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Abstract

The origins of a “pass-through” gut in early bilaterians facilitated the exploration of new habitats, motivated the innovation 

of feeding styles and behaviors, and helped drive the evolution of more complex organisms. The gastrointestinal tract has 

evolved to consist of a series of interwoven exchanges between nutrients, host immunity, and an often microbe-rich environ-

mental interface. Not surprisingly, animals have expanded their immune repertoires to include soluble effectors that can be 

secreted into luminal spaces, e.g., in the gut, facilitating interactions with microbes in ways that influence their settlement 

dynamics, virulence, and their interaction with other microbes. The immunoglobulin (Ig) domain, which is also found in 

some non-immune molecules, is recognized as one of the most versatile recognition domains lying at the interface of innate 

and adaptive immunity; among vertebrates, secreted Igs are known to play crucial roles in the management of gut microbial 

communities. In this mini-review, we will focus on secreted immune effectors possessing Ig-like domains in invertebrates, 

such as the fibrinogen-related effector proteins first described in the gastropod Biomphalaria glabrata, the Down syndrome 

cellular adhesion molecule first described in the arthropod, Drosophila melanogaster, and the variable region-containing 

chitin-binding proteins of the protochordates. We will highlight our current understanding of their function and their potential 

role, if not yet recognized, in the establishment and maintenance of host-microbial interfaces and argue that these Igs are 

likely also essential to microbiome management.

Keywords Immunoglobulin domain · Innate immunity · Host-microorganism interaction · Secreted immune molecules · 
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Introduction

The evolution of food capture and digestion first involved 

the origin of a gastric cavity, still present in the modern 

Cnidarians. While various derived and unique gut architec-

tures have arisen during the diversification of bilaterians 

(e.g., see special issue; Hartenstein and Martinez 2019), the 

evolution of a “pass-through” or tubular gut giving rise to 

modern gastrointestinal (GI) systems represents an impor-

tant innovation facilitating the evolution of more complex 

organisms (Fig. 1). For example, among the early meta-

zoans, the evolution of muscles attached to rigid skeletal 

structures (not necessarily bones) and a pass-through gut 

forever changed how animals could explore the early seas 

(Holland 2015). The capacities of burrowing, exploring, and 

eating, while disposing of waste on the opposite side of their 

bodies, permitted the settlement of additional habitats and 

the diversification of feeding styles. The GI tract acquired 

more complex functionalities that included interactions with 

beneficial microbes, as well as encounters with pathogens. 

Indeed, it is well recognized that (i) diverse functions in 

the gut depend on microbial communities inhabiting it; 

(ii) host defense systems arose not only to protect tissue 

from pathogenic attack but also for supporting the growth 

of specific communities of mutualistic microorganisms; 
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and (iii) these types of interaction have been identified in 

most animal taxa, revealing a crosstalk with ancient origins 

(McFall-Ngai 2007; Round and Mazmanian 2009; Clemente 

et al. 2012; Dishaw et al. 2014).

It is important to reflect, however, on the complexity of 

the interplay: the host must maintain a balance between  

tolerating commensal microbial species while resisting those 

that are pathogenic, whereas the microbiota often manipu-

lates the host immune repertoire (and shapes selective pres-

sures) to best suit its survival. Hence, a more comprehen-

sive understanding of the physical and genetic interactions 

between host immune defenses and the microbiome may 

help reveal the symbiotic underpinnings that helped shape 

the evolution of metazoans (Gilbert et al. 2012). The nature 

and patterns regulating domain organization among secreted 

immune effectors may also help reveal mechanistic insights 

for how symbiotic interactions interface with host immune 

recognition and responses. The diversification of mucosal 

immune responses, together with a more compartmental-

ized digestive tract to manage and digest the complexity 

of dietary antigens passing through the internal confines 

of animals, has been fundamental to bilaterian diversifica-

tion (Fig. 2). One example was to innovate the release (e.g., 

secrete) of soluble immune effectors into the lumen of the GI 

tract. Here, these soluble molecules facilitate neutralization 

of antigens (including microbes with unknown intentions) 

and/or impact their ecological interactions before they settle 

and engage the epithelial surfaces; while sometimes cyto-

toxic, e.g., antimicrobial peptides, many of the soluble effec-

tors instead bind microbial or antigenic surfaces and alter 

their intentions or capabilities. These neutralized antigens 

can more easily exit the animal while posing less of a threat; 

the bound mediators may also impact microbial settlement 

behaviors like the formation of biofilms. And because the 

antigenic surfaces are bound or tagged, gaining entry (past 

epithelial barriers) can also facilitate their recognition and 

elimination via phagocytosis, i.e., opsonization.

A large diversity of soluble immune molecules has 

evolved, some with unlimited recognition potential. While 

some, like many antimicrobial peptides, often lack recog-

nized protein structural domains, other effector proteins 

include a limited set of protein domains that can be recog-

nized by established receptors on immunocytes, facilitat-

ing recognition and proper downstream responses (Litman 

et al. 2005). Immune effector molecules can include a vari-

ety of recognition domains, such as immunoglobulin (Ig), 

leucin-rich repeat (LRR), and/or calcium-binding (C-type) 

lectin (CTL) domains; often, two or more unrelated domain 

types are coupled, for example, IgSF and lectin domain pro-

teins have evolved in many animal taxa (Cannon et al. 2002, 

Fig. 1  Simplified phyletic 

distribution of metazoan 

IgSF-containing molecules. 

Schematic cladogram represen-

tation of major phyla following 

bilaterian divergence, emphasiz-

ing major clades where a “pass-

through” tubular gut evolved. 

Phyla, such as Arthropoda, 

Mollusca, and Chordata, with 

IgSF-containing immune 

effectors discussed herein, are 

highlighted. Representatives 

of IgSF-containing molecules 

with immune-related functions 

have yet to be described in 

phyla represented by smaller 

characters. Protein structures of 

Dscam in arthropods, FREPs in 

gastropod molluscs and VCBPs 

in protochordates are reported. 

VIgSF, immunoglobulin super-

family variable domain; FNIII, 

fibronectin type III domain; 

FReD, fibrinogen-related 

domain; CDB, chitin-binding 

domain
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2004; Dheilly et al. 2015; Gorbushin 2019). In this mini-

review, we will focus on soluble immune effectors possess-

ing Ig-like domains, since the Ig domain is recognized as 

one of the most versatile recognition domains (Williams 

and Barclay 1988; Cannon et al. 2010) and when secreted 

into the gut lumen has evolved to become essential to the 

management of gut microbial communities in the chordate 

lineage (Dishaw et al. 2014; Pabst and Slack 2020). It is 

our intention to cover essential concepts and discoveries; 

unfortunately, space limitations prevent an exhaustive over-

view and may result in the inadvertent omission of important 

findings.

Immunoglobulin (Ig) domain in immune 
molecules

The Ig domain is a compact, globular structure of approxi-

mately 110 amino acids and typically contains an intrachain 

disulfide bond, while forming the antigen-binding domains 

of the classical antigen-binding receptors that include solu-

ble immunoglobulins (or antibodies) and membrane-bound 

B cell and T cell antigen receptors (BCR and TCR) in the 

vertebrates. The name immunoglobulin results from studies 

to define the domain structure of antibodies, but it provides 

little information about the significance of this structure, 

contrary to other domains such as LRR and CTL. Beyond 

the forementioned vertebrate immune molecules, diverse 

proteins can possess Ig-type domains that extend recog-

nition, binding and adhesion properties to a broad range 

of proteins with immunological as well as developmental 

functions (Sun et al. 1990; Su et al. 1998; Barclay 2003). 

By possessing Ig-like domains, these proteins belong to the 

immunoglobulin superfamily (IgSF) that includes adaptive 

and innate immune receptors as well as various accessory/

adhesion molecules (Cannon 2009). A variety of biologi-

cal features, including the ability to form homo- and het-

erodimers (Su et al. 1998; Barclay 2003), makes IgSF-like 

domains valuable to various aspects of recognition, e.g., 

self/non-self receptors, including Fc receptor classes found 

on immunocytes recognizing antibodies bound to antigens. 

Because of this, variations of this astonishingly versatile 

domain have now been identified in most extant taxa, with 

distantly related forms even recognized in bacteria (Bodelon 

et al. 2013) and viruses (Farre et al. 2017), where some DNA 

viruses have presumably captured or co-opted IgSF-domains 

(from animal genomes) to facilitate entry into host cells.

The IgSF domain has diversified over time into at least 

three major operational subclasses: variable (V), inter-

mediate (I), and constant (C1 or C2), based on its size 

and other structural features; multiple domain types can 

be found in the same receptor molecules (Williams and 

Barclay 1988; Harpaz and Chothia 1994; Cannon 2009; 

Cannon et  al.  2010). In the attempt to understand the 

phylogeny of immune receptor classes, researchers have 

focused on searching for and examining sequence orthologs 

of antibody classes and TCR in species outside the jawed 

vertebrates. The resulting sequences, when they exist, are 

often very divergent due to the polymorphic nature of the 

IgSF-domains across taxa. In vertebrates, different types 

of antibodies have evolved that are secreted into mucosal 

environments for immune protection, such as IgT of tel-

eost fishes, IgX of amphibians, and IgA of mammals. Many 

studies have focused on investigating the role of IgA in 

the gut milieu, acting not just to protect against pathogens 

and toxins, but in shaping gut microbiota composition and 

modulating bacteria behaviors (Okai et al. 2017; Pabst and 

Slack 2020). In amphibians, IgX is a likely ortholog of 

IgA and is expressed in the gut and thought to be impor-

tant to mucosal immunity (Mussmann et al. 1996). In fact, 

removal of the thymus early in development revealed a T 

cell independent immune response when exposed to intes-

tinal microbiota, suggesting that IgX plays important roles 

in shaping gut microbial colonization (Mashoof et al. 2013). 

Among teleosts, and more distantly related to IgA but with 

some functional similarity with IgM (Piazzon et al. 2016), 

are the IgT mucosal antibody molecules, which are also 

expressed in the gut and coat most of the intestinal bacteria; 

in fact, depletion of IgT was found to induce dysbiosis with 

a marked overgrowth of pathobionts (or microbes with the 

capacity to become pathogenic) (Xu et al. 2020). Debat-

ing homology of these molecules is unnecessary given 

that common selective pressures have driven diverse taxa 

to innovate and repurpose various extracellular secreted 

immune molecules possessing Ig domains for the manage-

ment of the complex antigenic nature of the gut. In this 

mini-review, we focus on several IgSF effectors with solu-

ble and secreted forms found in invertebrates, with the aim 

to also discuss their potential role, if not yet recognized, in 

the establishment and maintenance of homeostasis in the 

gut.

Ig‑Type immune molecules of invertebrates 
and their interaction with microbes

Invertebrates do not rely on adaptive immune responses, but 

on innate immune mediators. It has been recognized recently 

that some of these can mediate trained immunity, which can 

include a memory component (Gordy et al. 2015). Some 

effectors also possess diversified innate immune molecules 

with IgSF domains, and these include the fibrinogen related 

proteins (FREPs) first identified in the gastropod Biompha-

laria glabrata (reviewed in (Adema 2015), the Down syn-

drome cellular adhesion molecule (Dscam) of arthropods 

(Watson et al. 2005; Dong et al. 2006), and the variable 
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region-containing chitin-binding proteins (VCBPs) found 

in protochordates, such as the cephalochordate Branchios-

toma floridae and the urochordate Ciona robusta (Liberti 

et al. 2015). Although many immune-related IgSF-containing 

receptors undergo somatic rearrangement and diversification, 

others do not, and this is particularly true for IgSF effectors 

of invertebrates, which are mostly restricted to the accumu-

lation of germ-line polymorphisms that accumulate in out-

bred populations (Litman et al. 2007; Wcisel and Yode 2016; 

Wcisel et al. 2017). Even in the absence of the necessary 

genetic machinery to generate recombination-based diversity 

(Azumi et al. 2003; Yuan et al. 2015; Flajni 2018), strong 

selection drives innovation. Accumulation of genetic poly-

morphisms that may enhance recognition potential in some 

IgSF-containing proteins suggests the necessity to recognize 

a large diversity of molecular targets that can include diversi-

fied pathogen receptors (Zhang et al. 2004).

FREPs of gastropods

The FREPs are soluble molecules first identified in Mol-

lusca, both in Bivalves and in Gastropods; however, in the 

latter, they possess, in addition to the fibrinogen-related 

domain (FReD), one or two IgSF domains of the V-type 

subclass, thus representing a unique molecular architecture 

(Adema 2015; Gordy et al. 2015) (Fig. 1). The presence 

of IgSF domain(s) are observed only in gastropods FREPs, 

which are a subset of FReD proteins found in various animal 

taxa where they are characterized only by the fibrinogen-

related domain. These proteins were first identified in the 

freshwater snail B. glabrata resistant to the infection of dige-

nean trematodes, a group of parasites that almost exclusively 

use gastropods as obligatory intermediate hosts for their lar-

val development. These parasites include the Echinostoma 

paraensei and Schistosoma mansoni, pathogens of rodent 

and human respectively (Monroy and Loker 1993; Zhang 

et al. 2004). Since S. mansoni is the etiological agent for 

the intestinal schistosomiasis, a debilitating infection dis-

ease that affects over 200 million people worldwide, the 

main investigations have remained focused and targeted 

on this host-parasite relationship to understand the biology 

and the transmission dynamics of the disease. As the only 

known example of somatic variation in B. glabrata, genome 

sequencing approaches identified as many as 14 FREP gene 

families; next-generation sequencing efforts later indicated 

that the number was likely greater (Dheilly et al. 2015; Lu 

et al. 2020), revealing variants that were products of gene 

conversion and/or point mutations in somatic cell lineages. 

These results suggested that some level of anticipatory-type 

immunity was at least partly responsible for long-term pro-

tection of repeated encounters among at least some inver-

tebrate gene families (Zhang et al. 2004). The implication 

in these results was that FREPs were mainly expressed in 

circulating hemocytes that originate from precursor cells 

localized in amebocyte-producing organs, where somatic 

variation of these germline genes may occur during cell 

differentiation/expansion. It remains to be shown if single 

hemocytes can co-express multiple FREPs, and if the recep-

tor repertoire of single hemocytes can be altered following 

unique or repeated immune challenges.

Studies based on transcriptome analyses of B. glabrata 

to investigate the diversity of FREPs transcripts led to 

the discovery of various proteins with both variable 

immunoglobulin (VIg) and lectin domains; as such, these 

were named variable immunoglobulin and lectin domain-

containing molecules (VIgLs) (Dheilly et  al.  2015). 

These proteins were subsequently found to be a large 

category of diverse lectins, with a modular domain struc-

ture comprising one or two IgSF domains and down-

stream lectin domains that included the CTL domain in 

the CTL-related proteins (CREPs) or the galectin domain 

Fig. 2  Digestive tract compartmentalization and main features of 

vertebrate and invertebrate gut mucosal epithelium are represented 

(reprinted from (Dishaw et al. 2012; Liberti et al. 2021). The simpli-

fied cladogram (left side) reveals major clades and representatives 

discussed: the Protostomes, which include Arthropods, such as the 

fruit fly Drosophila melanogaster and the Molluscs, which include 

gastropods like Biomphalaria glabrata, and Deuterostomes, which 

include Chordates such as Branchiostoma floridae, Ciona robusta 

and, vertebrates like Homo sapiens. The digestive tract is highlighted 

in each, revealing distinct compartmentalization, indicated by differ-

ent colored arrows (in each case, the anterior portion of the gut, not 

shown, includes an often complex and derived pharynx structure). 

In D. melanogaster, yellow arrow points to the foregut, whereas the 

midgut and the hindgut are blue and magenta arrows, respectively. In 

B. glabrata, B. floridae, C. robusta, and H. sapiens, the stomach and 

the intestine are indicated with orange and green arrows, respectively. 

For simplification, the human small and large intestines are labeled as 

“intestine.” (right side) Illustration of gut mucosal immunity, empha-

sizing barrier defense strategies of invertebrates and vertebrates. In 

invertebrates, the gut epithelium can consist of distinct epithelial line-

ages that represent a primary barrier of defense, governed by innate 

immune phenomena characterized by the secretion of mucus (that 

often consists also of chitin fibers), antimicrobial peptides (AMPs), 

and soluble immune molecules such as immunoglobulin superfamily 

(IgSF) molecules. The mucus layers are often colonized by diverse 

microorganisms, including bacteria, viruses, and fungi. In the baso-

lateral side, a distinct population of hemocytes, i.e., granular amoe-

bocytes, resides in the laminar connective tissue and express diverse 

pattern recognition receptors (PRRs), also present on overlying epi-

thelial cells, that can be used for sampling microbes. In vertebrates, 

barrier defenses of gut epithelium are also characterized by distinct 

epithelial lineages and include secretion of mucus (that organizes as 

a compact and firmly attached inner layer and a looser outer layer), 

AMPs, and other soluble immune molecules like antibodies. The 

secreted outer mucus layers are often colonized by diverse microor-

ganisms, including bacteria, viruses, and fungi. On the basolateral 

surface of the epithelium, the innate immune response is coupled 

with the specialized adaptive immune system. Indeed, innate immune 

cells, like dendritic cells (DCs) that populate this area, sample lumi-

nal antigens via PRRs and present them to the adaptive immune sys-

tem that includes gut-specific lymphocytes of both T and B cell line-

ages, thus triggering the maturation of immunity and the recruitment 

of additional cell types

◂
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in galectin-related protein (GREPs) (Dheilly et al. 2015). 

Further analysis of transcriptomes from another gas-

tropod species, the snail Littorina littorea, revealed 

additional VIgLs, such as the C1q-related proteins 

(QREPs), the scavenger receptor cys-rich-related pro-

teins (SREPs), Zona pellucida-related proteins (ZREPs), 

and Helix pomatia agglutinin (HPA) lectin-related pro-

teins (HREPs), that each contain unique lectin domains 

coupled to IgSF (Gorbushin 2019). In gastropods, these 

VIgLs are proposed to function as non-self recognition 

molecules, and their presence/absence and location in 

the genome differ among the diverse gastropod species 

(Dheilly et al. 2015; Gorbushin 2019). Moreover, until 

now, these molecules have been identified and mostly 

investigated in gastropod blood cells (Dheilly et al. 2015; 

Wu et al. 2017; Gorbushin 2019), but their expression 

and role in the digestive tract remains unclear.

Arthropod FREPs, which for clarity are FReD proteins 

since they lack the IgSF domains, have been shown to 

both bind bacteria and mediate some interactions within 

the microbiome (Dong et al., 2009; Kulkarni et al. 2021) 

to help regulate and maintain gut immune-physiological 

homeostasis (Chauhan et al. 2020). While structurally dis-

tinct from gastropod FREPs, the function of FReDs in the 

gut suggests an important connection between these solu-

ble immune effectors and the microbiota and may inspire 

further investigations for related roles among FREPs in the 

gut of gastropods. Moreover, besides arthropod FReDs that 

are secreted into the gut, lectin domains are also well rec-

ognized among pattern recognition receptors acting in gut 

immunity (Li et al. 2019; Zhang et al. 2021); these findings 

lend support for the possibility that in addition to pathogen-

management in hemolymph by molluscan VIgLs, such as 

FREPs, these molecules may be contributing important 

functions in gut immunity and in the management of asso-

ciated microbiomes.

DSCAMs of arthropods

A polymorphic homologue of Human Dscam was found 

exclusively in Arthropods (most recently reviewed in (Ng 

and Kurtz 2020), and specifically within Pancrustaceans, 

which include Crustaceans and Insects, such as the fruit 

fly, Drosophila melanogaster (Schmucker et al. 2000). The 

hypervariable (hv) Dscam gene generates diversity via alter-

native splicing and encodes surface (and to some extent, 

soluble) proteins that are members of the IgSF with a typi-

cal structure of ten IgSF domains, six fibronectin type III 

(FNIII) domains, a transmembrane domain, and a cytoplas-

mic tail (Fig. 1; Schmucker et al. 2000).

In Drosophila Dscam1, for example, an exceptionally 

complex genetic region encodes the resulting hv molecule, 

wherein three VIgSF domains are encoded by alternative 

exon clusters, with 20 constant exons and four variable exons 

(exon 4, 6, 9, and 17) encoding the resulting protein prod-

uct. Specifically, the exon 4 cluster encodes 12 alternative 

copies, exon 6 encodes 48, exon 9 encodes 33, and exon 17 

encodes 17. Via mutually exclusive splicing, only one exon 

from each cluster is used for the mature mRNA and can yield 

19,008 possible combinations; when combined with either 

of two transmembrane domains, it results in an estimated 

38,016 protein isoforms. Originally defined by its role in 

neuronal patterning, it was later shown that the hv Dscam 

was likely recruited into and being utilized in immune rec-

ognition pathways by hemocytes and other immune tissues 

(Watson et al. 2005; Dong et al. 2006), including the gut 

(Dong et al. 2009; Schwarz and Evans 2013). Because solu-

ble versions were detected, first a proteolytic cleavage of 

membrane bound receptors (Watson et al. 2005) and then 

variants without transmembrane regions or cytoplasmic tails 

(Chou et al. 2009), it was hypothesized that it can also func-

tions as an opsonin during phagocytosis of microbes.

Dscam has also been implicated in immune specificity 

and memory (Kurtz 2005; Sadd and Schmid-Hempel 2006), 

the mechanisms of which remain unknown but may be 

associated with trained immunity of responding somatic 

cell lineages (Netea et al. 2011; Chang et al. 2018). With 

the production of large assortment of diverse isoforms, 

this enhanced response can display specificity to challeng-

ing microbial targets (Dong et al. 2006; Hung et al. 2013). 

As many as seven paralogous hv Dscam genes have been 

described, evolving as orthologous forms in diverse arthro-

pod lineages suggesting that these hypervariable recogni-

tion receptors have existed for hundreds of millions of years 

(Armitage et al. 2012). Due to variation in exon numbers, 

from more than 3300 to over 116,000 isoforms have been 

predicted to result from alternative splicing of hv Dscam 

orthologous gene transcripts across different taxa in a pro-

cess largely driven by secondary structure of the pre-mRNA 

molecules (Xu et al. 2019). However, because upregulation 

of Dscam during infection or pathogen challenge is incon-

sistently reported among various arthropod taxa (Ng and 

Kurtz 2020), the complex immunological roles of these 

diverse transcript products remain unclear. The often taxon-

specific and unique repertoire of these Dscam genes and 

their diverse transcriptional products suggests both recogni-

tion of diverse pathogens as well as a complex interplay with 

distinct microbial taxa that may shape selection of microbial 

communities in mucosal environments like the gut lumen.

We propose that this concept fits neatly within gut micro-

biome management; for example, Dscam, as well as the 

FREPs and other VIgL molecules, and the regulatory pro-

duction of their diverse isoforms may be selectively linked 

to managing the normal flora of commensals and mutualists 

and that occasional encounters with pathogens selectively 

expand effectors that mediate neutralization and clearance. 
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It is likely that these effectors play a role in shaping the ecol-

ogy of the gut environment by interacting with microbes and 

altering their settlement dynamics, virulence, or infection of 

host tissue. Whereas the products of FREP and the Dscam 

genes have been shown to be particularly effective against 

invading parasitic or bacterial pathogens, respectively, recent 

evidence does suggest a more expanded function that may 

be related to gut microbiota management. For example, in 

considering a role for FREPs in the gut, it remains possible 

that by regulating parasitic infections, they may be indirectly 

contributing to microbiome management since parasite bur-

den can significantly impact the composition (structure) of 

the microbiome (Leung et al. 2018; Fredensborg et al. 2020). 

Furthermore, diverse functionality is not surprising given 

the size and multi-domain structure of these effector mole-

cules, and it remains likely that they bind diverse targets and 

deliver multiple regulatory signals. An intriguing example 

is found in the simplest chordates (and discussed below), 

where another innovative secreted Ig effector molecule, the 

VCBPs, and their role in modulating the gut microbiota has 

been the primary focus of recent studies (Liberti et al. 2021).

VCBPs of protochordates

VCBPs are soluble immune effector molecules that are 

directly produced and secreted into the gut lumen by the 

stomach and intestinal epithelium; they are also produced 

by circulating hemocytes (Liberti et al. 2015). The VCBPs 

were first identified in amphioxus, B. floridae, and later in 

the sea squirt, C. robusta (Cannon et al. 2002, 2004; Liberti 

et al. 2015). The protein structure of these molecules is 

characterized, from the N- to the C- terminus, by a leader 

peptide, two tandem VIgSF domains and a chitin-binding 

domain (CBD) (Fig. 1). Briefly, in amphioxus, it has been 

observed that two of the five VCBP loci demonstrate an 

exceptional haplotypic and allelic diversity in the first 

VIgSF domain, generated by indel polymorphism (Dishaw 

et al. 2008, 2010; Liberti et al. 2015). From an evolutionary 

perspective, the VCBP 2 and 5 genes are polymorphic par-

alogous genes of amphioxus and worthy of additional con-

sideration since they appear to lie at the interface between 

unique pathogen-driven selective pressures and host immu-

nity. In addition, structural analyses revealed an unexpected 

head-to-tail orientation of the two VIgSF domains, which 

is in contrast to the head-to-head orientation observed in 

jawed vertebrate Igs and TCRs antigen-binding regions 

that result from dimerization of heavy and light chains 

(Hernandez Prada et al. 2006; Liberti et al. 2015). While 

it remains unclear why this unusual structure exists, it may 

have occurred as a result of single chain instabilities or the 

existence of a unique antigen-binding mechanism or even 

of other special requirements to achieving structural sta-

bility of the antigen binding region in VCBPs (Hernandez 

Prada et al. 2006). And while the gene sequences of the four 

identified VCBP molecules (namely CrVCBP- A to -D) in 

Ciona show single nucleotide and indel polymorphisms, 

they lack the high degree of haplotypic variation observed 

in BfVCBP 2 or 5 (Dishaw et al. 2011). The evolution of 

VCBP genes may help reveal specific microbial drivers of 

diversification in secreted effectors of the gut.

The function of these proteins in gut immunity has been 

most thoroughly investigated in Ciona, where VCBP-C has 

been shown to be involved in both immune defense and in 

the interaction with gut-derived microorganisms (Dishaw 

et al. 2011, 2016; Liberti et al. 2018, 2019). These immune 

effectors are expressed in immune competent tissues of C. 

robusta, such as blood tissue, and hemocytes, where they are 

secreted into the hemolymph and act as an opsonin, bind-

ing bacteria and increasing phagocytic activity (Dishaw 

et al. 2011). They are also expressed in the digestive tract, 

where they are first expressed and secreted by the epithelium 

during metamorphic development, revealing unique patterns 

of expression along the anterior–posterior axis and among 

diverse cell types (Liberti et al. 2014, 2015). As secreted 

effectors, the VCBPs are found within the gut lumen and 

also tethered within the mucus layers of the digestive tract 

(Dishaw et al. 2016), where they likely bind and interact 

with microorganisms (Fig. 3a). Thus, the VCBPs are likely 

acting as molecules that can influence the microbial ecology 

of the gut, and this includes shaping settlement dynamics, 

biofilms, and/or interactions among microbes.

Distinct binding characteristics have been observed for 

the two types of domains present in VCBP proteins. The 

VIgSF domains are able to bind various bacterial strains 

isolated from Ciona gut and affect, in vitro, their settlement 

and biofilm formation (Fig. 3b, c), whereas the CBD is able 

to interact with and become tethered to the chitin-rich mucus 

that coats the epithelium (Dishaw et al. 2016). In addition, 

the CBD has also been shown to recognize and bind chitin 

molecules present on the cell wall, sporangia, and spores 

of diverse fungal species isolated from Ciona gut (Fig. 3d, 

e; Liberti et al. 2019), suggesting that unbound VCBP can 

play a role in transkingdom interactions. While VCBP-C can 

bind fungal chitin, it remains unclear what this means for the 

host or fungal interactions with bacteria in the gut of Ciona. 

In contrast, the binding of the VIgSF domains to bacterial 

surfaces appears to impact behaviors and phenotypes (i.e., 

biofilm formation (Dishaw et al. 2016)), although the mecha-

nisms remain unclear as do the specific cell surface targets 

involved. What remains interesting, and still a feature unique 

to VCBPs among secreted immune factors, is the ability to 

bind both bacteria and fungi on opposing ends of the same 

molecule to potentially influence important transkingdom 

interactions (e.g., Peleg et al. 2010; Deveau et al. 2018). 

Thus, how these effectors influence the biology and ecol-

ogy of polymicrobial communities may help better inform 
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our understanding of their influence on gut homeostasis 

and host physiology in humans (e.g., van Tilburg Bernardes 

et al. 2020; Boutin et al. 2021).

Conclusion

The evolution of a “pass-though” tubular gut facilitated 

the evolution of more complex organisms and the estab-

lishment of disparate mutualistic interactions with diverse 

microbiota. The awareness of the importance of the gut 

flora in the physiology and health of animals has opened 

the frontiers of investigations into the bi-directional inter-

action between the microbial world and the host immune 

system and reshaping the once firm belief that immune 

systems only evolved to engage with and defend against 

everything that is non-self (McFall-Ngai 2007). Investigat-

ing known IgSF-domain containing immune molecules, 

as discussed here, or searching for novel forms or re-

focusing on the many other IgSF molecules identified in 

invertebrates with unknown functions (Vogel et al. 2003) 

while considering this “new” concept will facilitate a more 

comprehensive understanding of the diverse mechanisms 

underpinning the ecological maintenance of homeostasis 

within the digestive tract of animals. These data are also 

revealing secretory IgSF effector proteins as innovative 

milestones in the evolution of animal strategies to meet 

the sophisticated needs of the dynamic interplay between 

animals and their environment.
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Fig. 3  Ciona VCBP-C gut localization and interactions with microor-

ganisms. In Ciona gut epithelium, VCBP-C molecules are produced 

and secreted into the gut lumen by the epithelial cells of the digestive 

tract and can interact with diverse components of microbiota, such as 

bacteria and fungi. a Sections of stomach epithelium showing locali-

zation of VCBP-C (magenta) in both granules of cells localized in the 

crypts (arrows) and in the mucus lining the epithelium (arrowhead). b 

Immunogold staining, using specific anti-VCBP-C antibody, reveals 

VCBP-C bound to experimentally introduced bacteria, such as Bacillus 

cereus, localized both in the lumen and adjacent to stomach epithelium 

wall (arrows) (reprinted from (Dishaw et al. 2011). c Biofilm assay of 

Shewanella sp. grown for 4–5 days in the presence/absence of recom-

binant VCBP-C protein and visualized by crystal violet (CV) staining. 

Plates are shown with dried (left image) or solubilized/dissolved stain 

(in acetic acid; right image) that can be used for crude quantification of 

biofilm abundance, with a microplate reader at  OD560 (reprinted from 

(Liberti et al. 2021). d Immunofluorescence with specific anti-VCBP-

C antibody on fungal spores isolated from liquid culture of Penicillium 

sp. and incubated with recombinant VCBP-C protein shows binding of 

VCBP-C (magenta) to chitin molecules localized in specific regions of 

spore surface (e.g., bud scars, arrows). The specific binding of VCBP-

C to chitin molecule is confirmed by co-localization with wheat germ 

agglutinin (WGA) staining (green), a lectin known to recognize chitin 

on fungal surfaces (reprinted from (Liberti et  al.  2019). e Immuno-

fluorescence with recombinant IgG1-Fc-chitin binding domain (CBD) 

of VCBP-C (IgG1-Fc-CBD-C) probe on whole Penicillium sp. fungi 

grown in liquid medium reveals binding of the CBD-C (green) probe 

to chitin molecules localized in specific regions of the fungal hyphae 

(arrow) (reprinted from (Liberti et  al.  2019). Asterisk, gut lumen. 

White dotted lines highlight the surface morphology of the epithelium. 

Scale bar: a 100 μm; b 2 μm; d 10 μm; e 25 μm
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