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Intermediate mass-ratio inspiral (IMRI) binaries—containing stellar-mass black holes coalescing into

intermediate-mass black holes ðM > 100 M⊙Þ—are a highly anticipated source of gravitational waves

(GWs) for Advanced LIGO/Virgo. Their detection and source characterization would provide a unique

probe of strong-field gravity and stellar evolution. Because of the asymmetric component masses and the

large primary, these systems generically excite subdominant modes while reducing the importance of the

dominant quadrupole mode. Including higher order harmonics can also result in a 10%–25% increase in

signal-to-noise ratio for IMRIs, which may help to detect these systems. We show that by including

subdominant gravitational-wave modes into the analysis we can achieve a precise characterization of IMRI

source properties. For example, we find that the source properties for IMRIs can be measured to within

2%–15% accuracy at a fiducial signal-to-noise ratio of 25 if subdominant modes are included. When

subdominant modes are neglected, the accuracy degrades to 9%–44% and significant biases are seen in

chirp mass, mass ratio, primary spin, and luminosity distances. We further demonstrate that including

subdominant modes in the waveform model can enable an informative measurement of both individual spin

components and improve the source localization by a factor of ∼10. We discuss some important

astrophysical implications of high precision source characterization enabled by subdominant modes such

as constraining the mass gap and probing formation channels.

DOI: 10.1103/PhysRevD.104.084068

I. INTRODUCTION

Binaries consisting of a stellar-mass black hole and

an intermediate-mass black hole (IMBH)—total mass

M ∼Oð102 M⊙Þ—are a possible source of gravitational

waves (GWs) for the current generation of detectors:

Advanced LIGO [1], Virgo [2], and KAGRA [3]. Such

sources are typically referred to as intermediate mass-ratio

inspirals (IMRIs).
1
Detection of GWs from IMRIs will

shed light on many interesting scientific questions [4–6]:

IMRI sources will help us understand the formation

channel and evolutionary pathway to supermassive black

hole binaries [7] and probe stellar evolution [8], and inves-
tigate possible environmental effects of matter in the GW
signal [4,9–15]. IMRI signals could further be used to test
general relativity in the strong-field regime [16–22] and to

offer an independent measurement of the Hubble con-
stant [23].
Detectability and parameter estimation accuracy for

IMRIs have garnered a lot of interest over the last few years
[8,24–30].When formed throughhierarchicalmergers, IMRI
systems will have a large total mass and large spin on the
primary. As a motivating example, if a GW190521-like

remnant [31] (M ≈ 142 M⊙, χ ≈ :7, z ≈ 0.8) captured a
30 M⊙ stellar-mass BH, the nascent IMRI system would

have a detector-frame total mass of around 310 M⊙. Because
of the large total mass characterized by these systems, the

*
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1
We note that the merger and ringdown, in addition to the

inspiral, are important for detection and source-parameter
inference.
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number of in-band inspiral cycles from the dominant quadru-
pole mode is negligible. Previous studies have shown that
parameter inference using only the dominant quadrupole

mode leads to large uncertainty and significant biases in key
source parameters such as the mass and spin of the primary
BH [27] and can potentially bias tests of GR [32].

This greatly reduces the science that can be extracted from
IMRI signals, such asmeasuring the pair-instabilitymass gap
[33–36], distinguishing between IMRI formation channels

[4,5], and self-consistency tests of GR that will be especially
informative given the unique IMRI signal [16–22].

Fortunately, the asymmetric black hole masses will excite

subdominant modes that, due to their higher-frequency

content, are in-band longer. In this paper, we show that

including higher order harmonics into the parameter esti-

mation analysis results in a 3 to 4 times improvement in the

measurement uncertainties and 10 times improvement in the

recovered 3D comoving volume that contains the true

position of the binary. We further show that omission of

higher order multipoles leads to either poorer constraints or

completely biased estimation of binary properties. We focus

on IMRIs with detector-frame total masses 175 M⊙ < M <
300 M⊙ and mass ratio 1=40 < q < 1=10 (q ≔ m2=m1

with m1 ≥ m2 and where m1 and m2 are the mass of the

primary and secondary black holes, respectively). We also

demonstrate that high precision parameter estimates are

similarly obtained for generic-spin configurations and

possible binaries in the pair-instability mass gap.

The rest of the paper is organized as the follows. Section II

presents a brief outline of the data analysis framework. In

Sec. III, we consider the detectability of IMRIs based on a

signal-to-noise (SNR) computation. Parameter estimation

results, the main contribution of this paper, is presented in

Sec. IV. The robustness of our results is further discussed in

Sec. V. Finally, we discuss the implications, caveats, and

conclusions of our analysis in Sec. VI.

II. ANALYSIS SETUP

We model the strain data d from a GW detector as a

gravitational-wave signal h with an added stream of

random noise nðtÞ, often assumed to be Gaussian and

stationary [37],

dðtÞ ¼ hðt; θÞ þ nðtÞ: ð1Þ

The gravitational-wave source parameters θ can be inferred

from the time-series data using Bayesian inference.

Bayesian inference relates the probability of model param-

eters θ to experimental data d, and a hypothesis for the data
H, via the Bayes theorem:

pðθjd;HÞ ¼
πðθjHÞLðdjθ;HÞ

ZðdjHÞ
: ð2Þ

The quantity pðθjd;HÞ is the posterior probability density
of the parameters θ given d and H; Lðdjθ;HÞ is the

likelihood of d given θ and H; πðθjHÞ is the prior

probability of θ; and ZðdjHÞ is the evidence (marginalized

likelihood) of d givenH. The posterior density is the target

for parameter estimation (PF), while the evidence is the

target for hypothesis testing.

The vector, θ ¼ ðα; δ;ψ ; tc; dL;n; λÞ is a set of 15

parameters that completely characterizes a binary black

hole GW signal in general relativity. The vector λ ≔

fm1; m2; χ1; χ2; θ1; θ2;ϕ12;ϕjlg are the intrinsic parameters

that describe the binary: the component masses m1 and m2

(with m1 > m2), dimensionless spin magnitudes χ1 and χ2,

and four angles fθ1; θ2;ϕ12;ϕjlg describing the spin ori-

entation (cf. Appendix of [38] for definitions of these

angles), and dL is the luminosity distance. The vector n ≔

fι;φcg is the direction of radiation in the source frame: ι is

the inclination angle between the orbital angular momentum

of the binary and line of sight to the observer, and φc and tc
are, respectively, the azimuthal angle and time at coales-

cence. Right ascension α and declination δ are the sky

localization parameters whereas ψ is the polarization angle.

We consider a network of three ground-based detectors:

two Advanced LIGO detectors and the Advanced Virgo

detector, all operating at their respective design sensitivities

[1,39] and use a zero noise configuration. Specifically, the

synthetic detector data is exactly equal to the expected

response due to our GW source. Since detector noise is

assumed to be colored Gaussian noise with zero mean, this

choice makes our analysis equivalent to an average over an

ensemble of analyses which use infinitely many noise

realizations [40]. To estimate the PDFs of BBH parameters

pðθjd;HÞ, we use the Bayesian inference package

PARALLEL-BILBY
2
[38,41,42] with the DYNESTY [43] sam-

pler. We consider binaries with total masses 175 M⊙ ≤

M ≤ 300 M⊙ and mass ratio 1=40 ≤ q ≤ 1=10, which

would merge in LIGO/Virgo’s sensitive band [44].

We begin by considering binaries whose compo-

nent spins are either aligned/antialigned with the orbital

angular momentum. We employ the GW signal model

IMRPhenomPXHM [45,46].
3
a state-of-the-art phenomeno-

logical nonprecessing multimode frequency-domain model,

from the LALSuite software library [47]. The model includes

fl; mg ¼ fð2;�1Þ; ð3;�3Þ; ð3;�2Þ; ð4;�4Þg modes in

addition to the dominant fl; mg ¼ ð2;�2Þ quadrupolar

mode. To demonstrate the validity of our results for

generic-spin cases, we use IMRPhenomXPHM [48], a

precessing extension of IMRPhenomXHM, that models

GW signal emitted by quasicircular precessing BBHs.

We choose uniform priors for chirp masses ð5 M⊙ <
Mc < 80 M⊙Þ and mass ratio ð1=150 < q < 1Þ, defined
in the detector frame. Unless otherwise specified, mass

2
We use BILBY 1.0.3 and PARALLEL-BILBY 0.1.6.
3
The model IMRPhenomPXHM has been generated with

LALSuite version 6.79, while for analysis using the IMRPhe-

nomPXHM model use LALSuite version 6.83.
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parameters in this paper are always reported in the detector

frame. This particular choice is made as the detector-frame

masses are the directly observed quantities whereas source-

frame masses are inferred using the estimated luminosity

distance dL. This introduces additional uncertainties in the

inferred source-frame masses. For the component dimen-

sionless spins, we use aligned-spin priors [49]. The prior on

the luminosity distance is taken to be PðdLÞ ∝ d2L, with
20 ≤ dL ≤ 3000 Mpc. For the orbital inclination angle ι,

we assume a uniform prior over −1 ≤ cos ι ≤ 1. Priors on

the sky location parameters α and δ are assumed to be

uniform over the sky with periodic boundary conditions.

III. DETECTABILITY OF HIGH MASS-RATIO

MASSIVE BINARIES

To assess the detectability of the IMRIs in current-

generation detectors [24,50], we generate signals using

IMRPhenomXHM and compute the optimal network SNR

[51] ρ at different points of the parameter space. In general,

a network SNR of 8 to 10 is often sufficient for the

detection of a GW signal. However, the statistical signifi-

cance of a detection at a given SNR is established

empirically [52]. In Fig. 1, we show the ratio of the optimal

SNR of only the dominant ðl; mÞ ¼ ð2;�2Þ mode and

including the higher order modes as a function of total mass

of the binary M for different mass ratios q. We find a

significant SNR loss (10% to 25%) when disregarding the

higher order modes, where a ðl; mÞ ¼ ð2;�2Þ-only analy-

sis would be likely to miss otherwise clear detections of

IMRIs. If the detector noise were truly Gaussian, this SNR

loss corresponds to a reduction in the volume of the

Universe (which is roughly ∼ρ3) from which clear detec-

tions can be made of the order of 30%–60%. Because of

non-Gaussian detector glitches, however, the sensitivity is

likely to be degraded. Therefore, IMRIs are at present

difficult to detect with template-based searches [53]. We

further note that the SNR in both the dominant ðl; mÞ ¼
ð2;�2Þ mode and in higher order modes are significantly

greater than the detection threshold of ∼8–10 for the

binaries we consider in this work and so may be detected

with other methods [54,55]. The inclusion of higher order

modes in modeled GW search pipelines is outside the scope

of this paper but would warrant further explorations (see

also [56] for effects on a more equal-mass BBH search).

A. SNR variation with source orientation

For all of our simulated events, we fix the inclination

angle ι ¼ 2.35, azimuthal angle φ ¼ 2.35, and polarization

angle ψ ¼ 0.0. Varying these values can raise or lower the

FIG. 1. Ratio of the optimal SNRs of only the ð2;�2Þ modes,

ρ22, and all available modes, ρtot, for binaries with total masses

175 M⊙ < M < 300 M⊙ and mass ratio 1=40 < q < 1=15. We

fix dL ¼ 750 Mpc, ι ¼ 3π=4, φc ¼ 3π=4, α ¼ 1.0, δ ¼ 1.0,

ψ ¼ 0.0 and tc ¼ 0.0h Greenwich mean sidereal time (SNR as

a function of ι, φc, and ψ is shown in Fig. 2).

FIG. 2. SNR as a function of inclination angle ι, azimuthal

angle φc and polarization ψ . We set q ¼ 30, M ¼ 225 M⊙,

fχ1; χ2g ¼ f0.6; 0.7g, dL ¼ 750 Mpc, α ¼ 1.0, and δ ¼ 1.0.

Solid black lines indicate our choice of ι ¼ 2.35, φ ¼ 2.35

and ψ ¼ 0.0 for all of our injections.
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SNR as the different harmonic modes can undergo con-

structive or destructive interference. In Fig. 2, we pick up a

representative case of mass ratio q ¼ 30 and show the SNR

as a function of ι, φ, and ψ while keeping other parameters

fixed. We set the total mass M ¼ 225 M⊙, spins

fχ1; χ2g ¼ f0.6; 0.7g, luminosity distance dL ¼ 750 Mpc,

right accession α ¼ 1.0, and declination δ ¼ 1.0. Our choice

of ιð¼ 2.35Þ, φð¼ 2.35Þ, and ψð¼ 0.0Þ (black lines) for the
simulated events fits in between optimal and conservative

SNR expectations.

IV. PARAMETER ESTIMATION RESULTS

We now investigate the precision with which current-

generation detectors will be able to measure the source

properties of the IMRIs. We study the effects of higher

order modes in parameter estimation and explore the

validity of our results for binaries with generic spins, as

well as special cases, e.g., face-on/off binaries.

A. Simulated GW signals

We employ IMRPhenomXHM to simulate the following

sets of aligned-spin IMRI signals:

(i) Set-M: We fix q ¼ 1=30, χ1 ¼ 0.6, and χ2 ¼ 0.7

while varying the total mass M ¼ f175; 200; 225;
250; 275; 300gM⊙. This set of spins matches with the

predicted spin magnitudes of black holes formed

through hierarchical mergers [57–59].

(ii) Set-q:We fixM ¼ 225 M⊙, χ1 ¼ 0.6, and χ2 ¼ 0.7

while varying the mass ratio q ¼ f1=40; 1=30; 1=20;
1=10g.

(iii) Set-χ 1: We fix M ¼ 225 M⊙, χ2 ¼ 0.7, and q ¼
1=30 while varying the dimensionless spin magni-

tude on the primary black hole χ1¼f−0.6;−0.3;0.0;
0.3;0.6g.

(iv) Set-χ 2: We fix M ¼ 225 M⊙, q ¼ 1=30, and χ1 ¼
0.6 while varying the dimensionless spin magnitude

on the secondary black hole χ2 ¼ f−0.7;−0.3; 0.0;
0.3; 0.7g.

For each binary, we set ι ¼ 3π=4, φc ¼ 3π=4, α ¼ 1.0, δ ¼
1.0 and ψ ¼ 0.0 radians respectively. We further fix tc ¼
0.0h Greenwich mean sidereal time. The distance to each

source is then scaled so that the network SNR is ρ ¼ 25 to

ensure a fair comparison of PE accuracy across the

parameter space. We use the same waveform model for

injection and recovery thereby removing possible biases

due to the choice of a particular waveform approximant

[27,50,60]. We demonstrate the robustness of our results

with respect to waveform model in Sec. V. For each

simulated IMRI, we recover the source parameters with

two different mode configurations: one with only the

dominant ðl; mÞ ¼ ð2;�2Þ modes and then with all avail-

able modes included. The injected signal, however, always

contains all available modes.

B. Parameter estimation accuracy

In Fig. 3, we show the recovered 90% credible intervals
for five important binary source properties: chirp massMc,
mass of the primary black hole m1, mass ratio q, spin
magnitudes χ1, and luminosity distance dL as a function of
the injected total massMinj, mass ratio qinj and primary spin

χ1;inj. Similar to [27], we find that the best constrained

parameters are chirp mass Mc, mass ratio q, and spin on
the primary black hole χ1. The measurement accuracy of
Mc depends on the number of in-band inspiral cycles. As
the total mass of the binary increases, the observable signal
becomes dominated by the merger and ringdown part.
Therefore, the uncertainty on Mc is expected to increase

with increasing M. We find that Mc can be measured with
an accuracy of ∼3% for a binary with total mass M ¼
175 M⊙ (and q ¼ 1=30) while the uncertainty increases to
∼7% for M ¼ 300 M⊙ (and q ¼ 1=30). In Table I, we
summarize the uncertainties on Mc, m1, q, χ1, and dL
along with the biases in estimation for binaries at the
boundary of our parameter space. Since we are using zero
noise, our results are equivalent to ensemble averages. This

implies that the bias parameter βθ ¼ θtrue − θrecovered (where
θtrue is the true value of the parameter and θrecovered is the
median of the recovered posterior for θ) is, in some sense,
the exact quantification of bias from the injected value.
For typical systems, m1, q, and χ1 are well constrained
with ∼10% of accuracy when higher modes are included.
Relative errors on M ðχeffÞ closely follow that of m1 ðχ1Þ
(cf. Figs. 3 and 4). As the binary becomes more asymmetric,
the number of waveform cycles in the detector band
increases, resulting in a decrease in measurement uncer-
tainties of q. Uncertainties in dL are typically∼20%. When
all other parameters are fixed, a negative spin on the
primary black hole reduces the number of in-band cycles
in the gravitational waveform, implying a severe loss of
information in the detected signal. This leads to significant
increase in uncertainties on almost all the recovered
parameters for the binary with fM; q; χ1; χ2g ¼ f225 M⊙;
1=30;−0.6;þ0.7g.

C. Constraints on total mass M and effective spin χ eff

We compute the dimensionless 90% credible uncertain-

ties for the total mass of the binary, M, and the effective

inspiral spin, χeff . We find that, due to the smaller black

hole being well approximated by the structureless point

particle, the relative errors onM ðχeffÞ closely follow that of

m1 ðχ1Þ. In Fig. 4 and 5, we show the 90% uncertainties for

different parameters as a function of the injected total mass

(BBH configurations set-M) and mass ratio (BBH con-

figurations set-q).

D. Measureability of Spin Magnitudes

We now consider individual spin measurements for

IMRIs, using an aligned-spin prior (solid blue lines) for

ISLAM, FIELD, HASTER, and SMITH PHYS. REV. D 104, 084068 (2021)

084068-4



the both spins. While χ1 can be precisely measured for most

of the binaries (as seen in Fig. 3), the spin on the secondary

black hole χ2 generally remains uninformative. However,

contrary to our general expectation, we find that one may

be able to constraint χ2 due to the presence of higher

modes. We find that the 90% credible intervals for χ2 may

be reasonably resolved for our binaries with masses

M < 225 M⊙. For larger total masses, the number of

resolvable inspiral cycles reduces drastically, implying a

sharp drop in available information in the detected signal.

In Fig. 6, we show the χ2 posteriors recovered with only

ð2;�2Þ modes (black dashed lines) and with all modes

(green solid lines) for the injections created in set −M with

varying total masses. It shows that while the ð2;�2Þ mode

recovery cannot constrain χ2, this parameter can be

measured when the recovery model includes higher order

modes and the signal contains a sufficient number of

resolvable inspiral cycles.

FIG. 3. The 90% credible interval for the total mass of the binary M, mass of the primary black hole m1, mass ratio q, dimensionless

spin parameters χ1 and χ2, and luminosity distance dL as a function of the injected total mass Minj (left panels), injected mass ratio qinj
(middle panels), and injected spin magnitude on the primary black hole χ1;inj (right panels). 90% credible interval for the ð2;�2Þ mode

(all modes) recovery is shown in green (blue) and the true values are plotted as a dashed black line. Columns 1, 2, and 3 correspond to

BBH configurations of set-M, set-q, and set-χ1, respectively.
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TABLE I. Parameter estimation accuracy for the binaries used in our analysis.
a
We report the dimensionless uncertainties Δθ=θinj and

biases βθ for five representative parameters. Symbols: Mc: detector-frame chirp mass; q: mass ratio; χ1: dimensionless spin on the

primary black hole; V22 and Vhm are the recovered 90% credible region of the comoving volume (computed using ligo − skymap)

containing the true position of the binary with and without the higher modes, respectively. The bias in parameter λ computed as

βθ ¼ jθtrue − θrecoveredj, where θtrue is the true value of the parameter and θrecovered is the median of the recovered posterior for θ. Values in

parenthesis denote uncertainties and biases when only the ð2;�2Þ mode is used in the recovery model.

Binaries Δθ
θinj

(%) Biases

fMc; m1; 1=q; χ1; χ2; dLg ΔMc

Mc;inj

Δm1

m1;inj

Δ1=q
1=qinj

Δχ1
χ1;inj

ΔdL
dL;inj

βMc
βm1

β1=q βχ1 βdL
V22

Vhm

Set-M
f21.86; 169.35; 30;þ0.6;þ0.7; 697.84g 2.3 10.3 16.9 9.0 18.6 0.077 1.540 0.32 0.0015 10.99 9.32

(9.6) (17.1) (33.1) (16.5) (61.7) (0.326) (1.13) (1.13) (0.0108) (155.6)

f24.98; 193.54; 30;þ0.6;þ0.7; 720.69g 3.0 9.5 16.2 8.5 18.5 0.086 1.601 0.28 0.0004 12.43 11.12

(14.9) (16.1) (32.9) (17.4) (70.1) (1.169) (3.087) (1.54) (0.0359) (199.4)

f28.11; 217.74; 30;þ0.6;þ0.7; 749.13g 3.8 9.0 15.5 8.6 18.2 0.1641 1.467 0.02 0.0026 7.89 13.06

(23.1) (14.9) (35.3) (22.3) (72.9) (1.167) (1.254) (2.31) (0.0214) (179.8)

f31.23; 241.93; 30;þ0.6;þ0.7; 750.10g 5.3 8.3 15.2 8.5 18.9 0.236 1.167 0.15 0.0036 8.35 24.80

(34.8) (15.1) (53.1) (21.7) (99.4) (3.386) (10.591) (3.00) (0.0578) (288.6)

f34.35; 266.13; 30;þ0.6;þ0.7; 756.02g 5.9 8.4 15.3 9.0 20.0 0.282 1.067 0.17 0.0031 9.40 7.36

(53.4) (15.0) (69.4) (40.7) (96.3) (6.524) (8.363) (10.53) (0.0800) (139.4)

f37.47; 290.32; 30;þ0.6;þ0.7; 774.01g 6.9 8.3 14.7 9.3 19.1 0.454 1.327 0.36 0.0020 1.99 13.81

(67.2) (18.0) (92.8) (47.2) (124.8) (5.108) (13.619) (5.31) (0.0686) (68.2)

Set-q
f28.11;204.5;10;þ0.6;þ0.7;1620.1g 10.6 7.4 17.1 15.5 25.2 0.894 1.54 0.46 0.0097 8.31 9.29

(14.1) (43.5) (30.6) (84.2) (11.3) (1.836) (4.59) (0.23) (0.044) (351.8)

f28.11; 214; 2; 20;þ0.6;þ0.7; 978.16g 5.6 8.7 15.8 9.3 19.6 0.287 0.80 0.13 0.0069 17.95 15.88

(26.4) (13.5) (39.1) (21.5) (84.3) (4.529) (4.93) (2.78) (0.075) (424.2)

f28.11; 217.7; 30;þ0.6;þ0.7; 749.13g 3.8 9.0 15.5 8.6 18.2 0.164 1.46 0.03 0.0026 7.89 13.06

(23.1) (14.9) (35.3) (22.3) (72.9) (1.167) (1.25) (2.31) (0.021) (179.8)

f28.11; 219.5; 40;þ0.6;þ0.7; 598.04g 2.8 8.9 15.2 8.3 18.5 0.101 3.24 0.66 0.0032 11.15 13.10

(21.8) (13.4) (35.9) (19.2) (78.5) (0.631) (0.682) (1.84) (0.008) (141.8)

Set-χ1
f28.11; 217.7; 30;−0.6;þ0.7; 292.01g 58.7 12.1 106.2 50.6 107.1 11.23 8.18 11.63 0.165 192.59 9.41

(24.4) (14.9) (37.1) (24.1) (190.0) (0.40) (3.73) (1.65) (1.20) (604.3)

f28.11; 217.7; 30;−0.3;þ0.7; 309.83g 19.7 11.0 36.6 64.1 40.9 0.39 1.07 0.9 0.012 17.72 215.33

(144.7) (9.1) (613.7) (64.7) (487.2) (34.50) (32.79) (24.25) (0.59) (920.6)

f28.11; 217.7; 30; 0.0;þ0.7; 400.15g 15.4 6.3 33.7 � � � 33.3 0.11 1.39 0.57 0.003 14.75 306.86

(122.1) (9.8) (758.7) � � � (412.2) (41.67) (53.50) (26.15) (0.87) (1416.8)

f28.11; 217.7; 30;þ0.3;þ0.7; 564; 22g 11.3 6.7 21.6 25.8 27.6 0.07 0.66 0.36 0.011 18.91 22.26

(81.9) (19.1) (127.6) (108.6) (170.1) (6.04) (1.89) (8.04) (0.08) (279.1)

f28.11; 217.7; 30;þ0.6;þ0.7; 759.13g 3.8 9.0 15.5 8.6 18.2 0.16 1.46 0.03 0.002 7.89 13.06

(23.1) (14.9) (35.3) (22.3) (72.9) (1.16) (1.25) (2.31) (0.02) (179.8)

Set-χ2
f28.11; 217.7; 30;þ0.6;−0.7; 736.13g 4.19 9.6 16.5 9.6 19.2 0.16 1.46 0.75 0.0093 18.32 10.97

(27.0) (15.5) (40.4) (25.9) (80.4) (0.94) (5.94) (2.91) (0.005) (182.5)

f28.11; 217.7; 30;þ0.6;−0.3; 742.08; g 4.18 9.6 16.2 9.6 18.3 0.08 1.38 0.52 0.0056 14.47 14.02

(25.4) (15.2) (38.2) (25.4) (77.0) (0.54) (5.71) (2.23) (0.006) (157.8)

f28.11; 217.7; 30;þ0.6; 0.0; 746.52; g 4.24 9.7 16.1 9.7 18.8 0.003 1.08 0.28 0.0021 11.80 11.41

(24.3) (15.0) (37.8) (24.2) (74.3) (0.12) (5.16) (1.48) (0.007) (131.3)

f28.11; 217.7; 30;þ0.6;þ0.3; 751.19g 4.33 9.5 16.1 9.3 19.1 0.06 1.14 0.16 0.0001 10.77 10.09

(24.8) (15.1) (36.9) (24.1) (76.5) (0.38) (3.87) (1.58) (0.002) (139.7)

f28.11; 217.7; 30;þ0.6;þ0.7; 759.13g 3.8 9.0 15.5 8.6 18.2 0.16 1.46 0.03 0.002 7.89 13.06

(23.1) (14.9) (35.3) (22.3) (72.9) (1.16) (1.25) (2.31) (0.02) (179.8)

a
The two missing entries for set-χ1 corresponds to the cases where the injected value of χ1 ¼ 0.0. Therefore, Δθ=θinj is undefined.
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E. Importance of higher order modes

The impact of higher modes in detection and parameter

estimation has been extensively studied in the comparable-

to moderate-mass-ratio regime ðq≲ 8Þ often using Fisher

matrix-based studies or reanalyzing novel gravitational-

wave events [56,61–73]. Our fully Bayesian results, which

focus on plausible IMRI systems for the upcoming LIGO-

Virgo-KAGRA observing run, are in broad agreement with

these previous works: higher order modes are increasingly

important as the value of the mass ratio increases and/or

effective spin decreases, and recovery models that include

all modes significantly reduce bias in all cases. As

compared to previous IMRI studies using only the quadru-

pole mode [27], however, the extent to which higher order

modes enable precise measurements of most system

parameters is surprising. This is due to the unique ability

of massive IMRIs to excite sufficiently loud higher order

modes that lie in the detector’s sensitive band.

To probe the impact of these subdominant multipoles

within our analysis setup, we recover the injected signal

with (i) only ð2;�2Þ modes and (ii) with all available

modes including the dominant ð2;�2Þ mode. We observe

that (i) the 90% credible interval becomes significantly

tighter when higher modes are included in recovery model

and (ii) omission of higher modes results in substantial bias

in parameter estimation for most binaries (cf. Table I and

Fig. 3). For signals with varied primary spin (set-χ 1), we

find significant bias whenever χ1;inj < 0.3 with increa-

sing bias as χ1;inj is lowered. While this effect is well

known from comparable mass-ratio studies with negative

FIG. 4. Dimensionless 90% uncertainties Δθ=θinjð%Þ for chirp
mass Mc, total massM, mass of the primary black hole m1, spin

on the primary black hole χ1, and effective inspiral spin χeff as a

function of the injected total mass (corresponding to BBH

configurations set-M).

FIG. 5. Dimensionless 90% uncertainties Δθ=θinjð%Þ for chirp
mass Mc, total massM, mass of the primary black hole m1, spin

on the primary black hole χ1, and effective inspiral spin χeff as a

function of the injected mass ratio (corresponding to BBH

configurations set-q).

FIG. 6. Posterior for the secondary spin parameter χ2 recovered

with (solid green) and without the higher modes (dashed black)

for binaries with varying total masses (set-M injections. Blue

solid lines show aligned-spin prior [49]). All other parameters are

set to the default values described in the text. Vertical red lines

indicate the true value.
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spin [61,62,73] (cf. Fig. 11 of Ref. [73]), what is particu-

larly striking is that for massive IMRIs noticeable bias

occurs even for positive spins as large as χ1;inj ≈ 0.3. We

further find that, when higher modes are included, 90%

credible region of the recovered comoving volume that

contains the true position of the binary is shrunk by almost

10 times (Table I). Taken together, these results demon-

strate that higher modes will play an especially central role

in analyzing signals from high mass-ratio massive binaries,

including source localization and precise estimation of

source properties.

F. Face-off binaries

Nearly all gravitational-wave observations to date have

been characterized by face-on (i.e., inclination angle

ι ¼ 0.0) or face-off (i.e., inclination angle ι ¼ π) orientation

to the line of sight [52], minimizing the possibility of

detecting higher order modes in general. For such binaries,

most of the higher order modes are expected to be weak.

However, we show that, for massive high mass-ratio

binaries, higher order modes may have sufficient SNRs

such that they can no longer be disregarded even for face-

on/face-off cases. To investigate that, we simulate a signal

with total mass M ¼ 225 M⊙, mass ratio q ¼ 1=30, spins
fχ1; χ2g ¼ f0.6; 0.7g in face-off orientation such that the

SNR is 25. We then estimate the parameters using only the

ð2;�2Þ mode and with higher modes. In Fig. 7, we show

the recovered posteriors with (solid green) and without

(dashed black) the higher order modes. We find that

including the higher order modes helps constrain the

parameters better even for a face-off binary.

G. Generic-spin case

While our work has exclusively focused on the aligned-

spin system, we now provide preliminary results for generic-

spin binaries. In Fig. 8, we show two representative cases:

we simulate signals with fM; q; χ1; χ2g ¼ f225 M⊙; 1=30;
0.6; 0.7g with aligned-spin and precessing spin configura-

tions. For the generic-spin case, we choose the spin angles as

θ1 ¼ 1.05 and θ2 ¼ 1.02, ϕ12 ¼ 3.53, and ϕjl ¼ 3.75,

respectively (cf. the Appendix of [38]). The signal is then

recovered with the generic-spin IMRPhenomXPHMmodel.

We show the chirp mass and mass-ratio posteriors recovered

for both the cases. We recover the mass source properties

with similar accuracy. Future work should include a more

comprehensive investigation of generic-spin IMRI systems.

H. Mass-gap binaries

Pair-instability and pulsational-pair-instability superno-

vae [74] prevent the formation of black holes with masses

more than ∼50 M⊙ from stellar collapse. This leads

to a gap in the black-hole mass distribution function in

between ∼50 M⊙ and ∼130 M⊙ [33–36]. The edges of the

mass-gap region vary depending on the details of the

pair-instability process, evolution of massive stars, and

core-collapse supernova explosion [75,76]. However,

multiple stellar mergers and the merger of black holes

can lead to the formation of a black hole in the pair stability

mass-gap region [77]. It is therefore an interesting question

to ask whether our results are valid for binaries with at least

one black hole that falls in the pair-instability mass gap. We

simulate a signal with fM; qg ¼ f120 M⊙; 1=10g with a

SNR of 25. The mass of the primary black hole is

FIG. 7. Mass posteriors recovered with (solid green) and

without the higher modes (dashed black) for the binary withM ¼
225 M⊙ and mass ratio q ¼ 1=30 in a face-off configuration.

Vertical lines show the true values. All other details are same as

in Fig. 6.

PS

AS

FIG. 8. Same as in Fig. 7 but for binaries with M ¼ 225 M⊙,

q ¼ 1=30 in aligned spin (AS) and generically precessing spins

(PS) configuration. Vertical lines show the true values.
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FIG. 9. Mass posteriors recovered with (solid green) and

without the higher modes (dashed black) for the binary withM ¼
120 M⊙ and mass ratio q ¼ 1=10. The source mass of the

primary black hole lie in the pair-instability mass gap of

∼50 M⊙ < M < 130 M⊙. Vertical lines show the true values.

All other details are same as in Fig. 6.
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109.1 M⊙ (88.35 M⊙ in the source frame). All other

parameters are fixed to the default values used in this

paper. In Fig. 9, we show the recovered mass posteriors (in

the source frame) with and without subdominant modes.

90% credible regions are tighter when higher-order multi-

ples are included in the recovery model.

V. COMPARISON WITH

SEOBNRV4HM_ROM RESULTS

Our parameter estimation results are obtained using

IMRPhenomXHM [46], a frequency-domain phenomeno-

logical waveform model which is calibrated to numerical

relativity waveforms in the comparable mass ratio regime

ðq >¼ 1=18Þ and to waveforms obtained from solving

the perturbative Teukolsky equation for 1=1000 >¼ q >¼
1=200. As the model is uncalibrated in parts of themass ratio

regime we are looking at (i.e., 1=40 <¼ q <¼ 1=10), we
decide to redo the parameter estimation with a different

waveform model for some of the representative cases. We

choose theboundary cases in our parameter space (as listed in

Table I) and employ SEOBNRv4HM_ROM [78], a reduced

order based effective-one-body model, in both injection and

recovery. We find that the measurement uncertainties in

different parameters do not change significantly. As an

example, in Fig. 10, we show the recovered posteriors for

the chirp mass Mc and mass ratio q obtained using both

IMRPhenomXHM and SEOBNRv4HM_ROM. As none of

themodels are calibrated toNR simulations, it is not possible

to prefer the results obtained using one of the approximants

over others. Further, systematic analysis involving different

waveform models in injection and recovery is also beyond

the scope of the current paper. However, we expect the

general parameter estimation trends presented in the paper,

which have been compiled with IMRPhenomXHM, to be

applicable to other IMRI waveform models.

VI. CONCLUSION

High mass-ratio massive binaries consisting of a stellar-

mass black hole and an IMBH, typically known as IMRIs,

are a highly anticipated source of GWs for Advanced

LIGO/Virgo. Because of the large total mass characterized

by these systems, the number of in-band inspiral cycles

(and therefore the power) from the dominant quadrupole

mode is greatly reduced as compared to comparable mass

binaries. In this paper, by focusing on aligned-spin systems

with detector-frame total masses 175 M⊙ < M < 300 M⊙

and mass ratios 1=40 < q < 1=10, we show that including

higher order harmonics into the analysis (i) results in a 3 to

4 times improvement in the measurement uncertainties and

(ii) 10 times improvement in the recovered 3D comoving

volume that contains the true position of the binary,

(iii) constrain the spin magnitude of the primary and

secondary black hole better than previously expected,

and (iv) may improve the detectability of such binaries

significantly. We further show that current-generation

detectors are able to estimate the source properties of such

binaries with 1%–15% accuracy if higher order modes are

included in the waveform model. Omitting higher order

modes, on the other hand, results in catastrophic parameter

bias for many binary systems. As one particularly striking

FIG. 10. Chirp mass and mass-ratio posteriors recovered with IMRPhenomXHM (solid green) and SEOBNRv4HM_ROM (dash

dotted red) for the binaries in the boundary of our parameter space.
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example, a binary black hole system with mass ratio of

q ¼ 1=30 and whose nonspinning primary BH has a mass

of m1 ¼ 218 M⊙ is misclassified as a q ∼ 1=4 system with

m1 ∼ 162 M⊙ and χ1 ∼ −0.88 (Fig. 3). These large param-

eter biases and measurement uncertainties would greatly

reduces the science that can be extracted from IMRI signals,

such as measuring the pair-instability mass gap [33–36],

distinguishing between IMRI formation channels [4,5],

and self-consistency tests of GR that will be especially

informative given the unique IMRI signal [16–22]. We

further discuss the robustness of our results with respect

to waveform systematics, face-on binaries (which suppress

higher order modes), generic orbits with misaligned spins,

and special cases such as when one of the component black

holes lies in the pair-instability mass gap ð∼50 M⊙ < m1 <
130 M⊙Þ [33–36].
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