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ABSTRACT
Uncertainty quantification is a fundamental problem in the analysis and interpretation of synthetic control
(SC) methods. We develop conditional prediction intervals in the SC framework, and provide conditions
under which these intervals offer finite-sample probability guarantees. Our method allows for covariate
adjustment and nonstationary data. The construction begins by noting that the statistical uncertainty of
the SC prediction is governed by two distinct sources of randomness: one coming from the construction
of the (likely misspecified) SC weights in the pretreatment period, and the other coming from the unob-
servable stochastic error in the post-treatment period when the treatment effect is analyzed. Accordingly,
our proposed prediction intervals are constructed taking into account both sources of randomness. For
implementation, we propose a simulation-based approach along with finite-sample-based probability
bound arguments, naturally leading to principled sensitivity analysis methods. We illustrate the numerical
performance of our methods using empirical applications and a small simulation study. Python, R and Stata
software packages implementing our methodology are available. Supplementary materials for this article
are available online.
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1. Introduction

The synthetic control (SC) method was first introduced by
Abadie and Gardeazabal (2003) as an approach to study the
causal effect of a treatment affecting a single aggregate unit
that is observed both before and after the treatment occurs.
The authors originally motivated the method with a study of
the effect of terrorism in the Basque Country on its GDP per
capita. The Basque Country was one of the three richest regions
in Spain before the outset of terrorism around the mid-1970s,
but the region became relatively poorer in the decades that
followed. The question is whether this relative decline can be
attributed to terrorism. Their analysis covers the 1955–2000
period and places the beginning of intense terrorism in 1975,
thus defining a “pretreatment” period when terrorism is not
salient (roughly 1955–1975), and a “post-treatment” period that
starts when terrorism intensifies (roughly 1975 onward). The
time series data allow for a comparison of Basque GDP before
and after the onset of terrorism, but to interpret this change
as the causal effect of terrorism would require assuming the
absence of time trends. Instead, Abadie and Gardeazabal (2003)
proposed to use other regions in Spain, whose GDP is also
observed before and after the onset of terrorism in the Basque
Country, to build an aggregate or “synthetic” control unit that
captures the GDP trajectory that would have occurred in the
Basque Country if terrorism had never occurred. The SC is
built as a weighted average of all units in the control group (the
“donor pool”), where the weights are chosen so that the SC’s
outcome in the pretreatment period closely matches the treated
unit’s trajectory while also satisfying some constraints such as
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being nonnegative, adding up to one, and accounting for other
pretreatment covariates. For a contemporaneous review of this
literature, see Abadie (2021) and the references therein.

The SC method has received increasing attention since
its introduction, and is now a popular component of the
methodological toolkit for causal inference and program
evaluation (Abadie and Cattaneo 2018). Methodological
and theoretical research concerning SC methods has mostly
focused either on expanding the SC causal framework (e.g., to
dissagregated data or staggered treatment adoption settings)
or on developing new implementations of the SC prediction
(e.g., via different penalization constraints or matrix completion
methods). Recent examples include Abadie and L’Hour (2021),
Agarwal et al. (2021), Athey et al. (2021), Bai and Ng (2021),
Ben-Michael, Feller, and Rothstein (2021), Chernozhukov,
Wüthrich, and Zhu (2021c), Ferman (2021), Kellogg et al.
(2021), and Masini and Medeiros (2021); see their references
for many more. In contrast, considerably less effort has been
devoted to develop principled statistical inference procedures
for uncertainty quantification within the SC framework. In
particular, Abadie, Diamond, and Hainmueller (2010) proposed
a design-based permutation approach under additional assump-
tions, Li (2020) relied on large-sample approximations for
disaggregated data under correct specification, Chernozhukov,
Wüthrich, and Zhu (2021b) developed time-series permutation-
based inference methods, and Shaikh and Toulis (2021) dis-
cussed cross-sectional permutation-based inference methods
in semiparametric duration-type settings. See also Feng (2021),
and references therein, for related large sample inference
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methods employing local principal component analysis based
on nearest-neighbor approximations in possibly nonlinear
factor model settings.

We develop conditional prediction intervals for the SC
framework, offering an alternative (conditional) inference
method to assess statistical uncertainty. Our proposed approach
builds on ideas from the literature on conditional prediction
intervals (Vovk 2012; Chernozhukov, Wüthrich, and Zhu
2021a) and non-asymptotic concentration (Vershynin 2018;
Wainwright 2019) in probability and statistics. As a conse-
quence, the resulting (conditional) prediction intervals are
conservative but formally shown to offer probability guarantees.
We focus on uncertainty quantification via (conditional) pre-
diction intervals because, in the SC framework, the treatment
effect estimator is a random variable emerging from an out-of-
sample prediction problem, based on the estimated SC weights
constructed using pretreatment data. Our inference procedures
are not confidence intervals in the usual sense (i.e., giving a
region in the parameter space for a nonrandom parameter of
interest), but rather intervals describing a region on the support
of a random variable where a new realization is likely to be
observed.

Our construction begins by noting that the statistical uncer-
tainty of the SC prediction is governed by two distinct sources of
randomness: one due to the construction of the (likely misspeci-
fied) SC weights in the pretreatment period, and the other due to
the unobservable stochastic error in the post-treatment period
when the treatment effect is analyzed. Accordingly, our pro-
posed prediction intervals are constructed taking into account
both sources of randomness. For the first source of uncer-
tainty, we propose a simulation-based approach that is justified
via non-asymptotic probability concentration and hence enjoys
probability guarantees. This approach takes into account the
specific construction of the SC weights. For the second source
of uncertainty, which comes from out-of-sample prediction due
to the unobservable error in the post-treatment period, we dis-
cuss several approaches based on nonparametric and paramet-
ric probability approximations as a framework for principled
sensitivity analysis. This second uncertainty source is harder
to handle nonparametrically, and hence its contribution to the
overall prediction intervals should be considered with care. Our
approach in this article is to employ an agnostic sensitivity
analysis, but future work will consider other approaches.

Our results are obtained under high-level conditions, but we
provide primitive conditions for three examples: an outcomes-
only setting with iid data, a multi-equation setting allowing
for stationary weakly dependent data where the weights are
obtained by not only matching the pretreatment trends of the
outcome of interest but also approximating the trajectories of
additional variables such as important covariates or secondary
outcomes; and a nonstationary cointegration setting. All three
settings allow the weights to be covariate-adjusted in each equa-
tion. We also showcase our methods numerically, using both
simulated and real data. The methods perform well in finite
samples.

The rest of the article proceeds as follows. Section 2 provides
a formal introduction to the SC framework and defines the
basic quantities of interest. Section 3 introduces the prediction
intervals we focus on, and provides basic intuition for their

decomposition in terms of the SC weights estimation error
and the unobservable post-treatment error. Section 4 develops
a simulation-based method to account for the first source of
uncertainty, and Section 5 discusses how to (model and) account
for the second source of uncertainty. Section 6 illustrates the
performance of our proposed prediction intervals with a Monte
Carlo experiment and two empirical examples from the SC lit-
erature. Section 7 concludes. Appendix A provides an extension
of our main in-sample uncertainty quantification approach to
the case of weakly dependent (β-mixing) stationary time series
data. All the proofs of our technical results, as well as additional
numerical evidence, are collected in the online supplemental
appendix. We provide companion replication codes in R, and a
general-purpose software package is underway (Cattaneo et al.
2021).

2. Setup

We consider the standard SC framework with a single treated
unit and several control units, allowing for both stationary and
non-stationary data. The data may include only the outcome
of interest, or the outcome of interest plus other variables. The
researcher observes N + 1 units for T0 + T1 periods of time.
Units are indexed by i = 1, 2, . . . N, N + 1, and time periods
are indexed by t = 1, 2, . . . , T0, T0 + 1, . . . , T0 + T1. During
the first T0 periods, all units are untreated. Starting at T0 + 1,
unit 1 receives treatment but the other units remain untreated.
Once the treatment is assigned at T0 + 1, there is no change in
treatment status: the treated unit continues to be treated and the
untreated units remain untreated until the end of the series, T1
periods later.

Each unit i at period t has two potential outcomes, Yit(1)

and Yit(0), respectively denoting the outcome under treatment
and the outcome in the absence of treatment (which we call the
control or the untreated condition). This notation imposes two
additional implicit assumptions that are standard in this setting:
no spillovers (the potential outcomes of unit i depend only on i’s
treatment status) and no anticipation (the potential outcomes at
t depend only on the treatment status of the same period).

Attention is restricted to the impact of the treatment on
the treated unit. By treatment impact, we mean the difference
between the outcome path taken by the treated unit, and the
path it would have taken in the absence of the treatment. The
quantity of interest is

τt = Y1t(1) − Y1t(0), t > T0, (1)

where τt may be regarded as random or nonrandom depending
on the framework considered. In this paper, we view τt as a
random variable.

For each unit, we only observe the potential outcome corre-
sponding to the treatment status actually received by the unit.
We denote the observed outcome by Yit , which is defined as
follows:

Yit =
⎧⎨
⎩

Yit(0) if i = 2, . . . N + 1
Yit(0) if i = 1 and t ∈ {1, 2, . . . , T0}
Yit(1) if i = 1 and t ∈ {T0 + 1, . . . , T0 + T1}

.

This means that, in τt , the treated unit’s potential outcome
Y1t(0) is unobservable for all t > T0. The idea of the SC method
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is to use an appropriate combination of the post-treatment
observed outcomes of the untreated units to approximate the
treated unit’s counterfactual post-treatment outcome, Y1t(0) for
t > T0. This idea has been formalized in different ways since it
was originally proposed by Abadie and Gardeazabal (2003).

In all SC frameworks, the formalization chooses a set of
weights w = (w2, w3, . . . , wN+1)′ such that a given loss function
is minimized under constraints. Given a set of estimated weights
ŵ, the treated unit’s counterfactual predicted outcome is then
calculated as Ŷ1t(0) = ∑N+1

i=2 ŵiYit(0) for t > T0. The weighted
average Ŷ1t(0) is often referred to as the SC of the treated unit,
as it represents how the untreated units can be combined to
provide the best counterfactual for the treated unit in the post-
treatment period.

When the data contain only information on the outcome
of interest, w is chosen such that the weighted average of the
outcomes of the untreated units approximates well the outcome
trajectory of the treated unit in the period before the treatment.
That is, the weights w are chosen so that

N+1∑
i=2

wiYit(0) ≈ Y1t(0), for t = 1, 2, . . . , T0,

where the meaning of the symbol “≈” varies depending on the
specific framework considered. A leading example constrains
the weights to be nonnegative and sum to one, and estimates
w by constrained least squares

(ŵ′, r̂)′ ∈ arg min
w∈W , r∈R

T0∑
t=1

(Y1t −Y2tw2−· · ·−Y(N+1)twN+1−r)2,

(2)
where r denotes the intercept, and W and R denote the corre-
sponding constraint (or feasibility) sets—we give formal defini-
tions in the next subsection.

When the weights are chosen according to Equation (2), the
resulting SC will reproduce as closely as possible the outcome
trajectory of the treated unit in the pretreatment period. For
example, in the Basque terrorism application, this procedure
would lead to a synthetic Basque Country that would have a
similar per capita GDP to the Basque Country’s per capita GDP
in the 1955–1975 period when terrorism is not salient.

This outcomes-only version of the SC method, however,
cannot guarantee that the resulting SC unit will be similar to the
treated unit in any characteristics other than the (pre-treatment)
outcome. In some applications, this feature may be undesirable,
as researchers may have access to additional characteristics such
as baseline covariates or secondary outcomes and may want to
also ensure that the SC approximates the treated unit in terms of
these additional characteristics. The SC framework can handle
this case by including additional equations for these additional
characteristics and minimizing the combined loss. In this case,
letting l = 1, 2, . . . , M index the variables that will be “matched”
to produce the weights, the minimization problem above can be
generalized as follows:

(ŵ′, r̂)′ ∈ arg min
w∈W , r∈R

M∑
l=1

T0∑
t=1

υt,l(Y1t,l −Y2t,lw2 −· · ·−Y(N+1)t,lwN+1 −rl)
2,

(3)

where r̂ = (̂r1, . . . , r̂M)′ and {υt,l}1≤t≤T0,1≤l≤M are positive con-
stants reflecting the relative importance of different equations
and periods.

For example, in the original Basque terrorism example,
Abadie and Gardeazabal (2003) showed that the Basque country
differs from the rest of Spain in terms of population density, and
they are concerned that pre-terrorism differences in population
density may affect economic growth in the post-treatment
period. In this case, we can choose the weights ŵ to ensure
not only that the per capita GDP trajectory is similar between
the treated unit and the SC unit, but also to ensure that the
SC is similar to the treated unit in terms of population density.
To implement this multi-equation SC method, we fit equation
(3) with two variables (M = 2) where Yit,1 (l = 1) is per
capita GDP for region i in year t and Yit,2 (l = 2) is population
density for region i in year t. When ŵ is chosen this way, the
resulting SC will resemble (to the extent that the data allows)
the treated unit in terms of both per capita GDP and population
density.

Equation (3) can be viewed as a (weighted) combination of M
optimization problems in Equation (2), satisfying an additional
constraint that the weights w must be the same across the M
equations. For simplicity, we let υt,l = 1 for all t and l, but the
analysis below can be applied to the more general case if addi-
tional regularity conditions are imposed on {υt,l}1≤t≤T0,1≤l≤M .

The two cases just discussed (outcomes-only and multi-
equation SC frameworks) allow for weakly dependent and coin-
tegrated data, and they also can be generalized further by includ-
ing covariates in a linear and additive way in Equations (2)
or (3). This covariate adjustment would introduce additional
parameters to the fit that would not be of primary interest;
rather, they would be included to “partial out” the effect of
additional covariates.

2.1. General Framework

We now introduce a general framework and further notation
that encompass and formalize the two particular examples dis-
cussed above as well as other SC approaches in the literature.
Our general framework includes the outcomes-only fit and the
multi-equation fit (i.e., outcome plus other variables) as partic-
ular cases, allowing for covariate adjustment and nonstationary
data in a unified way.

Consider SC weights constructed simultaneously for M fea-
tures of the treated unit, denoted by Al = (a1,l, · · · , aT0,l)

′ ∈
R

T0 , with index l = 1, . . . , M. For each feature l, there exist
J + K variables that can be used to predict or “match” the T0-
dimensional vector Al. These J + K variables are separated into
two groups denoted by Bl = (B1,l, B2,l, . . . , BJ,l) ∈ R

T0×J

and Cl = (C1,l, . . . , CK,l) ∈ R
T0×K , respectively. More pre-

cisely, for each j, Bj,l = (bj1,l, . . . , bjT0,l)
′ corresponds to the

lth feature of the jth unit observed in T0 pretreatment periods
and, for each k, Ck,l = (ck1,l, . . . , ckT0,l)

′ is another vector
of control variables also possibly used to predict Al over the
same pre-intervention time span. For ease of notation, we let
d = J + KM.

The goal of the SC method is to search for a vector of
common weights w ∈ W ⊆ R

J across the M features and
a vector of coefficients r ∈ R ⊆ R

KM , such that the linear
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combination of Bl and Cl “matches” Al as close as possible, for
all 1 ≤ l ≤ M. This goal is typically achieved via the following
optimization problem:

β̂ := (ŵ′, r̂′)′ ∈ arg min
w∈W , r∈R

(A − Bw − Cr)′(A − Bw − Cr) (4)

where

A =

⎡
⎢⎢⎢⎣

A1
A2
...

AM

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

B1
B2
...

BM

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎣

C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · CM

⎤
⎥⎥⎥⎦ ,

and where the feasibility sets W and R capture the restrictions
imposed. (For simplicity we do not introduce an explicit re-
weighting of the M equations, but recall that this extension
is possible.) This framework encompasses multiple prior SC
formalizations in the literature, which differ in whether they
include additional covariates, whether the data is assumed to be
stationary, and the particular choice of constraint sets W and R
used, among other possibilities.

The following list provides some examples of different con-
straint sets used in practice, where || · ||p denotes the Lp vector
norm and Q and α are tuning parameters.

• Abadie, Diamond, and Hainmueller (2010): W = {w ∈ R
N+ :

||w||1 = 1} and R = {0}.
• Hsiao, Steve Ching and Ki Wan (2012): W = R

N and R =
R.

• Ferman and Pinto (2021): W = {w ∈ R
N+ : ||w||1 = 1} and

R = R.
• Chernozhukov, Wüthrich, and Zhu (2021b): W = {w ∈

R
N : ||w||1 ≤ 1} and R = R.

• Amjad, Shah, and Shen (2018): W = {w ∈ R
N : ||w||2 ≤ Q}

and R = {0}.
• Arkhangelsky et al. (2021): W = {w ∈ R

N : ||w||2 ≤
Q, ||w||1 = 1} and R = R.

• Doudchenko and Imbens (2016): W = {w ∈ R
N :

1−α
2 ||w||22 + α||w||1 ≤ Q} and R = R.

In some applications the intercept in Equation (4) is removed
by demeaning the data before the analysis. Section 4.1 discusses
in detail the outcomes-only case, as well as the multi-equation
case where the researcher “matches” on pretreatment charac-
teristics and pre-intervention outcomes simultaneously. That
section also deals with stationary weakly dependant data, and
nonstationary data (i.e., cointegration system).

For example, the outcomes-only setup can be obtained as
a particular case of Equation (4) with M = 1 (there is only
one feature to match on), J = N (there are N units in the
donor pool), and K = 1 (there is an intercept). Then, A1 =
(Y11, Y12, . . . , Y1T0)

′, Bj,1 = (Y(j+1)1, Y(j+1)2, . . . , Y(j+1)T0)
′,

Cj,1 = (1, 1, . . . , 1)′, and Equation (4) reduces to the (possi-
bly constrained) optimization problem (2). The multi-equation
setup with one outcome and one covariate can be obtained
similarly by setting M = 2 (there are two features to match on),
J = N ( N units in the donor pool), and K = 1 (there is an
intercept), which reduces to Equation (3).

To further understand our proposed inference approach, we
define the pseudo-true values w0 and r0 relative to a sigma

field H :

β0 := (w′
0, r′

0)
′ = arg min

w∈W , r∈R
E[(A−Bw−Cr)′(A−Bw−Cr)|H ],

(5)
and thus write

A = Bw0 + Cr0 + U, w0 ∈ W , r0 ∈ R, (6)

where U = (u1,1, . . . , uT0,1, . . . , u1,M , · · · , uT0,M)′ ∈ R
T0M is

the corresponding pseudo-true residual relative to a sigma field
H . That is, w0 and r0 are the mean square error estimands
associated with the (possibly constrained) best linear prediction
coefficients ŵ and r̂ conditional on H . Importantly, we do not
attach any structural meaning to Equation (6). The population
vectors w0 and r0 are (conditional) pseudo-true values whose
meaning should be understood in context, and are determined
by the assumptions imposed on the data generating process.
In particular, with strong parametric functional form assump-
tions or rich enough nonparametric basis expansions, Equation
(6) may be viewed as a representation (or approximation) of
E[A|B, C, H ]. In such cases, E[U|B, C, H ] = 0 or, at least,
E[U|B, C, H ] is taken to be “small”. Alternatively, if the (popu-
lation, conditional) linear projection coefficients lie on W ×R,
that is, the constraints imposed by W and R in Equation (5)
are not binding, then Equation (6) represents the best linear
approximation of A based on (B, C), conditional on H . In this
scenario, U is uncorrelated with (B, C), conditional on H . Most
importantly, in general, U may not be mean zero due to the
(binding) constraints imposed in the construction of ŵ and r̂.

Given estimated weights ŵ and coefficients r̂, the post-
treatment counterfactual outcome for the treated unit is
predicted by

Ŷ1T(0) = x′
Tŵ + g′

T̂r = p′
T β̂ , pT := (x′

T , g′
T)′, T > T0,

where xT ∈ R
N is a vector of predictors for control units

observed in time T and gT ∈ R
KM is another set of user-

specified predictors observed at time T. Variables included in
xT and gT need not be the same as those in B and C, but will
be part of the sigma field H , as explained in more detail in the
next section. Therefore, from this perspective, our focus is on
conditional inference. We decompose the potential outcome of
the treated unit accordingly:

Y1T(0) ≡ x′
Tw0 + g′

Tr0 + eT = p′
Tβ0 + eT , T > T0, (7)

where eT is defined by construction. In our analysis, w0 and r0
are assumed to be possibly random elements around which ŵ
and r̂ are concentrating in probability, respectively, which is why
we called them pseudo-true values.

The distance between the estimated treatment effect on the
treated and the target population one is

τ̂T − τT =
(

Y1T(1) − Ŷ1T(0)
)

−
(

Y1T(1) − Y1T(0)
)

= Y1T(0) − Ŷ1T(0). (8)

Within the SC framework, we view the quantity of interest
τT as a random variable, and hence we refrain from calling
it a “parameter.” Consequently, we call τ̂T a prediction of τT
rather than an “estimator” of it, and focus on building prediction
intervals rather than confidence intervals.
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3. Prediction Intervals

Given the generic framework introduced in the previous
section, we now present our proposed prediction intervals
for τT . See Vovk (2012), Chernozhukov, Wüthrich, and Zhu
(2021a); Chernozhukov, Wüthrich, and Zhu (2021b), and
references therein, for recent papers on (conditional) prediction
intervals and related methods. Let A, B and C be random
quantities defined on a probability space (�, F ,P), and H ⊆
F be a sub-σ -field. For some α, π ∈ (0, 1), we say a random
interval I is an (α, π)-valid H -conditional prediction interval
for τT if

P

{
P
[
τT ∈ I

∣∣H ] ≥ 1 − α
}

≥ 1 − π . (9)

If H is the trivial σ -field over �, then I reduces to an
unconditional prediction interval for τT . In the general case,
I is an H -conditionally (α, π)-valid prediction interval: the
conditional coverage probability of I is at least (1 − α), which
holds with probability over H at least (1 − π). In practice,
(1 − α) is a desired confidence level chosen by users, say 95%,
and π is a “small” number that depends on the sample size
and typically goes to zero in some asymptotic sense. In this
paper, all the results are valid for all T0 large enough, with the
associated probability loss π characterized precisely. Thus, we
say that the conditional coverage of the prediction interval I is
at least (1 − α) with high probability, or that the conditional
prediction interval offers finite-sample probability guarantees.
Our results imply π → 0 as T0 → ∞, but no limits or
asymptotic arguments are used in this paper.

An asymptotic analogue to the above definition (9) would
be P(τT ∈ I|H ) ≥ 1 − α − oP(1) or, perhaps, P(τT ∈
I|H ) →P 1 − α, where the probability limit is taken as the
sample size grows to infinity (e.g., as T0 → ∞). In this case,
we say I is an H -conditional prediction interval for τT that is
asymptotically valid with coverage probability (at least) (1 −α).
This is a weaker property because it does not offer any finite-
sample probability guarantees for the (conditional) coverage of
the prediction interval.

We employ the following lemma to construct valid, condi-
tional prediction intervals in the sense of Equation (9). This
lemma follows from the union bound applied to τ̂T − τT =
p′

T(β0 − β̂) + eT .

Lemma 1 (Prediction Interval). Suppose that there exist M1,L,
M1,U, M2,L and M2,U, possibly depending on α1, α2, π1, π2 ∈
(0, 1) and the conditioning σ -field H , such that

P

{
P
[
M1,L ≤ p′

T(β0 − β̂) ≤ M1,U
∣∣ H

] ≥ 1 − α1
}

≥ 1 − π1, and

P

{
P
[
M2,L ≤ eT ≤ M2,U

∣∣ H
] ≥ 1 − α2

}
≥ 1 − π2.

Then, P
{
P
[̂
τT −M1,U−M2,U ≤ τT ≤ τ̂T −M1,L−M2,L

∣∣H ] ≥
1 − α1 − α2

}
≥ 1 − π1 − π2.

This lemma provides a simple way to construct an H -
conditional prediction interval enjoying (α, π)-validity with
α = α1 + α2 and π = π1 + π2:

I =
[
τ̂T − M1,U − M2,U , τ̂T − M1,L − M2,L

]
,

for appropriate choices of M1,L, M1,U, M2,L and M2,U and con-
ditioning sigma field. In this paper, we consider conditional
prediction intervals with H = σ(B, C, xT , gT) and focus on
building a probability bound for each of the two terms, p′

T(β0 −
β̂) and eT , separately, and then combine them to build an overall
probability bound via Lemma 1. In the decomposition leading to
the prediction interval construction, we interpret p′

T(β0 − β̂) as
capturing the in-sample uncertainty coming from constructing
the SC weights using pretreatment information, and eT the out-
of-sample uncertainty coming from misspecification along with
any additional noise occurring at the post-treatment period T >

T0. The next two subsections are devoted to handle each of these
terms, respectively.

Remark 1 (Prediction Interval for Y1T(0)). Once the H -
conditionally (α, π)-valid prediction interval I for τT is con-
structed, an analogous prediction interval for the counterfactual
outcome of the treated unit in the post-treatment period T,
Y1T(0), is also readily available. To be precise, using Equation
(1), it follows that

P

{
P
[
Y1T(1) − Y1T(0) ∈ I

∣∣H ] ≥ 1 − α
}

≥ 1 − π ,

that is,
[
M1,L + M2,L + Ŷ1T(0) , M1,U + M2,U + Ŷ1T(0)

]
is a

conditionally valid prediction interval for Y1T(0).

4. In-Sample Uncertainty

We first quantify the in-sample uncertainty coming from
p′

T(β0 − β̂), thereby providing methods to determine (M1,L,
M1,U) and their probability guarantees (α1, π1) in Lemma 1. Let
Z = (B, C), D be a nonnegative diagonal (scaling) matrix of size
d, possibly depending on the pretreatment sample size T0, and
recall that H = σ(B, C, xT , gT). Because β̂ solves (4), we can
define δ̂ := D(β̂ −β0) as the optimizer of the centered criterion
function:

δ̂ = arg min
δ∈	

{
δ′Q̂δ − 2γ̂ ′δ

}
,

where Q̂ = D−1Z′ZD−1, γ̂ ′ = U′ZD−1, and 	 = {h ∈ R
d :

h = D(β − β0), β ∈ W × R}.
The following lemma, which holds whether or not γ :=

E[γ̂ |H ] = 0, is a key building block for our prediction interval
construction.

Lemma 2 (Optimization Bounds). Fix Q̂ and pT . AssumeW and
R are convex, and let β̂ in Equation (4) and β0 in Equation (5)
exist. Then,

ςL := inf
δ∈Mγ̂−γ

p′
TD−1δ ≤ p′

TD−1̂δ

≤ sup
δ∈Mγ̂−γ

p′
TD−1δ =: ςU,

where Mξ = {δ ∈ 	 : δ′Q̂δ − 2ξ ′δ ≤ 0}. Furthermore, for any
κ ∈ R, {

ξ ∈ R
d : inf

δ∈Mξ

p′
TD−1δ ≥ κ

}
and

{
ξ ∈ R

d : sup
δ∈Mξ

p′
TD−1δ ≤ κ

}

are convex sets.
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This lemma does not involve probabilistic statements, but
rather follows from basic features of constrained least-square
optimization. In particular, simple bounds on p′

TD−1̂δ can be
deduced based on the basic inequality from optimization δ̂

′Q̂̂δ−
2(γ̂ − γ )′̂δ ≤ 0, and the fact that any solution must satisfy the
constraints imposed in Equation (4), that is, δ̂ ∈ 	. The second
part of the lemma establishes that the set of possible localization
values (ξ ) determining the feasibility set (Mξ ) of the bounding
(random) quantities ςL and ςU in Lemma 2 (when ξ = γ̂ − γ )
form (random) convex sets.

Conditional on H , the set Mξ is not random due to Q̂,
which is random only unconditionally. As a consequence, con-
ditional on H , both Mγ̂−γ and {p′

TD−1δ : δ ∈ Mγ̂−γ } are
random sets only because γ̂ is a random quantity and, accord-
ingly, ςL and ςU are random variables defined by a random set. If
the conditional distributions of ςL and ςU were known, we could
take their quantiles as lower and upper bounds for the quantiles
of the conditional distribution of p′

TD−1̂δ = p′
T(β̂ − β0),

thereby transforming the first conclusion of Lemma 2 into a
probabilistic statement. However, this approach requires knowl-
edge of the conditional (on H ) distribution of the bounding
random variables ςL and ςU. The convexity properties also
established in Lemma 2 allow us to provide precise bounds
on the desired conditional distribution of the bounding ran-
dom variables using Berry-Esseen bounds for convex sets (Raič
2019).

The following theorem formalizes our first main result
based on Lemma 2. We only present the result for the upper
bound to conserve space, but the analogous result holds
for the lower bound. See Remarks SA-2.1–SA-2.3 in the
supplemental appendix for more details. Let � = V[γ̂ |H ]
and �−1/2D−1Z′ = (z̃1,1, · · · , z̃T0,1, . . . , z̃1,M , . . . , z̃T0,M). In
addition, let || · || denote the spectral matrix norm (so that
|| · || = || · ||2 for vectors).

Theorem 1 (Distributional Approximation, Independent Case).
Assume W and R are convex, β̂ in Equation (4) and β0 in
Equation (5) exist, and H = σ(B, C, xT , gT). In addition,
for some finite nonnegative constants εγ and πγ , the following
conditions hold:

(T1.i) ut = (ut,1, . . . , ut,M)′ is independent over t conditional
on H ;

(T1.ii) P{∑T0
t=1 E[||∑M

l=1 z̃t,l(ut,l − E[ut,l|H ])||3|H ] ≤
εγ (42(d1/4 + 16))−1} ≥ 1 − πγ .

Then,

P

[
P
(
p′

TD−1̂δ ≤ c†(1 − α)
∣∣H ) ≥ 1 − (α + εγ )

]
≥ 1 − πγ ,

where c†(1 − α) denotes the (1 − α)-quantile of ς†
U =

sup
{

p′
TD−1δ : δ ∈ MG

}
conditional on H , with MG = {δ ∈

	 : �†(δ) ≤ 0}, �†(δ) := δ′Q̂δ − 2G′δ, and G|H ∼ N(0, �).

This theorem is established under two high-level conditions.
Condition (T1.i) imposes independence across time for the
pseudo-residuals underlying the population analogue construc-
tion of the SC weights in (6). In Appendix A we relax this
requirement by allowing for weak dependence across time via
a β-mixing condition (Doukhan 2012), but to avoid untidy

conditions we focus on the independent case here. Importantly,
even in this case, Theorem 1 covers nonstationarity in the out-
come variable (via a cointegration relationship). See Section 4.1
for different examples with independent, weakly stationary, and
nonstationary data.

The second high-level requirement in Theorem 1 helps con-
trol the (distributional) distance between γ̂ − γ and the Gaus-
sian random vector N(0, �), conditionally on H , as well as
the unconditional probability loss πγ . Condition (T1.ii) can be
verified in a variety of ways depending on the dependence struc-
ture imposed on the data and other regularity conditions, as we
illustrate in Section 4.1. For instance, two sufficient conditions
are: max1≤l≤M max1≤t≤T0 E[|ut,l − E[ut,l|H ]|3|H ] ≤ η, a.s.
on H for some constant η > 0, and P{∑T0

t=1
∑M

l=1 ||z̃t,l||3 ≤
εγ (42(d1/4 + 16)ηM2)−1} ≥ 1 − πγ .

Since p′
TD−1̂δ = p′

T(β̂ −β0), Theorem 1 could immediately
be applied to construct valid M1,L and M1,U in Lemma 1 if
� = V[γ̂ |H ] was known. Thus, to finalize the in-sample
uncertainty quantification we discuss a feasible simulation-
based approximation for the critical value c†(1−α). To describe
such approach, define a simulation-based criterion function
conditional on the data

��(δ) = δ′Q̂δ − 2(G�)′δ, G�
∼ N(0, �̂),

where �̂ is some estimate of �. The form of �̂ depends on the
specific dependence structure underlying the data and related
regularity conditions, as we illustrate in Section 4.1. Naturally,
the important high-level requirement is that �̂ should con-
centrate around � with known probability; see Theorem 2 for
the precise statement. In addition, the constraint set used in
the simulation has to be properly defined to account for the
parameters being possibly near or at the boundary, so that it
mimics the local geometry of 	. Specifically, let 	� denote the
constraint set used in simulation. We require that

	� ∩ B(0, ε) = 	 ∩ B(0, ε), for some ε > 0, (10)

where B(0, ε) is an ε-neighborhood around zero. We say 	�

is locally equal to 	 if Equation (10) is satisfied. Consequently,
searching for the desired region under constraints in 	� is
almost equivalent to doing so under constraints in 	. We discuss
below more implementation details.

The next theorem establishes the validity of our proposed
simulation-based inference method and provides the associated
probability guarantees, under high-level conditions. Let || · ||F
denote the Frobenius matrix norm (so that ||·||F = ||·|| = ||·||2
for vectors), and Iq the identity matrix of size q for an integer
q > 0.

Theorem 2 (Plug-in Approximation). Assume W and R are
convex, β̂ in Equation (4) and β0 in Equation (5) exist, and
H = σ(B, C, xT , gT). In addition, for some finite nonnegative
constants εγ , πγ , ��

δ , ε�
δ , π�

δ , ε�
	, π�

	, ε�
γ ,1, ε�

γ ,2 and π�
γ , the

following conditions hold:

(T2.i) P[P(p′
TD−1̂δ ≤ c†(1−α)|H ) ≥ 1−α−εγ ] ≥ 1−πγ ;

(T2.ii) P[P(sup{||δ|| : δ ∈ MG} ≤ ��
δ |H ) ≥ 1 − ε�

δ ] ≥
1 − π�

δ ;
(T2.iii) P[P(	� is locally equal to 	 |H ) ≥ 1− ε�

	] ≥ 1−π�
	

for ε = ��
δ in (10);
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(T2.iv) P[P(||�−1/2�̂�−1/2−Id||F ≤ 2ε�
γ ,1|H ) ≥ 1−ε�

γ ,2] ≥
1 − π�

γ .

Then, for ε�
γ ,1 ∈ [0, 1/4],

P

[
P
(
p′

TD−1̂δ ≤ c�(1 − α)
∣∣H ) ≥ 1 − α − ε

]
≥ 1 − π ,

where ε = εγ +ε�
γ ,1+ε�

γ ,2+ε�
δ +ε�

	, π = πγ +π�
γ +π�

δ +π�
	, and

c�(1 − α) denotes the (1 − α)-quantile of ς�
U := sup{p′

TD−1δ :
δ ∈ 	�, ��(δ) ≤ 0}, conditional on the data.

This theorem gives a feasible, simulation-based approach
to determine valid M1,L and M1,U in Lemma 1, with precise
coverage probability guarantees. The first high-level Condition
(T2.i) in Theorem 2 takes as a starting point the conclusion of
Theorem 1 or, alternatively, the conclusion of Theorem A in the
appendix when the data are assumed to exhibit weak depen-
dence via a β-mixing condition. The other three high-level
conditions in Theorem 2 are intuitive. Conditions (T2.ii) and
(T2.iii) control the local geometry of the simulation feasibility
set, as discussed earlier, while Condition (T2.iv) requires �̂ to be
a “good” approximation of �, in the sense that �̂ concentrates in
probability around � with well-controlled errors. Importantly,
Theorem 2 is carefully crafted to accommodate both Theorem 1
(independent data) and Theorem A in the appendix (weakly
dependent time series data) in a unified way. The next section
illustrates different cases with practically relevant examples, and
gives precise primitive conditions.

4.1. Examples

We consider the standard SC constraints W = {w ∈ R
N+ :

||w||1 = 1} and R = R
KM . For simulation-based inference,

we define explicitly a relaxed constraint set based on the orig-
inal estimated coefficients β̂ : 	� = {D(β − β̂

�
) : β =

(w′, r′)′, w ∈ R
N+, ||w||1 = ||ŵ�||1}, where β̂

� = (ŵ�′ , r̂′)′,
ŵ� = (ω̂�

2, . . . , ω̂�
N+1)

′, ω̂�
j = ω̂j1(|ω̂j| > �), and � is a

tuning parameter that ensures the constraint set in the simu-
lation world preserves the local geometry of 	. Moreover, we
set xT = (Y2T(0), . . . , Y(N+1)T(0))′ as it is common in the SC
literature. Other SC methods that vary these choices, including
the other constraint setsW discussed previously, can be handled
analogously, but we do not discuss them in this paper due to
space limitations. Finally, in the remaining of this article, we let
C, C� and c, with various sub-indexes, denote nonnegative finite
constants not depending on T0. In simple cases, we give the exact
expression of these constants, while in other cases they can be
characterized from the proofs of the results. Let λmin(M) and
λmax(M) be the minimum and the maximum eigenvalues of a
generic square matrix M.

4.1.1. Outcomes-only
We start with the simplest possible example already introduced
in Section 2. The SC weights are constructed based on past
outcomes only, and the model allows for an intercept. Thus, the
working model simplifies to

at = b′
tw0 + r0 + ut , t = 1, . . . , T0,

where at := Y1t(0), bt := (Y2t(0), Y3t(0), . . . , Y(N+1)t(0))′,
and with M = 1, K = 1, and d = N + 1. Recall that

w0 = (w0,1, w0,2, . . . , w0,J)′ is defined in Equation (5), and let
zt = (b′

t , 1)′, β0 = (w′
0, r0)

′. We further assume independent
sampling across time, and thus set D = T1/2

0 Id. A natural
variance estimator is

�̂ = 1
T0

T0∑
t=1

ztz′
t (̂ut − Ê[ut|bt])2,

where ût = at − z′
tβ̂ , and Ê[ut|bt] denotes some estimate of the

conditional mean of the pseudo-residuals.
Theorem SA-1 in the supplemental appendix gives precise

primitive conditions to verify the high-level conditions of The-
orems 1 and 2. In particular, assuming that {zt , ut}T

t=1 is iid over
t = 1, . . . , T0, and that max1≤t≤T0 E[|ut|3|B] ≤ η̄1 a.s. on σ(B)

and E[||zt||6] ≤ η̄2, min1≤t≤T0 V[ut|B] ≥ η1 a.s. on σ(B), and
λmin(E[ztz′

t]) ≥ η2, for finite nonnegative constants η̄1, η̄2, η1
and η2, we show that the conditions of Theorem 1 hold with
πγ = Cπ T−1

0 and εγ = CεT−1/2
0 , where Cπ = d

η̄2
+ 4d4η̄2

η2
2

and Cε = 42(d1/4 + 16)
25/2d3/2η̄1η̄2

(η1η2)
3/2 . Furthermore, under addi-

tional primitive conditions, we also show that the conditions of
Theorem 2 hold with precise nonasymptotic probability bounds
characterized in the proof.

Theorem SA-1 characterizes precisely the probability guar-
antees for the in-sample prediction—that is, the precise values of
α1 and π1 in Lemma 1 obtained via Theorems 1 and 2. The con-
ditions imposed are primitive (e.g., moment bounds and rank
conditions), with perhaps the exception of conditions (SA-1.iii)
and (SA-1.v) in Theorem SA-1 in the supplemental appendix.
Specifically, Condition (SA-1.iii) requires � = ��

δ /
√

T0 and
P(min{|w0,j| : w0,j 
= 0} ≥ �) ≥ 1 − π�

w, for nonneg-
ative constants ��

δ and π�
w, which is also primitive insofar it

relates to the separation from zero of the nonzero (possibly
random) coefficients w0 entering the best linear approxima-
tion (5), which is a standard (sparsity-type) assumption in the
literature of constrained least-square estimation. On the other
hand, Condition (SA-1.v) requires P[P(max1≤t≤T0 |Ê[ut|bt] −
E[ut|bt]| ≤ ��

u |H ) ≥ 1 − ε�
u] ≥ 1 − π�

u , for non-
negative constants ��

u , ε�
u and π�

u , which is purposely not as
primitive (but still easily interpretable) because it is meant to
cover many different approximation approaches for E[ut|bt]. In
practice, researchers may assume E[ut|bt] = 0 or, alternatively,
employ flexible-parametric/nonparametric approaches to form
the estimator Ê[ut|bt]. Since the latter approaches are setting-
specific and technically well-understood, we chose to present
our results using the generic condition (SA-1.v) rather than pro-
viding primitive conditions for a specific example of Ê[ut|bt].

4.1.2. Multi-Equation With Weakly Dependent Data
The second example is the multi-equation setup introduced in
Section 2, where we incorporate pre-intervention covariates in
the construction of the SC weights and allow for stationary
weakly dependent time series data. See Kilian and Lütkepohl
(2017) and references therein for an introduction to time series
analysis. We let M = 2 (two features) and K = 0 (no additional
controls) for simplicity, which gives the working model

at,1 =
J∑

j=1
bjt,1w0,j + ut,1,
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at,2 =
J∑

j=1
bjt,2w0,j + ut,2,

t = 1, . . . , T0. The first equation could naturally correspond
to pre-intervention outcomes as in the previous example, that
is, at,1 := Y1t(0) and bt,1 := (Y2t(0), Y3t(0), . . . , Y(N+1)t(0))′,
while the second equation could correspond to some other
covariate (such as population density in the Basque terrorism
application) also used to construct ŵ in Equation (4). Let bt,l =
(b1t,l, · · · , bJt,l)

′, for l = 1, 2. To provide interpretable prim-
itive conditions, we also assume ut = (ut,1, ut,2)′ and bt =
(b′

t,1, b′
t,2)

′ follow independent first-order stationary autoregres-
sive (AR) processes:

ut = Huut−1 + ζ t,u, Hu = diag(ρ1,u, ρ2,u),
bt = Hbbt−1 + ζ t,b, Hb = diag(ρ1,b, ρ2,b, . . . , ρJ,b),

where ζ t,u and ζ t,b are iid over t, independent of each other, and
diag(·) denotes a diagonal matrix with the function arguments
as the corresponding diagonal elements. Let D = T1/2

0 Id, and
note that U = (u1,1, . . . , uT0,1, u1,2, . . . , uT0,2)

′ in this case. A
natural, generic variance estimator is

�̂ = 1
T0

Z′
V̂[U|H ]Z,

where V̂[U|H ] is an estimate of V[U|H ]. In this example, �

corresponds to the (conditional) long-run variance, and natu-
rally �̂ can be chosen to be any standard estimator thereof.

Theorem SA-2 in the supplemental appendix gives primitive
conditions that verify the high-level conditions of Theorem A
in the appendix, and the high-level conditions of Theorem 2
for implementation. Note that because of the time dependence
in this example, the primitive conditions are for Theorem A
instead of Theorem 1. In particular, we show that under stan-
dard conditions guaranteeing β-mixing and moment and rank
conditions (similar to those imposed in the previous example),
the conditions of Theorem A hold with πγ = Cπ T−cπ

0 and
εγ = CεT−cε

0 for nonnegative constants Cπ and Cε , and some
positive constants cπ and cε , which are characterized precisely in
the supplemental appendix. Theorem 2 is also verified using the
primitive conditions imposed in Theorem SA-2 in the supple-
mental appendix, and the associated nonasymptotic constants
are characterized in its proof.

As in the previous example, Theorem SA-2 in the supple-
mental appendix illustrates the kind of primitive conditions
needed to quantify in-sample uncertainty using our proposed
methods. In this example, we accommodate multiple covari-
ates (equations) in the construction of the SC weights and
also allow for AR(1) dependent (stationary) time series data.
The only intentionally high-level condition imposed is (SA-
2.v), P(P(||�̂ − �|| ≤ ε�

�,1|H ) ≥ 1 − ε�
�,2) ≥ 1 − π�

�

for nonnegative constants ε�
�,1, ε�

�,2 and π�
� , which requires

a concentration probability bound for the long-run variance
estimator �̂ used to approximate the quantiles of the conditional
(on H ) distribution of the bounding random variables ςL and
ςU via simulations (Theorem 2). This condition is not difficult
to verify for specific examples.

4.1.3. Cointegration
Our third and final example illustrates how nonstationary
data can also be handled within our framework. See Tanaka
(2017) and references therein for an introduction to non-
stationary time series analysis. Suppose that for each 1 ≤
l ≤ M, {at,l}T

t=1, {b1t,l}T
t=1, . . . , {bJt,l}T

t=1 are I(1) processes,
and {c1t,l}T

t=1, . . . , {cKt,l}T
t=1 and {ut,l}T

t=1 are I(0) processes.
Therefore, A and B form a cointegrated system. For simplicity,
consider the following example: for each l = 1, . . . , M and
j = 1, . . . , J,

at,l =
J∑

j=1
bjt,lw0,j +

K∑
k=1

ckt,lr0,k,l + ut,l,

bjt,l = bj(t−1),l + vjt,l,

where ut,l and vjt,l are stationary unobserved disturbances. In
this scenario, (1, −w′

0)
′ plays the role of a cointegrating vector

such that the linear combination of A and B is stationary.
The normalizing matrix D = diag{T0, . . . , T0,

√
T0, . . . ,

√
T0},

where the first J elements are T0 and the remaining ones are√
T0. Let Žt = (žt,1, . . . , žt,M), where žt,l is the ((l − 1)T0 + t)th

column of diag{T−1/2
0 IJ , IKM}Z′, for l = 1, . . . , M. Recall that

ut = (ut,1, . . . , ut,M)′. Write vt,l = (v1t,l, . . . , vJt,l)
′, vt =

(v′
t,1, . . . , v′

t,M)′, and ct,l = (c1t,l, . . . , ckt,l)
′. We allow some

elements in vt to be used in {ct,l}M
l=1. Let qt collect all distinct

variables in ut , vt , ct,1, · · · , ct,M . As in the previous example, a
generic variance estimator is

�̂ = 1
T0

T0∑
t=1

ŽtV̂[ut|H ]Ž′
t ,

where V̂[ut|H ] is an estimate of V[ut|H ].
Theorem SA-3 in the supplemental appendix gives more

primitive conditions and verifies the high-level conditions
of Theorems 1 and 2 in the cointegration scenario. More
precisely, it provides conditions so that Theorem 1 holds
with πγ = Cπ ,1T−ψν

0 + Cπ ,2T−1
0 + πQ,1 + πQ,2 and

εγ = Cε(log T0)
3
2 (1+cQ)T−1/2

0 for nonnegative constants
(ψ , ν, πQ,1, πQ,2, cQ) specified in the assumptions of the theorem
and nonnegative constants (Cπ ,1,Cπ ,2,Cε) characterized in
the proof. Similarly, Theorem 2 is also verified under more
primitive conditions, including a higher-level condition of the
form P(P(||�̂ − �|| ≤ ε�

�,1|H ) ≥ 1 − ε�
�,2) ≥ 1 − π�

�

for nonnegative constants ε�
�,1, ε�

�,2 and π�
� , as in the previous

examples.
When C is excluded, ŵ is a least-square estimator of the

cointegrating vector, which is typically biased due to the poten-
tial correlation between vt and ut . In Theorem SA-3 in the
supplemental appendix, we include C and allow it to include
contemporary vt to correct this bias. More generally, one may
augment the regression with vt and its leads and lags, which is
termed dynamic OLS in the time series literature. The results for
this general case may be established using a similar strategy.

5. Out-of-Sample Uncertainty

The unobserved random variable eT in (7) is a single error term
in period T, which we interpret as the error from out-of-sample
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prediction, conditional on H = σ(B, C, xT , gT). Naturally, in
order to set appropriate M2,L and M2,U in Lemma 1, it is neces-
sary to determine certain features of the conditional distribution
P[eT ≤ ·|H ]. In turn, determining those features would require
strong distributional assumptions between pretreatment and
post-treatment periods, or perhaps across units. In this section
we propose principled but agnostic approaches to quantify the
uncertainty introduced by the post-treatment unobserved shock
eT . Since formalizing the validity of our methods requires strong
assumptions, in this article we recommend a generic sensitivity
analysis to incorporate out-of-sample uncertainty to the predic-
tion intervals. In particular, we propose employing three distinct
methods for quantifying the uncertainty introduced by eT as a
starting point, and then assessing more generally whether the
additional uncertainty would render the prediction intervals
large enough to eliminate any statistically significant treatment
effect.

Our starting point is a nonasymptotic probability bound on
eT via concentration inequalities. Such textbook results can be
found in, for example, Vershynin (2018) and Wainwright (2019).
We rely on the following lemma, which provides the desired
bounds for eT under different moment-like conditions.

Lemma 3 (Non-Asymptotic Probability Concentration for eT).

(G) If there exists some σH > 0 such that E[exp(λ(eT −
E[eT |H ]))|H ] ≤ exp(σ 2

H λ2/2) a.s. for all λ ∈ R,
then for any ε > 0, P(|eT − E[eT |H ]| ≥ ε|H ) ≤
2 exp(−ε2/(2σ 2

H )).
(P) If E[|eT |m|H ] < ∞ a.s. for some m ≥ 2, then for any

ε > 0, P(|eT − E[eT |H ]| ≥ ε|H ) ≤ ε−m
E[|eT −

E[eT |H ]|m|H ].
This lemma gives (possibly crude) bounds on the necessary

features of the conditional distribution of eT given H .
Lemma 3(G) corresponds to a sub-Gaussian tail assumption,
while Lemma 3(P) exploits only a polynomial bound on
moments of et|H . In both cases, the only unknowns are the
“center” and “scale” of the distribution: E[eT |H ] and σ 2

H (or
higher-moments), respectively. These unknown features can be
estimated or tabulated based on (i) model assumptions and (ii)
observed pretreatment data, at least as an initial step toward a
sensitivity analysis.

For practical purposes, we first outline three alternative
strategies to assess the uncertainty coming from eT , starting
with Lemma 3 and progressively adding more restrictions. After
introducing these approaches, we turn to discussing how they
can be used as an initial step toward a principled sensitivity
analysis for uncertainty quantification of the SC estimator.
Section 6 illustrates this idea using simulated data and empirical
applications.

• Approach 1: Nonasymptotic Bounds. In view of Lemma 3,
we only need to extract some features of eT |H , namely
some conditional moments of the form E[|eT |m|H ] (or
E[em

T |H ]) for appropriate choice(s) of m ≥ 1. In practice,
for example, pretreatment residuals {̂ut}T0

t=1 could be used to
estimate those quantities (e.g., under stationarity and other
regularity conditions). Alternatively, the necessary condi-

tional moments could be set using external information, or
tabulated across different values to assess the sensitivity of the
resulting prediction intervals. Importantly, once E[eT |H ]
and σ 2

H (or higher-moments) are set, then computing M2,L
and M2,U in Lemma 1 is straightforward via Lemma 3.

• Approach 2: Location-scale Model. Suppose that eT =
E[eT |H ] + (V[eT |H ])1/2εT with εT statistically inde-
pendent of H . This setting imposes restrictions on the
distribution of eT |H , but allows for a much simpler
tabulation strategy. Specifically, the bounds in Lemma 1 can
now be set as M2,L = E[eT |H ] + (V[eT |H ])1/2cε(α2/2)

and M2,U = E[eT |H ] + (V[eT |H ])1/2cε(1 − α2/2) where
cε(α2/2) and cε(1 −α2/2) are α2/2 and (1 −α2/2) quantiles
of εt , respectively, and α2 is the desired prespecified level. In
practice, E[eT |H ] and V[eT |H ] can be parameterized and
estimated using the pre-intervention residuals {̂ut}T0

t=1, or
perhaps tabulated using auxiliary information. Once such
estimates are available, the appropriate quantiles can be
easily obtained using the standardized (estimated) residuals.
This approach is likely to deliver more precise prediction
intervals when compared to Approach 1, but at the expense
of potential misspecification due to the location-scale model
used.

• Approach 3: Quantile Regression. In view of Lemma 1, we
only need to determine the α2/2 and (1 − α2/2) conditional
quantiles of eT |H . Consequently, another possibility is to
employ quantile regression methods to estimate those quan-
tities using pretreament data.

While the three approaches above are simple and intuitive,
they are potentially unsatisfactory because their validity would
require arguably strong assumptions on the underlying data
generating process linking the pretreatment and post-treatment
data. Such assumptions, however, are difficult to avoid because
the ultimate goal is to learn about uncertainty introduced by
an unobserved random variable after the treatment began
(i.e., eT |H for T > T0). Without additional data availability
or specific modeling assumptions allowing for transferring
information from the pretreatment period into the post-
treatment period, it is difficult to formally set M2,L and M2,U in
Lemma 1.

Nevertheless, it is possible to approach out-of-sample
uncertainty quantification as a principled sensitivity analysis,
using the methods above as a starting point. Given the formal
and detailed in-sample uncertainty quantification developed
in the previous section, it is natural to progressively enlarge
the final prediction intervals by adding additional out-of-
sample uncertainty to then ask the question: how large does
the additional out-of-sample uncertainty contribution coming
from eT |H need to be in order to render the treatment effect τt
in Equation (1) statistically insignificant? Using the approaches
above, or similar ones, it is possible to construct natural initial
benchmarks. For instance, the variability displayed by the
pretreatment outcomes or SC residuals can help guide the
level of “reasonable” out-of-sample uncertainty. Alternatively,
in specific applications, natural levels of uncertainty for the
outcomes of interest could be available, and hence used to
tabulate the additional out-of-sample uncertainty. In Section 6
we further discuss and illustrate this idea numerically.
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5.1. Examples

We revisit the three examples considered in Section 4.1 and
illustrate how the implementation of the three approaches out-
lined earlier may accommodate different assumptions on the
data generating process. We discuss the outcomes-only case
in more detail, which suffices to showcase our basic strategy
of out-of-sample uncertainty quantification. For the other two
examples, we briefly explain some important conceptual and
implementational issues. As mentioned above, these methods
rely on strong assumptions and should be viewed as a starting
point of a general sensitivity analysis.

5.1.1. Outcomes-Only
Recall that the data is assumed to be iid over 1 ≤ t ≤ T in this
case. The conditional distribution of eT given H then reduces
to that given the contemporary covariates bT only. Also, we set
xT = bT and gT = (1, . . . , 1)′. Then, the out-of-sample error
eT is equivalent to the pseudo-true residual uT . By stationarity
of the data, the information about the conditional distribution
of uT can be learned using the pre-intervention residuals. These
substantial simplifications facilitate the implementation of the
proposed methods for quantifying the out-of-sample uncer-
tainty.

• Approach 1: Nonasymptotic Bounds. In general, we only need
to estimate several conditional moments of uT given bT .
For example, assume that a (conditional) Gaussian bound
holds for uT . If E[uT |bT] = 0, that is, then the SC pre-
diction correctly characterizes the conditional expectation of
aT given bT , then an estimate of the conditional variance of
uT suffices to construct a prediction interval for uT . Other-
wise, an estimate of E[uT |bT] is also required to adjust the
location of the prediction interval. These quantities can be
estimated using the pretreatment data. Though the pseudo-
true residuals {ut}T0

t=1 are not observed, good proxies {̂ut}T0
t=1

are available from the SC fitting. In practice, flexible para-
metric or nonparametric approaches can be used to estimate
these conditional moments. For instance, we can implement
a simple linear regression of ût on bt to estimate E[ut|bt].
Denote the predicted values by Ê[ut|bt]. For the conditional
variance, specify a model V[ut|bt] = exp(b′

tθb + θ0) and
implement a regression of log((̂ut − Ê[ut|bt])2) on bt . The
predicted conditional variance is guaranteed to be positive.
A prediction interval for the out-of-sample error can then be
constructed based on Lemma 3(G).

• Approach 2: Location-scale Model. Similarly, to implement
Approach 2, we only need estimates of the conditional
mean and variance of uT given bT , denoted by Ê[ut|bt]
and V̂[ut|bt] respectively. They can be obtained using the
methods outlined previously. Once they are available, set
M2,L = Ê[uT |bT] + (V̂[uT |bT])1/2̂cε(α2/2) and M2,U =
Ê[uT |bT] + (V̂[uT |bT])1/2̂cε(1 − α2/2) where ĉε(α2/2) and
ĉε(1 − α2/2) are α2/2 and (1 − α2/2) quantiles of {̂εt}T0

t=1
where ε̂t = (̂ut − Ê[ut|bt])/(V̂[ut|bt])1/2, respectively.

• Approach 3: Quantile Regression. We can estimate the α2/2
and (1 − α2/2) conditional quantiles of ut given bt para-
metrically or nonparametrically. For instance, assume the �th
quantile of ut admits a linear form: Q(�|bt) = b′

tθ(�). Then,

we can implement a quantile regression of the pretreatment
residuals ût on bt for � = α2/2 and (1 − α2/2), which
suffices to construct a bound on eT . See Koenker et al. (2017),
and references therein, for a comprehensive discussion of
quantile regression methods.

5.1.2. Multi-Equation with Weakly Dependent Data
When data is weakly dependent and multiple features are used
in the construction of SC weights, the implementation of the
three approaches is similar to that in the outcomes-only case, but
two outstanding issues need to be addressed. First, as described
in Section 4.1.2, the SC weights are obtained by matching on
two pre-intervention features {at,1}T0

t=1 and {at,2}T0
t=1, while in

most SC applications, the final counterfactual prediction is con-
structed by setting xT = bT (and gT = 0 in this case).
Conceptually, the out-of-sample error eT = Y1T(0) − b′

Tw0
may or may not correspond to the pseudo-true residual ut prior
to the treatment. For example, if the pretreatment outcomes
are used in the first equation, then by construction, et in this
scenario is equivalent to ut,1 for t = 1, . . . , T. In the pre-
intervention period, the residuals {̂ut,1}T0

t=1 from the SC fitting
play the role of proxies for {ut,1}T0

t=1. In contrast, if pretreatment
outcomes are not used in any of the two equations, then et
is generally not the same as ut,1 or ut,2. Nevertheless, we can
manually construct êt = Y1t(0) − b′

tŵ as a proxy for et in the
pre-intervention period.

Second, the dependence of eT on H should be appropriately
characterized. Consider a simple scenario where pretreatment
outcomes are used in the construction of SC weights so that
et = ut,1. By our assumptions on ζ t,u and ζ t,b, {ut,1}T

t=1 is
independent of {bt}T

t=1. If we further assume the two compo-
nents of ζ t,u are independent of each other, then the conditional
distribution of uT,1 given H reduces to its unconditional dis-
tribution. Therefore, to implement the three approaches, one
only needs to estimate the unconditional mean, variance or
quantiles using the residuals {̂ut,1}T0

t=1. In practice, however,
the independence between uT,1 and H may be unrealistic.
Assuming an appropriate weak dependence structure, we can
still characterize or approximate the conditional mean, variance
or quantiles of ut,1 by functions of bt and lags thereof, which
could be estimated by parametric or nonparametric regressions
using the pre-intervention data.

5.1.3. Cointegration
As in the second example, we first determine the pre-
intervention analogue to the out-of-sample error eT . For
instance, we let at,1 = Y1t(0) and bjt,1 = Y(j+1)t(0) for
j = 1, . . . , N. In practice, the final counterfactual prediction
is often constructed by setting xT = (Y2t(0), . . . , Y(N+1)t(0))′
and gT = 0, that is, no additional control variables are used
in the out-of-sample prediction. Then, we have et = ut,1 +∑K

k=1 ckt,1r0,k,1 for t = 1, . . . , T. In view of the assumptions
imposed in Theorem SA-3 in the supplemental appendix, the
conditional distribution of et given H reduces to that given the
contemporary variables {vt , ct,1, . . . , ct,M}. As in the previous
examples, we can estimate its conditional mean, variance or
quantiles using various parametric or nonparametric methods.
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The assumption that {qt}T
t=1 is iid in Theorem SA-3 may be

too strong. In practice, as mentioned previously, we may want to
augment the regression of the residual êt by lags (and leads) of
vt and {ct,l}M

l=1 and transformations thereof to take into account
potential time series dependence.

6. Numerical Results

We illustrate the performance of the proposed prediction inter-
vals with a Monte Carlo experiment and two empirical exam-
ples. To implement the methods described in Section 4 and 5,
we take a simple “plug-in” estimator �̂ of the long-run variance
� and employ parametric polynomial regressions to estimate
the conditional mean, variance and quantiles of eT given H
whenever needed. In addition, the choice of the tuning parame-
ter � can be based on a bound implied by optimization. Specif-
ically, since δ̂ must satisfy the basic inequality specified in the
definition of Mξ (see Lemma 2), we can construct a threshold
� for β̂ based on some estimates of the variance of γ̂ and the
eigenvalues of Q̂. More details are discussed below, and we
also provide complete replication codes. Last but not least, in
view of the small sample size in many SC applications, these
practical choices play the role of a reasonable starting point for
a principled sensitivity analysis, as illustrated in this section.

6.1. Simulations

We conduct a Monte Carlo investigation of the finite sample per-
formance of our proposed methods. We consider the outcomes-
only case where M = 1, J = N, K = 0, and only the
outcome variable is used. Then, A1 = (Y11, Y12, . . . , Y1T0)

′,
bj,1 = (Y(j+1)1, Y(j+1)2, . . . , Y(j+1)T0)

′. We set T0 = 100, T1 =
1, and N = 10. We consider three data generating processes for
bjt := bjt,1: bjt = ρbj(t−1) + vjt with ρ ∈ {0, 0.5, 1}, and where
vt = (v1t , . . . , vNt)′ ∼ iid N(0, IN).

To examine the conditional coverage, we first generate a
sample of {bjt : 1 ≤ t ≤ T0 + T1, 1 ≤ j ≤ N} using one
of the three models. We set 5 evaluation points in the post-
treatment period: b̃1(T0+1) := b1(T0+1) + c · sd(b1t), where c ∈
{−1, −0.5, 0, 0.5, 1} and sd(b1t) is the sample standard deviation
of {b1t}T0

t=1. In other words, we construct 5 designs by varying the
value of the first conditioning variable in the last period. Taking
each of them as given, we generate the treated unit at := Y1t =
b′

tw + ut by randomly drawing the error ut ∼ iid N(0, 0.5)

independent of {bt}T
t=1. We set w = (0.3, 0.4, 0.3, 0, · · · , 0)′. By

construction, w is exactly equivalent to the pseudo-true weight
w0 defined in Equation (5) and satisfies the positivity and sum-
to-one constraints in the standard SC. We consider 5000 simu-
lated datasets. Note that the design {bt}T0

t=1 is fixed throughout
the simulation study, and we only draw a new realization of the
error term ut at each repetition.

For comparison, we also investigate the unconditional cover-
age of the prediction intervals. The models for at and bt are the
same as described above, but in this case the design {bt}T

t=1 is
not fixed across the simulation study. Instead, at each repetition
we randomly draw {(at , bt)}T0+1

t=1 . Therefore, the coverage prob-
ability obtained in this alternative exercise is unconditional, that
is, not conditional on a fixed design.

In the above construction, the error term ut is independent
of the design and has mean zero. To check the performance
of the proposed method in models with misspecification error
(E[ut|H ] 
= 0), we also consider several other data generating
processes: for models with ρ = 0 and ρ = 0.5, we generate
ut = 0.2b1t + ζt , while for the model with ρ = 1, ut =
0.9(b1t − b1(t−1)) + ζt , where ζt ∼ iid N(0, 0.5). Notably, in
these misspecified models, the weight w defined previously is
no longer equivalent to the pseudo-true weight w0.

We focus on several versions of our proposed prediction
intervals for the counterfactual outcome Y1T(0) of the treated
unit with 90% nominal (conditional) coverage probability:
“M1” denotes the prediction interval based on assuming a
Gaussian bound and applying the concentration inequality
in Lemma 3(G) (“approach 1”); “M1-S” is the same as “M1”
except that we increase the (estimated) conditional standard
deviation σ̂H by a factor of 2; “M2” denotes the prediction
interval based on the location-scale model (“approach 2”);
and “M3” denotes the prediction interval based on linear
quantile regression (“approach 3”). For comparison, we also
include the prediction interval “CONF,” which is based on the
conformal method developed in Chernozhukov, Wüthrich, and
Zhu (2021b). In the supplemental appendix, we also report
the performance of the prediction interval based on the cross-
sectional permutation method proposed in Abadie, Diamond,
and Hainmueller (2010).

As mentioned previously, we choose the tuning param-
eter � based on the basic optimization inequality � =
σ̂u(log T0)

c/(min1≤j≤J σ̂bj T
1/2
0 ), where σ̂u is the estimated

(unconditional) standard deviation of ut , σ̂bj is the estimated
(unconditional) second moment of bjt , and c = 1 if ρ = 1
and c = 0.5 if ρ = 0 or 0.5. This strategy accommodates the
simple data generating processes considered in simulations, and
it can be tailored to better suit the assumptions in more complex
statistical models as well. In addition, we use polynomial
regression to estimate various features of the conditional
distribution of ut given H . To avoid overfitting, we only use
a subset of the J control outcomes which have nonzero weights
in ŵ�. Regarding the long-run variance �, we take a simple
plug-in estimator �̂ = D−1Z′diag{ũ2

1, . . . , ũ2
T0

}ZD−1, where
ũt = ût − Ê[ut|H ] and Ê[ut|H ] is the estimate of the
conditional mean of ut given H .

Panels A and B of Table 1 summarize the results for models
with and without misspecification error, respectively, where
we use linear regression methods to estimate the conditional
mean, variance or quantiles whenever needed. The proposed
prediction intervals exhibit good coverage properties through-
out different data generating processes and evaluation points,
though they are conservative in several cases. In contrast, the
actual coverage probability of conformal prediction intervals
developed in Chernozhukov, Wüthrich, and Zhu (2021b) is
lower than the target nominal level in general. See Section SA-3
of the supplement for additional simulation evidence.

6.2. Empirical Illustration

We showcase our methods by reanalyzing two empirical exam-
ples from the SC literature. The first example concerns the effect

https://doi.org/10.1080/01621459.2021.1979561
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Table 1. Simulation evidence, linear regression methods.

Panel A: Models with misspecification error

M1 M1-S M2 M3 CONF

CP AL CP AL CP AL CP AL CP AL

ρ = 0
Cond. 1 0.949 2.168 0.987 2.891 0.979 2.625 0.978 2.682 0.864 1.646

2 0.931 2.118 0.982 2.844 0.970 2.577 0.967 2.624 0.854 1.642
3 0.922 2.136 0.977 2.867 0.966 2.599 0.957 2.630 0.842 1.643
4 0.928 2.242 0.979 2.980 0.966 2.710 0.956 2.719 0.830 1.651
5 0.936 2.406 0.981 3.154 0.971 2.881 0.960 2.862 0.819 1.665

Uncond. 0.961 2.373 0.991 3.094 0.982 2.833 0.979 2.892 0.886 1.687
ρ = 0.5
Cond. 1 0.954 2.423 0.986 3.140 0.980 2.876 0.976 2.928 0.854 1.680

2 0.965 2.488 0.990 3.203 0.984 2.939 0.982 2.992 0.865 1.691
3 0.973 2.579 0.992 3.296 0.988 3.031 0.986 3.078 0.875 1.706
4 0.980 2.694 0.993 3.414 0.990 3.149 0.989 3.183 0.887 1.729
5 0.983 2.830 0.995 3.556 0.992 3.289 0.988 3.305 0.896 1.756

Uncond. 0.962 2.387 0.990 3.106 0.981 2.846 0.983 2.921 0.882 1.695
ρ = 1
Cond. 1 0.979 2.798 0.995 3.602 0.991 3.308 0.979 3.278 0.896 3.403

2 0.978 2.730 0.995 3.554 0.990 3.252 0.987 3.270 0.985 3.369
3 0.970 2.756 0.992 3.637 0.987 3.317 0.982 3.287 0.170 3.345
4 0.956 2.896 0.982 3.876 0.975 3.525 0.951 3.331 0.000 3.333
5 0.935 3.188 0.969 4.323 0.961 3.926 0.901 3.413 0.000 3.336

Uncond. 0.974 2.970 0.994 3.733 0.990 3.458 0.989 3.530 0.895 3.443

Panel B: Models without misspecification error

M1 M1-S M2 M3 CONF

CP AL CP AL CP AL CP AL CP AL

ρ = 0
Cond. 1 0.943 2.154 0.985 2.871 0.976 2.609 0.973 2.661 0.879 1.619

2 0.927 2.105 0.980 2.826 0.966 2.563 0.962 2.604 0.880 1.617
3 0.918 2.125 0.974 2.852 0.960 2.587 0.953 2.612 0.880 1.621
4 0.922 2.231 0.975 2.966 0.961 2.699 0.953 2.701 0.881 1.632
5 0.937 2.394 0.978 3.139 0.966 2.868 0.955 2.841 0.881 1.649

Uncond. 0.960 2.358 0.990 3.073 0.981 2.810 0.981 2.878 0.888 1.656
ρ = 0.5
Cond. 1 0.959 2.416 0.988 3.127 0.981 2.866 0.978 2.918 0.875 1.666

2 0.970 2.480 0.990 3.191 0.985 2.929 0.984 2.980 0.876 1.671
3 0.975 2.571 0.993 3.283 0.989 3.022 0.987 3.064 0.879 1.682
4 0.981 2.685 0.995 3.401 0.990 3.139 0.987 3.168 0.885 1.699
5 0.985 2.820 0.996 3.542 0.992 3.278 0.989 3.287 0.888 1.721

Uncond. 0.961 2.370 0.991 3.083 0.981 2.825 0.983 2.894 0.884 1.656
ρ = 1
Cond. 1 0.964 2.533 0.988 3.278 0.983 3.006 0.972 2.972 0.860 1.561

2 0.963 2.406 0.990 3.134 0.983 2.867 0.979 2.892 0.851 1.548
3 0.947 2.364 0.983 3.106 0.972 2.834 0.961 2.835 0.854 1.542
4 0.923 2.411 0.965 3.200 0.955 2.915 0.918 2.801 0.859 1.540
5 0.887 2.571 0.940 3.447 0.927 3.136 0.848 2.800 0.847 1.547

Uncond. 0.982 2.773 0.997 3.485 0.993 3.227 0.991 3.287 0.868 1.642

Notes: Conditional mean, variance, and quantiles of ut are estimated based on linear regression methods. CP = coverage probability, AL = average length. “M1": prediction
interval for Y1T (0)based on the Gaussian concentration inequality with 90% nominal coverage probability; “M1-S": the same as “M1”, but the estimated standard deviation
is doubled in the construction; “M2": prediction interval for Y1T (0) based on the location-scale model with 90% nominal coverage probability; “M3": prediction interval
for Y1T (0) based on quantile regression with 90% nominal coverage probability; “CONF” prediction interval for Y1T (0) based on the conformal method developed in
Chernozhukov, Wüthrich, and Zhu (2021b) with 90% nominal coverage probability.

of California’s tobacco control program, known as Proposition
99, on per capita cigarette sales (see Abadie, Diamond, and
Hainmueller 2010, for more details). The second example corre-
sponds to the economic impact of 1990 German reunification on
West Germany (see Abadie 2021, for more details). To conserve
space, the results for the second example are reported in Section
SA-4 of the supplement.

The outcome variable of interest is per capita cigarette sales
in California, which is arguably nonstationary. We consider
both the raw data and the first-differenced data, corresponding
to the analysis of levels and growth rates of per capita sales,
respectively. In each scenario, we construct (i) the synthetic
control prediction x′

Tŵ as commonly done in the literature;

(ii) the prediction interval for the (conditionally non-random)
“SC component” x′

Tw0 only; and (iii) three distinct predic-
tion intervals for the counterfactual Y1T(0). More specifically,
the prediction intervals for Y1T(0) are implemented using the
three methods outlined in Section 5: (i) conditional subgaussian
bound using Lemma 3(G), labeled as approach 1; (ii) conditional
bound based on location-scale model, labeled as approach 2;
(iii) conditional bound using conditional quantile regression of
residuals, labeled as approach 3.

The three methods used to quantify the out-of-sample uncer-
tainty can be viewed as particular instances of a more gen-
eral sensitivity analysis. In other words, varying the additional
uncertainty contribution of eT in a principled way, researchers

https://doi.org/10.1080/01621459.2021.1979561
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can better understand its impact on the construction of the
prediction intervals. We also illustrate this approach (“sensitivity
analysis”): focusing on approach 1 for concreteness, we rely on
Gaussian bounds in Lemma 3(G) to assess how the prediction
intervals behave as the variance of eT varies.

Accordingly, we present six plots: the SC prediction x′
Tŵ, the

prediction interval (PI) only for the synthetic unit x′
Tw0 with

at least 95% nominal coverage probability, the three different
constructions of PIs for the counterfactual Y1T(0) with at least
90% nominal coverage probability, and a sensitivity analysis
for one chosen post-treatment period. Because the size of the
donor pool is larger than the number of available pretreatment
periods, our procedure may rely on loose bounds for Gaussian
approximation errors in high-dimensional settings.

We first consider the raw data of per capita cigarette sales.
Figure 1(a) shows the trajectory of per capita sales of the syn-
thetic California (dashed blue) and the actual California (solid
black). After 1988, the synthetic California series is above the
observed one, suggesting a negative shock of Proposition 99
on cigarette sales in California. Figure 1(b) adds a 95% conser-
vative prediction interval for the SC component of California
that takes into account the in-sample uncertainty due to the
estimated SC weights. We add the uncertainty associated with
eT in Figures 1(c)–(e). The observed sequence is generally below
the prediction intervals for the counterfactual outcome of Cal-
ifornia, suggesting statistically significant effects of Proposition
99. Figure 1(f) shows the sensitivity analysis of the effect in 1989.
The result is robust: the corresponding PIs are well separated
from the observed outcome of California if we vary the esti-
mated (conditional) standard deviation of eT in a relatively wide
range.

We also analyze the (log) growth rate of per capita cigarette
sales. The result is reported in Figure 2. We can see that the
observed growth rate during the post-treatment period is gener-
ally lower than the SC prediction, but throughout the three con-
structions of PIs for the counterfactual outcome, the observed
series is within the PIs for most post-treatment periods except
in 1989. These empirical findings suggest a statistical significant
effect of the tobacco control program on the growth rate of per
capita cigarette sales only in year 1989. The sensitivity analysis
in Figure 2(f) shows that the significance of the effect in 1989 is
robust.

7. Conclusion

The SC method is part of the standard program evaluation
toolkit. Despite its popularity, many important methodological
and theoretical developments remain outstanding. We focus on
quantifying the uncertainty of the SC method in predicting
the main quantity of interest, τT = Y1T(1) − Y1T(0), in the
standard SC framework. This quantity is the difference between
the observed outcome of the treated unit in a post-treatment
period T, and the outcome that the treated unit would have
had in the same period in the absence of treatment. Because we
view τT as a random variable and there is a single treated unit,
we propose conditional prediction intervals that offer finite-
sample probability guarantees regarding the realization of the
counterfactual treated outcome. Our approach takes the SC

constrained least-square optimization approach as the starting
point. We model the counterfactual of the treated unit in period
T as the weighted sum of the untreated units’ features at T (with
weights estimated with pretreatment data), and an error term.
This decomposition highlights two sources of uncertainty, one
from the in-sample estimation of the SC weights in the pretreat-
ment period, and the other from the post-treatment error that
arises due to the unavoidable out-of-sample prediction involved
in the SC method, which may include potential misspecification
errors from the SC weights. Using finite-sample concentration
bounds, we derive prediction intervals that incorporate both
sources of uncertainty. Because the uncertainty stemming from
the out-of-sample post-treatment error term is hard to han-
dle (especially under general misspecification), we recommend
combining the prediction interval for the SC outcome with
a principled sensitivity analysis for the post-treatment error.
Our empirical illustrations show that our methods perform well
using both simulated and real data. A general-purpose software
package is underway (Cattaneo et al. 2021).

Appendix A: Extension to Weakly Dependent Data

We generalize Theorem 1 to allow for β-mixing data. For ut =
(ut,1, . . . , ut,M)′, define the (conditional on H ) mixing coefficient
b(·; H ) by

b(k; H ) = max1≤l≤n−k
1
2 sup

{∑
i

∑
j

∣∣∣P(Ei ∩ E ′
j |H ) − P(Ei|H )P(E ′

j |H )

∣∣∣ :

{Ei} is a finite partition of σ(u1, . . . , ul),

{E ′
j } is a finite partition of σ(ul+k , . . . , uT0 )

}
.

See Pham and Tran (1985) and Doukhan (2012) for properties and
examples of mixing conditions.

Theorem A below combines a coupling result for dependent data
(Berbee 1987), a Berry-Esseen bound for convex sets (Raič 2019),
and results on anti-concentration of the Gaussian measure for convex
sets (Chernozhukov, Chetverikov, and Kato 2015; Chernozhukov et al.
2017), together with the standard “small-block and large-block” tech-
nique. Decompose the sequence {1, . . . , T0} into “large” and “small”
blocks: J1 = {1, . . . , q}, J ′

1 = {q + 1, . . . , q + v}, . . ., Jm =
{(q + v)(m − 1) + 1, . . . , (q + v)(m − 1) + q}, J ′

m = {(q + v)(m −
1) + q + 1, . . . , (q + v)m}, J ′

m+1 = {(q + v)m + 1, . . . , T0} where
m = �T0/(q + v)�, q > v and q + v ≤ T0/2, and where �·� denotes the
floor operator. The parameters q and v, which depend on T0, control
the sizes of the large and small blocks, respectively, and will satisfy
certain conditions in the theorem below. To simplify notation, we let
st = (s1t , . . . , sdt)

′ be the summand in γ̂ − γ corresponding to time
t, and define Sk,� = ∑

t∈Jk st and Sk,� = ∑
t∈J ′

k
st . Accordingly, let

Sjk,� and Sjk,� be the jth elements of Sk,� and Sk,�, respectively. Let
�� = ∑m

k=1 V[Sk,�|H ] and introduce

σ̄ 2(q) := max
1≤j≤d

1
m

m∑
k=1

V

[
q−1/2 ∑

t∈Jk

sjt
∣∣∣H ]

,

σ̄ 2(v) := max
1≤j≤d

1
m

m∑
k=1

V

[
v−1/2 ∑

t∈J ′
k

sjt
∣∣∣H ]

.

Theorem A (Distributional Approximation, Dependent Case). Assume
W and R are convex, and β̂ in Equation (4) and β0 in Equation (5)
exist. Let ψ ≥ 3. In addition, for nonnegative finite constants η1,
σ̄ , πγ ,1, η2, πγ ,2, η3, πγ ,3, η4, πγ ,4, η5, πγ ,5, and η6, the following
conditions hold:
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Figure 1. California tobacco control: cigarette sales per capita.
Notes. Panel (a): Per capita cigarette sales in California and synthetic California. Panel (b): Prediction interval for synthetic California with at least 95% coverage probability.
Panels (c)–(e): Prediction interval for the counterfactual of California for with at least 90% coverage probability based on three methods described in Section 5, respectively.
Panel (f ): Prediction intervals for the counterfactual California based on approach 1, corresponding to c × σH , where c = 0.25, 0.5, 1, 1.5, 2. The horizontal solid line
represents the observed outcome for the treated.

(TA.i) ut is β-mixing conditional on H with mixing coefficient
b(·; H );

(TA.ii) P
(
E[∑d

j=1
∑m

k=1 |Sjk,�|ψ |H ] ≤ η1, σ̄ 2(v) ≤ σ̄ 2) ≥ 1 −
πγ ,1;

(TA.iii) P
(

max1≤j≤d E[|Sj(m+1),�|ψ |H ] ≤ η2
) ≥ 1 − πγ ,2;

(TA.iv) P
( ∑m

k=1 E[||�−1/2
� Sk,�||3|H ] ≤ η3(42(d1/4 + 16))−1) ≥

1 − πγ ,3;

(TA.v) P
(||�−1

� ||F ≤ dη4
) ≥ 1 − πγ ,4;

(TA.vi) P
(||�−1/2

� ��
−1/2
� − Id||F ≤ 2η5

) ≥ 1 − πγ ,5;
(TA.vii) max

{
η3, η5, dη4[η−1

6 (
√

mvσ̄ 2 log d+η
1/ψ
1 log d)+(dη2)1/ψ

η
−1/ψ
6 ]} ≤ η6 and mb(v; H ) ≤ η6 a.s. on H .
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Figure 2. California tobacco control: growth rate of cigarette sales per capita.
Notes. Panel (a): Growth rate of per capita cigarette sales in California and synthetic California. Panel (b): Prediction interval for synthetic California with at least 95% coverage
probability. Panels (c)-(e): Prediction interval for the counterfactual of California for with at least 90% coverage probability based on three methods described in Section 5,
respectively. Panel (f ): Prediction intervals for the counterfactual California based on approach 1, corresponding to c × σH , where c = 0.25, 0.5, 1, 1.5, 2. The horizontal
solid line represents the observed outcome for the treated.

Then, for η5 ∈ [0, 1/4],
P

[
P
(
p′

TD−1̂δ ≤ c†(1 − α)
∣∣H ) ≥ 1 − α − εγ

]
≥ 1 − πγ ,

where εγ = Cη6 for finite positive constant C, which is characterized
in the proof, πγ = ∑5

l=1 πγ ,l, and c†(1 −α) is the (1 −α)-quantile of
ς

†
U = sup

{
p′

TD−1δ : δ ∈ MG
}

conditional on H .

Conditions (TA.i) and (TA.iv) are comparable to (T1.i) and (T2.i) in
Theorem 1, respectively. The (conditional) independence assumption
is relaxed to (conditional) β-mixing, and a bound on the conditional
third moment of large blocks is imposed. The other conditions in
Theorem A are new, and they ensure the small blocks and the last block
can be neglected in a proper probability concentration sense.
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Supplementary Materials

The online supplemental appendix contains theoretical proofs of the theo-
rems, further details on the three examples presented, additional numerical
evidence, and more discussion on the interpretation of the pseudo-true
values underlying our procedure in specific settings.
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