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Interactive Data Visualization
in Jupyter Notebooks

Jorge Piazentin Ono ®, juliana Freire ®, Claudio T. Silva ®, New York University, Brooklyn, NY, 11201, USA

Interactive visualizations are at the core of the exploratory data analysis
process, enabling users to directly manipulate and gain insights from data. In
this article, we present three different ways in which interactive visualizations
can be included in Jupyter Notebooks: 1) matplotlib callbacks; 2) visualization
toolkits; and 3) embedding HTML visualizations. We hope that this article will
help developers to select the best tools to build their interactive charts in

Jupyter Notebooks.

ration, enabling analysts to write documents that

contain software code, computational output,
formatted text, and data visualizations. In fact, this arti-
cle is written entirely in a Jupyter Notebook, which can
be run by the interested reader in order to interact with
the visualizations and explore the source code in
more detail. The notebook is available on Zenodo
(https://zenodo.org/record/4444154). Visualization is an
essential component of the data exploration process,
and can be frequently found in Jupyter Notebooks. For
example, a recent study of public GitHub repositories
found that matplotlib was the second most imported
package in the notebook environment.'

J upyter Notebooks are widely used for data explo-

When datasets are too large or too complex, interac-
tive visualization becomes a useful tool in an explor-
atory data analysis. Interactive visualizations can
enable, among many others, the display of informa-
tion at multiple levels of detail, the exploration of
data using coordinated views, and the dynamic
change of the charts to focus on the user's interests.
While notebooks have traditionally been used with
static visualizations, it is possible to embed
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sophisticated interactive visualizations and support
advanced visual analysis as well.

In this article, we present three simple and power-
ful approaches in which data scientists can create
interactive visualizations in Jupyter Notebooks: mat-
plotlib callbacks, visualization toolkits, and custom
HTML embedding. These approaches offer a number
of benefits and drawbacks that need to be considered
by the developer so that they can make an informed
decision about their visualization task. By the end of
this article, the reader will have a good understanding
of the three methods, and will be able to select an
implementation approach depending on the level of
interaction, customization, and data flow desired.

Matplotlib Callbacks

The matplotlib library? is the most popular general pur-
pose visualization package for Jupyter Notebooks.' This
tool enables the creation of static, animated, and interac-
tive visualizations, which can be rendered directly as the
output of notebook cells. However, the available user
interactions are limited: There is support for click and
keypress events, but drag-and-drop, tooltips, and cross-
filtering, frequently supported in visualization tools, are
not directly provided. To expand the possible user inter-
actions, ipywidgets can be used. ipywidgets is a library
that provides HTML form inputs in the Jupyter interface,
including drop down menus, text boxes, and sliders.

Visualization Toolkits

In order to enable the creation of more interactive
visualizations in Python and Jupyter Notebooks,
many open-source visualization toolkits have been
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TABLE 1. Summary of interactive visualization approaches in Jupyter Notebook.

Library Interaction Output Customization Dashboard Data Flow
matplotlib Low Flexible Low Limited Bidirectional
Plotly High HTML Low Yes Bidirectional
Bokeh High HTML Low Yes Bidirectional
Altair High HTML Low Yes Python — JavaScript
HTML Embedding High HTML High Yes Bidirectional

developed. Among those, Perkel et al.® highlight Plotly,
Bokeh, and Altair. These libraries are built on top of
web technologies, and create visualizations that can
be seen in web browsers. Syntaxwise, Plotly and Bokeh
are very similar to matplotlib. However, both libraries
have been developed with a focus on user interaction,
enabling the creation of web-based dashboards that
combine interactive widgets and charts, and support
multiple user inputs, including click, drag-and-drop,
tooltips, selection, crossfilter, and bidirectional com-
munication with Python via callbacks. Altair® differs
from the aforementioned libraries in the way visualiza-
tions are defined: It uses a declarative specification
that ports VEGA-Lite,®> a data visualization grammar,
to Python. A wide range of interactive visualizations
can be expressed using a small number of Altair primi-
tives, making this library very flexible. However, the
produced visualizations cannot communicate with
Python, and therefore, the results of user interactions
cannot be used in further computations.

Custom HTML Embedding

There might be cases when a visualization cannot be cre-
ated using any off-the-shelf Python libraries. When this
happens, the developer has the option to code the visual-
ization using a web framework and embed it in the
notebook. This option offers the most flexibility, as the
visualization can be fully customized and interactions
can be scripted on demand. JavaScript libraries such as
React and D3 can be used to facilitate the implementa-
tion of custom visualizations.

Table 1 summarizes the different approaches to add
interactive visualizations in
Jupyter  Notebooks. The
approaches are classified in
terms of interaction, type of
output, level of customization,
support for dashboards, and
data flow. When creating a
new visualization, we believe
these properties should be
taken into consideration.
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[ 1: %matplotlib notebook
import matplotlib.pyplot as plt

In this section, we will show how to create interactive vis-
ualizations in Jupyter Notebooks using three approaches
discussed in the previous section: matplotlib charts,
Altair specifications, and custom HTML visualizations.
Since the syntax of Plotly and Bokeh are very similar to
matplotlib, we will not cover them in this article. We refer
the interested reader to their online documentations.

Matplotlib With Callbacks

In order to enable interactive matplotlib charts in
the notebook environment, users need to activate
this option using the “%matplotlib notebook” magic
command (https://matplotlib.org/3.3.3/users/interac-
tive.html). The produced charts will natively support pan
and zoom operations, but can be configured to receive
other types of user input, such as mouse click and key
press, which can trigger the run of user-defined
callback functions (https://matplotlib.org/3.3.3/users/
event_handling.html).

After a chart is created, for example, using
pyplot.scatter, the user events can be captured by set-
ting callback functions on the canvas using the method
mpl_connect. Multiple events are available, including
button_press_event, button_release_event, key_press_e-
vent, and key_release_event.

We show a minimal example below, where
the visualization draws points on top of the user clicks.
The resulting visualization in shown in Figure 1.

This approach can add click interactions to a chart
with a few lines of code. However, we are limited to the

fig, ax = plt.subplots(); # Creating an empty chart
plt.x1im([0, 10]); plt.ylim([0, 10]) # Setting X and Y azis limits
def onclick(event): # Callback function
ax.scatter(event.xdata, event.ydata, color='steelblue') # Draw a point on,
—~top of the user click position.

cid = fig.canvas.mpl_connect('button_press_event', onclick) # Callback setup
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FIGURE 1. Interactive Matplotlib chart, where the user can click on the canvas in order to add a point at that position. The interactive

chart also enables pan and zoom operations by default.

types of charts and interactions supported by matplotlib.
When these options are not enough, the developer might
need to consider other libraries, such as Altair, or creat-
ing their own visualization in HTML/Javascript.

Altair Specification

Altair enables the creation
of interactive visualizations
by using a pythonic port of
the Vega-Lite specification.*
Altair uses a declarative
visualization paradigm:
Instead of telling the library
every step of how to draw a
chart, the programmer
specifies the data and the
visual encodings, and the
library takes care of the rest.

In order to create a chart, the developer needs to
have a Pandas DataFrame containing the
data to be visualized. An Altair.Chart
object needs to be created, with the corre-
sponding DataFrame passed as a parame-
ter. Next, an encoding and a mark need to
be selected. Encodings tell Altair how the
DataFrame columns should be mapped to
visual attributes. Meanwhile, marks spec-
ify how the attributes should be repre-
sented on the plot (for example, as a
circle, line, area chart, etc.).

We show a basic example of an Altair
scatter plot with the Iris dataset (see
Figure 2). The dataset contains informa-
tion regarding 150 Iris flowers, with meas-

: |import altair as alt

df = data.iris()

x='petallength',
y='petalWidth',
color='species',

) .interactive()
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o
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below, mark_circle is used to indicate the type of chart
desired (scatter plot with circles) and the encode func-
tion specify the chart encoding, in this case, what col-
umns are mapped to the x and y positions, color of the
circle, and tooltip on hover.

from vega_datasets import data

alt.Chart (df) .mark_circle() .encode(

tooltip=['sepallLength', 'sepalWidth', 'petallength', 'petalWidth', 'species']

For more complex examples, see the Altair docu-
mentation. There are many chart possibilities, and
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can be hovered to show additional infor- FIGURE 2. Interactive Altair scatter plot of the Iris dataset. The chart displays a

mation as a tooltip (notice that this was tooltip with flower information on mouse hover. The library also enables pan and

not possible in matplotlib). In the code zoom.
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FIGURE 3. Altair Dashboard showing a flight dataset. (1) Histograms for flight distance, delay, and time. (2) User selected a range

of delay values and the system automatically updates the other views.

graphics can be combined to create interactive dash-
boards with multiple views. For example, Figure 3(1)
shows an Altair dashboard that visualizes a flight data-
set [example taken from the online documentation
(https://altair-viz.github.io/gallery/interactive_layer-
ed_crossfilter.html)]. (2) The user can select flights
based on delay (in hours) and see how delay correlates
with the other variables (distance and time).

One disadvantage of Altair is that we cannot have
access to data generated by the user in Python. For
example, we would not be able to receive data points
selected in Altair in the next
Jupyter cell. Such capability
exists in matplotlib and in cus-
tom JavaScript visualizations,
because we can set up call-
backs between JavaScript and Python.

HTML Embedding
Displaying custom visualizations in a Jupyter Note-
book can be done in a few lines of code using the
package Ipython.display, which embeds HTML code in
notebook cells. The HTML may contain both CSS and
JavaScript, which affords flexible, interactive, and cus-
tomizable visualizations to be created.

In order to embed the visualization in a cell, one
needs to create a string variable containing all
the HTML, JavaScript, data, and CSS code needed

Computing in Science & Engineering

for the visualization. Since writing everything in
a Jupyter cell can be too cumbersome, one can
write the visualization in a code editor and then
load the document in Python. JavaScript Bundlers,
such as Webpack, can convert multiple HTML,
JavaScript, and CSS files into a single file, facilitat-
ing this process.

In the following, we show an example of HTML
embedding in a Jupyter cell. The code adds a single
button to the page, which when clicked displays an
alert box with the message “Hello World.”

[ 1: from IPython.display import display, HTML
html_string = """<button onclick="alert('Hello World')">Hello World</button>"""
display (HTML (html_string))

Formatting methods can be used to create
the HTML string. For example, a base string may con-
tain the container div where the visualization is going
to be inserted, a script tag where the bundled code is
going to be added, and a function call to plot the
visualization with the provided data in JSON format.
The string.format function can be used to add the
remaining information to the string, filling in the
placeholders.

The following code snippet shows how to
embed a JavaScript library and CSV data in the
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FIGURE 4. Custom JavaScript visualization of baseball plays. The user can (1) animate the play using the slider. Select a position

to edit (in the picture, the BALL is selected) and (2) clear the trajectory. Annotate the positions of the ball when it is thrown

(3) and hit to the center field (4).

HTML string. This example
visualization shows an inter-
active chart that displays
baseball game trajectories
(see Figure 4). The user can
control the progress of the
play using a slider. Further-
more, the user can select
a player or the ball to edit
its trajectory (either clicking
on the field, or the button
“Clear trajectory”). This visu-
alization is an adaptation
of the Baseball annotation
system HistoryTracker.®

March/April 2021

: from IPython.display import display, HTML

import pandas as pd

with open("./BaseballVisualizer/build/baseballvisualizer.js",

bundled_code = f.read()

play
data

html

<html>
<body>
<div id="container"/>

<script type="application/javascript">
{bundled_code}

"r") as f:

pd.read_csv("./BaseballVisualizer/play_annotated.csv")
{'tracking': play.to_json(orient="records")}

baseballvisualizer.renderBaseballAnnotator ("#container", {datal});
</script>

</body>
</html>
" format (bundled_code=bundled_code, data=data)

display (HTML (html))
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Callbacks can be set up in both JavaScript and
Python using the comm API (https://jupyter-notebook.
readthedocs.io/en/stable/comms.html) to send
data from one to the other. For example, if a sports
analyst is interested in modifying a Baseball
trajectory and running some further analysis in Python,
he might set up this bidirectional communication.

A minor change needs to be made to both the
JavaScript and to the Python code. In JavaScript, a
new comm object needs to be created with an
identifier (in this example, submit_trajectory). Then,
the comm object is used to send a message to
Python, containing the edited trajectory data.
Finally, when Python acknowledges the message,
we display an alert.

function submitTrajectoryToServer(trajectory){

let comm = window.Jupyter.notebook.kernel.comm_manager.new_comm('submit_trajectory')

// Send trajectory to Python
comm.send ({'trajectory': trajectory})

// Receive message from Python
comm.on_msg(function(msg) {

alert("Trajectory received by Jupyter Notebook.")
1

The Python code needs to expect a message
from JavaScript. In order to set this up, we use
the register_target function, passing to it the com-
munication identifier and the Python callback
function. In the following code snippet, this call-
back will store the trajectory in the variable
received_trajectory.

[ 1: received_trajectory = []
def receive_trajectory(comm, open_msg):
# comm is the kernel Comm instance
# Register handler for future messages
Qcomm.on_msg
def _recv(msg):
global received_trajectory

# Use msg['content']['data'] for the data in the message
received_trajectory = msg['content']['data']['trajectory']

print (received_trajectory)
comm.send({'received': True})

get_ipython() .kernel.comm_manager.register_target('submit_trajectory',,

—receive_trajectory)

Finally, after the user clicks the “Submit” button,
the trajectory can be retrieved in the Jupyter Note-
book, analyzed and saved to disk.

[ 1: received_trajectory_df = pd.DataFrame(received_trajectory)
received_trajectory_df.to_csv("edited_trajectory.csv", index=False)

Computing in Science & Engineering

There are many domain-specific visualization librar-
ies for Jupyter Notebook, which use the techni-
ques described in this article. Figure 5 shows
examples in three different domains, which illus-
trate how diverse and flexible these visualizations
can be. The examples belong to the fields of scien-
tific visualization,” sports analytics,2 and machine
learning.%™° 1) ipygany’ enables the visualization of
3-D meshes in Jupyter Notebooks. Users can
zoom, rotate, and apply effects to 3-D meshes
interactively using this library. 2) StatCast Dash-
board® supports the interactive query, filter, and
visualization of spatiotemporal baseball trajectories
and statistics. The library communicates with a
baseball play database in
order to execute complex
queries involving player,
teams, game dates, and
events. 3) InterpretML® is
a Python package that
contains a collection of
algorithms for explaining
and visualizing machine
learning (ML) models,
including LIME, SHAP, and
partial dependence plots. Finally, 4) PipelinePro-
filer'® contains visualizations that enable the explo-
ration and comparison of ML pipelines produced
by Automatic ML systems.

One of the advantages of Jupyter Notebooks is
that they support reproducibility.” However, when
interactive  visualizations
are used in computational
notebooks, additional mec-
hanisms are needed to
afford reproducible results.
We refer the interested
reader to the work by
Fekete and Freire" for a
survey of reproducibility
challenges faced by the
visualization community
and how those challenges
can be addressed.

In this article, we have
presented three ways to create interactive visual-
izations in Jupyter Notebooks: matplotlib charts,
Altair specifications, and custom HTML visuali-
zations. We hope that this
document will help devel-
opers to create their own
interactive charts.
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FIGURE 5. Domain-specific visualization libraries for Jupyter Notebook. 1) ipygany: visualization of 3-D meshes. 2) StatCast
Dashboard: Visualization of baseball trajectories and game statistics. 3) InterpretML: Visualization of machine learning model
explanations. 4) PipelineProfiler: Visualization of machine learning pipelines produced by AutoML systems.
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