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Learning orbital dynamics of binary black hole systems from gravitational wave measurements
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We introduce a gravitational waveform inversion strategy that discovers mechanical models of binary black
hole (BBH) systems. We show that only a single time series of (possibly noisy) waveform data is necessary to
construct the equations of motion for a BBH system. Starting with a class of universal differential equations
parameterized by feed-forward neural networks, our strategy involves the construction of a space of plausible
mechanical models and a physics-informed constrained optimization within that space to minimize the waveform
error. We apply our method to various BBH systems including extreme and comparable mass ratio systems in
eccentric and noneccentric orbits. We show that the resulting differential equations apply to time durations longer
than the training interval, and relativistic effects, such as perihelion precession, radiation reaction, and orbital
plunge, are automatically accounted for. The methods outlined here provide a data-driven approach to studying
the dynamics of binary black hole systems.
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I. INTRODUCTION

Classical physical theories begin with scientific laws as
ansätze, which are validated by repeated scientific experiment.
From these laws, one derives a set of equations (usually
differential equations) that can be solved, either completely
or partially, to deduce various conclusions about the phys-
ical system under consideration. In this paper, we follow a
different approach to learning physical equations: we solve
an optimization problem that isolates the most likely physi-
cal model (differential equations) that would deliver certain
physical measurements (data). This approach is aligned with
a growing trend in data-driven science; see, e.g., [1–12] and
references therein.

The focus of this paper is on learning mechanical models
for binary black hole (BBH) systems through gravitational
wave measurements. As the black holes orbit one another, the
motion of these massive objects generate gravitational waves
that radiate away to the far-field where they can be observed
by an international-network of detectors [13]. Complicated
partial differential equations (PDEs) govern the entire process,

*Corresponding author: keith10@llnl.gov

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further

distribution of this work must maintain attribution to the author(s)

and the published article’s title, journal citation, and DOI.

and in particular connect the near-field dynamics to the far-
field gravitational radiation. Traditionally, black hole orbital
dynamics and gravitational waves have been computed by
expensive simulation codes [14] or approximations to general
relativity such as the post-Newtonian formalism [15].

Our principal contribution is to show that two-body rel-
ativistic orbital models can be deduced from gravitational
wave measurements by solving an inverse problem [16,17]
where the control variable is the vector of weights and biases
in a neural network. Our numerical examples use gravita-
tional waveform measurements from both a noisy detector
and “clean” measurements from numerical relativity (NR)
simulations. As such, the techniques described here may ap-
ply to both traditional modeling endeavors that require NR
waveform data for calibration and gravitational-wave (GW)
astronomy. In the latter case, where the training data is com-
prised of GW observations, our inversion strategy avoids the
need to solve or analyze Einstein’s equation of general rela-
tivity to learn the orbital model.

A key goal of our paper is to develop the computa-
tional framework for learning binary black hole dynamical
models from gravitational waves, which is a new approach
to the modeling problem. As such, we focus on simple
modeling choices and apply them to illustrative examples.
We will show that simple ansatz models parameterized by
feed-forward neural networks can be used to discover com-
plicated dynamics. Indeed, despite starting with an essentially
Newtonian ansatz model [cf. Eq. (5)], our trained models
accurately capture both the relativistic dynamics and the
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waveform (cf. Sec. III). Potential applications are considered
in Sec. IV.

II. METHODOLOGY

A. Universal differential equations

In this paper, we rely on the following general class of
dynamical system models referred to in [8] as (autonomous)
universal differential equations (UDEs),

ẋ = f (x,F (x)), x(0) = x0, (1)

where x(t ) is the solution vector and x0 specifies the initial
conditions. Here, F (x) is neural network and the overdot sym-
bol “˙” denotes differentiation with respect to time t ∈ [0, T ].
For example, if F (x) = F (x; ξ) is a feed-forward deep neural
network with two hidden layers, it can be written as

F (x; ξ) = W3 σ2(W2 σ1(W1(x) + b1) + b2) + b3, (2)

with ξ = (W1,W2,W3, b1, b2, b3). Here, Wi are matrices
(weights), bi are vectors (biases), and σi are the chosen
activation functions.

We note that the UDE paradigm permits an immense
variety of different parameterized functions F (x), not only
neural network-based parametrizations. This flexibility pro-
vides numerous advantages, for example, prior scientific
knowledge of the solution may be incorporated into the choice
of function parametrization. We choose to use feed-forward
neural networks, such as Eq. (2), because of the ease with
which their parametrization can be determined using existing
software [8].

B. BBH modeling

Our task is to define a family of physical models that can be
used to describe relativistic orbital dynamics of two spherical
objects of mass m1 and m2. That is, we ask that our model
provides the position of object 1, r1(t ), and object 2, r2(t ),
which are the solutions to the dynamical system model. In
Newtonian physics, this is the familiar two-body problem of
Kepler whose solution has been known since the earliest days
of classical mechanics. In relativistic physics, the field of com-
putational relativity is largely devoted to providing numerical
solutions to this problem by solving the equations of gen-
eral relativity (a nonlinear, coupled, hyperbolic-elliptic PDE
system) on large supercomputers [14]. In order to motivate a
dynamical system model, we consider special cases whereby
the dynamical motion described by PDEs can be approx-
imately reduced to ordinary differential equations (ODEs).
Such approximations have been well developed over many
decades, and we refer the reader to [15,18,19] and references
therein. Throughout this paper, we use geometric units where
both the speed of light c, and the gravitational constant G, are
set to unity.

First, for slow moving objects (v � c), a powerful formal-
ism known as the post-Newtonian approximation provides a
systematic framework for adding relativistic corrections in
powers of v/c to the Keplerian equations of motion. The
post-Newtonian framework provides us with justification for
treating the two-body problem as an effective one-body prob-
lem. Here, the relevant equations that govern the separation

vector, r = r1 − r2, can be used to reconstruct the two-body
motion through the relations,

r1 = (m2/M )r, r1 = −(m1/M )r, (3)

where M = m1 + m2. We call this an effective one-body
problem as one often views there to be an “effective” body
located at r relative to the system’s center-of-mass. A different
technique, known as the post-Minkowskian approximation,
informs us that the dominant contribution to the gravitational
radiation field can be computed according to the quadrupole
formula, first derived by Einstein. Collectively, the two-
body-to-one-body map and the quadrupole formula neglect a
substantial amount of physics including terms proportional to
v/c, as well as many more higher-order terms, some of which
have been computed and others that remain unknown.

Second, in the limit of m1 � m2, the two-body problem
reduces to a simpler setup whereby the larger object is fixed
at the coordinate system’s origin. The smaller orbiting ob-
ject’s motion is then described by a geodesic path in the
Schwarzschild geometry set by the larger black hole. Re-
cent numerical evidence suggests that the geodesic equations
of motion (11) with self-force corrections may work un-
reasonably well even for near-equal mass systems [20–28].
More importantly for our purposes, we know from black-hole
perturbation theory results that using geodesic equations of
motion to describe the two-body problem neglects a substan-
tial amount of physics including terms proportional to m2/m1.

Having motivated some of the physics behind the problem,
we now outline our strategy to write down a model inspired
by a combination of Newtonian and relativistic physics. Our
orbital model will omit a significant amount of important
physics that will be accounted for by deep neural networks
trained on gravitational waveform data.

We write the two-body problem as an effective one-body
one, and associate the orbital separation vector r with the
location of the fictitious effective body orbiting a fixed,
spherically-symmetric central object. Owing to the spherical
symmetry of the central object, we may assume, without loss
of generality, that the effective object’s trajectory lies in the
equatorial plane, which we take to be the plane perpendicular
to the z axis and where the angle φ is between r and the x
axis. Orbits are specified by the orbital parameters eccentricity

e(t ) and semilatus rectum p(t ); in the Newtonian case these
are constants while in the general relativistic case they are
often interpreted as time-dependent functions. Finally, we use
a well-known parametrization for the Euclidean norm of r,

r(t ) = p(t )M/(1 + e(t ) cos χ (t )), (4)

and evolve the anomaly χ (t ) instead of r(t ) because the
anomaly increases monotonically through radial turning
points. To summarize, we assume the equations of motion for
the effective object can be described by four time-dependent
variables φ, χ , p, and e. The effective object’s trajec-
tory is provided φ, χ , whereas p, e parametrize the orbital
configuration.
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Upon denoting x = (φ, χ, p, e), we propose the following
family of UDEs to describe the two-body relativistic dynam-
ics:

φ̇ =
(1 + e cos(χ ))2

M p3/2
(1 + F1(cos(χ ), p, e)), (5a)

χ̇ =
(1 + e cos(χ ))2

M p3/2
(1 + F2(cos(χ ), p, e)), (5b)

ṗ = F3(p, e), (5c)

ė = F4(p, e), (5d)

with x(0) = (φ0, χ0, p0, e0). Note that the functional form
of Eqs. (5) have been inspired by Eq. (11), which are the
geodesic equations of motion for an infinitesimally small
“particle” orbiting a supermassive black hole. In particular,
Eq. (5) are rotationally invariant because the right-hand side
omits the φ variable. Moreover, when F3 = F4 = 0, orbital
energy E (p, e) and orbital angular momentum L(p, e) are
conserved:

Ė =
∂E

∂ p
ṗ +

∂E

∂e
ė, L̇ =

∂L

∂ p
ṗ +

∂L

∂e
ė. (6)

Due to the emission of gravitational waves (so-called
radiation-reaction), we have that both Ė , L̇ < 0 for all time.
When each F j = 0, we recover Newtonian orbits.

Equations (5a) through (5d) define a family of trajectories
x(t ) = x(t ; ξ). Through Eq. (3), these trajectories determine
the black hole orbits,

r1(t ) =
r(t )m2

M
(cos(φ(t )), sin(φ(t )), 0), (7a)

r2(t ) = −
r(t )m1

M
(cos(φ(t )), sin(φ(t )), 0). (7b)

Gravitational waves are generated by orbiting black holes,
and so the waves encode detailed information about the dy-
namical variables r1(t ) and r2(t ). General relativity tells us
that the dynamics and waves are connected through PDEs,
which is a familiar scenario in the modeling of waves.

In the next section we summarize how to learn F j from
gravitational wave measurements. Despite the simplicity of
Eqs. (5), we show that the learned ODEs can describe dy-
namics beyond the base mechanical model (the base model
corresponds to setting the neural network parameters ξ to zero
and, thus, each F j = 0). In our first numerical experiment
III A, for example, we show that bound orbits of a test particle
following geodesic motion on a Schwarzschild geometry can
be accounted for. In our final set of numerical experiments
we show that the dissipative dynamics can also be accounted
for. Due to the flexible framework of our waveform inversion
technique, one can easily swap out our base model (5) for
others; e.g., the EOB model [29]. This suggests many possible
future applications of gravitational waveform inversion.

C. Quadrupole formula, the loss function, and model discovery

Very far from a BBH system, where gravitational wave
detectors are located, the gravitational radiation field is an
outgoing spherical wavefront. On a sufficiently large sphere
we can expand the radiation field into a complete basis of

(tensorial) spherical harmonics labeled by (�, m) harmonic
indices.

In this paper, we consider only the dominant (�, m) =

(2, 2)-mode gravitational waveforms (cf. Appendix A 2),
however, our waveform inversion technique could be modified
to easily include subdominant modes. Accordingly, we denote
all waveforms by the variable w = (r/M ) Re{h22}, where

h22(t ) =
1

r

√

4π

5
(Ïxx − 2iÏxy − Ïyy) (8)

and the trace-free mass quadrupole tensors Ixx, Ixy, and
Iyy are defined in Eq. (A10) (see also [30, Eqs. 54–56]).
Eq. (8) is the well-known quadrupole formula, which ex-
presses the measurable waveform h22 in terms of the orbits
r1 = (x1, y1, 0) and r2 = (x2, y2, 0). The quadrupole formula
is a very simple approximation that will necessarily introduce
systematic error when learning F j , but is sufficient for our
purpose.

We assume that our waveform measurements appear as
ordered pairs (tk,wk ), where wk denotes the value of the
waveform data at time tk ∈ [0, T ]. In this setting, we define
the mean-squared waveform error

J (x) = 〈J (x, ·)〉 :=
1

T

∫ T

0
J (x, t ) dt, (9)

where J (x, t ) =
∑

k (wk − w(t ))
2
δ(t − tk ) and bracket nota-

tion, 〈·〉, denotes denotes averaging over the time interval.
Accordingly, we choose to solve the inverse problem:

min
ξ

J (x) subject to (5a) through (5d). (10)

In some situations, convergence to the solution of Eq. (10)
can be improved by adding well-chosen, physics-informed
penalty and regularization to Eq. (9); cf. Sec. III B.

We note that the exclusive use of gravitational-wave data
in the loss function is motivated by the consideration that
in experimental settings only gravitational-wave observations
will be available and never a direct view of black hole orbits.
Even in computational relativity simulations, the numerical
measurement of black hole trajectories are complicated by
coordinate ambiguities of general relativity that make it diffi-
cult to assign physical significance to their values. Waveforms
computed from computational relativity simulations, on the
other hand, are well-defined and physically meaningful.

The ODE-constrained optimization problem Eq. (10)
delivers the calibrated dynamical system model ẋ =

f (x,F (x; ξ	)), where ξ	 denotes the optimizer found by solv-
ing Eq. (10). This inverse problem can be solved with a
number of standard methods. We choose to use a BFGS algo-
rithm with backtracking line search [31] and an adjoint-based
(implicit differentiation/adjoint sensitivity method) calcu-
lation of gradients [32] implemented with the Julia [33]
software package DiffEqFlux [8]. The algorithm is described
by the flowchart in Fig. 1. Our code is available for download
at [34].

III. RESULTS

In this section, we present results with three different
examples. The first demonstrates the ability of Eq. (10) to
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FIG. 1. Flowchart of algorithm to solve the inverse problem Eq. (10).

recover known orbital equations. The second two showcase
the discovery of equations of motion for equal mass binary
black hole mergers.

A. Extreme mass ratio systems

As our first motivating example, we consider a special
case of the relativistic two-body problem where the exact
solution is known. We show that from short-duration gravi-
tational wave observations we are able to discover differential
equations that are valid over much longer time scales.

In the regime of m1 � m2, formally the limit m1 → M, m2

is a “test particle” whose motion obeys [19,35–37]

φ̇ =
(p − 2 − 2e cos χ )(1 + e cos χ )2

M p3/2[(p − 2)2 − 4e2]1/2
, (11a)

χ̇ =
(p − 2 − 2e cos χ )(1 + e cos χ )2[p − 6 − 2e cos χ ]1/2

M p2[(p − 2)2 − 4e2]1/2
,

(11b)

while r1 = (0, 0, 0) and ė = ṗ = 0. We shall be interested
in the parameter restriction 0 � e < 1, for which the radial
motion occurs between two turning points, pM/(1 + e) and
pM/(1 − e) and the orbit is bounded. When e = 0, the orbit
is circular. We let F3 = F4 = 0 and provide values for the
initial conditions φ0 = 0 and χ0 = π . In our example, we set
e = 0.5, p = 100, and m1 = 1, although the results we show
remain largely the same for other parameter values we have
tested. For simplicity, in this first example we provide known
values for e0, p0 while in Sec. III B we show how our approach
performs when these parameters are also learned.

To prepare our ground-truth data, we numerically solve
Eq. (11) on a dense time grid, thereby generating the black
hole trajectory r2(t ). We then apply the quadropole formula
Eq. (8) to generate a gravitational waveform sampled at 250
equally-spaced points spanning the time interval [0, 0.6 ×

105], and shown in Fig. 2 (bottom panel; black dots). Note that

in the extreme mass ratio limit, m2 → 0, and the waveform
h22 ∝ m2/m1 goes to zero. Therefore, in this example, we use
w = (m1/m2) Re{rh22} as gravitational-wave data; w is now
independent of m2.

Using the procedure summarized in Sec. II C, we recover
the governing equations by optimizing for F1 and F2. In this
setting, both abstract functions only depend on cos χ . We
exploit this periodic structure by defining F1 and F2 with
cosine activation functions, σ j = cos. We then construct F1

and F2 as feed-forward neural networks with two hidden
layers each; see, e.g., Eq. (2). The exact network architecture
and numerical discretization can be found in the file EMR.jl

in [34]. Finally, we learn the corresponding neural network
weights and biases by optimizing Eq. (10).

This process delivers the red trajectory and waveform
presented in Fig. 2. Not only do both waveforms and tra-
jectories match over the training interval consisting of about
about 6 orbits, they continue to agree when the learned dy-
namics are extrapolated to about 31 orbits, after which the
orbit’s perihelion precession has undergone a full cycle. In
Fig. 2 we compare the true waveforms/trajectories to the
learned waveforms/trajectories over the extended time inter-
val [0, 3 × 105]. To compare the learned model Eq. (5) to the
exact model Eq. (11), we also compute the error in φ̇ and χ̇

over the extended time interval. Evidently, not only do the
waveforms and trajectories match upon visual inspection, the
learned model matches the true mechanical model to about
two orders of magnitude. The learned model also recovers
important relativistic effects, notably perihelion precession,
from just a few gravitational-wave cycles. Finally, we note
that once the dynamical model is known, it can be used to
generate very long orbits and gravitational wave signals by
integrating the ODE Eq. (5) and postprocessing the solution
with the quadrupole formula Eq. (8).

This experiment demonstrates the potential power of wave-
form inversion in a simple setting with a known solution.
It also demonstrates how the information content in the
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FIG. 2. Summary of our first experiment, where we have used gravitational-wave observations (black dots; bottom panel) to learn the
underlying two-dimensional dynamical system model governing the relativistic two-body problem in the extreme mass ratio limit with orbital
parameters p = 100, e = 0.5. Top left: Learned (dashed red) and exact (solid blue) trajectories extrapolated 4× the training interval. We also
show the portion of the orbit (black) corresponding to the gravitational-wave training window, although no orbital data was used to learn the
dynamics. Top right: Relative error between the learned model Eq. (5) and the exact model Eq. (11). Bottom: Learned (dashed red) and exact
(solid blue) waveforms extrapolated 4× the training interval.

original waveform can be used to infer UDEs. Nevertheless,
this system is conservative (ė = ṗ = 0), the quadrupole for-
mula is prescribed exactly, and the learnable dynamics depend
only on the χ variable. The following examples are more chal-
lenging because none of the aforementioned simplifications
hold.

B. General relativistic orbital dynamics of binary black holes

In this pair of examples, we consider numerically gener-
ated waveform measurements from equal mass m1 = m2 =

0.5 binary black hole systems. Unlike the previous ex-
periment, the orbital dynamics for these systems is much
more complicated; The exact equations of motion are un-
known and the dynamics include time-dependent values of the

eccentricity and semilatus rectum. Although an extensive
body of literature exists for deriving these equations from ap-
proximations of general relativity [15,29,39], we are unaware
of any data-driven approaches focused on discovering orbital
dynamics from waveform measurements.

Computational relativity codes provide exact (up to numer-
ical discretization error) solutions to the general relativistic
two-body problem, including both the corresponding trajec-
tories of the center of the black holes and gravitational-wave
data. Although the location of the black holes are coordinate-
dependent they can still be used to compare with the
trajectories obtained from our model. However, such compar-
isons should no longer be understood as model error since the
coordinate system used for the data and model are necessarily
different.
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The simulations for this work were performed using the
Spectral Einstein Code (SpEC) [38,40–45] developed by the
Simulating eXterme Spacetimes (SXS) collaboration [40] and
made publicly available through the Gravitational Waveform
Database [38].

From now on, we augment the loss function J in Eq. (9)
with non-negative penalty and regularization terms, motivated
below:

J (x, ξ) = 〈J (x, ·)〉 + P1(x) + P2(x) + R(ξ). (12)

In this new expression, we define

P1(x) = γ1〈( ṗ)2
+〉 + γ2〈( p̈)2

+〉, (13)

where ( f (t ))+ = max{ f (t ), 0},

P2(x) = γ3〈(−e)2
+〉 + γ4〈(e − e0)2

+ 1{p>6+2e0}〉, (14)

where 1� denotes the indicator function on the set � ⊂ [0, T ],
and finally

R(ξ) = γ5‖ξ‖
2, (15)

where ‖ξ‖ denotes the �2-norm of the expanded parameter
vector ξ. It is standard practice to use large coefficients for
penalty terms and small coefficients for regularization terms.
However, as explained in the paragraphs below, our penalty
terms are present to help avoid nonphysical local minima and
are not active in the optimized model. For this reason, we
do not make a concerted attempt to tune these coefficients.
In both of the coming experiments, we somewhat arbitrarily
fix γ1 = 103, γ2 = 102, γ3 = 101, and γ5 = 10−1. In the first
experiment, we take γ4 = 1, while in the second experiment
we use γ4 = 0.

The physical motivation for the terms in Eq. (13) relies on
Eqs. (7). From these equations, we have that the distance be-
tween the two black holes r is proportional to p. Due to energy
loss from the emitted gravitational waves, r(t ) converges to
zero at a rate that increases throughout the system’s evolution.
The penalty terms 〈( ṗ)2

+〉 and 〈( p̈)2
+〉 have been chosen to en-

courage the selection of solutions with this physical behavior.
The first term in Eq. (14) encourages the selection of a positive
eccentricity function e(t ) for all time t . On the other hand,
the final term in this definition is motivated by the stability
condition p � 6 + 2e for bound orbits. It is widely accepted
that e decays in this range [35], and this term helps to direct
the solution toward models with this property.

Clearly, if ṗ, p̈,−e, (e − e0)2 1{p>6+2e0} � 0, then P1(x) =

P2(x) = 0. Our experiments appear to indicate that optimal
solutions p(t ) and e(t ) satisfy each of these bounds, therefore,
the penalty terms only act as guardrails throughout the opti-
mization process. The Tikhonov–Phillips regularization term
Eq. (15) helps convergence by ensuring continuous depen-
dence between the data and the solution [46]. The Tikhonov
regularization term ‖ξ‖2 can also help avoid model degenera-
cies and overfitting in the presence of noisy data. For example,
when the orbit is circular (e = 0) the model is degenerate in χ

and, therefore, it is also degenerated in the weights and biases
defining F2. Other penalty and regularization terms could be
considered in future studies.

In the following pair of examples, we construct feed-
forward neural network parametrizations of F j , j = 1, . . . , 4,

with tanh activation functions. The exact network architecture
we use can be found in files SXS1.jl and SXS2.jl [34].

1. Near-circular orbits from clean GW observations

For this experiment, we consider a binary black hole sys-
tem with negligible eccentricity during the initial inspiral. For
inspection, the center of mass-corrected trajectories of the bi-
nary black hole system are depicted in the top left-hand corner
of Fig. 3 (solid-black lines), with the associated 1000 equally-
spaced waveform data points in the bottom panel (black dots).
From now on, we let [0, T ] denote the time interval between
the first (t = 0) and final (t = T ) measurement, where the
final measurement occurs shortly before merger.

As in the previous experiment, we adopt the initial condi-
tions φ0 = 0 and χ0 = π and assume that r0 is known. Using
Eq. (4), these assumptions provide us with an explicit expres-
sion for p0, M p0 = r0 (1 + e0 cos(χ0)). Due to the nearly-zero
eccentricity of the initial trajectories, we opt for the simple
initial condition e0 = 0. In the next and final experiment,
we treat the more realistic case where both e0 and χ0 are
unknown.

In order to avoid local minima, we solve Eq. (10) on a se-
quence of increasing time intervals [0, T0] � [0, T1] � · · · �

[0, T ], using the optimal parameters ξ	 from each preceding
optimization problem (plus a small amount of Gaussian noise)
as initial data for the subsequent problem. Using this incre-
mental procedure, we are able to recover the overwhelming
majority of the black hole trajectories, as indicated by the
visual agreement between the learned (red and blue) and NR
(black) trajectories shown in the top left-hand panel of Fig. 3.
We also depict the relative disagreement between the NR tra-
jectory of the first black hole r̂1 and the learned trajectory r1.
The model also recovers important general relativistic effects,
notably the learned functions F3 and F4 cause a runaway
inspiral process that drives the black holes to merge. This
process is seen most clearly by monitoring the behavior of
p(t ) in the upper right-hand panel of Fig. 3. We also observe
that our model is able to naturally include both the inspiral
(p > 6) and plunge (p < 6) orbital regimes. Note the upper
right-hand panel of Fig. 3 shows that near this transition
region the eccentricity quickly grows, which is at odds with
our physical expectation for stable orbits and indicates a very
different dynamical regime.

One complication in validating our learned dynamical sys-
tem is how to perform meaningful comparisons with other
models. Indeed, besides the waveform, the other three sub-
panels shown in Fig. 3 depict gauge-dependent quantities;
that is their value depends on the coordinate system being
used. In particular, our trajectories are not expressed in the
same damped harmonic gauge coordinates used by SpEC
simulations [47]. Nevertheless, recent studies have noted sur-
prisingly good agreement between NR trajectories and those
computed with post-Newtonian (PN) models [48] and PN-
augmented dynamical models [49–51]. In particular, Ref. [49]
conjectures that the main source of disagreement is due
to the PN formula being expressed in the harmonic gauge
[15]. The close agreement between NR and UDE trajecto-
ries shown in Fig. 3 is another example of surprisingly good
agreement [48,49].
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FIG. 3. Summary of our second experiment, where have used gravitational-wave observations (black dots; bottom figure) to learn the
underlying dynamical system model governing the relativistic two-body problem for two equal mass black holes in quasi-circular orbit. Top
left: Trajectories of the centers of mass of the black hole system SXS:BBH:0217 (black lines), taken from the SXS Gravitational Waveform
Database [38]. We also show the orbit computed from our learned dynamical system (blue and red lines). In the upper-right panel, we show the
evolution of the eccentricity and semilatus rectum from our learned-dynamical system. The middle-right panel shows the disagreement between
the NR trajectories and the ones computed from the learned dynamical system. We caution the reader that this figure should not be understood
as a relative error because the numerical relativity black hole trajectories and our learned model are expressed in different coordinate systems
that are impossible to relate. Bottom: Learned (red line) and computational relativity (black dots) waveform data corresponding to the real part
of the h22 mode.

To avoid gauge ambiguities, comparisons of BBH dynam-
ics focus on comparing gauge-invariants that are computable
within different frameworks. For example, Refs. [52,53]
explore the conservative dynamics by comparing the relation-
ship between the total energy and total angular momentum
from NR data to the corresponding analytical predictions
from PN and EOB theory. However, the identification of a
conserved energy or angular momentum within our setup is
not obvious as our equations are not derived from a Hamilto-
nian; we will return this issue in Sec. IV. Instead, we follow
Ref. [28] and compute the accumulated orbital phase as a
function of the orbital frequency. This quantity includes both
dissipative and conservative effects, and can be computed
within different modeling frameworks.

The NR orbital phase is defined in terms of the waveform
data as follows:

φorb
NR(t ) = 1

2 arg h22(t ). (16)

We also compute the orbital phase from a recently developed
precessing EOB model (SEOBNRv4PHM) [54], a numerical
relativity surrogate model (NRSur7dq4) [55], and our UDE
model. Both NRSur7dq4 and SEOBNRv4PHM are considered
state-of-the-art and have been used by the LIGO-Virgo Col-
laboration to analyze recent gravitational-wave observations
[13,56,57]. We represent each orbital phase by a degree 3
spline (using a smoothing factor of 0.0002), from which we
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FIG. 4. Comparison of the accumulated orbital phase as a func-
tion of orbital frequency for the second experiment III B 1, an equal
mass quasicircular inspiral of nonspinning black holes. The orbital
phasing obtained from an NR simulation is shown in the inset figure.
We show the difference between the NR data and (i) our UDE
orbital model (solid blue line), (ii) NRSur7dq4, a numerical relativity
surrogate model (dashed-red line), and (iii) SEOBNRv4PHM, a recently
developed precessing EOB model (dash-dot black line). All three
models show good agreement with the NR orbital phasing. The UDE
(learned ODE) model is competitive with these two state-of-the-art
models despite being built in a very different way.

compute the orbital frequency,

� =
dφorb

dt
, (17)

by taking a derivative of the spline, and finally forming the
function φorb(�) = φorb(t (�)). We then compare φorb

NRSur7dq4,

φorb
SEOBNRv4P, and φorb

UDE to φorb
NR. For each comparison, we

form the difference, �φ = φorb
model − φorb

NR after phase align-
ment [58]. Figure 4 shows �φ for each model. Over the
range of orbital frequencies shown, the L2-error in the phase
is 2.5 × 10−2 (UDE model), 2.0 × 10−2 (NRSur7dq4), and
2.2 × 10−2 (SEOBNRv4PHM). All three models do an excellent
job at tracking the NR orbital phase throughout the late in-
spiral phase to � ≈ 0.16, which is when a common apparent
horizon appears in the NR simulation.

One of the most important practical uses of a dynamical
model is as an intermediate step towards generating gravi-
tational waveforms. While a full study is outside the scope
of this paper, we provide a preliminary look at this here.
We compute an L2-type error measurement (see Eq. 21 from
Ref. [50]) between the complexified NR waveform and each
model’s prediction of the waveform after optimizing for phase
and time alignments. We find the errors to be 3.1 × 10−3

(UDE model), 1.2 × 10−3 (SEOBNRv4PHM), and 1.1 × 10−5

(NRSur7dq4). All three models have been calibrated to q = 1
NR waveform data, so this comparison is only meant to be
suggestive of how well the modeling techniques can perform
on the training set and not its generalization error.

We note that all three models used in our comparisons have
been built in very different ways. The SEOBNRv4PHM model is
a highly sophisticated analytical model thats been under in-
vestigation for two decades [29] while the NRSur7dq4 model
was trained against 1528 NR simulations using numerical

techniques that have been in development for nearly a decade
[59,60]. By comparison, our UDE model is new and our
modelization choices are simple. Given that our UDE model
is able to perform comparably well against state-of-the-art
models demonstrates the potential of waveform inversion as
a new tool for model builders to consider in future work.

2. Eccentric orbits from noisy GW measurements

This experiment proceeds in much the same way as the
previous one. Here, however, we learn the dynamics of an
eccentric binary black hole system whose trajectories are de-
picted in the top left-hand corner of Fig. 5 (solid-black lines)
with the associated waveform data in the bottom panel (black
dots). Unlike the previous experiments, we do not assume
known values for the initial conditions e0, p0, or χ0 but instead
make these part of the learning process. We continue to adopt
the initial conditions φ0 = 0. As can be seen in Fig. 5, we
introduce additive Gaussian noise to the waveform data of
the form w(ti ) + n(ti ), where n(ti ) is draw from a normal
distribution of mean 0 and standard deviation of σ = 10−2.
As the typical waveform amplitude is ∼0.1, this corresponds
to a coefficient of variation of around σ/0.1 = 0.1.

In spite of these challenges, we are still able to recover
the original trajectories as indicated by the visual agreement
between the learned (red and blue) and NR (black) trajectories
shown in the top left-hand panel of Fig. 5. This is achieved
by simultaneously optimizing for both e0 or χ0 in Eq. (10),
in addition to the neural network parameters ξ, and deducing
the associated value of p0 directly from Eq. (4). The model
also recovers important general relativistic effects, notably,
as in the previous example, radiation-reaction effects. In this
case, the tendency for the orbit to circularize, e(t ) → 0, is
seen in the upper right-hand panel of Fig. 5. As before, the
eccentricity has an inflection point around p ≈ 6 and quickly
grows thereafter.

As follow-on to this experiment, we test the stability of
the learned solution to different signal-to-noise ratios (SNRs).
Specifically, we use the learned solution parameters ξ, e0, and
χ0 from Fig. 5 as initial guesses in a set of model discovery
problems that fit the original SXS:BBH:1356 waveform data,
but have white Gaussian noise of different variance superim-
posed. After solving each of these model discovery problems,
we measure how much the learned waveform differs from
the true waveform. The curve in Fig. 6 shows the relative
error in the learned waveform as a function of the SNR in
the waveform measurement. The relative error grows as the
SNR decreases, however, the results are surprisingly accurate
down to SNR ≈32. We note that while all BBH gravitational-
wave detections to-date have had SNRs below 32 [13], future
detectors such as LISA [61], Cosmic Explorer [62], or Ein-
stein Telescope [63] will routinely detect events with an SNR
greater than 32.

IV. DISCUSSION

We have presented a data-driven gravitational waveform
inversion strategy, which generates mechanical models of bi-
nary black hole systems. We start with a structurally very
simple set of universal differential equations and parametrize
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FIG. 5. Summary of our third experiment, where have used noisy gravitational-wave observations (black dots; bottom figure) to learn the
underlying dynamical system model governing the relativistic two-body problem for two equal mass black holes in an eccentric orbit. Top left:
Trajectories of the centers of mass of a black hole system SXS:BBH:1356 (black lines), taken from the SXS Gravitational Waveform Database
[38]. We also show the orbit computed from our learned dynamical system (blue and red lines). In the upper-right panel, we show the evolution
of the eccentricity and semilatus rectum from our learned-dynamical system. The middle right panel shows the disagreement between the NR
trajectories and the ones computed from the learned dynamical system. We caution the reader that this figure should not be understood as a
relative error because the numerical relativity black hole trajectories and our learned model are expressed in different coordinate systems that
are impossible to relate. Bottom: Learned (red line) and computational relativity (black dots) waveform data corresponding to the real part
of gravitational waveforms. Here, we also include the learned imaginary part of the waveform (blue line), reconstructed with the quadrupole
formula, and compare it with the reference imaginary part taken from the SXS database (black line).

the space of models with feed-forward neural networks.
Our differential equations are trained by solving a physics-
informed constrained optimization problem that seeks to
minimize the waveform error. We tested our method on var-
ious BBH systems including extreme and comparable mass
ratio systems in eccentric and noneccentric orbits, and train
on portions of the waveform corresponding to orbital plunge
right up to the time of merger. We find that the resulting dif-
ferential equations agree remarkably well with the black hole

trajectories computed through purely numerical means. Our
models can be extrapolated in time and recover various known
relativistic effects despite these being previously unknown to
the universal differential equations. The main contribution of
our paper is to show that two-body relativistic models can be
deduced from gravitational wave measurements.

To describe the computational framework, we have fo-
cused on simple choices such as our ansatz neural ODE
model Eq. (5) and the quadrupole formula for computing the
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FIG. 6. We quantify the method’s robustness to increasing
amounts of Gaussian noise by comparing the true NR waveform,
h22

NR, to the learned waveform, h22. The amount of noise is quantified
by the signal’s SNR. We compute the waveform error according to
1
2
‖h22

NR − h22‖2
2 / ‖h22

NR‖2
2, which is related to the overlap error (cf.

Ref. [50]) commonly used in gravitational-wave data analysis.

harmonic modes. These modeling choices are distinct from
the overall computational framework and can be easily
swapped out for different choices. For example, future high-
accuracy studies should seek better orbit-to-waveform maps
as the quadrupole formula is likely a large source of system-
atic error.

Our framework for learning the dynamics of binary black
holes is quite general, and we expect that it can be applied
to a variety of cases we have not considered including un-
equal masses, aligned-spins systems, and precessing systems.
Our method should be especially useful for discovering equa-
tions of motion for systems where traditional approaches are
less well-developed including eccentric binaries, the highly
relativistic late-inspiral and plunge dynamical regimes, and
beyond-GR theories. Given the close agreement with NR tra-
jectories, other possible applications could include setting NR
initial data whereby the neural ODEs could be used to predict
an NR trajectory before the simulation is performed.

One of the most important applications of our technique
may involve calibrating existing orbital dynamics models (and
high-accuracy gravitational-wave models) by using a base
model different from Eq. (5). Given that all modern inspiral-
merger-ringdown waveform models require calibration of
unknown parameters to numerical relativity simulations, the
waveform inversion technique described here could bene-
fit these efforts. For example, if implemented within the
effective-one-body (EOB) approach, a suitably modified ver-
sion of our methodology could be used to calibrate for missing
terms in the EOB Hamiltonian. Precessing NR surrogate mod-
els also require a dynamical model, which is found through a
direct fitting for the right-hand-side of the relevant ODEs. This
computationally costly step might be simplified and acceler-
ated with our techniques.

Another potential use of our methodology is training dy-
namical models entirely from gravitational-wave data sets

instead of solving or analyzing Einstein’s equation of gen-
eral relativity as is traditionally done. In Fig. 6 we explore
how well the algorithm performs as the signal’s SNR is sys-
tematically varied. We find that, at least for the examples
considered here, the method continues to work down to an
SNR of about 32. Consequently, our method is most appli-
cable for future GW detections, including those made with
LISA [61], Cosmic Explorer [62], Einstein Telescope [63], or
perhaps the upcoming LIGO-Virgo-Kagra science run. Our
method will need to be modified to achieve SNR levels of
approximately 10 (which would cover most GW detections to
date [13]) without compromising accuracy. Some approaches
could include: (i) comparing waveforms with the Wasserstein
metric, which is known to be more robust to phase trappings,
which shows up in higher noise, (ii) detecting an ensemble
of noisy signals, and training on this observation set, (iii)
using Bayesian networks where the network parameters are
probability functions, or (iv) to apply our technique to filtered
waveforms using a model-agnostic approach such as wavelet
methods or denoising methods. We leave such extensions for
future work.
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APPENDIX: METHODS

In this section, we elaborate on the technical elements of
our work, which are necessary for replication of the results.
We open with a brief overview of the adjoint sensitivity
method [32], which we used to compute derivatives of J [see
Eqs. 9 and 12] with respect to ξ and, in turn, facilitate solving
problem Eq. (10). The section then closes with an overview
of the quadrupole formula we have used to model the gravita-
tional waveform Eq. (8). Because both of these topics are well
known in specific (but mainly disjoint) scientific communities,
we keep the exposition brief but include numerous references
to the literature.

1. Calculation of derivatives

The ODE-constrained optimization problem Eq. (10) de-
livers a calibrated dynamical system model

ẋ = F(x; ξ), x(0) = x0, (A1)

where F(x; ξ) = f (x,F (x; ξ)). Because x = x(ξ) depends im-
plicitly on ξ through Eq. (A1), the main technical difficulty
with solving such optimization problems lies in computing
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total derivatives of the functional

J (x, ξ) =
1

T

∫ T

0
J (x, ξ) dt, (A2)

with respect to ξ.
Indeed, assume that we are working with the definition of

J given in Eq. (9). Here, any gradient-based optimization
algorithm requires the calculation of the total derivative

dξJ =
1

T

∫ T

0
∂xJdξx + ∂ξJ dt . (A3)

One may easily note that, in the specific setting given to us
through Eq. (9), we have J = J (x) and, therefore, the partial
derivative ∂ξJ vanishes. In more general situations, the term
∂ξJ is routine to derive. On the other hand, the calculation of
dξx is problematic due to the fact that x(ξ) is not available
in closed form. One approach to computing dξJ involves
directly estimating dξx via finite differences, however, the
cost of this approach scales linearly with the size of ξ. This
makes it prohibitive for most practical problems. We choose
to compute these gradients using in an alternative way often
referred to as the adjoint sensitivity method [32].

The adjoint sensitivity method has been used extensively
in engineering design [64,65] and, more recently, in machine
learning research [4,8,66]. It involves the integration of two
ODEs over the time interval [0, T ]: the original governing
ODE Eq. (A1) and an adjoint ODE (integrated backwards in
time).

The derivation of this method usually begins with the
Lagrangian

L =
1

T

∫ T

0
J (x(t ), ξ) − λ(t )
(ẋ(t ) − F(x(t ); ξ))) dt

− μ
(x(0) − x0), (A4)

which comes from writing the ξ minimization of Eq. (A2),
constrained by solutions of Eq. (A1), as a saddle-point prob-
lem [67]. This functional is clearly designed such that dξJ =

dξL for any x satisfying Eq. (A1). In addition, one observes
that

dξL = ∂xL dξx + ∂λL dξλ + ∂μL dξμ + ∂ξL (A5)

=
1

T

∫ T

0
∂ξJ (x) − λ
∂ξF(x; ξ) dt, (A6)

if ∂λL = ∂μL = ∂xL = 0. A straightforward calculation
shows that the first two of these equations are equivalent to
the original dynamical system Eq. (A1). On the other hand,
∂xL = 0 is equivalent to the adjoint equation

−λ̇ = [∂xF(x; ξ)]
λ + ∂xJ (x, ξ), λ(T ) = 0. (A7)

Evidently, the ODE system Eq. (A7) depends on the solu-
tion to Eq. (A1), x(t ). Therefore, the algorithm for computing
dξJ must follow a specific order:

(1) Integrate ẋ = F(x; ξ) from t = 0 to T with the initial
condition x(0) = x0.

(2) Integrate −λ̇ = [∂xF(x; ξ)]
λ + ∂xJ (x, ξ) from t = T

to 0 with the initial condition λ(T ) = 0.
(3) Compute dξJ = 1

T

∫ T

0 ∂ξJ (x) − λ
∂ξF(x; ξ) dt .

Extension of this algorithm to the scenario where the initial
condition x0 is also optimized for (as considered in, e.g.,
Sec. III B 1) is straightforward. For thorough accounts of the
numerical implementation of the adjoint sensitivity method
for UDEs, we refer the interested reader to [8,68].

2. Gravitational waves from an orbit

In the context of general relativity, gravitational waves are
associated with the outgoing, radiative parts of the spacetime
metric and are solutions to Einstein field equation. The mo-
tion of massive objects produce gravitational waves, and our
model outlined in Sec. II B provides the equations of motion
for object 1 of mass m1 and position r1(t ), and object 2 of
mass m2 and position r2(t ).

The quadrupole formula provides one simple method of
obtaining the gravitational radiation from these orbital trajec-
tories. In this framework, we assume both black holes to be
“point sources” (i.e., Dirac delta functions). The Newtonian
mass density of two objects orbiting in the x-y plane is

ρ(t, x, y, z) = m1δ(z)δ(x − x1(t ))δ(y − y1(t ))

+ m2δ(z)δ(x − x2(t ))δ(y − y2(t )), (A8)

and note that in the special case m2 � m1 we have r2(t ) =

(0, 0, 0) and r1(t ) = r(t ). Given the density, the quadrupole
formula tells us that the dominant quadrupole mode of the
gravitational radiation field tensor in the transverse-traceless
gauge is

rHab = 2
∂2

∂t2
I

ab, (A9)

where the trace-free mass quadrupole tensor is

I
ab = Iab − 1

3δabδcd Icd , (A10)

δab is the Kronecker delta. In Cartesian coordinates, the in-
dices take on values of “x”, “y”, and “z”. For example,
we have H xx, H yy, H xy, etc. The components of the mass
quadrupole tensor, Iab, that are relevant to Eq. (A9) (nonzero
temporal derivatives) are

Ixx =

∫

d3xρx2 = m1x1(t )2 + m2x2(t )2, (A11a)

Iyy =

∫

d3xρy2 = m1y1(t )2 + m2y2(t )2, (A11b)

Ixy =

∫

d3xρxy = m1x1(t )y1(t ) + m2x2(t )y2(t ), (A11c)

and by symmetry Ixy = Iyx.
This framework computes the gravitational wave as pertur-

bations, Hab, of the background spacetime metric. However,
numerical simulations instead provide the plus h+ and cross
h×, gravitational-wave polarizations defined on a “sphere at
infinity”, which are obtained after contracting Hab with the
polarization tensors [30]. On this sphere, it is common to
define a complexified gravitational wave

h(t, θ, φ) = h+(t, θ, φ) − ih×(t, θ, φ) (A12)

=

∞
∑

�=2

l
∑

m=−l

h�m(t ) −2Y�m(θ, φ), (A13)
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and subsequently expand h into a complete basis of spin =−2
weighted spherical harmonics labeled by (�, m) harmonic in-
dices, −2Y�m. Here θ and φ are the polar and azimuthal angles.
For example, the SXS (2,2) mode gravitational waveform
data, h22, was used extensively in this paper. Given the orbital
trajectories, the (2,2) mode,

h22(t ) =
1

r

√

4π

5
(Ïxx − 2iÏxy − Ïyy), (A14)

can be computed directly from the trace-free mass quadrupole
tensor [30, Eqs. 54–56].

To summarize, from the orbital motion we compute the
three components of the mass quadrupole tensor Eq. (A11),
compute the trace-free mass quadrupole tensor, compute the
time derivatives using finite differences, and then finally

assemble the (2,2)-multipolar component of the outgoing
gravitational waves, h22, from Eq. (A14).

While a full discussion is outside the scope of this
Appendix, we point out that the quadrupole formula is
the simplest possible one and, consequently, ignores a
lot of the relevant physics. Future work could consider
incorporating more physics into the gravitational wave-
form model, including relativistic definitions of the den-
sity, higher-order post-Minkowskian corrections, subdom-
inant harmonic modes, or near-field-to-far-field transport
maps. Nevertheless, some of missing physics might al-
ready be accounted for through the orbital model, where
the deep networks may try to account for missing physics
in the waveform model by modifying the orbital dynamics
model.
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