This article was downloaded by: [130.85.254.21] On: 06 April 2022, At: 15:07
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

7 N2 Transportation Science
-5:_? TRANSPORTATION
III SCIENCE Publication details, including instructions for authors and subscription information:

H g l w E http://pubsonline.informs.org
Fully Distributed Optimization-Based CAV Platooning
H 8 ﬁ E Control Under Linear Vehicle Dynamics
=
%Td Jinglai Shen, Eswar Kumar H. Kammara, Lili Du
i A

HELL E g

= IS e I8 DB

To cite this article:
Jinglai Shen, Eswar Kumar H. Kammara, Lili Du (2022) Fully Distributed Optimization-Based CAV Platooning Control Under
Linear Vehicle Dynamics. Transportation Science 56(2):381-403. https://doi.org/10.1287/trsc.2021.1100

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fithess
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2022, INFORMS

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org



http://pubsonline.informs.org
https://doi.org/10.1287/trsc.2021.1100
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

inferms

http://pubsonline.informs.org/journal/trsc

TRANSPORTATION SCIENCE

Vol. 56, No. 2, March—-April 2022, pp. 381-403
ISSN 0041-1655 (print), ISSN 1526-5447 (online)

Fully Distributed Optimization-Based CAV Platooning Control
Under Linear Vehicle Dynamics

Jinglai Shen,? Eswar Kumar H. Kammara,? Lili Du®

3Department of Mathematics and Statistics, University of Maryland, Baltimore, Maryland 21250; ® Department of Civil and Coastal
Engineering, University of Florida, Gainesville, Florida 32608

Contact: shenj@umbc.edu,

https: // orcid.org/0000-0003-2172-4182 (JS); eswarl@umbc.edu (EKHK); lilidu@ufl.edu,

https:// orcid.org/0000-0003-1740-1209 (LD)

Received: November 23, 2020

Revised: May 26, 2021

Accepted: September 14, 2021

Published Online in Articles in Advance:
January 21, 2022

https://doi.org/10.1287/trsc.2021.1100

Copyright: © 2022 INFORMS

Abstract. This paper develops distributed optimization-based, platoon-centered con-
nected and autonomous vehicle (CAV) car-following schemes, motivated by the recent in-
terest in CAV platooning technologies. Various distributed optimization or control
schemes have been developed for CAV platooning. However, most existing distributed
schemes for platoon centered CAV control require either centralized data processing or
centralized computation in at least one step of their schemes, referred to as partially distrib-
uted schemes. In this paper, we develop fully distributed optimization based, platoon cen-
tered CAV platooning control under the linear vehicle dynamics via the model predictive
control approach with a general prediction horizon. These fully distributed schemes do not
require centralized data processing or centralized computation through the entire schemes.
To develop these schemes, we propose a new formulation of an objective function and a
decomposition method that decomposes a densely coupled central objective function into
the sum of multiple locally coupled functions whose coupling satisfies the network topolo-
gy constraint. We then exploit locally coupled optimization and operator splitting methods
to develop fully distributed schemes. Control design and stability analysis is carried out to
achieve desired traffic transient performance and asymptotic stability. Numerical tests
demonstrate the effectiveness of the proposed fully distributed schemes and CAV platoon-
ing control.
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1. Introduction
The recent advancement of connected and autonomous
vehicle (CAV) technologies provides a unique opportu-
nity to mitigate urban traffic congestion through inno-
vative traffic flow control and operations. Supported
by advanced sensing, vehicle communication, and por-
table computing technologies, CAVs can sense, share,
and process real-time mobility data and conduct coop-
erative or coordinated driving. This has led to a surging
interest in self-driving technologies. Among a number
of emerging self-driving technologies, vehicle platoon-
ing technology receives substantial attention. Specifi-
cally, the vehicle platooning technology links a group
of CAVs through cooperative acceleration or speed
control. It allows adjacent group members to travel
safely at a higher speed with smaller spacing between
them and thus has a great potential to increase lane ca-
pacity, improve traffic flow efficiency, and reduce con-
gestion, emission, and fuel consumption (Kavathekar
and Chen 2011, Bergenhem et al. 2012).

There is extensive literature on CAV platooning con-
trol. The widely studied approaches include adaptive
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cruise control (ACC) (Marsden, McDonald, and
Brackstone 2001, Vander Werf et al. 2002, Kesting et al.
2008, Li et al. 2011, Zhou et al. 2017), cooperative adap-
tive cruise control (CACC) (Van Arem, Van Driel, and
Visser 2006; Shladover et al. 2012, 2015; Zhao and
Zhang 2020), and platoon-centered vehicle platooning
control (Wang et al. 2014, 2019; Gong, Shen, and Du
2016; Gong and Du 2018). The first two approaches
intend to improve an individual vehicle’s safety, mo-
bility, and string stability rather than systematical
performance of the entire platoon, although enhanced
system performance is validated by simulations or
field experiments. In contrast, the platoon centered ap-
proach aims to improve the performance of the entire
platoon and seeks a control input that optimizes the
platoon’s transient traffic dynamics for a smooth traffic
flow while achieving stability and other desired long-
time dynamical behaviors.

The platoon centered CAV platooning control often
gives rise to sophisticated, large-scale optimal control
or optimization problems, and requires extensive
computation. To successfully implement these control
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schemes, efficient real-time computation is needed
(Wang et al. 2019). However, because of high compu-
tation load and the absence of roadside computing fa-
cilities, centralized computation is either inefficient or
infeasible (Wang et al. 2016). By leveraging portable
computing capability of each vehicle, distributed com-
puting is a favorable option because it has potentials
to be more adaptive to different platoon network to-
pologies, be more robust to network malfunctions,
and accommodate for communication delays effec-
tively (Mesbahi and Egerstedt 2010, Wang et al. 2016).
Despite these advantages, the development of efficient
distributed algorithms to solve platoon centered opti-
mization or optimal control problems in real time is
nontrivial, especially under complicated traffic condi-
tions and constraints. It is worth pointing out that a
platoon centered car following control is a centralized
control approach even though its computation is dis-
tributed; that is, each vehicle computes its own control
input from the central control scheme in a distributed
manner. Hence, the platoon centered approach is dif-
ferent from decentralized control widely studied in
control engineering (Barooah, Mehta, and Hespanha
2009, Zheng et al. 2017, Zhou, Wang, and Ahn 2019).
Besides, the platoon-centered approach focuses on
closed loop stability of the entire platoon instead of
stability of individual vehicles and their interactions,
for example, string stability (Zhou, Wang, and Ahn
2019).

A number of effective distributed control or optimi-
zation schemes have been proposed for CAV platoon-
ing (Wang et al. 2016, 2019; Zhou, Wang, and Ahn
2019; Zhao and Zhang 2020). A recent paper (Gong,
Shen, and Du 2016) develops model predictive control
(MPC)-based car-following control schemes for CAV
platooning by exploiting transportation, control, and
optimization methodologies. These control schemes
take vehicle constraints, transient dynamics, and as-
ymptotic dynamics of the entire platoon into account
and can be computed in a distributed manner. Gong
and Du (2018) extend these distributed schemes to a
mixed traffic flow including both CAVs and human-
driven vehicles. However, to the best of our knowl-
edge, the proposed schemes in Gong and Du (2018)
and Gong, Shen, and Du (2016), as well as many other
existing distributed or decentralized schemes (Koshal,
Nedic, and Shanbhag 2011), either require all vehicles
to exchange information with a central component for
centralized data processing or perform centralized
computation in at least one step of these schemes. We
refer to these schemes as partially distributed schemes.
In contrast, the distributed schemes developed in this
paper do not require centralized data processing or
carry out centralized computation through the entire
schemes and thus are called fully distributed. Distinct
advantages of fully distributed schemes include but

are not limited to the following: (i) no data synchroni-
zation is needed such that no central computing
equipment is required; and (ii) each vehicle only inter-
acts with its nearby vehicles through a vehicle com-
munication network. Hence, these schemes impose
less restriction on vehicle communication networks
and can be easily implemented on a wide range of ve-
hicle networks. They are also suitable for a large CAV
platoon in remote areas where communication net-
work is unreliable or roadside equipment is scarce.
Furthermore, they are more robust to network mal-
function or cyberattacks.

In this paper, we develop a fully distributed
optimization-based and platoon-centered CAV car-
following control scheme over a general vehicle com-
munication network. We propose a general p-horizon
MPC model subject to the linear vehicle dynamics
and various physical or safety constraints. Typically, a
fully distributed optimization scheme requires the ob-
jective function and constraints of the underlying opti-
mization problem to be decoupled (Hu, Xiao, and Liu
2018). However, the proposed MPC is a centralized
control approach, and its underlying optimization
problem does not satisfy this requirement because its
objective function is densely coupled, and its con-
straints are locally coupled (see Remark 3.2 for de-
tails). Therefore, this paper develops new techniques
to overcome this difficulty.

The main contributions of this paper are summa-
rized as follows:

1. We propose a new form of the objective function
in the MPC model with new sets of weight matrices.
This new formulation facilitates the development of
fully distributed schemes and closed loop stability
analysis whereas it can achieve desired traffic tran-
sient performance of the whole platoon. Based on the
new formulation, a decomposition method is devel-
oped for the strongly convex quadratic objective
function. This method decomposes the central objec-
tive function into the sum of locally coupled (strong-
ly) convex quadratic functions, where local coupling
satisfies the network topology constraint under a
mild assumption on network topology. Along with
locally coupled constraints in the MPC model, the
underlying optimization model is formulated as a lo-
cally coupled convex quadratically constrained qua-
dratic program (QCQP).

2. Fully distributed schemes are developed for solv-
ing the previously mentioned convex QCQP arising
from the MPC model using the techniques of locally
coupled optimization and operator splitting methods.
Specifically, by introducing copies of local coupling
variables of each vehicle, an augmented optimization
model is formulated with an additional consensus
constraint. A generalized Douglas-Rachford splitting
method based distributed scheme is developed, where
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only local information exchange is needed, leading to
a fully distributed scheme. Other operator splitting
method based distributed scheme are also discussed.

3. The new formulation of the weight matrices and
objective function leads to different closed loop dynam-
ics in comparison with that in Gong, Shen, and Du
(2016). Besides, because a general p-horizon MPC is
considered, it calls for new stability analysis of the
closed loop dynamics. We perform detailed stability
analysis and choose suitable weight matrices for de-
sired traffic transient performance for a general horizon
length p. In particular, we prove that up to a horizon of
p = 3, the closed loop dynamic matrix is Schur stable.
Extensive numerical tests are carried out to test the pro-
posed distributed schemes under different MPC hori-
zon p’s and to evaluate the closed loop stability and
performance.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the linear vehicle dynamics, state
and control constraints, and vehicle communication
networks. The model predictive control model with a
general prediction horizon p is proposed and formu-
lated as a constrained optimization problem in Section
3; fundamental properties of this optimization prob-
lem are established. Section 4 develops fully distribut-
ed schemes by exploiting a decomposition method for
the central quadratic objective function, locally cou-
pled optimization, and operator splitting methods.
Control design and stability analysis for the closed
loop dynamics is presented in Section 5 with numeri-
cal results given in Section 6. Finally, conclusions are
given in Section 7.

2. Vehicle Dynamics, Constraints, and

Communication Networks

We consider a platoon of multiple vehicles on a
straight roadway, where the (uncontrolled) leading
vehicle is labeled by the index 0 and its n following
CAVs are labeled by the indicesi =1, .. .,n, respective-
ly. Let x; v; denote the longitudinal position and
speed of the ith vehicle, respectively. Let 7 > 0 be the
sampling time, and each time interval is given by
[kt,(k+1)7) for ke Z, :={0,1,2,...}. We consider the
following kinematic model for linear vehicle dynam-
ics widely adopted in system-level studies with the ac-
celeration u;(k) as the control input for vehicle i:

X,’(k + 1) = x,-(k) + TU{(k) + %zu,-(k),
vi(k +1) = v;(k) + Tu;(k). (1)

2.1. State and Control Constraints
Each vehicle in a platoon is subject to several impor-
tant state and control constraints. Foreachi=1,...,n,

(1) Control constraints: amn < U; < amax, Where
Amin <0 and amax > 0 are prespecified acceleration and
deceleration bounds for a vehicle.

(2) Speed constraints: Umin < U; < Umax, Where 0<
Umin < Umax are prespecified bounds on longitudinal
speed for a vehicle;

(3) Safety distance constraints: these constraints
guarantee sufficient spacing between neighboring ve-
hicles to avoid collision even if the leading vehicle
comes to a sudden stop. This gives rise to the safety dis-
tance constraint of the following form:

2
(Vi = Umnin )

Xi1—x; > L+r-v— 2
min

, @)
where L > 0 is a constant depending on vehicle length,
and r is the reaction time.

Besides, we assume that the leading vehicle satisfies
the same acceleration and speed constraints, that is,
Amin < Up(k) € amax, and Umin < Vp(k) < Umax  for all
k€ Z,. Constraints (1) and (2) are decoupled across
vehicles, whereas the safety distance Constraint (3) is
state-control coupled because such a constraint in-
volves control inputs of two vehicles. This yields chal-
lenges to distribution computation. Furthermore, the
identical acceleration or deceleration bounds are con-
sidered in this paper, although the proposed approach
can handle a general case with different acceleration
or deceleration bounds.

2.2. Communication Network Topology

We consider a general communication network whose
topology is modeled by a graph G(V,€), where V =
{1,2,...,n} is the set of nodes with the ith node
corresponding to the ith CAV, and £ is the set of edges
connecting two nodes in V. Let N; denote the set of
neighbors of node i, that is, N; = {j | (i,) € £}. The fol-
lowing assumption on the communication network
topology is made throughout the paper:

Assumption 1. The graph G(V,€) is undirected and con-
nected. Further, two neighboring CAV's form a bidirectional
edge of the graph, ie., (1,2),(2,3),...,(n—1,n)e &, and
the first CAV can receive xo(k), vo(k), and uo(k) from the
leading vehicle at each k € Z..

Because the graph is undirected, for any i,j € V with
i#7j,(i,j) € £ means that there exists an edge between
node i and node j. In other words, vehicle i can receive
information from vehicle j and send information to
vehicle j, and so does vehicle j. The setting given by
Assumption 1 includes many widely used communi-
cation networks of CAV platoons, for example,
predecessor-following, predecessor-leader following,
immediate-preceding, multiple-preceding, and pre-
ceding-and-following networks (Zheng et al. 2017).
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3. MPC for CAV Platooning Control

We exploit the MPC approach for car-following control
of a platoon of CAVs. Let A be the desired constant
spacing between two adjacent vehicles, and (xo, v, 149)
be the position, speed, and control input of the leading
vehicle, respectively. Define the vectors: (i) z(k) := (xo
—x1—A, ..., X1 — X, — A)(k) € R", representing the rel-
ative spacing error; (ii) z'(k):= (Vo —v1,...,Vu-1 — Vy)
(k) e R", representing the relative speed between adja-
cent vehicles; and (iii) u(k) := (11, ..., u,)(k) € R", repre-
senting the control input. Furthermore, let w;(k):=
u;_1(k) — u;(k) for each i=1,...,n, and w(k) := (wy, ...,
w,)(k) € R", which stands for the difference of control
input between adjacent vehicles. Hence, for any k€
Z., u(k) = =S, w(k) + uo(k) - 1, where 1:= (1,...,1)" is the
vector of ones, and

10 0 ... 0
11 0 ... 0
S,i=|: : - - e R
11 10
11 1
1
-1 1
St= € R, @3)
-1 1
-1 1

Given a prediction horizon p € N, the p-horizon MPC
control is determined by solving the following con-
strained optimization problem at each k € Z,, involv-
ing all vehicles’ control inputs for given feasible state
(xi(k), v;(k))i; and (xo(k),vo(k), uo(k)) at time k subject
to the vehicle dynamics model (1):

minimize [(u(k),..., u(k+p-1)):=

4
%Z( ul(k+s-1)8,7QusS,  ulk +s—1)
s=1 ride comfort
+27 (k+5)Qusz(k +5) + (2 (k + s))TQZ,,s Z'(k+9)),

traffic stability and smoothness

(4)
subject to the following: for each i=1,...,n and each
s=1,...,p, zilk+5s) =x;_1(k+5) —x;(k+5s), and z(k+5)
=0;_1(k+s) —vi(k +s), where x;(k+s) and v;(k +s) are
given in terms of u;(k),...,u;(k +p —1) as shown in the
vehicle dynamics model (1), and

OUmin S U,’(k‘i‘S) S Umax »

(5)

Amin S ui(k +5— 1) S Amax

Xi—1(k+s)—xi(k+s)=L+r-vi(k+s)

_ (vi(k + S) ~ Umin )2
2am‘m

, (6)

where Q.,, Q. s and Qs are n X n symmetric positive
semidefinite weight matrices to be discussed soon.
When p > 1, (xo(k+s+1),v9(k+s+1),ug(k +s)) are un-
known at time k for s =1,...,p — 1. In this case, we as-
sume that ug(k+s) =ug(k) for all s=1,...,p—1 and
use these uy(k+s)’s and the vehicle dynamics model
(1) to predict (xo(k+s+1),v9(k+s+1)) for s=1,...,
p—1.

Remark 3.1. The three terms in the objective function |
intend to minimize traffic flow oscillations via mild
control. Particularly, the first term penalizes the magni-
tude of control for mild control and ride comfort,
whereas the second and last terms penalize the varia-
tions of the relative spacing and relative speed to re-
duce traffic oscillations, respectively. The weight matri-
ces Q.5, Qs and Qs in the previous | are chosen such
that smooth traffic dynamics and asymptotic stability is
achieved in the closed loop dynamics (see Section 5 for
details). The presence of the matrix S, in the first term
is because of the coupled vehicle dynamics through the
CAV platoon. To illustrate this, let w(k+s—1):=
wk+s—1)—ug(k)-e; for s=1,...,p. Thus, w(k+s—
1) ==S'u(k+s—1) for each s =1,...,p. Therefore, the
first term in [ satisfies T2u” (k+5—1)S,7QusS, tu(k + s —
1) =120 (k+s-1)Qusw(k+s—1) for each s. Last,
nonconstant spacing car following polices can be con-
sidered (see Remark 4.3 for details).

The weight matrices Q.s, Q» s, and Qus, 5=1,...,p
determine transient and asymptotic dynamics, and
they depend on vehicle network topologies and can
be chosen by stability analysis and transient dynamics
criteria of the closed loop system. To develop fully
distributed schemes for a broad class of vehicle net-
work topologies and to facilitate control design and
analysis, we make the following blanket assumption
on Q.s, Qrs, and Qs throughout the rest of the

paper.
Assumption 2. Foreachs=1,...,p, Qs and Q. ; are di-
agonal and positive semidefinite (PSD), and Qs is diago-
nal and positive definite (PD).

The reasons for considering this class of diagonal
positive semidefinite or positive definite weight matri-
ces are three folds: (i) Diagonal matrices have a sim-
pler interpretation in transportation engineering so
that the selection of such matrices is easier to practi-
tioners. For instance, the diagonal Q. and Q. s mean
that one imposes penalties on each element of z(k +s)
and z'(k +s) without considering their coupling. Fur-
thermore, by suitably choosing the weight matrices
Qus, it can be shown that the ride comfort term in
Equation (4), which corresponds to acceleration of
CAVs, is similar to imposing direct penalties on u,’s,
which simplifies control design. (ii) This class of
weight matrices facilitates the development of fully
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distributed schemes for general vehicle network to-
pologies. (iii) Closed-loop stability and performance
analysis are relatively simpler (although still nontri-
vial) when using this class of weight matrices. The
detailed discussions of choosing diagonal, positive
semidefinite or positive definite weight matrices for
satisfactory closed loop dynamics will be given in
Section 5.

The sequential feasibility has been established in
Gong and Du (2018) and Gong, Shen, and Du (2016)
for the MPC model (4) when r > 7. Define P((x;, ),
uO) = {M eRrR" |amin < Ui < Omax, Umin < Uj + TU; < Umax,
hi(u)<0,Vi=1,...,n}, where h;j(u):=L+r(v;+ 1u;)

2
_ (0i+TUi~Vmin)

Amin

+ (0 = xi-1) + 00y = vi1) + 5 [t 1] for
eachi=1,...,n. Specifically, the sequential feasibility
implies that for any feasible x;(k), v;(k), uo(k) at time k,
the constraint set P((x;(k), vi(k))i,, to(k)) is nonempty
such that the MPC model (4) has a solution u.(k) such
that the constraint set P((xi(k +1),vi(k + 1)), uo(k +
1)) is nonempty. Using this result, we show below
that under a mild assumption, the constraint sets of
the MPC model have nonempty interior for any MPC
horizon p € N. This result is important to the develop-
ment of distributed algorithms.

Corollary 3.1. Consider the linear vehicle dynamics (1)
and assume r > T. Suppose the leading vehicle is such that
(vo(k), ug(k)) is feasible and vy(k) > vmin for all ke Z..
Then the constraint set of the p-horizon MPC model (4) has
nonempty interior at each k.

Proof. Fix an arbitrary k € Z,. Because vy(k) > Upin, it
follows from Gong, Shen, and Du (2016, proposition
3.1) that there exists a vector denoted by (k) in the in-
terior of the set P((xi(k), vi(k))i—o, uo(k)). Let x;(k + 1) and
vi(k + 1) be generated by 7 (k) (and (x;(k), v:(k))i_o, to(k)).
Because vg(k+1) > vmin, we deduce via Gong, Shen,
and Du (2016, proposition 3.1) again that there exists a
vector denoted by u(k+1) in the interior of the con-
straint set P((x;(k +1),v;(k+ 1))y, uo(k + 1)). Continu-
ing this process in p-steps, we derive the existence of
an interior point in the constraint set of the p-horizon
MPC model (4). O

3.1. Constrained MPC Optimization Model
Consider the constrained MPC optimization model (4)
at an arbitrary but fixed time k € Z, subject to the line-
ar vehicle dynamics (1). In view of the following re-
sults: foreachs=1,...,p,

vi(k+s) =v;(k) + Tiui(k +1),
=0

Z'(k+s)=2"(k)+ Tsil“w(k +7),
=0

2kt s) = 2(8) + 572 (K) 4+ 25 %w(k .y
=0
w(k+s) = S [~u(k +s) +ug(k)- 1],

we formulate (4) as the constrained convex mini-
mization problem (where we omit k because it is
fixed):

1
minimize J(u):=-u'Wu+cu+vy,

2
subjectto w;€X;, (Hi(u)),<0, Vi=1,...,n,

Vs=1,...,p,
(7)

where u:= (uy,...,u,) € R with u; := (u;(k),..., u;(k+
p—1)) eR?, Wis a PD matrix to be shown in Lemma
31, ceR",yeR, each X;:={zeR’|apn -1<z<
Amax * 1, (Umin - Ul(k)) ‘1< TSPZ < (Umax - Ul(k)) . 1} is a
polyhedral set, and each (H;(-)), is a convex quadratic
function characterizing the safety distance given by
(12). Here S, is the p X p matrix of the form given by
(3). Furthermore, ug:=ug(k)-1, € R” for the given
up(k). An important property of the matrix W in (7) is
given later.

Lemma 3.1. Suppose that Q. and Q.. s are PSD and Qs
are PD for all s=1,...,p (but not necessarily diagonal).
Then the matrix W in (7) is PD.

Proof. Let u be an arbitrary nonzero vector in R". Be-
cause J(-) is quadratic, we have Ju’ Wu =1lim;_ %
In view of the equivalent formulation of J(-) given by
(4), we deduce that for any A >0, J(Au) = J(Au(k),...,
Au(k+p—1) 248 5P 22uT(k+5-1)S;7Qu, sS; ulk +s
—1) >0, where the first inequality follows from the
fact that Q,s; and Q. s are PSD, and the second in-

equality holds because Q,,s, and thus S;7Q,,;S;!, are
PD. Therefore, ](2—2“) > 150 Pul(k+5—1)S,1Qu,sS, u
(k+s-1)>0, leading to lu'Wux>13' 7?ul(k+s

=1)S,'QusS, tu(k +s—1) > 0. Hence, Wis PD. O

To establish the closed form expressions of the ma-
trix W and the vector c in (7), we define the following
matrices for any i,j € {1,...,p}:

p 4
v,,::s;T[ > (2= + 11 26— )+ 11Qs

s=max (i, )
+ TZQZ,,S)ls;l e R,

Clearly, V;;=V;; for any i, j. Moreover, let éw,s =
S TQusS,! for s=1,...,p. Hence, the symmetric
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matrix W is given by W = ETVE, where
V=

Vig+t zéw,l Vi Vig »oe o Vip
Vaa Voa+1Qyn Vaz - o Vap
eR"P¥,
Vp,l Vp,z Vp,3 ----- VP/P + Tzéwlp
(8
and E € R js the permutation matrix satisfying
Ll(k) u
ulk+1) | _ E| w2

u(k+p—1) u,
Specifically, the (7, j)-entry of the matrix E is given by
1 if i=n-k+s, j=p-(s-1)+k+1,
E;;= for k=0,...,p-1,s=1,...,n;
0, otherwise. 9)
In particular, when p = 1, we have E = [,,.
For a fixed ke€Z,, we also define for each
s=1,...,p,
226 -) -1

ds(k) :=z(k) + stz’ (k) + T >

St 1-ug(k),
j=0

fi(k) :==z2"(k) + ’L'i S, 1 ug(k).
=0

In light of S;! given by (3), we have S;! -1 = e;. There-
fore, we obtain

ds(k) = z(k) + sz’ (k) + T;szeluo(k),

fi(k) = 2" (k) + tsejup (k). (10)
In view of
2(k +5) = dy(k) — 2 5 267D = o145,

=2

z'(k+s) = fs(k) — Ti S u(k + ),
=0

the linear terms in the objective function | are given
by

S=1

4 P T2 ) B
- Z ( Z [? [2(5 - 1) + 1]dsT(k)Qz,s + TfsT(k)Qz’,s] )Snl
culk+i-1). (11)

Using the permutation matrix E given in (9), we
can write c'u as cfu= 3", c%l_ui, where cz, is the sub-
vector of ¢ corresponding to u;. Because Qs and Q.

are diagonal, it is easy to obtain the following lemma
via ds(k), fs(k) in (10) and the structure of S;! given by
(3).

Lemma 3.2. Consider the vector ¢ =(cz,,...,c1,) given
previously. Then for each i=1,...,n, the subvector cz, de-
pends only on zi(k),zi(k),zi1(k), 2z}, (k)'s for i=1,...,
n—1, and cz, depends only on z,(k),z, (k). Furthermore,
only cz, depends on ugy(k).

The previous lemma shows that each cz, only de-
pends on the information of the adjacent vehicles of
vehicle i, and thus can be easily established from any
vehicle network. This property is important for de-
veloping fully distributed schemes to be shown in
Section 4.3.

To find the vector form of the safety constraint, we
note that fors=1,...,p,

xilk+8) = xi(k) 4 570, + 25 %m(k 1)),
=0
vi(k +s) =vi(k) + Ti ui(k + 7).

j=0
The safety distance constraint for the ith vehicle at
time k is given by: fors=1,...,p,
0> —[x_1(k) +stvi_q(k) — (xi(k) + stv;(k))]

LS 2D e — k) + L+ ro®)

= 2
s5—1

+ 77 ui(k + )
=0

_ 2
__1 [Tz(iui(k+j)) +27(0i(k) = Umin)

2amin =0

s—1

> ik + ) + (0i(k) = Umin )2l = (Hi(wi-1,wy)s,  (12)
=0

where (H;(-)), is a convex quadratic function for each
s=1,...,p. Hence, the set Z;:={ueR" | (Hi(u_1,u;)),
<0, Vi=1,...,p} is closed and convex. Problem (7)
becomes min,J(u) subject to uw; € X; and ue Z; for
all i=1,...,n, which is a convex quadratically con-
strained quadratic program (QCQP) and can be
solved via a second-order cone program or a semide-
finite program in the centralized manner.

Remark 3.2. The previous results show that each X; is
decoupled from the other vehicles, whereas the con-
straint function H; for vehicle i is locally coupled with
its neighboring vehicles. Specifically, H; depends not
only on u; but also on u,_; of vehicle (i — 1), which can
exchange information with vehicle i. We will explore
this local coupling property to develop fully distribut-
ed schemes for solving (7) in the next section.
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4. Operator Splitting Method—Based Fully
Distributed Algorithms for Constrained
Optimization in MPC

We develop fully distributed algorithms for solving

the underlying optimization problem given by (7) at

each time k using the techniques of locally coupled
convex optimization and operator splitting methods.

4.1. Brief Overview of Locally Coupled Convex
Optimization

One of major techniques for developing fully distrib-
uted schemes for the underlying optimization prob-
lem given by (7) is to formulate it as a locally coupled
convex optimization problem (Hu, Xiao, and Liu
2018). To be self-contained, we briefly describe this
formulation as follows.

Consider a multiagent network of n agents whose
communication is characterized by a connected and
undirect graph G(V, &), where V ={1,...,n} is the set
of agents, and £ denotes the set of edges. Forie V), let
N; be the set of neighbors of agent i, ie.,
Ni={jl(i,j) €&} Let {Z1,...,Z,} be a disjoint union
of the index set {1,...,N}. Hence, for any xe
RN, (XL)?:1 forms a partition of x. We call xz, a local
variable of each agent i. For each i, define X;:= (xz,,
(ij)jeNi) € R"™. Thus, each X; contains the local vari-
able x7, and the variables from its neighboring agents
(or locally coupled variables). Consider the convex op-
timization problem

(P): minj@,  where J(x)i= /i),
xeRN i=1

where [;:R" - RU{+o0} is an extended-valued,
proper, and lower semicontinuous convex function
for each i. Clearly, each J; is locally coupled such that
the problem (P) bears the name “locally coupled con-
vex optimization.” Although the problem (P) is seem-
ingly unconstrained, it does include constrained con-
vex optimization because |; may contain the indicator
function of a closed convex set. To impose the locally
coupled convex constraint explicitly, the problem (P)
can be equivalently written as

n —
(P):  min > J,(X;), subjectto X;€C,
xeRN i=1
Vi=1,...n, (13)

where each Ti :R" — R is a real-valued convex func-
tion, and C; C R" is a closed convex set.

By introducing copies of the locally coupled varia-
bles for each agent and imposing certain consensus
constraints on these copies, Hu, Xiao, and Liu (2018)
formulate the problem (P’) (or equivalently (P)) as a
separable consensus convex optimization problems.

Under suitable assumptions, Douglas-Rachford and
other operator splitting-based distributed schemes
are developed (Hu, Xiao, and Liu 2018).

4.2. Decomposition of a Strongly Convex
Quadratic Objective Function

The framework of locally coupled optimization prob-
lems requires that both an objective function and
constraints are expressed in a locally coupled man-
ner. Especially, the central objective function in (13)
is expected to be written as the sum of multiple local-
ly coupled functions preserving certain desired prop-
erties, for example, the (strong) convexity if the cen-
tral objective function is so, where local coupling
satisfies network topology constraints. Although the
constraints of Problem (7) have been shown to be lo-
cally coupled (Remark 3.2), the central strongly con-
vex quadratic objective function, particularly its qua-
dratic term u’ Wu, is densely coupled and thus need
to be decomposed into the sum of locally coupled
(strongly) convex quadratic functions, where the lo-
cal coupling should satisfy the network topology
constraint. In this section, we address this decompo-
sition problem under a mild assumption on network
topology.

We start from a slightly general setting. Let A:=
(A1,...,A,) e R" and A = diag(A) = diag(Ay,...,A,) be
a diagonal matrix; that is, A is the vector representa-
tion of the diagonal entries of A. Therefore, the follow-
ing matrix is tridiagonal:

A+ /\2 Ay
; ) ) A+ A3 —=A3
STTAS ! = .
_An—l An—l + /\n _/\n
_An /\n
(14)

Consider a general p € N. Let ® be a symmetric block
diagonal matrix given by

@11 O - - Oy
@1 @ - o Oy

o= - € RPxmP
)1 O,y - - O,

where ©;; = diag(0;;) e R"™" is diagonal for some
01',]‘ [S Rn, and 0,‘/]' = 0j,,- for all l,] =1,... /P Let (01-,]»),( de-
note the kth entry of the vector 6;;. For each
i=1,...,n, define the matrix

(01,1)1' (01,2)1‘ (9147)1'
U = | (@21)i (822); (020); | ¢ prep, (15)

(Op,l)i (ep,Z)i (Op,p)i
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It can be shown that © = ETdiag(U,...,U,)E,
where E is the permutation matrix given by (9).
Hence, © is PD (respectively, PSD) if and only if each
U, is PD (respectively, PSD).

Let
S—T S—l
T -1
VvV = S . ® S,
s:T s
=57 =s™!
Vit Vip Vip
V21 Va2 Vap
- 7
Vo1 Vpa Vop

where V;;:=5.70;;5,! is symmetric and tridiagonal.
Letting E be the permutation matrix given by (9), a
straightforward computation shows that ETVE is a
symmetric block tridiagonal matrix given by

W =E"VE
W11 Wiz
W1 Wop  Was
— e Rnpxnp’
Wn—l,n—Z Wn—l,n—l Wn—l,n
Wn,n—l Wn,n

where each W;; € RP”? is symmetric and W;; = W;;.
Furthermore, foreachi=1,...,nandje {i,i+1},

(Vl,l)i,j (Vl,Z)i,j (Vl,p)i,j
Wi,j: (VZ,%)i,j (V2,2)1,] (VZ,p)i,j ERPXP,

(Vp,l)i,j (Vp,z)z‘,j (Vp,p)i,j

where (V);; denotes the (i, j)-entry of the block V.
In view of V;;=S5,70,;5,! and (14), we have that
Wj/j = U,‘ + UM and Wi,i+1 =—Uj4+1 for i= ].,. L,n= 1,
and W, , = U,. Moreover, because W = E'VE = E'S™T
© S7'E, W is PD (respectively, PSD) if and only if @ is
PD (respectively, PSD), which is also equivalent to
that each U; is PD (respectively, PSD) (see the com-
ment after (15)).

In what follows, we consider PSD (respectively, PD)
matrix decomposition for a PSD (respectively, PD) W
generated by 0;; € R fori=1,...,n and j > i. The goal
of this decomposition is to construct PSD matrices
W’ e R for s = 1,...,n such that the following con-
ditions hold:

(i)
(W (W,
- (W (W,

W)t W)
(Wn)n,nfl (Wn)n,n

(ii) foreachs =2,...,n—1,

~ S

W

[Os-2)px(s-2p
W)geq W)y 0
Woer (W)e (W)

— ~ 5 ~5
0 (W )s+1,s (W )s+1,s+1

; and

(i) W=x", W .
For notational simplicity, let W denote the possibly
nonzero block in each W’ Specifically,
=1 ~1
~1 Wiy (W, CRPY,

(W), (W),

o [V W,

— 2px2
W = € R¥P*P,

L (Wn)n,n—l (Wn)n,n

and foreachs=2,...,n—1,
(W )5—1,5—1 (W )s—l,s 0
~ S ~ S ~ S
W W)y (W) [ERV
0 W )si1s (W )gi1601

—~ 3
W =

When W is PD, we also want each W' in the previous
decomposition to be PD.
Proposition 4.1. Let W be a PSD matrix generated by 0, ; €

R} fori=1,...,n. Then there exist PSD matrices 17\/5, 5=
1,...,n satisfying the above conditions. Moreover, suppose W

is PD. Then there exist PD matrices Ws, s=1,...,n such

that their corresponding W's satisfy the above conditions.

Proof. Let W be generated by 0;; s such that W is PSD,
and let U;s be defined in (15) corresponding to 0;;.
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Each U; is PSD as W is PSD. Let

u, 0 0 -0
0 0 . .
~1 ~n
u, -u,
0 0 _un un
and foreachs=2,...,n—1,
[ O(s-2)px(s-2)p
s _us 0
~5 _us us 0
= 0 0 O
0 - 0
0 - 0

Because each U; is PSD, so is W’ for each s = 1,...,n.

Clearly, W =3I, W',
Now suppose W is PD. Hence, each U, given by (15)
is PD. Define

Wl :1’u1+u2 -U,
2l —u, |
U, + Uy -U, 0
W :=% U, Up+Us -Us),
0 -U; Us;
i U, -U, ,
-u, Uu,
and foreachs=3,...,n—1,
[ Us —Us 0
W’ :=% ~U; Us+Ugy —Us | €RPP,
L 0 —Us41 Usy1
Note that leé{[%l 8 + —Ll[jz _llli 2 }and the two

matrices on the right-hand side are both PSD and the
intersection of their null spaces is the zero subspace.

Hence, Wl is PD. Similarly, Wz is PD, and the other
W’ s are PSD. Because W1 is PD, we see that for an ar-

o —~1 o
bitrary 61 € (0, Amin(W')), W :=W' =6, -1, is PD.
Hence,

Ip
2 o2
W= W26, I,
0
U1+UZ+251'I‘U U, 0
=§ -U, UQ+U3+251'IP —U3
0 -U; Us

is also PD. Therefore, for an arbitrary 0, € (0, Amin

0
(W?)), the matrix W= Wz_(sz.[ I, is PD.

Iy
53
Furthermore, it is easy to show that the matrix W :=

Iy

W3 + 0, - I, is PD such that for any 03 € (0,

0
w3 ~3 <3 0
Amin(w )), the matrix W = W -3+ Ip is
Ip

PD. Continuing this process by induction, we see that

s n—1

W’ is PD for all s=4,...,n—1 and Wn_l =W -

0
On-1- Ip
IP

)\mm(Wn_l)), where Wn_l is PD. Finally, define W=
w" +0y-1-Iop, which is clearly PD. Using these PD

—~ S

W ,s=1,...,n, we construct W’ by setting the possi-

is PD for an arbitrary 0,-1€(0,

bly nonzero block in each W asW'. Specifically,

~1 ~1. 7
W W —~
W Fha) o ey

(W (W),
[(Vv”mnl W)oin ]

= W' e R¥,
~ 1
(W )n,n—l

W |

and foreachs=2,...,n—1,

(I}\VL )s—l,s—l (f/'v~ zs—l,s _ 0 —~
(W )s,s—l (Wb)s,s (W )s,s+l =W e RSPX3P'
~ 5 ~ 5
0 (W )s+1,s (W )s+1,s+1

A straightforward calculation shows that W= X,
w’, yielding the desired result. O

To obtain the desired decomposition using the pre-
vious proposition, we observe that the matrix V in (8)
is given by STT@®S™! for some matrix © of the form
given after (14) whose blocks are positive combina-
tions of Q,s, Qs and Qg s. Because Q. and Q¢ are
diagonal and PSD and Qs are diagonal and PD, each
block of ® is diagonal and PD or PSD. Moreover, by
Lemma 3.1, W is PD. Hence, there are uncountably

many ways to construct positive d;, and thus PD 17\/5,
as shown in the previous proposition. Therefore, we
obtain the following strongly convex decomposition
for the objective function | in (7), where we set the
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constant y = 0 without loss of generality:

1 n1o— n
J(u) = EuTWu +clu= ZiuTWlu + Z C;uj
i=1 i=1
n—-1

=J1(u1,w) + > Ji(wict, i, win) + (W1, uy),
P

where the strongly convex functions J; are given by

1 ~ [
]1(“1,u2):=§[u1T ul |y " +cj uy,
1 ;-1
]i(ui—lzuirui+1)3:§[u£1 ul ul Wil w |[+clu;,
Ui
Vi=2,...,n-1,
1 ;-1
]n(unflzun):zz[uz;_l ul |W, u +c§nun. (16)
n

Remark 4.1. The previous decomposition method is
applicable to any vehicle communication network sat-
isfying the assumption A.1 in Section 2, that is, (i,i+
1)e& for all i=1,...,n—1. Besides, various alterna-
tive approaches can be developed to construct PD ma-

trices W using the similar idea given in the previous
proposition. Furthermore, a similar decomposition
method can be developed for other vehicle communi-
cation networks different from the cyclic-like graph.
For instance, if such a graph contains edges other than
(,i+1)€&, one can add or subtract certain small
terms pertaining to these extra edges in relevant ma-
trices, which will preserve the desired PD property.

In what follows, we write each J; as Ji(u;, (u]-)jE ;)
for notational convenience, where N; denotes the
set of neighbors of vehicle i in a vehicle network
such that i—1,i+1€eN; for i=2,...,n—1 and
2e Ny,n—-1eN,.

4.3. Operator Splitting Method—Based Fully
Distributed Algorithms
For illustration simplicity, we consider the cyclic like
network topology through this subsection, although
the proposed schemes can be easily extended to oth-
er network topologies under a suitable assumption
(Remark 4.1). In this case, N7 = {2}, N}, = {n -1}, and
Ni={i-1,i+1}fori=2,...,n—1.
Define the constraint set

P={u=(uy,...,uy) eR?”|u;€e Xj,uec z,
i=1,...,n}
Recall that P is defined by convex quadratic functions.

The underlying optimization problem (7) at time k be-
comes minyJ(u) subject to u € P.

We formulate this problem as a locally coupled con-
vex optimization problem (Hu, Xiao, and Liu 2018)
and solve it using fully distributed algorithms. Specifi-
cally, in view of the decompositions given by (16), the
objective function in (7) can be written as

) = S i ().
i=1

In view of Remark 3.2, the safety constraints are
also locally coupled. Let Is denote the indicator func-
tion of a (closed convex) set S. Define, for each
i=1,...,n,

Ti(w;, (W)ien,) = Jilwi, (W) jen,) + Ly, (wi) + Lz, (wi-1, wy).

As in Hu, Xiao, and Liu (2018), define u;:=
(u;, (u,-,]-)]rE v,), where the new variables u;; represent
the predicted values of u; of vehicle j in the neighbor
of vehicle i, and let @ :=(U;); _, € R’. Define the
consensus subspace

A= {ﬁ | u;; = uj, V(Z,]) € 5}

Then the underlying optimization problem (7) can be
equivalently written as

n —
min Z]i(ﬁi)/ subject to u € A.
u =

Let P;:= {ﬁ, | u X, (Hi(u,',i_l,ui))s <0, Vs=1,..., p}
for notational simplicity. Then the underlying optimi-
zation problem becomes

min F(u):= i[f(ﬁz) + i Ip (u;) + 14(0), (17)
a =1 =1

where F:R!— RU{+c0} denotes the extended-
valued objective function. Thus F is the sum of two in-
dictor functions of closed convex sets and the convex
quadratic function given by J(u):= X", Ji(u;), by
slightly abusing the notation. Note that A is polyhe-
dral. It is easy to show via Corollary 3.1 that the
Slater’s condition holds under the mild assumptions
given in Corollary 3.1, for example, vy(k) > Umin for all
k € Z.. Hence, by Rockafellar (1970, corollary 23.8.1),
JF(u) = 31, (Vi(u;) + Np,(u;)) + N 4(w) in light of
dlc(x) = Nc(x), where N c(x) denotes the normal cone
of a closed convex set C at x € C. Finally, the formula-
tion given by (17) is a locally coupled convex optimi-
zation problem (see Section 4.1). This formulation
allows one to develop fully distributed schemes. Par-
ticularly, in fully distributed computation, each vehi-

cle i only knows u; and T,- (i.e., J; and P;) but does not
know u; and 71 with j # i. Each vehicle i will exchange

information with its neighboring vehicles to update u;
via a distributed scheme.
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Algorithm 1 (Generalized Douglas-Rachford Splitting
Method—Based Fully Distributed Algorithm)

1: Choose constants 0 <@ < 1and p >0

2: Initialize k = 0, and choose an initial point z°

3: while the stopping criteria is not met do

4: fori=1,...,ndo
5: Consensus step: Compute z¥ using Equation
(18), and let w!*! « zF
6: end for
7. fori=1,...,ndo
8: 2 — 2+ 2a Prox (Zwk+1 ZF) —wht!
9: end for
10: ke—k+1

11: end while

12: return u” = w¥

We introduce more notation first. For a proper, low-
er semicontinuous convex function f : R” — R {400},
let Proxs(-) denote the proximal operator, that is, for
any given x € R",

Prox¢(x) := argmin f(z) +— ||z — x||2
zeR"

Furthermore, Il denotes the Euclidean projection
onto a closed convex set C. Using this notation, we
present a specific operator splitting method based dis-
tributed scheme for solving (17). By grouping the first
two sums (with separable variables) in the objective
function of (17), we apply the generalized Douglas-
Rachford sphttmg algorithm (Hu, Xiao, and L1u 2018).
Recall that J;(u;) := J;(u;) + Ip,(u;) for each i= N
For any constants a and p satisfying 0<oz< 1 and
p > 0, this algorithm is given by

= HA(Zk)I

k+

2 =2k 420 12Ky — w1

Pr0x7+ o], (2w**

It is shown in Davis and Yin (2017) and Hu, Xiao, and
Liu (2018) that the sequence (wf) converges to the
unique minimizer u* of the optimization problem
(17). In the previous scheme, I14 is the orthogonal
projection onto the consensus subspace A such that
the following holds: for any u:=(uj,...,u,) where
U, == (u;, (wj)e p,), W:=T14(1) is given by (Hu, Xiao,
and Liu 2018, section IV):

_ 1 ..
uj == T+ N, |[u]+kezj\; uk]], V(i) eE.  (18)

Furthermore, because of the decoupled structure of Ti
s, we obtain the distributed version of the previous al-
gorithm, which is also summarized in Algorithm 1:

k+1 _ =k (19a)

w; =7,

; i=1,...,n

2 =2+ 2a

k+1 _ k k+1
i ) —wi |

Prox (2w

i=1,...n (19b)

In the distributed scheme (19), the first step (or Line 5
of Algorithm 1) is a consensus step, and the consensus
computation is carried out in a fully distributed and
synchronous manner as indicated in Hu, Xiao, and
Liu (2018, section IV). The second step in (19) (or Line
8 of Algorithm 1) does not need interagent communi-
cation (Hu, Xiao, and Liu 2018) and is performed us-
ing local computation only. For effective computation
in the second step, recall that T.@) = Ji(1;) + Ip,(u;)
for each i=1,...,n such that the proximal operator
Prox i, (u;) becomes

Prox ; () = argmin Ji(2)+ 5 le— Gl
Z€P; P

Because P; is the intersection of a polyhedral set and a
quadratically constrained convex set and J; is a qua-
dratic convex function, Proxp/f (u;) is formulated as a
QCQP and can be solved via a second-order cone pro-
gram (Alizadeh and Goldfarb 2003) or a semidefinite
program. Efficient numerical packages, for example,
SeDuMi (Sturm 1999), can be used for solving the
QCQP with high accuracy. Last, a typical (global)
stopping criterion in Scheme (19) (or Algorithm 1) is
defined by the error tolerance of two neighboring z*s,
that is, ||ZF*1 - z¥||, < ¢, where ¢ >0 is an error toler-
ance. For distributed computation, one can use its lo-
cal version, that is, ||z5! — 2¥||, < /n, as a stopping cri-
terion for each vehicle.

Remark 4.2. Other distributed algorithms can be used
to solve the underlying optimization problem (17). For
example, the three operator splitting method-based
schemes developed in Davis and Yin (2017) can be ap-
plied. To describe such schemes, let L:= maXi=1, .. n
[Wil, > 0. The Hessian HJ(4) = diag(W)._;
V] is Z-Lipschitz continuous and thus 1 /Z—cocoercive.

Furthermore, the two indicator functions are proper,
closed, and convex functions. Choose the constants y, A

such that 0 <y <2/L and 0 < A <2—%. Then for any

initial condition z° the iterative scheme is given by
(Davis and Yin 2017, algorithm 1):

. Hence,

=T,
Zk+l — Zk +A- [HP1><-~-><77,, (zwk+1 _ Zk _ yV](wk“)) _ wk+l]'

In view of the similar discussions for consensus
computation and decoupled structure of the projec-
tion Ilp, x..xp,, we obtain the distributed version of the
previous algorithm:

k+1 _ sk
w; =z;,

p i=1,...,n

—~
zf“ = zf +A- [1'[7>,.(2wﬁ.‘+1 —zf -y W wf” +er]) —wkt],

1
i=1,...,n.
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In this scheme, the Euclidean projection I1p, can be
formulated as a QCQP or a second-order cone pro-
gram and solved yia SeDuMi.

When each W' is PD, each Ji is strongly convex.
Thus V] is u-strongly monotone with y=min,—;_ ,

Amin (W), that is, (x=1)" (VJ(x) = V() = ulk -yl ,
Vx,y. Because the subdifferential of the indicator func-
tion of a closed convex set is monotone, an accelerated
scheme developed in Davis and Yin (2017, algorithm
2) can be exploited. In particular, let n be a constant

with0<n<1,and y, € (0, 2/(Z -(1—-n)). Set the initial
points for an arbitrary z°, w®=T14(z°) and ©° = (°
—wY)/y,. The distributed version of this scheme is
given by

k

+1 _ =k =k s .
w; =z, vy,  i=1,...,m

k+1 k+1 ; .
Ut —7/—(2 +ykv —w™), i=1,...,m

k

Vi1 = un+dwy)+nf

2 = Tlp, (wh*! e [Wal 4 er]),

i=1,...,n,

- Vk+1v

where (1 :=1-p. It is shown in Davis and Yin (2017,
theorem 1.2) that (w¥) converges to the unique mini-
mizer u” with |[w* — ||, = O(1/(k + 1)). However, our
numerical results show that Algorithm 1 outperforms
the three operator splitting method-based schemes in
term of real-time computation when p > 3 (see Section
6.2 for comparison and details).

Remark 4.3. The proposed MPC formulation, decom-
position method, and fully distributed schemes can be
extended to nonconstant spacing car following poli-
cies, for example, the time-headway spacing policy.
This policy is given by A;(k) =dy + vi(k) - h, Yk e Z, for
the ith vehicle, where dy > 0 is a constant, and 11 > 0 is
the constant time-headway. In this case, it can be
shown that zi(k +1) =z;(k) + wzj(k) + 5 w,(k) th - u;(k)
and z[(k+1) = z{(k) + Tw;(k) for each i. Therefore, for
each s=1,...,p, (zi(k+5),z/(k+5)) depends on u;(k),

ui(k+s—1) and u;_1(k),...,ui—1(k+s—1) only such
that its MPC formulation also leads to a locally cou-
pled QCQP, to which the proposed fully distributed
schemes are applicable.

5. Control Design and Stability Analysis

of the Closed Loop Dynamics
In this section, we discuss how to choose the weight
matrices Q.s, Q»s and Qs to achieve the desired
closed loop performance, including stability and traf-
fic transient dynamics. For the similar reasons given
in Gong, Shen, and Du (2016, section 5), we focus on
the constraint free case.

Under the linear vehicle dynamics, the closed-loop
system is also a linear system. Specifically, the linear
closed-loop dynamics are given by

z(k + 1) = z(k) + 2’ (k) + T;w(k),
Z'(k+1) = 2'(k) + tw(k), (20)

where w(k) is a unique solution to an unconstrained
optimization problem arising from the MPC and is a
linear function of z(k) and z’(k) to be determined as
follows.

Case (i): p = 1. In this case, we write Q,1,Qz 1, Qw1
as Q.,Q.,Qq, respectively. Then the objective func-
tion becomes

Jlwo(k) = 5[ (e + 1)Q. 2(k-+ 1)

ke 1) Qu 4 1]+ 5B (0009,

where we recall that w(k) = w(k) —ug(k)e;. It follows
from the similar argument in Gong, Shen, and Du
(2016, section 50 that the closed-loop system is given
by the following linear system:

z(k+1) I——WQ , - ( Q:+5 Qz) [z(k)l
Z(k+1) _%WQZ I, — I/Av(%Qz + QZ,) Z' (k)
A
2
+| 2 ! WQwel'MO(k)/ (21)
T,

where A . is the closed loop dynamics matrix, and

-1

W= [ T L 0.+ 0, 22)

The matrix A . in (21) plays an important role in the
closed loop stability and desired transient dynamical
performance. Because Q,, Q» and Q,, are all diagonal
and PSD (respectively, PD), we have Q, = diag(w),
Qy = diag(B), and Q. = diag({), where a,BecR!
and £eR", with a= (), B=(B,)i~;, and &= ({;)i;.
Hence, we write the matrix A as A (e, B,{,7) to em-
phasize its dependence on these parameters. The fol-
lowing result asserts asymptotic stability of the linear
closed-loop dynamics; its proof resembles that for
Gong, Shen, and Du (2016, proposition 5.1) and is
thus omitted.

Proposition 5.1. Given any 1 € R4y and any o, B,L€
RY,, the matrix A (e, B, 7) is Schur stable, that is,
each eigenvalue ueC of A(e, B, ) satisfies |ul<1.
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Moreover, for any eigenvalue u; of A., the following
hold:

(1) If y; is nonreal, then |yl.|2 =§—Z, where d; ::“'TTz+ﬁi
+Ci

(2) If u;is real, then 1 — (“'T

ﬁ) <p;<1l-
Case (ii): p > 1. Fix k. For a general p €N, let w:=

(w(k),...,wk+p—1)) e R". Recall that for each s=1,
P
s—=1 N
2kt = 200 + st (0 + 2 S 2E D e,
=0

Z'(k+s)=2"(k)+ Tsz_ll w(k+7),
=0

and with slightly abusing notation, the objective
function is

Jw(k),..., wk+p-1))=

w

18y o7 _
7 g (Tzw (k+s—-1)Qupsw(k+s—1)
s=1

+ 2T (k +5)Quoz(k +8) + (2 (k +8) Qs o2 (K + s)),

where w(k +s) := w(k +s) — up(k) - e; introduced in Re-
mark 3.1. It follows from the similar development in
Section 3.1 that

J(w) = %WTHW + wT(G[ZZ,((%] - Mo(k)g) +7,

where 7 is a constant. By a similar argument as in
Lemma 3.1, it can be shown that H € R">¥" is a sym-
metric PD matrix. Furthermore, it resembles the ma-
trix V in (8) (by replacing S;,! with I,,), that is,

H-=
ﬁl,l + TzQw,l I:’ILZ I:ILS ...... ﬁl,}”
Flz,1 IU'IZ,Z + 72 Qw/z IU—I2,3 ...... ﬁz,p
. c RWX1p
ﬁpl ﬁpz Hl’r3 ...... pr+,r an
(23)

where Fli,j s are diagonal PD matrices given by

Hi,j =
r

s=max (i, ])

Moreover, it follows from (10) and (11) that the matrix
G and constant vector g are

Gi1 Gip Qu,1€1

G:= € R,

2 — 2
€ RP1x n, g:=1 [

Gp,l GP,Z Qw,p €1

2 (T; [2(s—1)+1]-[2(s —)) + 1]Qss + TZQZ,,S) e R

where G;1, Gy € R™" are given as follows: for each
i=1,...,p,

2(s—i)+1
11— ZZ ( ) QZS/
p - +1
Gip = 7325 2 ) Qzs + TZ Qzs-

Hence, the optimal solution is w. = (w.(k), w.(k+

D,..,wk+p-1)= —H-l(G ZZ,((’;C)) —uo(k)g), and w,
(k)=-[I, 0 - o]H‘l(G[ZZ,((% —uo(k)g). Define the

matrix K and the vector d as

K:=-[I, 0 0|H'G e R™,
d:=[I, 0 - OH'geR" (24)

The closed loop system becomes

{l5 522

AC

[z(k+1)

2
Z’(k+ 1) n :|u0(k) d/

(25)

where A. is the closed loop dynamics matrix, and the
subscript of A. represents the closed loop.

Because Q. s, Qs are diagonal PSD and Qs are di-
agonal PD for all s=1,...,p, we write them as
Q. = diag(e’), Qv = diag(p’), and Qs = diag(L’),
where o, f°€R} and R}, foralls=1,...,p with

=(a))iLy, B’ =(B)=y, and £’ = (C})i-; for each s. Let
a:=(a,..., o), B:=(p',...,p), and {:=(,...,0").
We write the matrix A. as Ac(e, B, 7) to emphasize
its dependence on these parameters.

It can be shown that there exists a permutation ma-

trix E € R?" such that A := ETACE is a block diago-
nal matrix, that is, A = diag(A41,A4,,...,A
each block A; € R>? is given by

») whose

b B P - S
i = 01 + - ir 1=1,...,n.
Here for each i=1,...,n, K;:=— fﬁflaieR“z
where
(Hl,l +T2Qw,1)i,i (I:Il,Z)j,i (1:11,3)1,1 (I:IT,P):‘,:‘
(F0);; (Hop+72Qua);; (Hag)y -+ o (Fop);,
eRVXP,
(I:IP,l)i,i (I:Ip,Z)i,i (I:Ip,3)i/i (I:Ip,p"'TZQw,p)i,z‘
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and that d’—T a'+p +y >0 Hence c1=-— Zd” =
_ [(G11)i (G12)y; 1 a't? AR
Gi=| P |eRP2 P A= 4d’ 2 d’
(Gp1)ii (Gpo)y,i o | = (0‘ +ﬁ/)
Note that H = diag(ﬁl,ﬁz,...,ﬁn):ETHE for the 2 2 d’

permutation matrix E € RP">?" given by (9). Because H
is PD, so are all the H; s.
As examples, we give the closed-form expressions

of H; and G; for some small ps. When p =1, H, =

Tz(ﬁa1+ﬁ1+Cl)andc~;z— ¢ 1| for each
% TP T i= 70‘1' ?a-+fﬁ.
i=1,...,5. Whenp =2, we have, foreachi=1,.
H;
2 97 2 3 2
Tl 22 +Bl+ I+ T ia?ﬂ%?
-2 4 4 4 c R2:2
372 72 ’
Ta +p7 ZO‘?+5$+C?
and
1 2 .3
o; +3a:
_ 2% %a}+373af+7(ﬁ}+ﬁ?) s
Gi= Tz eR .
Eaiz %02 + 17

Lemma 5.1. Let p = 2. Forany >0, (&}, B},C}) >0 and
0+ (0(?,,8?,@2) >0 for each i=1,...,n,Adle, B, ) is
Schur stable, that is, its spectral radius is strictly less than
one.

Proof. By the previous argument, it suffices to show
that each Z;» is Schur stable fori=1,
trary i. Letting K=

.,n. Fix an arbi-
[c1 c2], wehave

_ 72 72
Ai — 1+EC1 T+?C2 ,
TCq 1+1c
where
o drar} + a?(2B2 +3C7)
1-= Zdl 7
do(5 al + 1)+ a2} + C(3e%a? + 7)
C)=— ,
Td’
and d’ := det(H;)/t*, and d, = 1—2041? +B+C fors=1,2.

Hence, d’ = did, + t2a2(82 +3(7) + B2C;. Define

o :=dya} + 0(2(25,2 +30%),

B —dﬁl —0([3 +C2(3Ta +[31), y’:=d2C}.

Clearly, o/, ',y are all positive for any 7>0, (a},p},
CH)>0 and 0+ (a2, ﬁf,C?) > 0. Moreover, we deduce
from a somewhat lengthy but straightforward calculation

R*2 Tt follows from Gong, Shen, and Du (2016, proposi-
tion 5.1) that A; is Schur stable and so is A.(ex, B,¢, 7). O

Using a similar technique but more lengthy calcula-
tions, it can be shown that when p = 3, the matrix
Ala, B, 7) is Schur stable for 7 >0, (a},8},C}) > 0,0 #
(@2,6%,8)20 and 0+ (a},f3,0)=20 for each i=1,

.,n. For p > 4, we expect that the same result holds
(supported by numerical experience) although its
proof becomes much more complicated. Nevertheless,
it is observed that in the p-horizon MPC, when the pa-
rameters o}, f; (and possibly including j) with s >3
are medium or large, large control inputs are generat-
ed, which causes control or speed saturation and may
lead to undesired close-loop dynamics. Motivated by
this observation, we obtain the following stability re-
sult for small (af, ) >0 fors=3,...,p.

Proposition 5.2. Let p > 3. For any © >0, (a},B},C}) > 0
and 0 # (a?,62,7) 2 0 for each i=1,...,n, and T > 0 for
s=3,...,pandi=1,...,n, there exists a positive constant
€ such that for any of,p; €[0,€) for s=3,...,p and
i=1,...,n, Ade,B,&)is Schur stable.

Proof. Consider p>3. Fix arbitrary 7>0, (a8},
¢1)>0,and 0 # (af,ﬁf,ciz) >0 for eachi=1,...,n and
(;>0fors=3,...,pand i=1,...,n. Suppose o = fi; =
Oforalls=3,...,pandi=1,...,n. Then Q,s =Q» =0
for all s>3. Hence, H;;=0 for all i>3 and any j.
Thus, it is easy to show that foreachi=1,...,n,

~2 ~2
i i

— 3 -
H, = (& ' eERP¥,  G;= 0 e RP??,

2! 0

where ﬁ,z € R¥? and (~;12 € R?*? correspond to p = 2

given before. Hence, K; := —eTH;, G =—e; (H )" G
It follows from Lemma 5.1 that A.(e, B, 7) is Schur
stable; that is, its spectral radius is strictly less than
one. Because the spectral radius of A.(e, B, ¢, 7) is con-
tinuous in af,f; for all s=3,...,p and i=1,...,n, a
small perturbation to aj,f; for all s=3,...,p and i=
1,...,n still leads to the Schur stable matrix A.. This
yields the desired result. [

Based on the previous results, one may choose
Qs,Qz 5, Qus in the following way. Let u,, vs € R and
ws; € R}, be positive or nonnegative vectors of the
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same order. Let 1> 1 (e.g., 1 = 5 or higher) be a cons-
tant and let x,, k. and «x,, be some positive constants.
Then let

Q.5 = (SK—Z)q diag(us)/ Qus=—

(s— 1)"

For a given MPC horizon p €N, suppose that the
closed loop dynamic matrix A.(e, B, 7) is Schur sta-
ble. Because the acceleration of the leading vehicle is
bounded, that is, amin < ug(k) < amax for all k € Z,, the
closed loop dynamics given by (21) or (25) is bound-
ed-input-bounded-output stable. Particularly, if
up(k) = 0 as k — oo, then (z(k),z’(k)) — 0 as k — oo.

( — ) diag(vs),

s=2,...,p.

Qu,s = —— diag(ws),

6. Numerical Results
6.1. Numerical Experiments and Weight
Matrices Design

We conduct numerical tests to evaluate the perfor-
mance of the proposed fully distributed schemes and
the CAV platooning control. In these tests, we consid-
er a platoon of an uncontrolled leading vehicle labeled
by the index 0 and 10 (i.e., n = 10) CAVs following the
leading vehicle. The following physical parameters
are used for the CAVs and their constraints through-
out this section unless otherwise stated: the desired
spacing A = 50m, the vehicle length L = 5m, the sample
time 7 = 1seconds, the reaction time r = 7 = 1 seconds,
the acceleration and deceleration limits am. =
1.35m/ s> and 4y, = -8m / s?, and the speed limits
Umax = 27.78m/s and vpmin = 10m/s. The initial state of
the platoon is z(0) = z’(0) = 0 and v;(0) = 25m/s for all
i=0,1,...,n. Furthermore, the vehicle communication
network is given by the cyclic-like graph, that is, the
bidirectional edges of the graph are (1,2),(2,3),...,
(n—-1,n)eé.

When n = 10, a particular choice of these weight
matrices is given as follows: forp =1,

= (38.85,40.2,41.55,42.90,44.25,45.60,46.95, 48.30,
49.65,51.00) := «,
= (130.61,136.21,141.82,147.42,153.03, 158.64,
164.24,169.85,175.46,181.06) := B,
¢ = (62,74,90,92,106,194,298, 402, 454, 480) := Z

For p>2, we choose a! =a -1, B! =B-1,¢=C-1,
and

0028 o 00M o
(s—l) (s—l)
0.0026 ~

C= xX¢ s=2,...,p.

-1t

The previous vectors o, B ¢ define the weight matri-
ces Qzs,Qz s, Qus for s= .,5, which further yield
the closed loop dynamlcs matrlx Ag; see the discus-
sions after (24). It is shown that when these weights
are used, the spectral radius of A, is 0.8498 for p =1
and 0.8376 for p = 2,...,5, respectively.

We discuss the choice of the MPC prediction hori-
zon p based on numerical tests as follows. Our numer-
ical experience shows that for p > 1, the weight matri-
ces Q.1,0Q~1 and Q1 play a more important role for
the closed loop dynamics. For fixed Q.1,Q. 1 and Qq1
with the large penalties in Q. s, Q. s and Qs fors > 1,
the closed loop dynamics may be mildly improved
but at the expense of undesired large control. Hence,
we choose smaller penalties in Q,;, Q. and Qs for
s > 1, which only lead to slightly better closed loop
performance compared with the case of p = 1. Further-
more, when a large p is used, the underlying optimi-
zation problem has a larger size, resulting in longer
computation time and slow convergence of the pro-
posed distributed scheme. Besides, the current MPC
model assumes that the future ug(k +s) = ug(k) for all
s=1,...,p—1 at each k. This assumption is invalid
when the true uy(k +s) is substantially different from
up(k), which implies that the prediction performance
is poor for a large p. Hence, it is recommended that a
smaller p be used, for example, p <5.

The following scenarios are used to evaluate the
proposed CAV platooning control.

Scenario 1. The leading vehicle performs instanta-
neous deceleration/acceleration and then keeps a
constant speed for a while. The goal of this scenario is
to test if the platoon can maintain stable spacing and
speed when the leading vehicle is subject to accelera-
tion or deceleration disturbances. The motion profile
of the leading vehicle is as follows: the leading vehicle
decelerates from k = 51seconds to k = 54 seconds with
the deceleration —2m/s®, and maintains a constant
speed till k =100seconds. After k = 100seconds, it re-
stores to 1ts original speed 25m/s with the accelera-
tion 1m/s”.

Scenario 2. The leading vehicle performs periodical
acceleration/deceleration. The goal of this scenario is
to test whether the proposed control scheme can re-
duce periodical spacing and speed fluctuation. The
motion profile of the leading vehicle in this scenario is

Table 1. Parameters in Algorithm 1 for Different MPC
Horizon ps

MPC horizon p=1 p=2 p=3 p=4 p=5
@ 0.95 0.95 0.95 0.8 0.8

P 0.3 0.3 0.3 0.1 0.1
Error tolerance 107 2x10% 5x107° 7x10° 125x1072
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Table 2. Scenario 1: Computation Time and Numerical Accuracy

Computation time per CAV (s)

Relative numerical error

MPC horizon Mean Variance Mean Variance
p=1 0.0248 0.0017 34x10™ 1.9x 1077
p=2 0.0603 0.0034 1.5%x 107 26x107°
p=3 0.1596 0.0764 32x107° 1.1x107°
p=4 0.1528 0.1500 40x107° 1.7%x107°
p=5 0.2365 0.2830 6.6 1072 5.7x107°

as follows: the leading vehicle periodically changes its
acceleration and deceleration from k =51seconds to
k =100seconds with the period T = 4seconds and ac-
celeration/deceleration +1m/s”. Then it maintains its
original constant speed 25m/s after k = 100 seconds.

Scenario 3. In this scenario, we aim to test the per-
formance of the proposed control scheme in a real
traffic environment, particularly when the leading ve-
hicle undergoes traffic oscillations. We use real world
trajectory data from an oscillating traffic flow to gen-
erate the leading vehicle’s motion profile. Specifically,
we consider Next Generation Simulation (NGSIM)
data on eastbound I-80 in San Francisco Bay area in
California. We use the data of position and speed of a
real vehicle to generate its control input at each sec-
ond and treat this vehicle as a leading vehicle. Because
the maximum of acceleration of this vehicle is close to
2m/ s?, we choose dmay = 2m/ s%. All the other param-
eters or physical limits remain the same. The experi-
ment setup of this scenario is: z(0)=0m, v;,(0) =
25m/s for each i, and the time length is 45 seconds. To
further test the proposed CAV platooning control in a
more realistic traffic setting in Scenario 3, random
noise is added to each CAV to simulate dynamical
disturbances, model mismatch, signal noise, commu-
nication delay, and road condition perturbations. In
particular, at each k, the random noise with the nor-
mal distribution 0.04 x N(0,1) is added to the first
CAYV, and the noise with the normal distribution 0.02
x N(0,1) is added to each of the rest of the CAVs.
Here a larger noise is imposed to the first CAV since
there are more noises and disturbances between the
leading vehicle and the first CAV.

6.2. Performance of Fully Distributed Schemes
and CAV Platooning Control

The generalized Douglas-Rachford splitting method
based distributed algorithm (Algorithm 1) is tested.
For each MPC horizon p, the parameters @, p, and
the error tolerance for the stopping criteria in this al-
gorithm are chosen to achieve desired numerical accu-
racy and efficiency; see the discussions after (19) for
error tolerances and Table 1 for a list of these parame-
ters and error tolerances. In particular, we choose a
larger error tolerance for a larger p to meet the desired
computation time requirement of one second per ve-
hicle. For comparison, we also test the three operator
splitting based distributed scheme and its accelerated

version given in Remark 4.2, where we choose 6; =

)\mm(Wi)/Z, y = 1.9/Z and A = 1.05. Here L is the Lip-
schitz constant defined in Remark 4.2. For the acceler-
ated scheme, welet n=0.2 and y,=1.9/(0.8 x L).

6.2.1. Initial Guess Warm-Up. For a given p, the aug-
mented locally coupled optimization problem (17) has
nearly 3np scalar variables and 3np scalar constraints
when the cyclic-like network topology is considered.
These sizes can be even larger for other network topol-
ogies satisfying Assumption 1. Hence, when p is large,
the underlying optimization problem is of large size,
which may affect the numerical performance of the
distributed schemes. Several techniques are developed
to improve the efficiency of the proposed Douglas-
Rachford distributed schemes for real-time computa-
tion, particularly for a large p. For illustration, we dis-
cuss the initial guess warm-up technique as follows.

Table 3. Scenario 2: Computation Time and Numerical Accuracy

Computation time per CAV (s)

Relative numerical error

MPC horizon Mean Variance Mean Variance
p=1 0.0464 0.0039 40x107* 1.9 %1077
p=2 0.1086 0.0153 1.1x107° 1.4x107°
p=3 0.3296 0.2593 32x107° 1.13x 107
p=4 0.5049 0.6257 59x107° 4.6x107°
p=5 0.5784 0.7981 1.13x 1072 1.3%x107°
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Table 4. Scenario 3: Computation Time and Numerical Accuracy

Computation time per CAV (s)

Relative numerical error

MPC horizon Mean Variance Mean Variance
p=1 0.0825 0.0023 1.30x 1073 35x107°
p=2 0.2011 0.0051 7.5%x107° 1.6 x107*
p=3 0.5830 0.3462 1.20x 1072 42x10™
p=4 0.8904 0.4685 1.69 x 1072 33x10™
p=5 0.9967 0.7467 3.25x 1072 1.3x 107

When implementing the proposed scheme, we often
choose a numerical solution obtained from the last
step as an initial guess for the current step and run the
proposed Douglas-Rachford scheme. Such the choice
of an initial guess usually works well when two neigh-
boring control solutions are relatively close. However,
it is observed that the convergence of the proposed dis-
tributed scheme is sensitive to an initial guess, espe-
cially when the CAV platoon is subject to significant
traffic oscillations, which results in highly different
control solutions between two neighboring instants. In
this case, using a neighboring control solution as an
initial guess leads to rather slow convergence. To solve
this problem, we propose an initial guess warm-up
technique, motivated by the fact that control solutions
are usually unconstrained for most of k’s. Specifically,
we first compute an unconstrained solution in a fully
distributed manner, which can be realized by setting
P; as the Euclidean space in Algorithm 1. This step can
be efficiently computed because the proximal operator
is formulated by an unconstrained quadratic program
and has a closed form solution. In fact, letting
Ji(u;) = %afﬁviai + c;_ﬁf, the closed form solution to
the proximal operator is given by Prox,,(u;) = —(pWi
+1)"(pcz, — 1)), where W; is PD. We then project this
unconstrained solution onto the constrained set in one
step. Because of the decoupled structure of Problem
(17), this one-step projection can be computed in a fully
distributed manner. We thus use this projected solu-
tion as an initial guess for the Douglas-Rachford
scheme. Numerical experience shows that this new

initial guess significantly improves computation time
and solution quality when p is large.

6.2.2. Performance of Distributed Schemes. Distrib-
uted algorithms are implemented on MATLAB and
run on a computer of the following processor with
four cores: Intel(R) Core(TM) i7-8550U CPU @ 1.80
GHz and RAM of 16.0 GB. We test the fully distrib-
uted Algorithm 1 for Scenarios 1-3. At each k€N,
we use the optimal solution obtained from the last
step as an initial guess unless otherwise stated. To
evaluate the numerical accuracy of the proposed
distributed scheme, we compute the relative error
between the numerical solution from the distributed
scheme and that from a high precision centralized
scheme when the latter solution, labeled as the true
solution, is nonzero. The mean and variance of com-
putation time per vehicle and relative errors for dif-
ferent MPC horizon p’s in noise-free Scenarios 1-3
are displayed in Tables 2-4, respectively. The nu-
merical performance for Scenario 3 under noises is
similar to that without noise and is thus omitted.

It is observed from the numerical results that when
the MPC horizon p increases, more computation time is
needed with mildly deteriorating numerical accuracy.
This observation agrees with the discussion on the
choice of p given in Section 6.1, which suggests a rela-
tively small p for practical computation. Besides, we
have tested the proposed initial guess warm-up tech-
nique on Scenario 3 for different ps using the same pa-
rameters and error tolerances for Algorithm 1 (Table 1).

Table 5. Scenario 3: Computation Time and Numerical Accuracy with Initial

Guess Warm-up

Computation time per CAV (s)

Relative numerical error

MPC horizon Mean Variance Mean Variance
p=1 0.0243 0.0023 50x107* 7.0x1077
p=2 0.0097 0.0017 2.6x107° 1.6 x107°
p=3 0.0579 0.0253 22x107° 1.1x107°
p=4 0.1063 0.1103 3.7%x107° 24%107°
p=5 0.1258 0.1155 8.5x107° 1.5%x107°
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Figure 1. (Color online) Scenario 1: Proposed CAV Platooning Control with p = 1 (Left) and p = 5 (Right)
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To compute a warm-up initial guess using an iterative
distributed scheme, we use the same o and p for each p
with error tolerance 5 x 107* for p = 1 and 1072 for the
other ps. A summary of the numerical results is shown
in Table 5. Compared with the results given in Table 4
without initial guess warm-up, the averaging computa-
tion time is reduced by at least 80% and the relative nu-
merical error is reduced by at least two thirds for p > 2
when the initial guess warm-up is used. This shows
that the initial guess warm-up technique considerably
improves the numerical efficiency and accuracy, and it

is especially suitable for real-time computation when a
large p is used. Hence, we conclude that Algorithm 1,
together with the initial guess warm-up technique, is
suitable for real-time computation with satisfactory nu-
merical precision.

We have also tested the three-operator splitting
based distributed scheme and its accelerated version
given in Remark 4.2. These schemes provide satisfac-
tory computation time and numerical accuracy when
p is small. For example, when p = 1, the mean of com-
putation time per CAV is 0.0553 seconds with the
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Figure 2. (Color online) Scenario 2: Proposed CAV Platooning Control with p = 1 (Left) and p = 5 (Right)
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variance 0.0284 for Scenario 1 and 0.219 seconds with
the variance 0.138 for Scenario 2, respectively. How-
ever, for a slightly large p, for example, p > 3, it takes
much longer than one second for an individual CAV
to complete computation. This is because when p > 3,
the Lipschitz constant L is large, yielding a small
constant y and slow convergence. Hence, these
schemes are not suitable for real-time computation
when p > 3.

6.2.3. Performance of the CAV Platooning Control.
We discuss the closed-loop performance of the

proposed CAV platooning control for the three
aforementioned scenarios with different MPC hori-
zon ps. In each scenario, we evaluate the perfor-
mance of the spacing between two neighboring ve-
hicles (i.e., Si-1i(k) :=x;1(k) —xi(k) = zi(k) + A), the
vehicle speed v;(k), and the control input u;(k), i =
1,...,nforp=1,2,3,4,5. Because of the paper length
limit, we present the closed-loop performance for p
=1and p =5 only for each scenario (see Figures 1-3
for (noise free) Scenarios 1-3 respectively, and
Figure 4 for Scenario 3 with noises). In fact, it is ob-
served from these figures (and the other tests) that
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Figure 3. (Color online) Scenario 3: Proposed CAV Platooning Control with p = 1 (Left) and p = 5 (Right)
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there is little difference in control performance be-
tween p = 1 and a higher p, for example, p = 5. We
comment more on the closed-loop performance of
each scenario as follows.

(i) Scenario 1. Figure 1 shows that the spacing be-
tween the uncontrolled leading vehicle and the first
CAYV, that is, Sp1, has mild deviation from the de-
sired A when the leading vehicle performs instanta-
neous acceleration or deceleration, while the spac-
ings between the other CAVs remain the desired
constant A. Furthermore, it takes about 35 seconds

for 5p,1 to converge to the steady state with the maxi-
mum spacing deviation 2.66 m. The similar perfor-
mance can be observed for the vehicle speed and
control input. In particular, it can be seen that all
the CAVs show the exact same speed change and
control, implying that the CAV platoon performs a
“coordinated” motion with “consensus” under the
proposed platooning control.

(ii) Scenario 2. Figure 2 displays that under the period-
ic acceleration/deceleration of the leading vehicle, the
CAV platoon also demonstrates a “coordinated” motion
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Figure 4. (Color online) Scenario 3 Under Noises: Proposed CAV Platooning Control with p = 1 (Left) and p = 5 (Right)
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with “consensus”. For example, only Sp; demonstrates
mild fluctuation, whereas the spacings between the oth-
er CAVs remain the desired constant, and all the CAVs
show the exactly same speed change and control. More-
over, under the proposed platooning control, the oscilla-
tions of 5S¢ ; are relatively small with the maximal magni-
tude less than 0.22 m. Such oscillations quickly decay to
zero within 30 seconds when the leading vehicle stops
its periodical acceleration/deceleration.

(iii) Scenario 3. In this scenario, the leading vehicle
undergoes various traffic oscillations through the time

window of 45 seconds. Despite such oscillations, it is
seen from Figure 3 that only Sp; demonstrates small
spacing variations with the maximum magnitude less
than 1 m, but the spacings between the other CAVs
remain almost constant A through the entire time win-
dow. This shows that the CAV platoon also demon-
strates a coordinated motion with consensus as in Sce-
narios 1 and 2.

(iv) Scenario 3 subject to noises. Figure 4 shows the
control performance of the CAV platoon in Scenario
3 under noises. It can be seen that there are more



Shen, Kammara, and Du: Fully Distributed Optimization-Based CAV Platooning

402

Transportation Science, 2022, vol. 56, no. 2, pp. 381-403, © 2022 INFORMS

noticeable spacing deviations from the desired cons-
tant A for all CAVs because of the noises. However,
the variation of Sp; remains to be within 1 m, and the
maximum deviation of each S;_;; with i>2 is less
than 0.5m. Furthermore, the profiles of the CAV
speed and control still demonstrate a nearly coordi-
nated motion despite the noises.

In summary, the proposed platooning control effec-
tively mitigates traffic oscillations of the spacing and
vehicle speed of the platoon; it actually achieves a
(nearly) consensus motion of the entire CAV platoon
even under small random noises and perturbations.
Compared with other platoon centered approaches
(Gong, Shen, and Du 2016), the proposed control
scheme performs better because it uses different weight
matrices that lead to decoupled closed loop dynamics;
this choice of the weight matrices also facilitates the de-
velopment of fully distributed computation.

7. Conclusion

The present paper develops fully distributed optimi-
zation based MPC schemes for CAV platooning con-
trol under the linear vehicle dynamics. Such schemes
do not require centralized data processing or compu-
tation and are thus applicable to a wide range of
vehicle communication networks. New techniques are
exploited to develop these schemes, including a new
formulation of the MPC model, a decomposition
method for a strongly convex quadratic objective
function, formulating the underlying optimization
problem as locally coupled optimization, and
Douglas-Rachford method based distributed schemes.
Control design and stability analysis of the closed
loop dynamics is carried out for the new formulation
of the MPC model. Numerical tests are conducted to
illustrate the effectiveness of the proposed fully dis-
tributed schemes and CAV platooning control. Our
future research will address nonlinear vehicle dynam-
ics (Shen et al. 2022), closed loop stability analysis un-
der nonconstant spacing car following polices, and
various robust issues under uncertainties and distur-
bances, for example, communication network mal-
function and failure, time delays in communication
and control, model mismatch, and sensing errors.
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