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Abstract—In this paper, we develop a deep reinforcement
learning (DRL) framework to manage distributed energy re-
sources (DER) in a prosumer-centric microgrid under generation
uncertainties. The uncertainty stems from varying weather con-
ditions (i.e., sunny versus cloudy days) that impact the power
generation of the residential solar photo-voltaic (PV) panels. In
our proposed system model, the microgrid consists of traditional
power consumers, prosumers with local battery storage, and the
distributor. The prosumers and distributor are equipped with
artificial intelligence (AI) agents that interact with each other to
maximize their long-term reward. We investigate the impact of
weather conditions on the energy storage charging/discharging,
as well as the amount of power injected into the microgrid by the
prosumers. To show the efficacy of the proposed approach, we
implement the DRL framework using Deep-Q Network (DQN).
Our numerical results demonstrate that the proposed distributed
energy management algorithm can efficiently cope with the
generation uncertainties, and it is robust to weather prediction
errors. Finally, our results show that adopting energy storage
systems on the residential side can alleviate the power curtailment
during generation surplus.

Index Terms—Reinforcement Learning, Microgrid Energy
Management, Weather Forecast, Demand Response.

I. INTRODUCTION

In the U.S., heating and cooling account for more than
40% of end-users energy demand [1]. Climate change and
global warming are likely to increase the electricity demand
for cooling/heating in the summer/winter as reported by the
U.S. National Climate Assessment over the past few years [2].
The rising and falling of extreme weather temperatures is
also expected to increase the peak electricity demand, which
exacerbates the stress on the power grid [3]. Meeting this peak
demand requires a new energy generation infrastructure and
more advanced energy management mechanisms. Renewable
energy resources play an important role for the U.S. electricity
production industry in order to move toward clean energy and
reduce the carbon footprint [4]. As such, financial incentives
and environmental benefits encourage users to install dis-
tributed energy resources (DERs), such as solar photo-voltaic
panels (PV) and energy storage systems, on the residential
customer side, which led to the advent of prosumers [5]-[8].

A microgrid consists of a group of DERs, loads, and
energy storage units, and it can operate in both grid-connected
or island-mode [9], [10]. In the grid-connected mode, the
microgrid is connected to the upstream main grid in case
of power deficiency or surplus exchange. In both scenarios,
energy management and planning are considered as the key
objectives that have recently attracted the attention of the

research community [11], [12]. Still, accurate analysis, mod-
eling, and optimization of the microgrid operation and energy
management are challenging tasks leading to various intrinsic
and extrinsic uncertainties in the system [13]. In particular,
load, renewable generation, and weather forecast are the main
sources of uncertainty on the demand side. Some types of
loads, e.g. flexible loads, cannot be easily forecasted since
they depend on several factors such as the end-user behav-
ior, weather condition, and electricity prices [14]. Renewable
generation by the distributed PV panels in residential settings
constitutes another major source of uncertainty.

Higher penetrations of DERs introduce more uncertainty on
the supply side due to inherent volatility and the unpredictable
power generation. The intermittent output of PV systems
causes fluctuation in the overall power of the microgrid, which
can lead to a generation and consumption mismatch. To handle
these types of uncertainties, an accurate day-ahead or hourly
renewable generation forecast becomes critical for microgrid
planners [15]. For instance, PV output power is strongly
correlated with solar irradiation such that the irradiation peak
in cloudy days is less than half of that in clear days [16]. This
example illustrates the importance of investigating weather-
related uncertainty in micro-grid energy management.

In addition to the higher uncertainty introduced by increased
DER deployment, the rapid rise of renewable resources has
led to generating excess power during off-peak hours. Under
such scenarios, power curtailment is regarded as a popular
solution to keep the power system in balance. One of the
main reasons for renewable energy curtailment is a system-
wide oversupply during low-load periods that could lead base-
load generations to reach the minimum, and thus causing
voltage or interconnection issues [17]. As an example, power
curtailment frequently happens in California during the Spring
months [18]. Energy storage systems are contemplated as a
potential solution to mitigate the power curtailment issue.

This paper aims to fill the gap in the literature concerning
microgrid energy management and demand response. Specif-
ically, we aim to develop a weather-aware data-driven deep
reinforcement learning (DRL) framework that properly reacts
to generation uncertainty on the one hand, and alleviates the
power curtailment on the other hand. Other works also focused
on weather forecasting [19]. Our goal is to neither replicate
nor expand those results. Instead, this paper aims to integrate
weather information with distributed energy management for
microgrids. As such, any type of weather forecasting algo-
rithm introduced in the literature can be integrated into our
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framework. Overall, the main contributions of this paper are
as follows:

o We investigate the impact of day-ahead weather information
on dispatching DERs and demonstrate that this information
significantly improves microgrid energy management.

o We illustrate that using an energy storage system as a
dispatchable asset can be an effective solution to alleviate
PV power curtailment while considering the microgrid eco-
nomic benefits.

o We implement the proposed weather-aware DRL method
using Deep-Q Network (DQN). Our numerical results show
that the proposed framework can operate effectively even
with a 20% error rate in the weather forecasting system.

In our previous works ( [20], [21]) a multi-agent reinforce-
ment learning framework was proposed in order to implement
dynamic pricing and demand response programs for the mi-
crogrid. This paper integrates weather forecasting with the
proposed energy management framework and investigates the
impact of weather dynamicity and uncertainty.

II. RELATED WORK

Most studies on energy management and demand response
(DR) are based on deterministic renewable generation (RG)
profiles [22], [23]. There are also several works that use RG
forecast in their energy planning. For instance, a methodology
is proposed in [24] to predict energy consumption and renew-
able generation in the presence of prosumers. The authors in
[25] propose an ensemble learning method to realize the short-
term prediction of prosumers’ air-conditioning load in order
to establish an energy management system for smart grids.
The work in [26] proposes a stochastic energy scheduling for
two cooperative microgrids where the forecast error of RG
was modeled over time. Nonetheless, none of these works
consider the impact of weather conditions on power generation
by distributed renewable energy resources.

There is also a multitude of prior works on demand-side
management that take the weather condition into account. For
example, [27] considers the weather forecast to predict the
indoor temperature for smart buildings. In [28], consumption
scheduling of HVAC while considering weather forecasting
errors and predicting the outdoor temperature is addressed.
Likewise, in [29], the authors model the energy management
problem in a microgrid as a Markov decision process with
considering generation and a load model, which is constructed
based on weather data. A model predictive control (MPC)
framework is used in [30], [31] for energy management.
Silva et al. [30] proposed a hybrid MPC to investigate the
energy exchange between the grid and a microgrid by con-
verting weather data forecast to PV and wind power forecast.
Although the aforementioned works consider the weather
conditions for the demand-side management, our main goal
is to develop weather-aware control of distributed energy
resources such as residential PV deployments.

A weather-based stochastic renewable generation prediction
method is proposed in [32] in which a game theory-based
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Fig. 1. A microgrid system architecture that consists of consumers,
prosumers, distributor, and generation facilities. The distributor and
prosumers are equipped with artificial intelligence agents for au-
tonomous decision-making.

approach is used for power scheduling in a microgrid. This
work is quite different from our proposed DRL-based frame-
work that leverages generation, consumption, and weather data
for energy management across DERs. Khodaei et al. [15]
proposed an energy management framework for a prosumer-
centric microgrid by considering neural networks for short-
term load and weather prediction. However, they use the time-
of-use (TOU) pricing scheme and they did not investigate the
prosumers participation in a demand-response program, which
we cover in this paper.

The remainder of this paper is structured as follows. Sec-
tion III provides details about the system model and problem
formulation. The proposed framework implementation in a
small sample microgrid is introduced in Section IV, while
Section V concludes the paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this study, we consider a microgrid that consists of
residential prosumers and consumers connected to the up-
stream grid. The microgrid is managed by a distributor that
is responsible for energy management and sets the electricity
price. The architecture of this microgrid is captured in Fig.1.
It consists of N prosumers, N. consumers, and the main grid,
which ensures to meet the local demand in case of a deficiency
i.e., the sum of all power consumption should be equal to
generation power at each time slot. Also, there is no direct
energy sharing or communication link between users, but
there is a bidirectional communication and energy sharing link
between the distributor and users, which enables the distributor
to optimize the energy management in the microgrid. It is
also worth mentioning that our framework provides additional
flexibility by charging the battery either from PV generation or
by buying electricity from the grid. In our model, one day has
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been divided into 7" time slots. We denote g; = [g], g7, ..., 8" ]
as the vector of generation of the i’ prosumer, while b; and ¢;
are the vectors of energy storage and consumption for the i*"
prosumer. Thus, the power balance for the prosumer at time
slot + will be:

Df=c§+b§—gf, (D

where D! is the total load of the i h prosumer or consumer at
time slot #, which can be positive or negative. Positive means
the prosumer has demand, and negative means the prosumer
would inject the excess power into the grid. The PV generation
on the prosumer side has an upper limit as follows:

0< g < g™, )

where g™ is the maximum solar panel capacity installed on
the prosumer side. The rate of charging and discharging the
battery is illustrated in (3), which limits the maximum amount
of energy that battery can be charged or discharged with
discharge charge . ..
during one time slot. As such, b, and b, indicate
the maximum discharging and charging rates, respectively.

bdischarge < b: < b;harge. (3)

i
In this case, each prosumer is considered to reduce their
electricity bill by maximizing the following profit function.

T T
Cp = ) (A=1)XDiph, — > AxDiply, ()
1=1 1=1
where Cp, denotes the profit of the i’" prosumer in one day.
A € {0, 1}, in which 1 = 0 is for the case that D! is negative
and prosumer has excess power that it needs to sell back to
the distributor, and 1 = 1 is for the case that D! is positive and
prosumer needs to buy electricity from the distributor. p;m} is
the electricity buy price from the prosumer, and p’ , is the
electricity sell price to the prosumer.
On the grid side, the power balance must be maintained at
any given time slot #, which is defined as,

N+N¢

Z D! - ZG; =0, )

where Gj. is the generation for the ;' generation facility out
of all M power plants. D! for consumer is defined as its
consumption. The distributor aims to increase its profit, while
the power balance in (5) is satisfied. The distributor profit is
calculated as,

T (N+N.

=3 55 »

t=1 i=1

Ol — ZF(HG—ZF(G) . (6)

where F (G;) and F(H!) are the costs of buying electricity
from the j'* generation facility and i*" prosumer, respectively.
In (6), the distributor utility function is derived by subtracting
the electricity generation cost from the revenue of selling
electricity to the end-users.

As mentioned, both prosumers and the distributor are inter-
ested to maximize their total profit. For prosumers, this appears

in minimizing their overall electricity bill, and meanwhile, the
distributor handles the total energy provided in the microgrid
by dynamically determining the buy price and dispatching the
DERs. To solve these optimization problems in real-time, a
decision-making process has been developed as a multi-agent
system by embedding RL agents in the microgrid, as shown
in Fig. 1. In this model, an autonomous agent interacts with
the distributor agent and makes decisions for each prosumer.
Agents are interacting in the same environment by making the
decision a’ based on their observations of the environment at
any time slot 7. The agents then will receive a reward for their
decision. The ultimate goal of the RL agents is to learn a
policy to maximize their accumulative rewards in an iterative
process. This means minimizing the electricity bill for the
prosumers and increase the profit of the distributor. Next, we
provide details on the observations, actions, and rewards for
each agent.

A. Distributor Agent

Action: In (6), the control variable is the retail buy price.
Unlike most of the previous works, which executed the dy-
namic pricing with the selling price [33], in this work we
formulate the demand-response framework by dynamically
changing the buy price. This approach does not lead to
customer dissatisfaction because end-users do not need to shift
their loads based on the selling price. Conversely, we only
manage the extra energy provided by the PV rooftop panels
and dispatching the battery storage by adjusting the electricity
buy price from the prosumers. Therefore, the action of the
distributor agent can be characterized as:

a' = pzuy €A, (7N

in which A is the distributor agent feasible action set. In this
work, p; oy ssumes to be deterministic during the day.

Observation: The distributor agent needs to have informa-
tion of energy injected/purchased by the end-users, as well as
the energy purchase costs from the main grid. Hence, at any
time slot ¢, the distributor observes:

s ={F@h. @ pifes, ®)

where S is the observation set, F' (G}) is the cost of buying
electricity from the j* generation facility, Q' is the total cost
of injected power to the grid from prosumers and D’ is the
total demand.

Reward: In RL, the goal of an agent is to maximize the
accumulative reward. By considering U}, =~ as the immediate
reward at time slot 7, the cumulative reward over the infinite
time horizon is given by:

kyrt+k+1
Dtst Z UDwt > (9)

where 0 < y < 1 is the discount factor and R/ is the

cumulative reward for the distributor agent.

Dist
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Fig. 2. Prosumer agent diagram consists of weather forecast data and
a deep-Q network (DQN).

B. Prosumer Agents

Action: In the proposed model, the prosumer agent decides
whether to charge, discharge, or take no action on the battery.
This determines the amount of power demand or injection
from/to the grid.

Observation: Each prosumer agent is assumed to have
information of the local real-time consumption, PV generation,
and battery State of Charge (SoC). In addition, prosumer
agents need to have information about the retail price at any
time slot ¢. Furthermore, to incorporate the weather conditions
in the energy management of the microgrid, the prosumer
agent utilizes a prediction framework based on weather real-
data, which outputs the day-ahead label as W = {Sunny :
wi, Cloudy : wy}. It should be noted that the day-ahead
renewable prediction is out of the scope of this work. Hence,
the observation vector for the prosumer agent is defined as:

sh = {b;, pzuy, g, ot W} €S.

i°

(10)

Reward: The goal of the prosumer agent is to minimize
the daily electricity bill by minimizing their utility function,
which is denoted as Cp,. Assuming that C;)i is the immediate
reward of the prosumer agent at the time slot 7, the cumulative
reward is defined as follows:

(o]
t _ k ~t+k+1
k=0

Y

where 0 < y < 1 is the discount rate and R’, is the total
reward of the prosumer.

IV. CASE STUDY AND NUMERICAL RESULTS

In this section, we present numerical results for a small-
scale residential microgrid that consists of five prosumers
each equipped with PV rooftop panels and battery storage,
five consumers, one distributor, and two generation facilities
connected to the microgrid. One of the generation facilities
is referred to as the base generation facility that has 45kW
maximum capacity to meet the microgrid demand. If the
demand exceeds the defined capacity, a more costly generation
facility (i.e., reserve plant) is deployed to meet the extra
demand. In the simulations, the maximum capacity for the
reserve generation is set to 100kW. Without loss of generality,
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Fig. 3. Several sample paths of pre-defined and real-world data
consumption waveforms used in training and testing episodes.

this effort forgoes the ramp rate constraints of this generation
facility. The distributor is equipped with a DRL agent for mi-
crogrid energy management, which is achieved by dispatching
battery storage as well as electricity purchases from the base
and reserve generation facilities. Likewise, each prosumer has
a DRL agent that collects local observations such as amount
of PV generation, electricity consumption, and battery SoC.

To investigate the weather condition effects on the distribu-
tion of energy in the microgrid, we assume that the prosumer
agents can use a weather forecast system that provides a
label for the day ahead. This label could be either “sunny”
or “cloudy” (i.e., a binary classification problem). As shown
in Fig.2, the day-ahead label is then provided to the prosumer
agent as an observation.

The simulations are carried out via episodic iterations for
9500 episodes where each episode represents a 24-hours cycle.
Therefore, the sample time is considered as 15 minutes, which
means 96 iterations per episode. Fig. 3 demonstrates several
sample paths of our pre-defined and real-world consumption
waveforms that are used for training and testing, respectively.
The pre-defined PV generation and consumption waveforms
are constructed to be representative of real data from California
ISO [18]. Then, the fully-trained agents are tested with a
real-world consumption dataset from UK households for 500
episodes (days) [34].

First, we examine the convergence of the proposed algo-
rithm as the simulation episodes evolve. Fig. 4 shows the
cumulative rewards collected by five prosumers and distributor
agents during iterative training episodes. From the results,
the cumulative reward gradually increases and converges to
maximum values. However, it should be noted that the initial
fluctuations can be attributed to two reasons: (i) we use
an e-greedy policy that selects a random action to balance
between exploration and exploitation during the training phase,
and (ii) the generation and consumption waveforms and their
maximum values are selected randomly from a set of values.
Still, even with the initial fluctuations, the reward functions
converge to their corresponding maximum values.

The energy management over the microgrid with the
real consumption dataset is shown in Fig.5. In particular,
Fig.5 (a) represents the comparison of the total power pur-
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Fig. 5. (a) Comparing power injection into the grid on sunny vs.
cloudy days. (b)-(f) Prosumers’ battery SoC in sunny and cloudy
days.

chased/injected from/to the grid by five prosumers for sunny
and cloudy weather. As demonstrated in Fig. 5 (a)-(f), in
cloudy days, during the off-peak hours when the price is
relatively low, the prosumers prefer to fully charge their battery
by purchasing more power from the grid at the beginning of
the day to support the grid and sell more power back to the grid
during the peak hours (i.e., after 5 p.m.). This behavior proves
highly rational especially during cloudy days when a small
amount of excess PV generation power is discernible. Thus,
purchasing power from the grid to charge the battery at the
beginning of the day yields higher battery SoC, which ensures
grid support during peak-demand hours. However, in case it is
sunny, the prosumer agent prefers to wait for PV excess energy
to charge the battery and then discharge it during peak-demand
hours. Since the prosumers have extra generated power to sell
back to the grid, charging the battery with PV excess energy
has higher benefits than purchasing from the grid to store in
battery during sunny days. While the prosumers’ consumption
profile and battery capacity are different, Fig. 5 shows all
prosumer agents can learn the optimal charge and discharge
actions under different weather conditions.

As discussed, high penetration of PV generation in residen-
tial microgrids could generate surplus power during off-peak
hours that leads to an increase in the voltage level and micro-
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Fig. 6. Comparing power injection into the grid with and without
considering the weather conditions.
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grid instability. To mitigate this issue, PV inverters reduce their
power output, and in some extreme cases, even shut down the
inverter. This behavior is known as PV curtailment. Energy
storage is known as a potential solution to help alleviate
curtailment and efficiently use surplus energy. In this context,
Fig. 6 compares the power injected by five prosumers for a
given sunny day and under two cases of with and without
weather and PV prediction. On a sunny day, most likely there
is excess power during sun peak hours. In real-time optimiza-
tion, dispatching battery storage regardless of weather and PV
output prediction can lead to more power injection during
sun peak hours, which increases the need for a curtailment
system, especially when the number of prosumers increases
in the microgrid. However, with the proposed weather-aware
DRL agents, we achieve around 33% and 45% reduction
in power injected/purchased to/from the grid during sun-
peak/oft-peak hours, respectively. Thus far, we demonstrated
that if our proposed energy management and demand response
framework utilizes a weather forecast system to acquire the
knowledge of day-ahead prediction as a sunny or cloudy
day, the DERs dispatching procedure provides performance
improvements, compared to not considering weather data.

Next, we consider the scenario that the weather forecast
system outputs the day-ahead labels with some errors. In
this context, we are interested to examine the robustness
of the proposed weather-aware algorithm to weather fore-
casting errors. Fig. 7 illustrates the total injected/purchased
power to/from the grid for a given sunny day in four cases
with different percentages of error in labeling the day-ahead
weather condition. From the results, we note that there is a
significant difference in power purchased and injected from/to
the grid at the beginning of the day and during peak sun hours,
respectively. With a 20% error in labeling, the algorithm is still
able to effectively dispatch the battery storage. However, if the
error percentage increases to 30%, the agent’s performance
degrades compared with the 0 and 20% error rates.

V. CONCLUSION

In this paper, we investigated the impact of the day-ahead
weather prediction on the proposed weather-aware distributed
energy management in microgrids. Our simulation results
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Fig. 7. Power purchased/injected from/into the grid in the presence
of day-ahead labeling errors.

demonstrate that with the knowledge of day-ahead weather as
a binary flag (i.e., sunny or cloudy day), the optimal battery
storage dispatch leads to (i) improved grid support during peak
demand hours and higher economic benefits by leveraging the
surplus PV generation on sunny days, and (ii) decreased power
curtailment in case of excess power generation. Overall, this
paper integrates the PV generation uncertainty into microgrid
energy management systems. The proposed framework can
be improved by leveraging a more granular weather forecast
system with a higher fidelity/accuracy (beyond binary a clas-
sification as sunny and cloudy days).
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