to accommodate the lane-change requests. On the other hand, if the subject vehicle 
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l is instructed to cut in a target spacing that is far away from its initial location, naturally it needs more time for coordinating the 
movements of a subject vehicle l and the platoon. Therefore, it can only be done within a larger time window. Our numerical ex
periments find that the optimal spacings for subject vehicles to cut in are often selected near subject vehicles’ initial locations. 
Therefore, we may choose a smaller time window P, which helps reduce the computation loads. Moreover, by plugging well-accepted 
values for the parameters in the mathematical formulation in Theorem 1, we find that P2,E ≤ 15 often holds. Thus, P = 15 is a proper 
lane-change time window to ensure the MINLP-MPC model feasibility. We validate it by our extensive numerical experiments as well. 
In addition, this experimental time window also gives an instruction for the lead time of requiring mandatory lane-change accom
modation. Wrapping the thoughts above, the model feasibility analysis and Theorem 1 provide us good insights to set up the value of 
the lane-change time window P in this PB-CLC control so that we can balance the model feasibility and computation load. In the 
meantime, the feasibility proof further facilitates the development of the hybrid system controller and solution approach. We will 
discuss the details in the corresponding sections. 

5. Hybrid MPC System 

This section formally presents the mathematical formulations of the hybrid MPC system and proves the hybrid control feasibility 
and stability. It is noted that the hybrid MPC system will get very complicated as the number of subject vehicles increases. Thus without 
loss of generality, we first construct a hybrid MPC system considering two subject vehicles l1,l2 requiring for lane-change (m = 2) and 
then proves the feasibility and stability of this m = 2 hybrid MPC system. Finally, this study generalizes the m = 2 hybrid MPC system to 
make it applicable for the case of more subject vehicle (m > 2). 

5.1. Hybrid System construction 

As two subject vehicles are involved in the PB-CLC, the corresponding hybrid MPC system initially illustrated in Fig. 2 will be 
further complicated shown in Fig. 5, where qi (i = 0, 1, 2) represent three different states illustrated in the problem formulation section, 
q2.1 and q2.2 are sub-states of restoration state q2. σi (i = 1, 2, 3) represents the switching signal between different states and σ2.1 
represents the switching signal between sub-states q2.1 and q2.2. More exactly, q0 is the state that the CAVs in the platoon (not including 
the subject vehicles l ∈ L) follow the car-following movements under the control instruction from the MPC-q0 given below for the 
control time step k ∈ Z+(q0) = {0, 1, …k* − 1}. 

MPC-q0: 

Min Γ(u(k)) =
1
2
[
zT(k+ 1)Qzz(k+ 1)+ (z′

(k + 1))T Qz′ z
′

(k + 1)
]
+

Δt2

2
‖ u(k) ‖2

2  

s.t. Constraints in Equations (1)-(7)∩{i ∈ I}, (12)-(15) 
Note that MPC-q0 can be obtained by removing integer variables y that are relevant to lane-change maneuvers from the MINLP- 

MPC model. After removing y, the prediction time horizon P can be set to 1 and thus the MINLP-MPC turns to a systematical car- 
following (platooning) control which was first adopted in Gong et al. (2016). Once the platoon under MPC-q0 receives the 
lane-change requests from subject vehicles at time step k*, they cooperatively determine the optimal cut-in timing and spacing for each 
subject vehicle (i.e., determine s(l) and p(l), l ∈ {l1,l2}) through solving the MINLP-MPC model within one sample time interval. The 
end of this process activates the switching signal σ1, which instructs the system to switch from the state q0 to the new state q1 starting 
from the step k*. 

Accordingly, the state q1 describes the process that the target platoon manages its spacings to accommodate the lane-change re
quests with given optimal lane-change decisions in timing and spacing generated by the MINLP-MPC model. The state q1 starts from 
the time step k* until one of the subject vehicles shifts in the time step min {p(l1),p(l2)}. Accordingly, the platoon control model under 
the state q1 is given by MPC-q1, which is implemented at every control step k ∈ Z+(q1) = {k*, …, k* + min {p(l1),p(l2)}}. 

MPC-q1: 

Fig. 5. Hybrid MPC system (m = 2).  
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Min Γ(u, y) =
∑P

p=1

{
1
2
[
zT(p)Qzz(p)+ (z′

(p))T Qz′ z
′

(p)
]
+

Δt2

2
‖ u(p − 1) ‖2

2

}

s.t. for time steps p ∈ P: Constraints in Equations (1)-(7) ∩{i ∈ I, l ∈ {l1,l2}}, (12)-(15) 

yl
s(l),̃p(l)

= 1, yl
s,p = 0; l ∈ {l1, l2}, ∀s ∈ S, s ∕= s(l), p ∈ P, p ∕= p̃(l) (36)  

xl(p) − xi(l)+1(p) ≥ h, xi(l)(p) − xl(p) ≥ h; ∀p ∈
{

p̃(l),…, P̃
}
, l ∈ {l1, l2}, (37)  

where ̃p(l) = p(l) − (k − k*) is the dedicated time step of the lane-change maneuver at each platoon control step k after k*. Namely, as 
the control under MPC-q1 proceeds, the dedicated time step of the lane-change maneuver decreases. Equation (36) and Equation (37) 
are obtained by respectively integrating the optimal lane change decisions (i.e., the optimal solutions of yl

s,p∀s ∈ S,p ∈ P) into Equation 

(8) and Equation (11). ̃P = P − (k − k* − 1) in Equation (37) is the updated lane-change time window P. Note that Equation (37) is only 
activated when a safe lane-change spacing is ready and will force the safe lane-change spacing keep active until the end of the updated 
lane-change time window P̃. Thus, MPC-q1 is derived from the MINLP-MPC model but specifies the lane-change decision values y 
which are relevant to the lane change maneuvers. 

Next, the state q2 including q2.1 and q2.2 in the hybrid system functions as an intermediate state for the platoon to smoothly switch 
from state q1 back to state q0. The state q2 is necessary for two reasons. First, neither q0 nor q1 fits the state that only one of the subject 
vehicles has cut in the platoon, but the other is still proceeding the lane-change maneuver. Therefore, we design the substate q2.1, 
which is trigged by the switching signal σ2 when one of the subject vehicles finishes the lane-change maneuver at the time step k* +
min {p(l1),p(l2)}. Second, it is not feasible for the system to directly switch to state q0 from state q1 since MPC-q0 and MPC-q1 use 
different types of safety constraints. Specifically in MPC-q0, at control time step k ≥ k* + p(l), the subject vehicle l, which has cut in the 
spacing between vehicles i(l) and i(l) + 1 in the platoon, should satisfy the safety distance constraints in Equations (38) and (39), which 
are derived from Equation (7). But this cannot happen automatically. More exactly, when the subject vehicle l just finishes the lane 
change at the time step k* + p(l), the spacings between the subject vehicle l and its neighbors are only ensured to be larger than the safe 
lane-change distance h (see Equation (11) or Equation (37)). However, the lane-change safe distance h is usually smaller than the safety 
distance, which is the right-hand side of the Equations (38) and (39) below. 

xl(k) − xi(l)+1(k) ≥ LBi(l)+1 + τvi(l)+1(k) −
[vi(l)+1(k) − vmin]

2

2amin,i(l)+1
(38)  

xi(l)(k) − xl (k) ≥ LBl + τvl (k) −
[vl (p*) − vmin]

2

2al
min

(39) 

Therefore, the safety feasibility is not secured for the platoon to directly switch from the state q1 to state q0. We need the inter
mediate state q2, which consists of two sub-states q2.1 and q2.2. The first sub-state q2.1 describes the state, when one of the subject 
vehicles has finished the lane change while the other subject vehicle has not. The second sub-state q2.2 describes the following state 
when both two subject vehicles have finished lane-change maneuvers. More exactly, denote the subject vehicle l ∈ l is the first one to 
finish the lane-change maneuver at control time step k* + p(l) in the target spacing s(l), which is between the platoon vehicles i(l) and 
i(l)+ 1. Mathematically, l = argminl={l1 ,l2}{p(l1), p(l2)}. Then the other subject vehicle is denoted by l= l \ l, with its corresponding 
optimal lane change spacing and timing denoted by s

ʀ
l
)
, k* + p

ʀ
l
)

respectively. In summary, the first sub-state q2.1 describes the state 

during control time steps {k* + p(l)+ 1, …, k* + p
ʀ
l
)
}, whereas the second sub-state q2.2 describes the situation starting from the 

control time step k* + p
ʀ
l
)
+ 1 until the system receives the switching signal σ3. 

Correspondingly, the platoon control model under sub-state q2.1 is given by MPC− q2.1, which is implemented at the control time 

step k ∈ Z+(q2.1) =

{

k* + p(l) + 1,…,k* + p
ʀ
l
)
}

. 

MPC-q2.1: 

Min Γ(u, y) =
∑P

p=1

{
1
2
[
zT(p)Qzz(p)+ (z′

(p))T Qz′ z
′

(p)
]
+

Δt2

2
‖ u(p − 1) ‖2

2

}

s.t. for time steps p ∈ P: Constraints in Equations (1)-(6) ∩{i ∈ I, l ∈ {l1,l2}}, (7)∩{i ∈ I}, (12)-(15) , Equations (36) and (37) for l = l; 

xl(k) − xi(l)+1(k) ≥ h, l = l, (40)  

xi(l)(k) − xl(k) ≥ h, l = l, (41)  

where Equations (40) and (41) applied to subject vehicle l are the spacing constraints for safe lane-change, which are formulated 
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according to the Equation (37). Accordingly, the safety constraints in Equation (7) are not employed for the spacing s(l). Equations (36) 
and (37) describe the lane-change process of subject vehicle l. In summary, MPC-q2.1 is derived from the MPC-q1 but removes one 
subject vehicle’s lane-change decision variable y since it has finished the lane-change maneuver. 

The platoon control model under sub-state q2.2 is given by MPC− q2.2, which is implemented at the control time step k ∈ Z+(q2.2) =
{

k* + p
ʀ
l
)
+ 1,…,k* + p(σ3)

}

. 

MPC-q2.2: 

Min Γ(u, y) =
∑P

p=1

{
1
2
[
zT(p)Qzz(p)+ (z′

(p))T Qz′ z
′

(p)
]
+

Δt2

2
‖ u(p − 1) ‖2

2

}

s.t. for time steps p ∈ P: Constraints in Equations (1)-(6) ∩{i ∈ I, l ∈ {l1,l2}}, (7)∩{i ∈ I}, (12)-(15), Equations (40) and (41) for l = l, l, 
where k* + p(σ3) represents the control time step when the system receives the switching signal σ3; Equations (40) and (41) for l = l, l 
indicate that both two subject vehicles employ the lane-change spacing constraints right after the lane change maneuver. Thus, MPC- 
q2.2 is also derived from the MPC-q1 but completely removes the lane-change decision variable y since both two subject vehicles have 
finished the lane-change maneuvers. 

The control instruction of MPC− q2.2 will enlarge the immediate preceding and following spacings of each subject vehicle (will 
show it in persistent feasibility proof later). Once the safety distance constraints in Equations (38) and (39) are re-satisfied for all 
subject vehicles, the system triggers the switching signal σ3 for the switch from intermediate sub-state q2.2 to the car-following state q0. 
Up to this time step, the platoon completes a PB-CLC control cycle to accommodate the lane change requests. 

Notice that it is possible that the two subject vehicles simultaneously finish the lane change at the same step. In this situation, the 
system should directly switch from state q1 to sub-state q2.2, skipping the sub-state q2.1. To simplify the hybrid system, we do not 
introduce new switching signal to describe this switching. Instead, we consider the system still goes through sub-state q2.1 but will 
immediately switch to sub-state q2.2. Besides, if the platoon is under stable condition and the desired spacing sd is very large, then the 
safety distance constraints in Equations (38) and (39) are likely to be directly satisfied after two subject vehicles finish the lane-change 
maneuvers, so that both sub-state q2.1 and q2.2 should be skipped. We can apply the same abovementioned trick to simplify the hybrid 
system. 

5.2. Persistent feasibility analysis of the hybrid system 

This study notes the importance to prove the persistent feasibility of the MPC-based hybrid system since each state of the hybrid 
system corresponds to a MPC model (Bridgeman et al., 2016, Zhang et al., 2016). Mainly, the persistent feasibility of a hybrid system 
consists of two parts: (i) Each state of the hybrid system is individually feasible; (ii) The switchings between states are feasible. Along 
with the feasibility analysis, the closure property of the cycle in the hybrid system (such as q0 → q1 → q2.1 → q2.2 → q0 in this study) is 
often discussed. This sub-section first proves the feasibility of the hybrid system and further proves the cycle of the hybrid system is 
closed in Theorem 2. 

Theorem 2. The hybrid system is feasible and the cycle q0 → q1 → q2.1 → q2.2 → q0 is closed, if the following three conditions hold. (i) 
State q0 is initially feasible at control time step k = 0; (ii) Theorem 1 holds, which ensures the feasibility of the MINLP-MPC; (iii) The 
prediction horizon P > p(σ3). 

Proof. To prove this theory, we first show the feasibility of each individual state in the hybrid system and then prove that each 
necessary switching from one state to another is feasible. Combining these two results, we conclude the feasibility of the hybrid system. 
To do that, we note that the sequential feasibility of state q0 was proved in Gong et al., 2016, given that the condition (i) holds: q0 is 
initially feasible at k = 0. Besides, the feasibility of the state q1, sub-states q2.1 and q2.2 are all indicated by the feasibility analysis of the 
MINLP-MPC model in Section 4. Namely, if the MINLP-MPC model can determine a feasible solution to conduct the lane change 
maneuvers when the prediction horizon P satisfies the inequalities in Theorem 1, then the sequential feasibility of the state q1, 
sub-states q2.1 and q2.2 are secured. Following this idea, we provide the proof in detail as follows. 

Recall that the MINLP-MPC model predicts the vehicles’ trajectories for next P steps, i.e. the control time step k ∈ Z+(MINLP −
MPC) = {k*, …k* + P}, where k* is the time step that the lane-change accommodation is required. Given the condition (iii) P > p(σ3), 
we have Z+(q1), Z+(q2.1), Z+(q2.2) ∈ Z+(MINLP − MPC), which indicates that the P-step trajectory predictions given by the MINLP- 
MPC model completely cover the control time steps of the state q1 and sub-states q2.1, q2.2. 

Next, we show that the constraints sets in q1, q2.1 and q2.2 are all derived from Equations (1)-(15), which are the constraints of 
the MINLP-MPC model. Specifically, state q1 has the constraints in Equations (36) and (37), apart from the other constraints contained 
in Equations (1)-(15). Note that Equations (36) and (37) are derived from the lane-change constraints in Equations (8)-(11). Thus, the 
constraints set in state q1 is derived from the constraints set of the MINLP-MPC model. Taking the same idea, sub-states q2.1 and q2.2 
have constraints in Equations (40) and (41) that are different from Equations (1)-(15) and (36), (37). Notice that Equations (40) and 
(41) are the safe lane-change constraints derived from Equation (11), which is designed in particular to ensure that the subject vehicle 
keeps the safe distances h with the adjacent platoon vehicles after lane change. Wrapping above, the constraints sets of q1, q2.1, q2.2 
are all subsets derived from the constraints set of the MINLP-MPC model. Consequently, given that the second condition (ii) Theorem 1 
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holds, which means the MINLP-MPC model is feasible, state q1 and sub-states q2.1, q2.2 are all feasible. 
Then, we show that the switchings between states are feasible. The switching signal σ1: q0 → q1 is feasible because states q0 and q1 

share the same constraint set at the switching time step k*. The state switchings such as σ2: q1 → q2.1, σ2.1: q2.1 → q2.2 are all feasible 
for the same reason that two states share the same constraint sets at the switching time step. The feasibility of the switching signal σ3: 

q2.2 → q0 is proved next together with the proof of the cycle closure property. 
To prove the cycle of the hybrid system q0 → q1 → q2.1 → q2.2 → q0 is closed, which means that the hybrid system will go through the 

cycle in finite time steps. Notice that the hybrid system is state-dependent. That is to say, the state switchings will happen when certain 
conditions are satisfied. According to the hybrid system construction process in Section 5.1, the state switchings q0 → q1 → q2.1 → q2.2 
always hold. Specifically, the switching q0 → q1 takes place when the lane-change requests are received and the lane-change decisions y 
are specified by the MINLP-MPC model at step k*. The switching q1 → q2.1 and q2.1 → q2.2 happen respectively when one subject vehicle 
first finishes lane-change and both two subject vehicles finish lane-change. 

Therefore, to prove the cycle of the hybrid system is closed, we only need to show the switching q2.2 → q0 will finish in finite time 
steps. Note that the switching q2.2 → q0 completes if the safety distance constraint in Equation (7)∩{i ∈ I} are re-satisfied from the lane- 
change safe constraints in Equations (40) and (41). Given that the sub-state q2.2 is stable (Gong and Du, 2018), the sub-state q2,2 will 
enter the steady-state below in finite steps such as at the time step k̃, according to the MPC-q2.2 model. 

Δx1

(
k̃
)
= Δx2

(
k̃
)
= … = Δxi(l)

(
k̃
)
= Δxl

(
k̃
)
= Δxi(l)+1

(
k̃
)
= … = Δxn− 1

(
k̃
)
= sd,

Δv1

(
k̃
)
= Δv2

(
k̃
)
= … = Δvi(l)

(
k̃
)
= Δvl

(
k̃
)
= Δvi(l)+1

(
k̃
)
= … = Δvn− 1

(
k̃
)
= 0,

If we make the desired spacing sd satisfy sd ≥ LB+ τvmax −
[vmax − vmin ]

2

2amin,i
, then consequently sd ≥ LB + τvi+1(k*) −

[vi+1(k*)− vmin ]
2

2amin,i
, for ∀i ∈ I∪l. 

At step ̃k, we have that Δxi(l)(k̃) and Δxl(k̃) = sd will satisfy the safety distance constraints in Equations (38) and (39) (i.e. Equation (7)) 
for ∀l ∈ {l1,l2} at the time step k̃. Then, sub-state q2.2 switches to state q0 triggered by switching signal σ3. With this, we prove the 
feasibility of the switching q2.2 → q0. Wrapping the arguments above, we conclude that the hybrid system is feasible and the cycle q0 → 
q1 → q2.1 → q2.2 → q0 is closed. It completes the proof for Theorem 2. ▪ 

5.3. Stability analysis of the hybrid system 

The stability of a hybrid system is another important aspect to evaluate the applicability of the PB-CLC control in practice. A system 
is stable if it can reach and stay the steady-state after it got affected by undesired disturbances. In this sub-section, the stability of the 
hybrid system is proved by Theorem 3 below. 

Theorem 3. If each state in the hybrid system is asymptotically stable, then the whole hybrid system is asymptotically stable. 

Proof. Suppose states q0, q1 and sub-states q2.1 and q2.2 are asymptotically stable (AS), and the CAV platoon is initially in state q0 
with an arbitrary feasible condition. Since state q0 is AS, the trajectory along state q0 is bounded over all steps k ≤ k* (when there is no 
switching). At control time step k* + 1, state q0 switches to state q1 and thus q1 starts from a finite initial condition at step k*+1. Since 
q1 is AS, it follows from the same argument that the trajectory along state q1 is bounded over all step k* + 1 ≤ k ≤ k* + p

ʀ
l
)
. Suppose q1 

switches to q2.1 at control time step k* + p
ʀ
l
)
+ 1 and further switches to q2.2 at control time step k* + p(l). We can repeat the above 

argument for sub-states q2.1 and q2.2. Finally, when q2.2 → q0, state q0 starts from some finite initial condition at step k* + p(σ3). Since q0 
is AS, this state converges to zero in (z, z′) as control time step k tends to be infinity. Hence, a trajectory of the entire process is 
bounded and converges to zero. This gives rise to the asymptotic stability of the entire process. We complete the proof for Theorem 3. ▪ 

Notice that the stability of state q0 has been discussed in Gong et al. (2016) and the stability of states q1 and q2 have been discussed 
in Section 6 in Gong and Du (2018). Together Theorem 3, we prove the stability of the whole hybrid system. 

Remark 3. We can construct a MPC-based hybrid system (m > 2) for more than two subject vehicles lane-change cases using the 
similar approaches. The MPC-based hybrid system (m > 2) shares the same structure with two subject vehicles (m = 2) case in Fig. 5, 
where state q2 has more sub-states such as q2.1, q2.2,…, q2.m to describe the m subject vehicles’ sequentially finished lane-change 
maneuvers. Then the feasibility and stability of the hybrid system (m > 2) can be proved using the same strategies in Theorem 2 and 
Theorem 3 with the MINLP-MPC model feasibility (m > 2) discussions in Remark 2.# 

The rigorous proofs for feasibility and stability analysis above indicate that the MINLP-MPC model (function as switching signal σ1) 
needs to be solved within a sample time interval τ (< 1sec) to ensure the control smoothness and safety. Besides, the desired platoon 
spacing sd should be larger than the upper bound of the conservation safe distance in constraint Equation (7) to sustain the feasibility 
and cycle closure property of the MPC-based hybrid system. It is also observed that the feasible switching from the lane-change ac
commodation state to the car-following state may not occur naturally in general. Therefore, it is significantly important to introduce a 
well-designed hybrid system controller to facilitate the feasible state restoration. Built upon the MINLP-MPC model in Section 3 and its 
feasibility proof in Section 4, we provided a well-designed MPC-based hybrid system controller and proved its persistent feasibility and 
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stability in this section. All these insights reinforce the effectiveness and merits of our MINLP-MPC model from the perspective of the 
mathematical rigorousness. 

6. Solution Approach 

This section develops efficient distributed optimization algorithms to solve the optimizers in the hybrid MPC system. Note that the 
MPC-q0, MPC-q1 and MPC-q2 are convex optimization problems, and can be efficiently solved by the distributed optimization ap
proaches developed in Gong et al., (2016) and Gong and Du, (2018). Hence, the research challenge of the solution approach for the 
hybrid MPC system is to solve the large-size MINLP-MPC model within a very short time interval τ (< 1sec) so that we can ensure the 
continuity and smoothness of the real-time hybrid MPC control. Traditional algorithms (e.g., branch and bound algorithm (Wolsey, 
1998; Morrison et al., 2016) apparently cannot meet the real-time computation requirement. By taking advantages of the unique 
features of the MINLP-MPC model, this study develops a machine-learning aided distributed branch and bound approach (ML-DBB) to 
address this difficulty. We present the key idea as follows. 

The main computation obstacle for solving the MINLP-MPC model is to determine the values of integer variables. Once these values 
are known, the MINLP reduces to a convex optimization problem, which can be solved efficiently by the existing algorithms. Moreover, 
the integer variables represent the proper timing and spacing for the platoon to accommodate the lane-change requests, which are 
closely related to the initial states of the platoon and subject vehicles. For example, if a subject vehicle is close to the head of the 
platoon, it will not be considered to cut in a spacing near the tail of the platoon, due to the traffic smoothness and the efficiency. Hence, 
spacings not pertaining to this subject vehicle can be removed from the solution space to improve computation efficiency without 
impacting on the solution optimality. 

Inspired by these observations, this study develops a machine-learning aided distributed branch and bound approach (ML-DBB) by 
integrating the unique features mentioned above. Mainly, we develop machine learning models to predict good candidate lane-change 
spacings and time steps for accommodating the lane-change requests, based on the features such as the initial relative positions of the 
subject vehicles to the platoon, and the initial states of the platoon and subject vehicles. Note that these predicted candidate lane- 
change spacings and time steps refer to a reduced solution space containing a set of candidate optimal binary solutions of y in the 
MINLP-MPC model. Next, the distributed branch and bound method (DBB) will assign these candidate optimal binary solutions to 
different ‘workers’ (such as each platoon vehicle) and thus split the computation loads. With the given solutions of the binary variables, 
the MINLP is reduced to a convex programming, which can be solved by each worker efficiently. Combining the local optimal solution 
from each worker, the DBB algorithm can quickly find the global optimal (or near optimal) solution within the short sample time 
interval. We present the technical details as follows. 

6.1. Supervised machine learning 

The optimal lane-change decisions obtained by solving the MINLP-MPC model are closely related to the initial states of the target 
platoon and subject vehicles, such as vehicle length constants, acceleration /deceleration limits and initial spacing, speeds. Hence, this 
study considers the input variables (also named as features) and output variables (also named as target variables) defined in the set of 
SI in Table 2 to develop the machine learning models. 

Specifically, the features regarding the initial states of the platoon are captured by the platoon size n, spacing Δxs(0), vehicle 
speed vi(0), vehicle length LBi and the acceleration/deceleration limits amax,i, amin,i for s ∈ S, i ∈ I. The features associated with the 

Table 2 
Summary of the features and target variables.  

Feature Set SI s ∈ S, i ∈ I, l ∈ L  

Platoon Δxs(0) vi(0) LBi amax,i amin,i n 
Subject vehicles si(l,0) vl(0) LBl al

max  al
min  

Target variables s(l) p(l)  

Table 3 
Parameter settings for sampling.  

Parameters Values 

MPC prediction horizon P 15 (steps) 
Lane-change safe distance h 30 (m) 
Desired distance sd 50 (m) 
Sample time interval τ 1 (s) 
Minimum speed vmin 22 (m/s) 
Maximum speed vmax 31(m/s) 
Penalty weight ω1 1 
Penalty weight ω2 n2*P 
Penalty weight αi 0.1*n2 − 0.6*(n + 1 − i) 
Penalty weight βi 0.3*n2 − 1.2*(n + 1 − i)  
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initial states of the subject vehicles are described by speed vl(0), longitudinal relative position to the target platoon si(l,0), acceler
ation/ deceleration limits al

max, al
min and length LBl for l ∈ L. The features of the platoon and the subject vehicles together form the 

feature set SI. Recall that si(l,0) represents a spacing between the platoon vehicles i(l, 0) and i(l, 0) + 1 that longitudinally covers the 
position of the subject vehicle l at step p = 0. Thus, it characterizes the initial relative position between subject vehicle l and the target 
platoon. 

We consider s(l), p(l) for l ∈ L (see them in Table 2), the optimal spacing and time step, at which subject vehicle l will conduct the 
lane-change maneuver, as the target variables. Accordingly, for each subject vehicle l, there are two individual machine learning 
models that need to be developed, which respectively predict lane-change spacings s(l) and time steps p(l) for l ∈ L, using the input 
features. With the solutions of {s(l), p(l), l ∈ L}, we can easily refer the solution of the binary variable set y = {yl

s,p, s ∈ S, p ∈ P, l ∈ L}
in the MINLP-MPC model. Note that the physical values of {s(l), p(l), l ∈ L} are bounded by the platoon size n and the lane-change 
time window P. Thus, using the bounded integer variables sets {s(l), p(l), l ∈ L} rather than the binary variable set y with the size 
equal to (P × S)L as the target variables will help to reduce the dimensionality and then facilitate the development of the machine 
learning models. 

On the other hand, the MINLP-MPC also involves some engineering parameters (see them in Table 3). Even though these pa
rameters also affect the target variables, some of them are pre-determined by the engineering experiences and others have the same 
setup for the platooning control under different platoon conditions. For example, the sample time interval τ of the MPC often takes a 
value less than human’s reaction time; minimum speed vmin and maximum speed vmax are determined by the speed limit of the highway 
road. Moreover, the penalty weight αi, βi are carefully designed to ensure the control stability and smoothness according to the 
formulations developed in Gong et al. (2016). The penalty weight ω2 is chosen to make a trade-off between the traffic smoothness and 
the lane-change promptness. These penalty weights are only related with the specific feature: platoon size n, Therefore, this study will 
not consider these parameters as the features in our machine learning models. Instead, our numerical experiments in Section 7.3 will 
test the influence of these parameters on optimal lane-change decisions and traffic smoothness by analyzing the parameter sensitivity. 

Based upon the features, target variables and parameter settings above, this study develops supervised machine learning models 
using the following techniques. First, it is noticed that no existing sample data for the features and target variables are available. To 
address this issue, the MINLP-MPC model-based computer simulator is employed to scientifically generate sample data for the features 
and target variables using the c-LHS sampling technique. Next, this study further processes the feature set SI to generate selective 
features so that we can generalize the usage of the machine learning models and improve the prediction performance. Lastly, different 
machine learning models are established to explore the best-fit relationships between the target variables and features. Adjusted R2, 
cross-validated mean square error (CV-MSE) and accuracy are used as performance metrics to examine the fitting goodness of the 
candidate models. The following sub-sections discuss the technical details to build up the machine learning models, including data 
sampling, feature processing and machine learning model development. 

6.1.1. c-LHS Sampling 
To develop the machine learning models, our first task is to collect the sample data for the input features and corresponding target 

variables. However, it is very expensive (or impossible) to get either field data or simulation data for these variables. This is because the 
CAV platooning control is still an emerging technology and it is hard to do either field experiments or simulation by existing simulators. 
To address this difficulty, this study uses the computer experimental simulator based upon the MINLP-MPC model to do the data 
sampling. In the meantime, it is observed that numerous features are involved in this problem and each feature has innumerable 
choices within their lower & upper bounds. A scientific computer experiments design technique is thus critical to ensure all essential 
scenarios are sampled, using a limited amount of the sample data, according to the existing study Santner et al., 2003). Moreover, given 
that some features are involved in constraints in Equations (6) and (7), the constrained simple random sampling technique (c-SRS) is a 
potential sampling approach. However, it is known that c-SRS has poor space filling properties: it may leave large empty space and 
generate very close data points. According to Petelet et al., (2010), the constrained Latin hypercube sampling technique (c-LHS) avoids 
the disadvantage of c-SRS and requires fewer data samples to explore the whole data space. Holistically considering these factors, this 
study adopts c-LHS sampling technique to generate the sample data for the features of the platoon and subject vehicles. For 
completeness, we introduce the steps to do c-LHS in Appendix-V. Specifically, this study uses the c-LHS algorithm to do the sampling 
for the features in Table 1 with sample data size N = 1000 for each platoon size n ∈ {16, 17, …, 23, 24} with two subject vehicles case 
(m = 2). Next, the sample data of the features combined with the engineering parameters in Table 3 are implemented as the initial 
inputs to the MINLP-MPC model so that we can find the corresponding optimal lane-change decisions {s(l), p(l), l ∈ L}, which are used 
as the sample data of the target variables to develop the machine learning models. Putting together these 9000 sample data for the 
features and target variables, we move further to do the feature processing in next sub-section. 

6.1.2. Feature processing 
The c-LHS sampling data is generated for a platoon with specific size (n). This study noticed that if the full set of features within SI 

are used for developing the machine learning models, we will have to train different machine learning models for every scenario with 
possible platoon size for each subject vehicle. Besides, the number of features can become tremendously large when the value of n 
increases. The machine learning models will have the difficulty in generalization. 

To address this limitation, we further process the sample data by the following two procedures. First, it is observed that those 
platoon vehicles and spacings in the vicinity of the subject vehicles have stronger impacts on the lane-change decision on s(l) and p(l) 
than others do. Motivated by this view, this study considers only selecting the features of a sub-platoon near the subject vehicle to 
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develop the machine learning models. Namely, we use the pruned features set: S̃I: ̃S(l)⊂S, Ĩ(l)⊂I, l ∈ L, where ̃S(l) and ̃I(l) respectively 
represent the sets of the spacing and platoon vehicles near subject vehicle l’s initial location si(l). Note that S̃I is initially selected as a 
large set, which includes features of eight neighboring platoon vehicles and seven spacings around subject vehicle l. If there are not 
enough neighboring platoon vehicles making some features unavailable, for example, the subject vehicle is located at the head or the 
tail of the platoon, we will manually assign large values, such as 200 m, to the missing spacing features and zeros to the speed, ac
celeration/deceleration features, in view of the fact that there is no platoon vehicle there. In next Section 6.1.3, we will justify that it is 
enough to include these many features in S̃I, by using the feature selection technique. Briefly, the feature selection technique will select 
the most important features in S̃I. The selection results in Table 4 indicate that only features of five platoon vehicles and four spacings 
nearby have significant impacts on the lane-change decisions (target variables). 

Next, we introduce the second feature processing procedure. To differentiate notations, s*(l), p*(l) are used to describe the 
machine learning models’ predicted results on optimal lane-change spacing s(l) and time step p(l) respectively. Our experiments show 
that the pruned features in S̃I work well to predict s(l), l ∈ L, but not p(l), l ∈ L. Note that p(l) is strongly correlated with the selected s(l). 
Therefore, this study considers using the predicted optimal spacings s*(l), l ∈ L as one additional feature to predict optimal p(l). 
Moreover, this study considers a new feature p̂(l), which represents the least time steps needed to accommodate a lane-change request 
if only considering the subject vehicle and its immediate adjacent vehicles on the target lane. Mathematically, p̂(l) is obtained by 
solving a small size optimization program, in which only a subject vehicle l (l = l1, l2 … or lm) and two immediate adjacent 
platoon vehicles i*(l) and i*(l) + 1 around the predicted optimal spacing s*(l) are considered. Our study indicates that p̂ is a sig
nificant factor to improve the prediction accuracy of the optimal lane-change time step. Besides, it only takes a very short time (~0.002 
sec) to solve the optimization model. 

Min p̂(l) =
∑P

p=1yl
s*(l),p*p 

Subject to: Equations (1)-(7) for i = i*(l), i*(l) + 1; l = l1 or l2 or … or lm 

∑P

p=1
yl

s*(l),p = 1; yl
s*(l),p ∈ {0, 1}, p ∈ P  

xl(p) − xi*(l)+1(p) ≥ h + M
(

yl
s*(l),p − 1

)

xi*(l)(p) − xl(p) ≥ h + M
(

yl
s*(l),p − 1

)

Taking these new features (p̂(l), s*(l)) into consideration, we have another selective feature set ŜI: Ŝ(l)⊂S, Î(l)⊂I, l ∈ L, where Ŝ(l)
and ̂I(l) respectively represent the sets of the neighboring spacings and platoon vehicles around the optimal s*(l) predicted by S̃I. Note 
that ŜI is also a large enough set which includes features of eight platoon vehicles and seven spacings. Using the features set ŜI and the 
extra feature p̂(l), the optimal lane-change step p*(l) can be predicted much more accurately. 

In short, this section further processes the c-LHS sampling data and obtains two pruned feature sets S̃I and ŜI to improve the 
prediction performance of the machine learning approach. These procedures also make the machine learning model applicable for 
general scenarios with different sizes of platoons. More exactly, the optimal lane-change spacing (i.e., s(l), l ∈ L) is first predicted 
using the feature set S̃I, whereas the optimal lane-change time steps (i.e., p(l), l ∈ L) are predicted using the feature set ŜI combined 
with the new features s*(l) and p̂(l).

6.1.3. Machine learning models 
We test six different machine learning models, including linear regression, linear discriminant analysis, random forests regression, 

random forests classification, support vector machine, and support vector regression. The test results show that linear regression gives 
the best performance from a combined view of simplicity, interpretability, accuracy to generate prediction interval. For the paper 
length concern, we mainly introduce the development of the linear regression models in this section. 

To develop the linear regression models, we first do the feature selection using the forward stepwise selection algorithm, which is a 
computationally efficient alternative to the best subset selection method2. Built upon the selected features, we developed the linear 
regression models s(l)and p(l) respectively for s(l) and p(l), l ∈ {l1,l2}. For illustration, we take subject vehicle l1 as an example and 
show the corresponding linear regression models s(l1) and p(l1) as well as the models’ performance in Table 4, where the selected 
features and their coefficients, standard error, t-test, p value (Pr(>|t|)) as well as adjusted R2, 10 fold cross-validated mean square error 
(CV-MSE) and accuracy are presented. For completeness, we put subject vehicle l2’s linear regression models s(l2), p(l2) in Appendix- 
VI. The CV-MSE and the accuracy are calculated using the following Equations. 

2 The best subset method is not used due to its low efficiency in this application with a large number of features. The forward stepwise selection 
method demonstrates satisfying performance, although it has theoretical drawbacks. 
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CV − MSE =
1
Nt

*
∑Nt

i=1

(
ri − r̂ i

)2
; accuracy =

N
ri=
[

r̂ i

]

Nt
,

where Nt is the testing data sample size (i.e., Nt = 900); ri represents the actual value of the target variable, whereas ̂ri represents the 
linear regression model’s prediction value of the target variable. [r̂ i] is the value by rounding ̂ri to the nearest integer since ̂ri is likely to 
be a decimal. Nri=[̂ri ]

represents the number of the testing data where ri = [r̂ i]: the prediction result [r̂ i] accords with the actual value ri. 

Table 4 presents the linear regression models s(l1) and p(l1) for predicting s(l1) and p(l1) respectively. More exactly, Δx̃l1 ,j, ̃vl1 ,j,

ãmax,l1 ,j belong to the pruned feature set S̃I and represent jth-unit neighboring platoon vehicle’s initial states around subject vehicle l1’s 
initial location si(l1), whereas Δx̂l1 ,j, ̂vl1 ,j, ̂amax,l1 ,j belong to the pruned feature set ŜI and represent jth-unit neighboring platoon vehicle’s 
initial states around subject vehicle l1’s predicted lane-change spacing s*(l1). It is observed that after using the forward stepwise feature 
selection technique, only five platoon vehicles’ initial states (j = − 3, − 2, − 1, 1, 2) and four spacings (j = − 1, − 2, 0, 1) nearby 
are selected from the feature sets S̃I and ŜI, which initially includes eight platoon vehicles’ initial states (j =±4, ±3, ±2, ±1) and seven 
spacings (j =±3, ±2, ±1, 0). This observation validates that platoon vehicles and spacings that are more than 3 units far away from the 
subject vehicle l have few impact on subject vehicle l’s lane-change decisions. It also demonstrates the effectiveness and correctness of 
setting up the pruned feature sets S̃I and ŜI in Section 6.1.2. 

Apart from the observations above, it is observed that in model s(l1), the p value of the feature si(l1 ,0) is small (< 2e-16) and its t 
value equals to 999.594, which is extraordinarily larger than other features’ t values. This indicates that subject vehicle l1’s lane- 
change spacing s(l1) is strongly influenced by the subject vehicle l1’s initial location si(l1 ,0). Similarly in model p(l1), the t value of the 
feature p̂(l1) is 154.858 greater than the other t values, which implies that subject vehicle l1’s lane-change time step p(l1) is strongly 
affected by the newly introduced feature p̂(l1). These results also justify the importance of the feature processing in Section 6.1.2. 
Besides, using the similar method to analyze the t values and p values of the other features, we find that subject vehicle l1’s speed vl1 and 
its neighboring platoon vehicles’ spacings, speeds such as Δx̃l1 ,0, Δx̃l1 ,1, ṽl1 ,− 2 have some impacts on s(l1), whereas subject vehicle l’s 
initial location si(l1 ,0) and spacing like Δx̂l1 ,0, Δx̂l1 ,− 1, Δx̂l1 ,− 2 can influence the lane-change decision on p(l1). It is noted that other 
features such as vehicle length Li or Ll1 , acceleration/deceleration limit amax,i (al1

max), amin,i(al1
min) and platoon size n are mostly ruled 

out using the feature selection technique in Table 4, which shows that these types of features have minor impacts on lane-change 
decisions. 

Table 4 
Linear regression models s(l1), p(l1).  

Selected features (s(l1))  Coefficients Standard Error t value Pr(>|t|) 

(Intercept) -7.275e-01 7.645e-02 -9.515 < 2e-16 
Δx̃l1 ,0  -5.273e-03 3.036e-04 -17.364 < 2e-16 
Δx̃l1 ,1  -1.741e-03 1.919e-04 -9.073 < 2e-16 
Δx̃l1 ,− 1  -1.635e-03 3.272e-04 -4.996 5.98e-07 
Δx̃l1 ,− 2  -1.422e-04 1.802e-05 -7.891 3.34e-15 
ṽl1 ,− 1  9.082e-03 1.385e-03 6.558 5.76e-11 
ṽl1 ,− 2  1.156e-02 1.350e-03 8.564 < 2e-16 
ṽl1 ,− 3  6.532e-03 1.383e-03 4.721 2.38e-06 
si(l1 ,0) 9.990e-01 9.994e-04 999.594 < 2e-16 

vl1  -3.409e-02 1.347e-03 -25.308 < 2e-16 

Performance of s(l1)  Adjusted R2 CV-MSE Accuracy 
0.9923 0.0972 0.9032  

Selected features (p(l1))  Coefficients Standard Error t value Pr(>|t|) 

(Intercept) 3.054e+00 1.853e-01 16.486 < 2e-16 
Δx̂l1 ,0  -1.231e-02 8.153e-04 -15.101 < 2e-16 

Δx̂l1 ,− 1  -1.052e-02 8.237e-04 -12.769 < 2e-16 

Δx̂l1 ,− 2  -7.090e-03 8.199e-04 -8.646 < 2e-16 

v̂l1 ,1  -2.709e-02 3.603e-03 -7.518 6.10e-14 

v̂l1 ,2  -2.161e-02 3.636e-03 -5.944 2.88e-09 

âmax,l1 ,− 2  -5.003e-02 1.665e-02 -3.005 2.66e-03 

si(l1 ,0) -2.661e-03 2.784e-04 -9.560 < 2e-16 
s*(l1) -9.710e-02 1.394e-02 -6.968 3.45e-12 
p̂(l1) 1.070e+00 6.910e-03 154.858 < 2e-16 
Performance of p(l1)  Adjusted R2 CV-MSE Accuracy 

0.7568 0.7891 0.4253  
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As for the model performance in Table 4, the adjusted R2 of linear regression model s(l1) reaches 0.99, which is strongly perfect, 
whereas the adjusted R2 of linear regression model p(l1) is substantially good as 0.75. Moreover, CV-MSE and accuracy values of s(l1) 
also validate the model’s performance. Although the accuracy of model p(l1) as 0.42 is not high, the CV-MSE which is less than 1 
indicates that the average prediction error for lane-change step p(l1) is within 1 time step. Besides, to obtain global optimal or 
improved solutions, the prediction interval3 given by the linear regression models are used in our ML-DBB approach to further mitigate 
the minor effect of the low accuracy on model p(l1). We will illustrate the details in next sub-section. 

Our experiments also found that using the random forests (classification) model improves the accuracy of predicting lane-change 
time step p(l1) significantly to 0.6702. However, it is hard to use the classification models to generate the prediction intervals, which 
are needed for the ML-DBB algorithm. As for the other machine learning regression models, minor improvements can be achieved 
compared with the linear regression models. Apart from the reasons above, linear regression model has many other advantages. For 
example, it has good interpretability and needs less storage space compared with non-parametric machine learning models. This study 
thus adopts the linear regression models (i.e., s(l), p(l)) to generate the prediction intervals denoted by s(l), p(l) in the ML-DBB 
algorithm. 

6.2. Machine learning based distributed branch and bound (ML-DBB) 

The ML-DBB algorithm in this study integrates the prediction intervals generated online using the offline-built linear regression 
models into the distributed branch and bound algorithm (DBB), aiming to address the computation challenges of the MINLP-MPC. 
Specifically, the DBB algorithm is a modified version of the branch and bound algorithm to realize the distributed computation, 
which includes ‘manager’ and ‘workers’. The ‘manager’ assigns branches (computation loads) to each ‘worker’ and then summarizes 
the computation results from the ‘workers’. This study considers one of the subject vehicles as the ‘manager’ and platoon vehicles as 
the ‘workers’. Fig. 6 presents the framework of the ML-DBB. 

Mainly, once the lane-change requests are received, the platoon will send its initial states to the subject vehicles. One of the subject 
vehicles (‘manager’) uses the well-established offline machine learning models such as linear regression models (see in Section 6.1.3) 

Fig. 6. ML-DBB framework.  

3 The prediction is given by the following general formula: prediction point ± (t-multiplier × standard error of the prediction). Prediction 
interval is an estimate of an interval where a future observation may fall, with a certain probability. It is similar in spirit to confidence interval, but 
considers more uncertainty of new random target variable and thus fits better in predicting a new target variable. 
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to quickly generate the prediction intervals s(l), p(l), l ∈ L for the optimal lane-change decisions. And then the ML-DBB integrates the 
prediction intervals into the MINLP-MPC model. More exactly, it removes those lane-change decisions outside the prediction intervals 
considering they are not good candidates to be selected by the MINLP-MPC. This step significantly reduces the searching space of the 
feasible lane-change decisions from the number of (n − 1)mPm/m! to N =

∏

l
|s(l)|× |p(l)|, where |s(l)|, |p(l)|, l ∈ L represent the 

number of integers in the intervals s(l), p(l) respectively. Following that, the ‘manager’ enumerates the lane-change decisions in the 
prediction intervals and uniformly assigns these N many candidate lane-change decisions to the ‘workers’ for further evaluation. Note 
that each lane-change decision corresponds to a set of integer variable solutions for the MINLP-MPC. Given one set of integer variable 
solutions, the MINLP is degraded to a convex NLP, which can be solved efficiently. Therefore, each ‘worker’ accomplishes its job by 
repeatedly referring one set of the integer variable solutions (i.e., lane-change decision), solving the corresponding NLP and finally 
sending the computational results back to the ‘manager’, including the vehicle trajectory instructions, the objective value and the 
referred lane-change decision. Last, the ‘manager’ compares the objective values from the ‘workers’ and finds the best local optimal 
lane-change decision with the vehicle trajectory instructions as the final solution. In summary, the offline-built machine learning 
models help lock a reduced searching space for the integer variables in the MINLP-MPC. Then the DBB uses the distributed compu
tation resources to enumerate the integer variable solutions in the reduced search space and then solves the degraded MINLP (convex 
NLP) efficiently. 

Note that the computation time of using the ML-DBB algorithm will be larger than the sample time interval (such as 1 sec) when the 
platoon size and subject vehicles size get very large to some extent. Under this situation, rather than using the ML-DBB, we will directly 
use the machine learning models to estimate the optimal lane-change decision, such as using the linear regression prediction on {s*(l), 

l ∈ L} and random forest (classification) prediction on {p*(l), l ∈ L}. We will discuss its details in numerical experiments in Section 
7.1. 

7. Numerical Experiments 

This section conducts three sets of numerical experiments: Experiment-I, Experiment-II and Experiment-III to verify the perfor
mance of our approaches from the following three aspects. (i) Validate the efficiency and merits of the ML-DBB algorithm, including 
the solution optimality and computation performance (Experiment-I). (ii) Demonstrate the effectiveness of the PB-CLC control to 
accommodate the lane-change requests while ensuring traffic efficiency and smoothness (Experiment-II, Experiment-III and 
Experiment-IV). (iii) Conduct the parameter sensitivity analysis on lane-change decisions and traffic smoothness (tuning parameters 
based on Experiment-II and Experiment-III). 

Specifically, using the sampling approaches introduced in Section 6.1.1, Experiment-I generates two sets of sample data: each with 
9000 scenarios for the case of two subject vehicles (m = 2) and the case of three subject vehicles (m = 3). The platoon size for each case 
varies from 16 to 24, i.e., n ∈ {16, …, 24}. Experiment-II chooses a case including 2 subject vehicles and a platoon with 21 vehicles to 
implement the PB-CLC control, while Experiment-III further extends the test to a case involving 3 subject vehicles and a platoon with 
24 vehicles. The initial states of the platoons and subject vehicles in the Experiment-II and Experiment-III are obtained from the NGSIM 
field data, which was collected on the eastbound of the I-80 in San Francisco Bay at Emeryville, California, 4:00 pm to 4:15 pm on April 
15, 2005. It is noted that the platoons in Experiment-II and Experiment-III using the field data are not in steady-state. Hence, this study 
conducts Experiment-IV, which uses two subject vehicles and a stabilized platoon with 22 vehicles. Furthermore, we compare the 
proposed PB-CLC control with the cooperative lane-change control developed in Ni et al., (2020) in this scenario. The physical pa
rameters of Experiment-II, Experiment-III and Experiment-IV follow the same in Table 3. Besides, the acceleration /deceleration limits 
are set as amax,i(al

max) = 5 (m/s2), amin,i(al
min)= -6 (m/s2), according to the NGSIM field data and Acceleration Parameters, Police Radar 

Information Center 2020. Based on the original parameter setting above, various parameters are tuned to test the parameter sensitivity 
on the lane-change decisions and traffic smoothness. We will present the parameter tuning details in Section 7.3. 

7.1. Solution Optimality and Computation performance 

To examine the computation performance of the ML-DBB, Experiment-I solved all the scenarios of the case with two subject ve
hicles and the case with three subject vehicles, using four different solution approaches, including commercial solver Gurobi 8.0 (BB 
algorithm), the ML-DBB algorithm integrating α = 90% and α = 99% machine learning prediction interval, (they are labeled by ML- 
DBB-90 and ML-DBB-99 respectively), and the direct machine learning point prediction based approach (it is labeled by ML-PP). 
Mainly, the ML-PP approach directly uses the predicted lane-change decision (i.e., s*(l), p*(l)) as the optimal decision and then 
degrades the MINLP-MPC model to a NLP model, which can be solved efficiently to provide the corresponding trajectory control 
instructions by a distributed algorithm developed in Gong and Du (2018). Experiment-I is implemented on the computer with the 
following processor: Intel(R) Core (TM) i7-7700K CPU @4.20GHz and Ram: 16.0GB. The DSRC communication time refers to the 
existing study in Kenney, (2011). The solution optimality and computation performance for the case of two subject vehicles are 
summarized in Table 5. 

We first discuss the performance of the ML-DBB using the prediction intervals with different confidence levels (i.e., α = 90%, α =
99%). The results in Table 5 show that both the ML-DBB-90 and ML-DBB-99 can efficiently solve the MINLP-MPC and provide a 
satisfactory solution by a computation time (0.1904sec or 0.3292sec) less than the sample time interval (τ = 1 sec). They both 
significantly reduce the computation time as compared with that using the solver Gurobi 8.0 (3.011sec). In addition, Table 5 shows 
that using the ML-DBB-90 has 84.80% chance to end with global optimal solutions and this probability can be further increased to 
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94.00% by using the ML-DBB-99. This solution optimality gain accompanies with a computation cost increment from 0.1904sec to 
0.3292sec. Therefore, using wider prediction intervals in the ML-DBB algorithm improves the solution optimality but sacrifices the 
computation time. This is reasonable since a wider prediction interval includes more solution candidates for exploring optimal lane- 
change decision. Accordingly, it will reduce the chance of missing the optimal solution but incur more computation loads to the ML- 
DBB algorithm. In addition, our study noticed that the ML-DBB algorithm is applicable for the cases where the platoon size is less than 
30 (i.e., n ≤ 30) and the subject vehicles size is less than 5 (i.e., m ≤ 4), which covers most of the general traffic conditions. 

For the extreme cases involving a long platoon (n > 30) and many subject vehicles (m > 4), we suggest directly using the ML 
prediction point results (i.e., s*(l), p*(l)) as the lane-change decision (ML-PP). The results in Table 5 demonstrate the merits of this 
ML-PP approach. It has 38.79% chance to obtain the global optimal solutions and 46.82% chance to end with good solutions within 5% 
optimal gap, while the average computation time is only 0.0632sec. Thus, we conclude that the ML-PP approach will work reasonably 
well for a case that involves a long platoon and many subject vehicles requiring lane-change accommodation simultaneously. It is 
aware that the limitation of this approach is that it has relatively low chance to end with global optimal solutions and has certain risk 
(4.40%) to end with infeasible solutions. 

The experiment results in Experiment-I for the case involving three subject vehicles are summarized in Table 6 below. 
The results in Table 6 indicate that the ML-DBB approaches still show superior performance in the solution optimality and 

computation time, though slightly inferior as compared with the results in Table 5. This is mainly because three subject vehicles cases 
involve one extra subject vehicle’s lane-change uncertainties and prediction results, which will naturally have negative impacts on the 
overall solution optimality. It is foreseeable that as the number of subject vehicles increases, the solution optimality performance will 
keep going down, especially the chances of obtaining global optimal solutions. However, we also noted that the chances of achieving 
good solutions within 5% optimal gap increase a lot to make up the losses of the chances to get global optimal solutions. In other words, 
the chances of obtaining global optimal solutions or good solutions within 5% optimal gap for three subject vehicles cases are com
parable to that for two subject vehicles cases. 

As for the computation performance, it is observed that involving one extra subject vehicle in the problem will increase the 
computation time from 3.011 seconds to 10.273 seconds by using the branch and bound method in Gurobi 8.0. This is because one 
extra subject vehicle will lead to (n − 1)*P many extra integer variables, which greatly complicates the branching process. However, by 
using the ML-DBB-90 and ML-DBB-99, the computation time can be reduced to 0.3720 second and 0.5482 second respectively. When 
using the ML-PP approach, the computation time further decreases to 0.0656 second. They all outperform the solver Gurobi 8.0, but 
are slightly worse than the result in Table 5. It is foreseeable that as the number of subject vehicles increases, the computation time of 
ML-DBB will finally increases out of the control sampling time interval (1 second). In this situation, we would suggest using ML-PP 
approach to quickly find a good reasonable solution rather than global optimal solution. 

Table 6 
Solution Optimality and Computation Performance of Experiment-I for l ∈ {l1, l2,l3}.  

Solution optimality ML-PP ML-DBB-90 ML-DBB-99 

Global optimal 22.27% 78.00% 90.10% 
0-5% optimal 58.66% 14.70% 7.96% 
5-10% optimal 11.93% 4.92% 1.94% 
10-20% optimal 1.34% 0.83% 0.00% 
Infeasible 5.80% 1.55% 0.00% 
Total 100% 100% 100%  

Computation performance Gurobi 8.0 ML-PP ML-DBB-90 ML-DBB-99 

Computation time(s) 10.273 0.0656 0.3720 0.5482 

The time includes both DSRC communication time (Kenney, 2011) and the computation time. 

Table 5 
Solution Optimality and Computation Performance of Experiment-I for l ∈ {l1, l2}.  

Solution optimality ML-PP ML-DBB-90 ML-DBB-99 

Global optimal 38.79% 84.80% 94.00% 
0-5% optimal 46.82% 10.60% 5.98% 
5-10% optimal 8.91% 2.83% 0.02% 
10-20% optimal 1.08% 0.40% 0.00% 
Infeasible 4.40% 1.37% 0.00% 
Total 100% 100% 100%  

Computation performance Gurobi 8.0 ML-PP ML-DBB-90 ML-DBB-99 

Computation time(s) 3.011 0.0632 0.1904 0.3292 

The time includes both DSRC communication time (Kenney, 2011) and the computation time. 
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7.2. Cooperative platoon control effectiveness 

Next, this study examines the traffic efficiency and smoothness under the PB-CLC control as it is specifically implemented by the 
hybrid MPC system in Experiment-II, Experiment-III and Experiment-IV. Fig. 7, Fig. 8 and Fig. 9 respectively demonstrate their results, 
where Fig. 7 and Fig. 8 plot the corresponding NGSIM field data with 0.1 second resolution as a benchmark and Fig. 9 compares the 
proposed PB-CLC control with a cooperative lane-change control in Ni et al., (2020). Additionally, Fig. 7, Fig. 8 and Fig. 9 all use the 
red (or orange-red) dashed lines to represent subject vehicles’ speeds and following spacings after cutting in the platoon. And the green 
dashed-dotted lines are employed to represent the target spacings as well as the speeds of the platoon vehicles that are immediately 
behind the target spacings. All the other platoon vehicles are represented by blue lines. The emergence of a red dashed line indicates 
that a subject vehicle just cuts in the platoon. 

Fig. 7 demonstrates that the PB-CLC control can smoothen the lane-change accommodation as compared with the field traffic 
without control. Specifically, it is observed from Fig. 7 (a), (b) that the lane-change maneuvers can be accommodated in 7 time steps4 

in field traffic without lane-change and platooning coordination control, whereas Fig. 7 (c), (d) show that the PB-CLC control ac
celerates the lane-change accommodation process so that two subject vehicles can cut in the platoon safely within the first time step (1 
second after the request). Moreover, Fig. 7 (a) and (c) demonstrate that the PB-CLC control significantly mitigates the spacing fluc
tuations as compared with field traffic without lane-change and platooning coordination control. More exactly, the spacings under the 
PB-CLC control vary approximately from 30 (m) to 100 (m) and quickly converge to the desired spacing sd in 15 seconds. Besides, the 

Fig. 7. Non-control vs. PB-CLC control of Experiment-II.  

4 The field traffic also indicates that the target lane takes about 5-6 seconds to yield the lane-change spacing, while the subject vehicles only take 
about 1 second to conduct lateral movements and cut in (see spacing changes on target lanes). This observation supports our assumption about the 
lateral movement in Section 2. 
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spacing fluctuations dampen along the control steps. In contrast, the spacings of field traffic range from 30 (m) to 150 (m) and fluctuate 
widely. On the other hand, Fig. 7 (b) and (d) indicate that vehicles’ speeds under the PB-CLC control vary from 20 (m/s) to 34 (m/s), 
but quickly converge to a certain speed in 15 seconds. Although the initial speed fluctuations are large for adjusting the target spacings 
to accommodate lane-change requests, the following speed fluctuations are reduced smoothly and quickly until the convergence. The 
PB-CLC control significantly improves the traffic smoothness as compared with the chaotic uncontrolled field traffic. 

Fig. 8 shows the same merits of the PB-CLC control as Fig. 7 in Experiment-III. The results in Fig. 8 indicate that the lane-change 
requests are accommodated a lot earlier by the PB-CLC control as compared with the filed data. Besides, the spacing and speed 
fluctuations are tremendously mitigated under the PB-CLC control. An interesting observation in Fig. 8 (d) is that vehicles’ speeds 
cannot converge to a certain speed within the experimental time interval: 15 seconds. This is because one extra subject lane-change 
vehicle is involved in Experiment-III so that it needs more time for the platoon to adjust and go back to a stable speed. However, it is 
foreseeable that the speeds will converge within several extra steps. 

Fig. 9 validates the effectiveness and merits of the PB-CLC control under the scenario that the platoon is initially in a stable state and 
two subject vehicles send lane-change requests at the 4th second in the experiments. Built upon this scenario, we also compared the 
performance of the PB-CLC with an existing study Ni et al., (2020), which develops a simple reactive cooperative lane change. Fig. 9 
(a), (c) and (e) shown that the platoon under the PB-CLC control needs 3 seconds (from the 4th second to the 7th second) to adjust 
spacings and accommodate the lane-change requests. After that, it takes 13 seconds to fully re-stabilize the whole platoon. On the other 
hand, Fig. 9 (b), (d) and (f) show that platoon under the reactive lane-change control developed by Ni et al., (2020) takes 4 seconds 
(from the 4th second to the 8th second) to finish lane-change maneuvers and then spends more than 90 seconds to re-stabilize the whole 
platoon. Note that the reactive lane-change control by Ni et al., (2020) computes several neighboring platoon vehicles’ optimal 
movements around subject vehicles to accommodate lane change and uses an optimum velocity ACC system for the other platoon 
vehicles. Although individual CAV’s mobility and safety can be ensured, the traffic stream performance under this reactive control is 
not as good as the PB-CLC control. 

Fig. 8. Non-control vs. PB-CLC control of Experiment-III.  
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7.3. Parameter sensitivity analysis 

This study noticed that the optimal lane-change decisions are significantly influenced by some parameters in Table 3, which may 
vary widely if only to ensure the MINLP-MPC model feasibility and PB-CLC control stability. However, improper parameter settings 
may either weaken the safety of lane-change maneuvers, delay the lane-change maneuvers, or reduce the traffic smoothness if lane- 
change requests are accommodated too hastily. This study thus conducts the sensitivity analysis to investigate the parameter tuning 

Fig. 9. Ni et al., (2020) vs. PB-CLC control of Experiment-IV.  
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effects on the performance of the PB-CLC control based on the Experiment-II and Experiment-III. The insights will help us to set up 
proper parameter settings for accommodating lane-change requests under the PB-CLC control. 

7.3.1. Sensitivity analysis on lane-change decisions 
This study finds that the optimal lane-change decisions including both spacings s(l) and time steps p(l) are strongly affected by the 

lane-change safe distance h and penalty weight ω2 compared with other parameters in Table 3. Specifically, the lane-change safe 
distance h is tuned in an ascending sequence {15, 20, 25, …, 65, 70} (m). Recall that the penalty weight ω2 corresponds to the penalty 
term: the lane-change promptness and is set as ω2 = n2*P in Table 3. Therefore, u = P*n2 is set as a tuning unit and then the penalty 
weight ω2 is tuned in an ascending sequence {0.01u, 0.05u, 0.1u, 0.2u, 0.4u, 0.6u, 0.8u, 1u, 2u, 5u} to see how the lane change 
decisions are influenced. The results of tuning the lane-change safe distance h and penalty weight ω2 are shown in Figs. 10 and 11 
respectively. 

The results in Fig. 10 (a) and (c) indicate that the optimal lane-change spacing s(l) only varies slightly when the lane-change safe 
distance h is tuned. It is always around the spacing where the subject vehicle is initially located. Thus, the optimal lane-change spacing 
is also not sensitive to the selection of the lane-change safe distance h. On the other hand, Fig. 10 (b) and (d) demonstrate that the 
optimal lane-change time steps increase as the lane-change safe distance h increases. This is reasonable because the platoon needs more 
time to adjust spacing for lane-change accommodation with larger lane-change safe distance h. Apart from above, although large lane- 
change safe distance h may delay the lane-change maneuvers, h is supposed to be large enough (such as h ≥ 30m) to sustain safe lane- 
change maneuvers according to Roelofsen (2009). 

The results in Fig. 11 (a) and (c) indicate that the optimal lane-change spacing s(l) is also not sensitive to the selection of the penalty 
weight ω2. In fact, s(l) is insensitive to other parameters in Table 3 as well. This observation is consistent to our intuition. Spacings near 
the subject vehicle are naturally good candidates for the platoon to accommodate a lane-change request quickly, if these spacings are 
reasonably large such as in Experiment II and III. On the other hand, the results in Fig. 11 (b) and (d) demonstrate that the optimal lane- 
change time steps p(l) increase as the penalty weight ω2 increases. Therefore, by tuning the penalty weight ω2, the MINLP-MPC can 
work efficiently for both short (such as mandatory lane-change) and long lane-change (discretionary lane-change) time window. 
Specifically, for the mandatory lane-change, penalty weight ω2 can be tuned larger such as to 5*P*n2 which forces the platoon to 
quickly accommodate lane-change maneuvers. Whereas for discretionary lane-change, penalty weight ω2 may be tuned smaller to 
0.1*P*n2 so that lane-change maneuvers will not be accommodated too hastily to harm the traffic smoothness. It is interesting to 
observe that in Fig. 11 (a) and (b), subject vehicle l2’s optimal lane-change spacing and time step keep unchanged at s = 20 and p = 1 

Fig. 10. Sensitivity analysis of the lane-change safe distance h.  
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respectively. It is because the initial platoon’s spacing at s = 20 in Experiment-II is extremely large (about 100 m) so that this spacing 
near subject vehicle l2 is always preferred and the lane-change request can be accommodated very soon. 

7.3.2. Sensitivity analysis on traffic smoothness 
Next, this study examines the sensitivity of traffic smoothness based on Experiment-II. According to the parameters given in 

Table 3, four Tests are set up as follows. Test (a) uses the same parameters setup in Section 7.2 (setup in Table 3). It will be used as the 
benchmark. Test (b) changes the penalty weight ω1 from 1 used in Test (a) to 100. Namely, larger penalty is put on the control inputs in 
the objective function to ensure traffic smoothness. Test (c) lowers the maximum acceleration/deceleration from Test (a) (amin = − 6m/ 
s2, amax = 5 m/s2) to amin = − 4m/s2, amax = 3 m/s2, which can reduce speed fluctuations and improve driving comfort and is the 
common acceleration/deceleration driving behavior according to Bokare and Maurya (2017). Test (d) expands the lane-change safe 
distance h from 30 (m) in Test (a) to 50 (m) to test if the traffic smoothness may be improved or impaired under strict lane-change 
requirement. The experiment results including traffic speed and spacing fluctuations are given in Figs. 12 and 13 respectively below. 

The results in Fig. 12 compared the traffic speed fluctuation under four tests. More exactly, the results show that the stream traffic 
in Test (b) is smoother than in Test (a) but it needs more time to restore the stable speed after accommodating the lane-change requests. 
It is consistent to our expectation that tuning the penalty weight of the control inputs in the objective function will help us to balance 
the stream smoothness and control efficiency under PB-CLC. Similarly, Test (c) confirms that it slightly smoothens the stream traffic by 
observing slightly smaller subject vehicles’ speed fluctuations (red dashed line) when the acceleration/deceleration limits amax, amin 
are tuned 2m/s2 smaller. Accordingly, the control efficiency in Test (c) is slightly sacrificed because the speeds in Test (c) converge a 
little slower than Test (a). The results in Test (d) indicate that larger lane-change safe distance h has more negative impacts on both 
traffic smoothness and PB-CLC control efficiency because the speeds in Test (d) fluctuate more widely and converge more slowly than 
they do in Test (a). It accords with our intuition because larger lane-change safe distance h means the larger spacings in platoon need to 
be generated to accommodate the lane change within a given lane-change time window P. Therefore, the lane-change safe distance h is 
set as a moderate proper value h = 30(m) in Table 3, which is neither too large to harm the traffic smoothness and control efficiency nor 
too small to sacrifice the lane-change safety. 

Following the results in Fig. 12, Fig. 13 compared the traffic spacing fluctuations under these four tests. Specifically, spacings in 
Fig. 13 Test (b) and Test (c) converge slower than in Test(a) because of the sacrificed control efficiency (smaller speed variations in 
Fig. 12 Test (b) and Test (c)) so that platoon needs more time to adjust spacings to reach desired spacing. whereas the spacings in 

Fig. 11. Sensitivity analysis of the penalty weight ω2.  
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Fig. 12. Experiment-II parameter tuning effects on speeds.  

Fig. 13. Experiment-II parameter tuning effects on spacings.  
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Fig. 13 Test (d) converge faster because the speeds vary widely in Fig. 12 Test (d). These accord with the conclusion we draw from 
Fig. 12 that the control efficiency under PB-CLC control is sacrificed to improve traffic smoothness. Besides, it is interesting to note that 
the lane-change safe distance h in Test (d) is just equal to the desired distance sd: h = sd = 50(m), so that the platoon does not need to 
adjust the spacings after the subject vehicles cut in. 

Overall, to mitigate the traffic fluctuations and improve traffic smoothness in the sacrifice of the PB-CLC control efficiency, the 
penalty weight ω1 can be tuned larger and the acceleration/deceleration limits can be tuned smaller. The lane-change safety distance h 
should be set to a moderate value, which improves the traffic smoothness and control efficiency while ensuring the safe lane-change at 
the same time. 

8. Conclusion and Future Work 

Even though extensive studies have demonstrated the importance of vehicle platooning and cooperative lane-change control, these 
two are often individually developed without coordinating each other, which limits their applications in the real traffic. To address this 
research gap, this study develops the PB-CLC control, which is mathematically implemented by the proposed MINLP-MPC model and 
solved by the ML-DBB algorithm. The PB-CLC control helps vehicle platooning control cooperatively accommodates lane-change 
requests and achieves platoon-level traffic efficiency and smoothness. To guarantee feasible PB-CLC control, the feasibility of the 
MINLP-MPC model is proved by investigating a lower bound of the lane-change time window for the PB-CLC control. Moreover, to 
facilitate the PB-CLC control safety and efficiency, a MPC-based hybrid system controller is carefully designed. The proofs of the 
persistent feasibility and stability of the hybrid system ensure the efficient and feasible back-and-forth switchings between car- 
following state and lane-change accommodation state under the PB-CLC control. Furthermore, to sustain the PB-CLC control’s con
tinuity and smoothness, this study particularly develops the machine learning aided distributed branch and bound (ML-DBB) algorithm 
to efficiently solve the MINLP-MPC model within a control sampling time interval. Specifically, the linear regression models are 
established offline to reduce the solution space of the MINLP-MPC model by giving a prediction interval online including the can
didates of the optimal lane-change decisions. The distributed branch and bound method (DBB) enumerates the candidate lane-change 
decisions in the prediction interval and solves the MINLP-MPC in a distributed manner. Extensive numerical experiments demonstrate 
that the ML-DBB algorithm can efficiently solve the MINLP-MPC by achieving global optimal (or near optimal) solutions in most of the 
cases. Besides, the experiments based on the field data validate the effectiveness and merits of the PB-CLC control on facilitating lane- 
change and reducing traffic fluctuations. Finally, the proper parameter settings of the MINLP-MPC model are investigated by con
ducting parameter sensitivity analysis based upon the field data experiments. It facilitates proper implementation of the PB-CLC 
control for different types of lane-change maneuvers (i.e., mandatory and discretionary lane change) and different driving goals (i. 
e., control efficiency and driving comfort). 

There are several interesting future research topics motivated by this study. One of our future research topics intends to factor the 
interference of neighborhood uncontrolled traffic around subject vehicles or the platoon in PB-CLC control. This extension will make 
the PB-CLC control more applicable in real traffic, but it brings in the complexity of predicting the movement of neighborhood un
controlled traffic. Second, the PB-CLC control can become resilient by involving the dynamic uncertainties, communication delay and 
error. These uncertainties will raise the complexity of the MPC and the corresponding solution approaches. Third, an adjustable desired 
distance sd rather than a conservative constant is needed to make the PB-CLC control applicable in urban roads and improve the road 
capacity. By doing that, the MPC and hybrid system controller should be re-designed in a more complicating way to ensure control 
safety and smoothness. Lastly, other topics about vehicle platooning can be potentially explored, such as how a platoon optimally 
merges into another platoon, how a platoon exit the ramp with uncontrolled traffic around and how a platoon smoothly passes the 
intersections with traffic lights. We propose to address these challenges in our future work. 
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Appendix 

Appendix-I. Extensions to incorporate subject vehicles’ lateral movements during cut-in movement 

This study develops the subject vehicles’ lateral control during their cut-in maneuvers. Note that this lateral control is separated 
from the longitude control. It is only activated during a sample time interval T (≤ 1 sec) that a subject vehicle is right beside the spacing 
and ready to cut in. Specifically, we use Equations (42)-(44) derived by Rajamani, (2011) for the steering control during the time 
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interval T time. 

ẏl(t) = vlsin(θt) (42) 

Equations (42) represents the subject vehicle l’s lateral speed, where vl is the subject vehicle’s average speed during time interval 
[p*, p* + 1] and θt is the steering angle served as the lateral movement control input. By taking the integral of the lateral speed, the 
subject vehicle l’s lateral position is derived in Equation (43) as follows. 

yl(t) =
∫T

t=0

ẏl(t)dt (43) 

For lateral control smoothness, we describe the subject vehicle’s lateral steering control law within time domain T as follows in 
Equation (44). 

θt =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δW
vl t 0 ≤ t ≤

T
2
,

δW
vl (T − t)

T
2
≤ t ≤ T,

0 t > T,

(44)  

where W is the road width (m) and δ is the control gain which will be carefully designed to reach the control goal (i.e., complete the 

lateral lane-change movements W within T). In the first 
[

0, T
2

]

time interval of Equation (44), we consider the subject vehicle l starts 

increasing the steering angle θt for lateral movements to cut in the platoon. Whereas in the second 
[

T
2, T

]

time interval, subject vehicle l 

will gradually decrease the steering angle θt so that it will complete the lateral control at time T (< 1 sec) and make steering angle θt =

0 when t > T. Based on this control law, this study finds that the optimal control gain coefficient δ =

̅̅̅̅̅̅
2vl

WT
2
3

√

to make the subject vehicle l 
finish the lateral lane-change movements W(m) within time interval T. Below we provide the proof. 

Proof. Plug Equations (42) and (44) into Equation (43), we can derive the subject vehicle l′s lateral position yl(t) as follows in 
Equation (47). 

yl(t) =
∫T

t=0

ẏl(t)dt =
∫T

t=0

vlsin(θt)dt = 2δW
(

1 − cos
(

δ
WT
2vl

))

(45)  

Note the δ WT
2vl is generally very small for highway scenarios. Then we can take the Taylor expansion approximation of the cos

(

δ WT
2vl

)

in Equation (46). 

1 − cos
(

δ
WT
2vl

)

=

(

δ WT
2vl

)2

2
=

1
2δ

(46) 

Combining Equations (47) and (46), we have yl(t) = W and reach our control goal. This result further demonstrates that our 
assumption that the lateral cut-in maneuvers can be conducted within one MPC sample time interval is feasible and reasonable. 

Appendix-II. Unique features of the safety constraint for ensuring control feasibility 

It should be noticed that the lane-change constraints in the MINLP-MPC model are different from the lane-change constraints in a 
general optimal decision model. Particularly, to ensure the feasibility of the hybrid system, we modified the lane-change constraints 
from Equation (47) to Equation (48). Our proofs in Theorem 2 show that the Equation (47) cannot ensure the feasibility of the hybrid 
MPC system, even though it is sufficient for a lane-change decision model to identify the optimal spacing and timing to cut in. Below we 
provide more detailed discussions. 

⎧
⎨

⎩

xl(p) − xi+1(p) ≥ h + M
(

yl
s,p − 1

)
, s ∈ S, p ∈ P, l ∈ L,

xi(p) − xl(p) ≥ h + M
(

yl
s,p − 1

)
, s ∈ S, p ∈ P, l ∈ L,

(47)  
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xl(p) − xi+1(p) ≥ h + M

(
∑p

p=0
yl

s,p − 1

)

, s ∈ S, p ∈ P, l ∈ L,

xi(p) − xl(p) ≥ h + M

(
∑p

p=0
yl

s,p − 1

)

, s ∈ S, p ∈ P, l ∈ L,

(48) 

To clarify the detail, we first describe the hybrid dynamic system a little bit more. Recall that the MINLP-MPC is triggered by the 
subject vehicles’ lane-change requests and functions once in a time interval (say at step p = 0) to determine the optimal spacing and 
timing for the platoon to accommodate the lane-change requests with a prediction of the platoon dynamics in next P steps. After step p 
= 0, the platoon switches to the spacing preparation state under the control of MPC-q1. It takes the platoon’s movements from step 1 to 
step p* to enlarge the spacing s* for the subject vehicle l cutting in. Once subject vehicle l is accommodated, the platoon switches to the 
restoration state under the control of the MPC-q2, which uses xl(p) − xi + 1(p) ≥ h; xi(p) − xl(p) ≥ h for p = p* + 1, …. as the constraints 
for subject vehicle l to keep safe distance with its immediate leading or following vehicles in the platoon until it goes back to car- 
following state (MPC-q0). 

When using Equation (47) in the MINLP-MPC model, we note that the safe constraints are only active at step p*(becomes xl(p*) − xi 

+ 1(p*) ≥ h; xi(p*) − xl(p*) ≥ h). In other words, we do not consider the safety constraints for the subject vehicle l in the following steps 
p = p* + 1, … when making the lane-change decision. However, these safety constraints must be involved when the platoon is in the 
restoration state (MPC-q2). This inconsistence between the lane-change decision model (MINLP-MPC) and the following platooning 
control (MPC-q2) will potentially cause infeasibility. For example, there exists a scenario at the optimal time step p*, the speed of the 
subject vehicle l is much larger than the speed of its immediate leading platoon vehicle, whereas the spacing between them is just the 
safe distance h: xi(p*) − xl(p*) = h, vl(p*) ≫ vi(p*). Then the safe distance constraint at step p* + 1 is infeasible: xi(p* + 1) − xl(p* + 1) <
h because of the speeds’ inertia. 

The MINLP-MPC model using Equation (48) will select the best lane-change timing and spacing while considering the active safe 
constraints from the optimal time step p* to the end of the prediction horizion P (become xl(p) − xi + 1(p) ≥ h; xi(p) − xl(p) ≥ h for p =

p*, …, P). In other words, the lane-change decision is determined considering the safety constraints after the time steps p*. It is 
consistent with the safe constraints in the platooning control under the restoration state (q2). Thus, it will ensure the feasibility of this 
state, and work well for the hybrid MPC system. 

Appendix-III: Analyzing scenarios B2 in Lemma 4 

Proof. We analyzed the number of the time steps needed J2( → si(l)|B2) under B2 scenario, in which the subject vehicle l tries to cut in 
the spacing si which is initially behind it. To finish the lane-change maneuver, the subject vehicle l is required to arrive at spacing si(l) 
and run behind of platoon vehicle i with a safe lane change spacing in J2( → si(l)|B2) time steps. Similarly, the procedure of l1 guarantees 
that the target spacing si(l) has double safe lane change spacing 2h. Therefore, once the subject vehicle l can run behind of the platoon 
vehicle i with a safe lane change spacing h by time step J2( → si(l)B2), we ensure that the subject vehicle l can simultaneously run ahead 
of the platoon vehicle i with a safe lane change spacing h by time step J2( → si(l)B2). Mathematically, this consideration is presented by 
Equation (49). 

xl(J2( → si(l)B2)) ≤ xi(J2( → si(l)B2)) − h (49)  

Combining Equation (49) and the vehicle dynamics in Equations (1)-(4), the following deduction in Equation (50) provides the 
lower bund of J2( → si(l)B2) by applying strategy ũ to all platoon vehicles 1, 2…, n: 

xl(J2( → si(l)B2)) ≤ xi(J2( → si(l)B2)) − h  

⇔ xl(0) − (xi(l)(0) − h) + J2( → si(l)B2)τvmin −
(
(i(l) − 1)mτvmin +mτ vmin + vmax

2
+(J2( → si(l)B2) − i(l)m)τvmax

)
≤ 0  

⇔ J2( → si(l)B2) ≥
(xl(0) + h) − xi(l)(0)

τ(vmax − vmin)
+

(

i(l) −
1
2

)

m (50) 

To facilitate the articulation hereafter, we denote the acceleration strategy applied by all platoon vehicles 1, 2, …, n above as ̃uB2 ∈

ũ. Mathematically, ũB2 : ũ → {1,2…,n}. Notice that ũB2 is applied to all platoon vehicles but not the subject vehicles l. Therefore, the 
subject vehicle l keeps the speed vmin for the platoon vehicle i to catch up during the whole procedure. Combining Equation (24) for 
J1(si → 2h), and Equation (50) for J2( → si(l)B2), we can calculate P1,E(si(l)|B2) under scenario B2 mathematically by the Equation (51). 

P1,E(si(l)|B2) = max{J1(si(l) → 2hB2), J2( → si(l)B2)} = max
{

(i(l)+ 1)m,
(xl(0) + h) − xi(l)(0)

τ(vmax − vmin)
+

(

i(l) −
1
2

)

m

}

(51)  
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Appendix-IV: Proving scenarios C2 − C4 in Lemma 5 

Proof. Following the proof of the scenario C1, this appendix provides the discussion for the scenarios C2 − C4 in Lemma 4. For the 
scenario C2, subject vehicle l1 tends to cut in a spacing ahead (under scenario B1) and applies the sequential acceleration strategy 
ũB1 (b) : ũ → {1,2…, i(l1), l1}, whereas subject vehicle l2 tends to cut in a spacing behind (under scenario B2) and applies sequential 
acceleration strategy ũB2 (l2) : ũ → {i= 1,2…, n} The conflict of these two strategies arise for the same reason that we have discussed 
under scenario C1. To solve the conflict, we employ the same method as that under scenario C1. That is, if 
J2(→ si(l1)|B1) > J1(si(l1)→ 2h|B1), let platoon vehicles {i(l1) + 1, …i(l2)} first stay speed vmin from time step J1(si(l1)→ 2h|B1) until 
J2(→ si(l1)|B1). Namely, to avoid the conflict, we delay the procedure of l1 for the subject vehicle l2 by ΔJ1(si(l2)→ 2h|B2) = J2(→ 
si(l1)|B1) − J1(si(l1)→ 2h|B1). Different from scenario C1, the procedure l2, by which the subject vehicle l2 is required to approach target 
spacing and satisfy speed constraints, may also be delayed by the same conflict. According to the discussions of the procedure l2 under 
scenario B2 in Lemma 4, the platoon vehicles {i(l1) + 1, …i(l2)} are required to sequentially accelerate for the platoon vehicle i(l2) to 
catch up with the subject vehicle l2. However, this process cannot start before the subject vehicle l1’s lane change procedure l2 finishes 
by time step J2(→ si(l1)|B1), if J2(→ si(l1)|B1) > J1(si(l1)→ 2h|B1). Therefore, the same time delay is also applied to subject vehicle l2’s 
lane change procedure l2. Furthermore, no other time delay exists in the other lane change procedures. We have the description of the 
delay term ε(C2) in Equation (33): 

ε(C2) =

⎧
⎪⎪⎨

⎪⎪⎩

ΔJ1(si(l1)→ 2h|B1) = 0
ΔJ2( → si(l1)|B1) = 0

ΔJ1(si(l2)→ 2h|B2) = max{J2( → si(l1)|B1) − J1(si(l1)→ 2h|B1), 0}
ΔJ2( → si(l2)|B2) = max{J2( → si(l1)|B1) − J1(si(l1)→ 2h|B1), 0}

⎫
⎪⎪⎬

⎪⎪⎭

For the scenario C3, subject vehicles l1 tends to cut in a spacing behind (under scenario B2) and applies strategy ̃uB2 (l1) : ũ → {1,2…,

n}, whereas subject vehicle l2 tends to cut in a spacing ahead (under scenario B1) and applies strategy ̃uB1 (l2) : ũ→ {1,2…,i(l2),l1,l2}. 
The conflict arises in the subject vehicle l1. For subject vehicle l1’s lane change maneuver following the strategy ũB2 (l1), the subject 
vehicle l1 is required to maintain speed vmin from time step p = 0 until it approaches the target spacing si(l1) by the time step of 
J2(→ si(l1)|B2), whereas for the subject vehicle l2’s lane-change purpose under strategy ũB1 (l2), both subject vehicles l1 and l2 are 
required to sequentially accelerate from time step p = 0 to make subject vehicle l2 approach its target spacing. Consequently, the 
conflict takes places under this scenario, in which the subject vehicle l1 is required to stay speed vmin and accelerate simultaneously 
during time steps {0,…, J2(→ si(l1)|B2)}, which is impossible. 

To solve the issue, we let subject vehicle l1 stay at the speed vmin from time step p = 0 until it approaches the target spacing by the 
time step of J2(→ si(l1)|B2). Then the subject vehicles l1 and l2 can sequentially accelerate at the time step of J2(→ si(l1)|B2). As a result, a 
time delay ΔJ2(→ si(l2)|B1) = J2(→ si(l1)|B2) is caused in the subject vehicle l2’s lane-change procedure l2, by which the subject vehicle l2 
manages its speed to approach target spacing, satisfying speed constraints. Furthermore, no other time delay exists in the other lane 
change procedures. Mathematically, the conflict term ε(C3) is described as: 

ε(C3) =

⎧
⎪⎪⎨

⎪⎪⎩

ΔJ1(si(l1)→ 2h|B2) = 0
ΔJ2( → si(l1)|B2) = 0

ΔJ1(si(l2)→ 2h|B1) = 0
ΔJ2( → si(l2)|B1) = J2( → si(l1)|B2)

⎫
⎪⎪⎬

⎪⎪⎭

For the scenario C4, both the subject vehicles l1 and l2 tend to cut in a spacing behind (under scenario B2) and apply the strategies 
ũB2 (l1) = ũB2 (l2) : ũ → {1,2…,n}. Notice that under strategies ̃uB2 , platoon vehicles i = 1, …n are required to accelerate sequentially. 
There is no conflict term. Therefore, ε(C4) = 0 at every component. We present the description of ε(C4) in Equation (35). 

ε(C4) =

⎧
⎪⎪⎨

⎪⎪⎩

ΔJ1(si(l1)→ 2h|B2) = 0
ΔJ2( → si(l1)|B2) = 0

ΔJ1(si(l2)→ 2h|B2) = 0
ΔJ2( → si(l2)|B2) = 0

⎫
⎪⎪⎬

⎪⎪⎭

Appendix-V: c-LHS sampling approach 

The c-LHS sampling approaches involves two critical steps as follows. 

Step1. LHS initialization. First, LHS considers each variable Xj, j ∈ J has a range and partitions each variable’ range simulta
neously into N equally intervals, where N represents sample size. By randomly select sample from each partitioned interval, 
one-per-stratum for each variable Xj, LHS obtains N samples. We denote the kth random selection sample for Xj as X(k)

j . Mathe

matically, we generate X(k)
j by the equation below. 
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X(k)
j = F− 1

j

(
π(k)

j − ε(k)j

N

)

, j ∈ J, k ∈ N,

where πj is independent uniform random permutation of the integers {1, 2, ..., N}; εj is independent random variable within [0, 1]. 
Step 2. Permutations. The sampling in Step 1 does not necessarily satisfy any constraints. Step 2 of c-LHS focuses on doing per
mutations to enforce monotonic constraint such as Xj ≥ Rj. To do that, the sampling process first sorts both sides of the monotonic 
constraint in a descent order and obtain new sets X̃j = {X(1)

j ,X(2)
j ,…,X(N)

j } and R̃j = {R(1)
j ,R(2)

j ,…,R(N)

j }, in which X(1)
j > X(2)

j > … 

> X(N)

j and R(1)
j > R(2)

j > … > R(N)

j . Then, starting from the largest element in R̃j, which is R(1)
j , the algorithm finds all the elements 

in the set X̃j that satisfies X(k)
j ≥ R(1)

j , k = 1, 2…m and randomly select X(m*)
j where 1 ≤ m* ≤ m among them to form a pair with X(1)

j . 

Therefore, a pair (X(m*)
j , R(1)

j ) satisfying the constraint is obtained and is stored in a set denoted as X̃R. In the meanwhile, we update 

the ̃Xj and R̃j by removing the element (X(m*)
i ,R(1)

i ). This process repeats until all the elements in X̃i and R̃i successfully form pairs and 
are transferred into the set of X̃R. The set X̃R stores all the (Xj, Rj) pairs that satisfies the monotonic constraint. In our study, the 
sample data of initial spacings should satisfy safety distance constraints in Equation (7). It can be transferred as monotonic con

straint Xj ≥ Rj, where Xj = Δxi(0);Rj = Li+1 + τvi+1(0) − [vi+1(0)− vmin ]
2

2amin,i+1 
for platoon vehicles i ∈ I; 

while Xj = Δxl(0);Rj = Ll+1 + τvl+1(0) − [vl+1(0)− vmin ]
2

2al+1
min 

for subject vehicles l ∈ L . And then the sampling process in Step 2 can be 

conducted. 

Appendix-VI: Linear regression models s(l2), p(l2) and their performance  

Selected features (s(l2)  Coefficients Standard Error t value Pr(>|t|) 

(Intercept) -2.011e+00 9.630e-02 -20.886 < 2e-16 
Δx̃l2 ,0  2.377e-03 3.072e-04 7.738 1.12e-14 
Δx̃l2 ,1  8.482e-04 1.941e-04 4.370 1.26e-05 
Δx̃l2 ,− 1  1.763e-03 3.175e-04 5.553 2.88e-08 
ṽl2 ,− 1  1.036e-02 1.366e-03 7.589 3.55e-14 
ṽl2 ,− 2  2.015e-02 1.356e-03 14.868 < 2e-16 
ṽl2 ,− 3  1.033e-02 1.359e-03 7.598 3.31e-14 
ṽl2 ,− 4  5.701e-03 1.359e-03 4.194 2.76e-05 
ṽl2 ,2  -6.124e-03 1.648e-03 -3.715 2.04e-04 
si(l2 ,0) 1.001e+00 1.025e-03 975.770 < 2e-16 
vl2  -3.161e-02 1.362e-03 -23.198 < 2e-16 
ãmax,l2 ,2  2.203e-02 3.617e-03 6.091 1.17e-09 
ãmax,l2 ,1  -2.682e-02 5.787e-03 -4.635 3.63e-06 
Performance of s(l2)  Adjusted R2 CV-MSE Accuracy 

0.9944 0.0958 0.9049  

Selected features (p(l2))  Coefficients Standard Error t value Pr(>|t|) 

(Intercept) 1.838e+00 1.425e-01 12.901 < 2e-16 
Δx̂l2 ,0  -5.569e-03 7.461e-04 -7.464 9.21e-14 
Δx̂l2 ,1  -5.805e-03 7.465e-04 -7.775 8.36e-15 
Δx̂l2 ,2  -2.950e-03 7.835e-04 -3.764 1.68e-04 
Δx̂l2 ,− 2  -2.320e-04 4.105e-05 -5.650 1.65e-08 
v̂l2 ,2  -9.445e-03 3.434e-03 -2.751 5.96e-03 
v̂l2 ,− 2  -1.153e-02 3.245e-03 -3.553 3.83e-04 
s*(l2) 1.476e-01 1.286e-02 11.480 < 2e-16 
p̂(l2) 1.064e+00 5.949e-03 178.935 < 2e-16 
Performance of p(l2)  Adjusted R2 CV-MSE Accuracy 

0.7633 0.7765 0.4312  
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