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Column Partition Based Distributed Algorithms for
Coupled Convex Sparse Optimization: Dual and

Exact Regularization Approaches
Jinglai Shen , Jianghai Hu , and Eswar Kumar Hathibelagal Kammara

Abstract—This paper develops column partition based dis-
tributed schemes for a class of convex sparse optimization prob-
lems, e.g., basis pursuit (BP), LASSO, basis pursuit denosing
(BPDN), and their extensions, e.g., fused LASSO. We are particu-
larly interested in the cases where the number of (scalar) decision
variables is much larger than the number of (scalar) measurements,
and each agent has limited memory or computing capacity such
that it only knows a small number of columns of a measurement
matrix. The problems in consideration are densely coupled and
cannot be formulated as separable convex programs. To overcome
this difficulty, we consider their dual problems which are separable
or locally coupled. Once a dual solution is attained, it is shown that
a primal solution can be found from the dual of corresponding
regularized BP-like problems under suitable exact regularization
conditions. A wide range of existing distributed schemes can be
exploited to solve the obtained dual problems. This yields two-stage
column partition based distributed schemes for LASSO-like and
BPDN-like problems; the overall convergence of these schemes is
established. Numerical results illustrate the performance of the
proposed two-stage distributed schemes.

Index Terms—Sparse optimization, distributed computation,
duality theory, exact regularization, sensitivity analysis.

I. INTRODUCTION

S PARSE modeling and approximation finds broad applica-
tions in numerous fields of contemporary interest. Various

efficient schemes have been proposed for convex or noncon-
vex sparse signal recovery [7], [23], [24]. To motivate the
work of this paper, consider the well-studied LASSO prob-
lem: minx∈RN

1
2‖Ax− b‖22 + λ ‖x‖1, where A ∈ Rm×N is the

measurement matrix, b ∈ Rm is the measurement vector, and
λ > 0 is the penalty parameter. In sparse recovery, N is much
larger than m. Besides, the matrix A usually satisfies certain
uniform recovery conditions, e.g., the RIP [7]. As such, A is
often dense, i.e., (almost) all of its elements are nonzero. We aim
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to develop column partition based distributed algorithms to solve
the LASSO and related problems. Specifically, let {I1, . . . , Ip}
be a disjoint union of {1, . . . , N} such that {A•Ii}pi=1 forms a
column partition of A. Each agent i knows A•Ii and b but does
not know A•Ij with j �= i. By running the proposed distributed
scheme, it is expected that each agent i attains the subvector of
an optimal solution x∗ to the LASSO corresponding to the index
set Ii, i.e., x∗Ii , at the end.

The distributed optimization task described above is inspired
by two scenarios: big data subject to high memory or com-
putational cost, and network systems with limited access to
data. In the context of big data, a practitioner may deal with
a ultra-large data set, e.g., N is extremely large, so that it would
be impossible to store x ∈ RN in a single computing device, let
alone the matrix A. Similarly, consider a multi-agent network
system where each agent is operated by a low cost computing
device which has limited memory and computing capacities.
Even when N is moderately large, it would be impractical for
the entire A to be stored or computed on such a device. Hence,
when m is relatively small, the proposed distributed schemes
can be exploited in these two scenarios. See [4], [17] and the
references therein for more applications of such schemes.

Distributed or decentralized algorithms for the LASSO and
related problems, e.g., fused LASSO, basis pursuit (BP), and
basis pursuit denoising (BPDN), have been extensively studied,
including ADMM schemes, (sub-)gradient methods, and opera-
tor splitting schemes, e.g., [10], [15], [17], [20], [26], [30]. Par-
ticularly, the paper [17] develops row and column partition based
distributed ADMM (D-ADMM) schemes for the BP that are
convergent over a bipartite graph. The row partitioned LASSO
and column partitioned BPDN are formulated as separable
convex optimization and solved via D-ADMM [18]. Consensus
based distributed schemes are developed for the row partitioned
LASSO-like problems [16], e.g., the consensus ADMM (C-
ADMM). An inexact C-ADMM (IC-ADMM) is established
for distributed computation of the row partitioned LASSO and
column partitioned logistic regression [4]. A proximal dual
consensus ADMM (PDC-ADMM) scheme is used for solving
column partition based LASSO under separable polyhedral con-
straints [2]. A decentralized gradient decent scheme is proposed
for the regularized BP using column partition [30]. Besides,
distributed proximal gradient schemes, e.g., PG-EXTRA, are
exploited to solve the row partitioned LASSO [14], [26]. Other
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relevant distributed schemes include [3], [9], [11], [20], just to
name a few.

Most distributed schemes in the literature deal with row
partition based LASSO and BPDN. Further, column partition
based distributed LASSO schemes often require the knowledge
of different column blocks of A, e.g., [20], and thus cannot
be implemented in a fully parallel manner. Exceptions include
distributed BP [17], [30] and distributed BPDN [18] using the
dual approach, and dual consensus ADMM (DC-ADMM) [4]
and PDC-ADMM [2] for the LASSO with possible polyhe-
dral constraints. However, exact regularization of the BPDN
used in [18] generally fails as shown in Section III, and the
DC-ADMM does not guarantee the convergence of the primal
variables [4, Theorem 2]. In addition, it is hard for the PDC-
ADMM to handle the fused LASSO with more coupling and the
BPDN-like problems with non-polyhedral constraints.

This paper develops column partition based distributed algo-
rithms for a wide range of LASSO-like and BPDN-like problems
with possible polyhedral constraints by exploiting convex opti-
mization techniques, e.g., dual problems, exact regularization,
and distributed optimization. Motivated by the dual approach
for distributed BP and BPDN [17], [18], [30], we consider the
Lagrangian dual problems of the LASSO/BPDN-like problems,
which are separable or locally coupled and can be solved via col-
umn partition based distributed schemes. By using the solution
properties of the LASSO/BPDN-like problems, we show that a
primal solution is a solution to a BP-like problem depending on
a dual solution. Under exact regularization conditions, a primal
solution can be obtained from the dual of a regularized BP-
like problem which can be solved by another column partition
based distributed scheme. This yields two-stage, column parti-
tion based distributed schemes, and many existing distributed
schemes can be used at each stage. The proposed schemes are
applicable to a large class of generalized BP, LASSO and BPDN
under the assumption that the network is static, bidirectional and
connected.

Specifically, the following theoretical and numerical tasks are
addressed in the paper:

1) Exact Regularization. We show that when the �1-norm is
used, the BP-like problem subject to a polyhedral constraint is
exactly regularized, whereas the LASSO and BPDN are not in
general (cf. Section III). These results lay a ground for using
regularized BP-like problems to recover a desired primal solu-
tion in the second stage and justify why regularized LASSO-like
and BPDN-like problems are not considered.

2) Dual Formulations. We derive dual problems of the above
mentioned primal problems, e.g., the regularized BP-like prob-
lem, LASSO-like problem, and BPDN-like problem. These dual
formulations are used in both stages of the LASSO-like and
BPDN-like problems: in the first stage, we use it to obtain a
dual solution to the LASSO-like (resp. BPDN-like) problem;
in the second stage, we use the dual of a regularized BP-like
problem to recover a primal solution to the LASSO-like (resp.
BPDN-like) problem. Further, we study the relation between
a primal solution and a dual solution via duality theory (cf.
Lemmas IV.2 and IV.3). Along with Proposition II.2, this relation
yields a regularized BP-like problem in the second stage of the

LASSO-like (resp. BPDN-like) problem. Besides, we develop
various reduced dual problems which facilitate developing dis-
tributed schemes.

3) Distributed Scheme Development. We show that the ob-
tained dual problems can be formulated as separable or locally
coupled convex consensus optimization problems. For exam-
ple, consider the fused LASSO and fused BPDN. Their dual
problems and those of the corresponding regularized BP’s are
given by locally coupled consensus optimization such that a
wide range of existing methods, e.g., operator splitting meth-
ods [5] and consensus ADMM [4], [16], can be used to develop
columned partitioned based distributed schemes over undirected
and connected networks. Numerical tests are conducted to eval-
uate performance of these schemes.

4) Overall Convergence. Many distributed algorithms can
be used in each stage and are convergent under suitable con-
ditions. However, the first-stage iterative scheme generates an
approximate solution to a true dual solution, and this raises the
question of whether using an approximate dual solution leads
to significant discrepancy when solving the regularized BP-like
problem in the second stage. Using sensitivity analysis tools
for the regularized BP-like problem, we establish continuous
dependence of its solution on certain parameters and prove the
overall convergence of the two-stage distributed algorithms.

The �1-norm will be considered for many convex sparse opti-
mization problems in the paper. Nevertheless, the dual formula-
tions and duality results can be obtained for an arbitrary norm.
This allows us to handle the group LASSO and its extensions.
We will treat this general framework in Section IV.

The paper is organized as follows. Section II presents problem
formulations and solution properties. Exact regularization is ad-
dressed in Section III. Section IV formulates dual problems and
establishes properties in connection with the primal problems.
Column partition based distributed schemes are developed in
Section V, whose overall convergence is shown in Section VI.
Numerical results are given in Section VII with conclusion in
Section VIII. Due to the paper length limit, many proofs and
technical developments are omitted and can be found in the
online version [22] of the paper.

Notation. Let A ∈ Rm×N , and R(A) denote the range of A.
For any index set S ⊆ {1, . . . , N}, let A•S be the matrix formed
by the columns of A indexed by elements of S . Similarly, Aα•
is defined for an index set α ⊆ {1, . . . ,m}. Let {Ii}pi=1 form
a disjoint union of {1, . . . , N}, and {xIi}pi=1 form a partition
of x ∈ RN . For a closed convex set C in Rn, ΠC denotes the
Euclidean projection operator onto C. For u, v ∈ Rn, u ⊥ v
stands for the orthogonality of u and v, i.e., uT v = 0. Further,
‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞ denote the �1-norm (or 1-norm), 2-norm,
and ∞-norm, respectively. Let proxf (·) denote the proximal
operator for a proper, lower semicontinuous convex function
f : Rn → R ∪ {+∞}.

II. PROBLEM FORMULATIONS AND SOLUTION PROPERTIES

We introduce a class of convex sparse minimization problems
and their generalizations in this section.
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• Basis Pursuit (BP) and Extensions. The BP is given by

BP : min
x∈RN

‖x‖1 subject to Ax = b, (1)

where we assume b ∈ R(A). A generalization of the BP (1) is
minx∈RN ‖Ex‖1 subject to Ax = b, where E ∈ Rr×N .
• LASSO and Extensions. The standard LASSO is given by

LASSO : min
x∈RN

1

2
‖Ax− b‖22 + λ ‖x‖1, (2)

where λ > 0 is the penalty parameter. A generalized LASSO is
given by min

x∈RN

1
2‖Ax− b‖22 + ‖Ex‖1, where E ∈ Rr×N is a

given matrix. It includes several extensions and variations:
(i) Fused LASSO: minx∈RN

1
2‖Ax− b‖22 + λ1 ‖x‖1 +

λ2‖D1x‖1, where D1 ∈ R(N−1)×N denotes the first or-

der difference matrix. Letting E :=
[

λ1IN
λ2D1

]
, the fused

LASSO can be converted to the generalized LASSO.
(ii) Generalized total variation denoising with E = λD1,

and �1-trend filtering with E = λD2 [12], where D2 is
the second order difference matrix.

Another extension is group LASSO widely used in statistics
for model selection [31]: given λi > 0 for i = 1, . . . , p,

min
x∈RN

1

2
‖Ax− b‖22 +

p∑
i=1

λi‖xIi‖2. (3)

• Basis Pursuit Denoising (BPDN) and Extensions. The stan-
dard BPDN is given by

BPDN : min
x∈RN

‖x‖1 subject to ‖Ax− b‖2 ≤ σ, (4)

where σ > 0. The BPDN has several generalizations and ex-
tensions. For example, it can be extended to minx∈RN ‖Ex‖1
subject to ‖Ax− b‖2 ≤ σ, where E ∈ Rr×N .

We summarize some fundamental solution properties of the
aforementioned problems in a general setting. Let E ∈ Rr×N ,
‖ · ‖� be a norm on the Euclidean space, and C be a polyhedral
set. Consider the following problems:

(P1) : min
x∈RN

‖Ex‖� s.t. Ax = b, x ∈ C.

(P2) : min
x∈RN

1

2
‖Ax− b‖22 + ‖Ex‖� s.t. x ∈ C.

(P3) : min
x∈RN

‖Ex‖� s.t. ‖Ax− b‖2 ≤ σ, x ∈ C.

We call (P1), (P2) and (P3) the BP-like, LASSO-like, and
BPND-like problems, respectively. All the models introduced
above can be formulated within this framework. For example,
letting ‖x‖G :=

∑p
i=1 λi‖xIi‖2 in the group LASSO, then we

have ‖ · ‖� = ‖ · ‖G.
Proposition II.1: [22, Proposition 2.1] Assume that the prob-

lems (P1)–(P3) are feasible. The following hold:
(i) Each of the problems (P1)–(P3) attains a minimizer;

(ii) Let H2 be the solution set of (P2). Then Ax = Ax′ and
‖Ex‖� = ‖Ex′‖� for all x, x′ ∈ H2;

(iii) In (P3), suppose ‖b‖2 > σ, 0 ∈ C, and the optimal value is
positive. Then each minimizer x∗ of (P3) satisfies ‖Ax∗ −
b‖2 = σ and Ax is constant on the solution set.

A sufficient condition for the optimal value of (P3) to be
positive, along with the conditions that ‖b‖2 > σ and 0 ∈ C, is
that E has full column rank. The following result will be used;
see [32, Theorem 2.1] or [19, Proposition 3.2] for a proof.

Proposition II.2: [22, Proposition 2.2] The following hold:
(i) Let x∗ be a minimizer of (P2). Then z∗ is a minimizer of

(P2) if and only if z∗ is a minimizer of the BP-like problem
(P ′1) : minz∈RN ‖Ez‖� subject to Az = Ax∗ and z ∈
C. Furthermore, the optimal value of (P ′1) equals ‖Ex∗‖�.

(ii) Let x∗ be a minimizer of (P3) which satisfies: ‖b‖2 > σ,
0 ∈ C, and the optimal value of (P3) is positive. Then z∗
is a minimizer of (P3) if and only if z∗ is a minimizer of
the BP-like problem (P1) with b := Ax∗, and the optimal
value of this (P1) equals ‖Ex∗‖�.

III. EXACT REGULARIZATION

We briefly review the exact regularization of general convex
programs [8]. Consider the convex minimization problem (P )
and its regularized problem (Pε) for some ε ≥ 0:

(P ) : min
x∈P

f(x); (Pε) : min
x∈P

f(x) + εh(x),

where f, h : RN → R are convex functions, and P is a closed
convex set. It is assumed that (P ) has a solution, and h is
coercive such that (Pε) has a solution for each ε > 0. We call the
problem (P ) exactly regularized if there exists ε > 0 such that
for any ε ∈ (0, ε], any solution to (Pε) is a solution to (P ).
To establish the exact regularization, consider the following
convex program (Ph) : minx∈P, f(x)≤f∗ h(x), where f∗ is
the optimal value of (P ). Clearly, the constraint set of (Ph)
is equivalent to {x |x ∈ P, f(x) = f∗}, which is the solution
set of (P ). It is shown in [8, Theorem 2.1] or [8, Corollary
2.2] that (P ) is exactly regularized by h if and only if (Ph)
has a Lagrange multiplier μ∗ ≥ 0, i.e., minx∈P, f(x)≤f∗ h(x) =
minx∈P h(x) + μ∗( f(x)− f∗) for some constant μ∗ ≥ 0.

A. Motivation and Illustration Via the Standard LASSO

To motivate exact regularization and related results, consider
the standard LASSO (2) first. Although the primal problem (2)
of the LASSO is densely coupled, its dual problem

(D) : min
y

‖y‖22
2

+ bT y, subject to ‖AT y‖∞ ≤ λ

can be formulated as a separable distributed consensus opti-
mization problem, for which column partition based distributed
schemes can be developed. Let y∗ be the unique dual solution.
A critical question is how to recover a primal solution from y∗.
A possible way is to consider the regularized LASSO:

r-LASSO : min
x∈RN

1

2
‖Ax− b‖22 + λ ‖x‖1 + α

2
‖x‖22,

where α
2 ‖x‖22 is the regularization term with the regularization

parameter α > 0. The dual of r-LASSO enjoys favorable prop-
erties for column partition based distributed computation, and
there is a one-to-one correspondence between its primal solution
and its dual solution. However, a primal solution to r-LASSO is
generally not a solution to the original LASSO (2) for any small
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α > 0 (cf. Example III.1). In other words, exact regularization
of the LASSO fails in general.

Despite this negative result, it follows from duality the-
ory (cf. Lemma IV.2) that any solution x∗ to the LASSO
(2) satisfies Ax∗ = b+ y∗, where y∗ is the unique dual solu-
tion to (D) indicated above. Moreover, in view of Statement
(i) of Proposition II.2, each solution to the following BP:
minz∈RN ‖z‖1 subject to Az = b+ y∗ is a solution to the
LASSO. Since the above BP is exactly regularized [17], one
can solve the following regularized BP

r-BP : min
x∈RN

‖x‖1 + α

2
‖x‖22 subject to Ax = b+ y∗

for a smallα > 0 from its dual problem given below via a column
partition based distributed scheme:

(Dr-BP) : min
y

(
(b+ y∗)T y +

1

2α

p∑
i=1

‖S (−(AT y)Ii
) ‖22
)
,

where S(·) is the soft thresholding operator (cf. Section IV-B).
Letting ŷ∗ be a dual solution to (Dr-BP), the primal solution
to r-BP is recovered from ŷ∗ as x∗Ii = − 1

αS((A
T ŷ∗)Ii), ∀ i =

1, . . . , p, which is a solution to the LASSO. This yields a
two-stage column partitioned based distributed scheme for the
LASSO: its dual solution y∗ is solved in the first stage, and a
primal solution is obtained from the dual of a regularized BP in
the second stage using y∗ (cf. Algorithm 1 in Section V-A).

B. Exact Regularization of Convex Piecewise Affine Function
Based Optimization

We consider exact regularization of convex piecewise affine
(PA) functions based convex optimization with applications to
�1-minimization. A real-valued continuous function f : RN →
R is PA if there exists a finite family of affine functions {fi}�i=1

such that f(x) ∈ {fi(x)}�i=1 for each x ∈ RN . Convex PA
functions represent an important class of nonsmooth convex
functions, e.g., the �1-norm ‖ · ‖1, f(x) := ‖Ex‖1 for a matrix
E, a polyhedral gauge, and the �∞-norm; see [19]. The follow-
ing result shows exact regularization for convex PA objective
functions on a polyhedral set [22], [29].

Proposition III.1: [22, Proposition 3.1] LetP be a polyhedral
set, and f : RN → R be a convex PA function such that the
problem (P ) : minx∈P f(x) has a nonempty solution set, and
let h : RN → R be a convex coercive regularization function.
Then there exists ε > 0 such that for any ε ∈ (0, ε], any optimal
solution to (Pε) is an optimal solution to (P ).

In view of the above proposition, we have the exact regular-
ization for the BP-like problem when the �1-norm is used.

Corollary III.1: Let C be a polyhedral set. Then the following
problem attains the exact regularization of (P1) for all suffi-
ciently small α > 0:

(P1,α) : min
x∈RN

‖Ex‖1 + α

2
‖x‖22 s.t. Ax = b, x ∈ C.

We then consider the LASSO-like and BPDN-like problems
when the �1-norm is used. For simplicity, we focus on the
standard problems (i.e., C = RN ) although the results developed
here can be extended. By Proposition II.1, the solution sets

of the standard LASSO and BPDN are polyhedral. Hence, the
constraint sets of (Ph) of the LASSO and BPDN are polyhedral.
However, unlike the BP-like problem, exact regularization fails
in general. The first example shows that the standard LASSO
(2) is not exactly regularized by h(x) = ‖x‖22.

Example III.1: Let A = [I2 I2 · · · I2] ∈ R2×N with N =
2r for some r ∈ N, and b ∈ R2 with b = (b1, b2)

T > 0, i.e.,
b1 > 0, b2 > 0. We partition x ∈ RN into x = (x1, . . . , xr),
where each xi ∈ R2. When 0 < λ < 1, it follows from
the KKT condition: 0 ∈ AT (Ax∗ − b) + λ∂‖x∗‖1 and a
straightforward computation that a particular optimal so-
lution x∗ is xi

∗ =
1−λ
r b > 0 for all i = 1, . . . , r. Hence,

the solution set H = {x = (x1, . . . , xr) | ∑r
i=1 x

i = (1−
λ)b, ‖x‖1 ≤ (1− λ)‖b‖1}. Consider the regularized LASSO
for α > 0: minx∈RN

1
2‖Ax− b‖22 + λ ‖x‖1 + α

2 ‖x‖22. For any
α > 0, its unique optimal solution x∗,α is given by xi

∗,α = 1−λ
r+αb

for each i = 1, . . . , r. Hence, x∗,α /∈ H for any α > 0.
The second example shows that in general, the standard BPDN

(4) is not exactly regularized by h(x) = ‖x‖22.
Example III.2: Let A = [DD · · · D] ∈ R2×N with N = 2r

for some r ∈ N, where D = diag(1, β) ∈ R2×2 for a positive
constant β. We partition x ∈ RN into x = (x1, . . . , xr) with
each xi ∈ R2. Let b = (b1, b2)

T ∈ R2 and σ = 1. We assume
that b ≥ 1 = (1, 1)T , which is a necessary and sufficient condi-
tion for ‖v − b‖2 ≤ 1⇒ v ≥ 0.

We first consider the convex minimization problem:
minu∈R2 ‖u‖1 subject to ‖Du− b‖2 ≤ 1, which has a unique
minimizer u∗ as D is invertible for any β > 0. Further, we
must have ‖Du∗ − b‖2 = 1 and u∗ > 0. In light of this, the
necessary and sufficient optimality conditions for u∗ are: there
exists λ ∈ R+ such that ∂‖u∗‖1 + λDT (Du∗ − b) = 0, and
‖Du∗ − b‖22 = 1. Since u∗ > 0, we have λ > 0 and the first
equation becomes 1+ λDT (Du∗ − b) = 0, which further gives
rise to Du∗ = b− 1

λ
D−11. Substituting it into the equation

‖Du∗ − b‖2 = 1, we obtain λ =

√
1+β2

β . This yields u∗ =
(b1 − 1

λ
, 1
β (b2 − 1

βλ
))T > 0. Hence, the solution set of the

BPDN: min‖Ax−b‖2≤1 ‖x‖1 (with ‖b‖2 > 1) is

H = {x∗ = (x1
∗ , . . . , x

r
∗) | ‖x∗‖1 = ‖u∗‖1, Ax∗ = Du∗}

= {(x1
∗ , . . . , x

r
∗) |

r∑
i=1

‖xi
∗‖1 = ‖u∗‖1,

r∑
i=1

xi
∗ = u∗}

= {x∗ = (x1
∗ , . . . , x

r
∗) |xi

∗ = λiu∗,
r∑

i=1

λi = 1, λi ≥ 0, ∀ i}.

Therefore, it is easy to show that the regularized BPDN with
h(x) = ‖x‖22 has the unique minimizer x∗ = (xi

∗) with xi
∗ =

u∗
r

for each i = 1, . . . , r. Since u∗ > 0, we have x∗ > 0. Since A
has full row rank and x∗ > 0, it follows from [22, Proposi-
tion 3.2] that (BPDNh) : min‖Ax−b‖2≤1, ‖x‖1≤f∗ ‖x‖22, where
f∗ is the positive optimal value of the BPDN, has a La-
grange multiplier if and only if there exist constants μ ≥ 0,
γ > 0 such that x∗ + μ1+ γg = 0 for the unique minimizer
x∗, whereg = AT (Ax∗ − b) = AT (Du∗ − b) = − 1

λ
1, andλ =√

1 + 1
β2 . Since x∗ = 1

r (u∗, . . . , u∗), constants μ ≥ 0 and γ >
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0 exist if and only if (u∗)1 = (u∗)2 or equivalently β(b1 − 1
λ
) =

b2 − 1
βλ

. The latter is further equivalent to b2 = βb1 +
1−β2√
1+β2

.

Hence, for any β > 0, (BPDNh) has a Lagrange multiplier if
and only if b satisfies b2 = βb1 +

1−β2√
1+β2

and b ≥ 1. The set

of such b’s has zero measure in R2. For instance, when β = 1,
(BPDNh) has a Lagrange multiplier if and only if b = θ · 1
for all θ ≥ 1. Thus the BPDN is not exactly regularized by
h(x) = ‖x‖22 in general.

C. Exact Regularization of Grouped BP From Group LASSO

Motivated by the group LASSO (3), we investigate exact reg-
ularization of the following BP-like problem: min

∑p
i=1 ‖xIi‖2

subject to Ax = b, which is called grouped basis pursuit or
simply grouped BP. We set λi = 1 for all i in the original group
LASSO (3), without loss of generality. It is shown in [22, Exam-
ple 3.3] that its exact regularization fails in general. Nonetheless,
we present a sufficient condition below for exact regularization
to hold; see [22] for its proof.

Lemma III.1: Consider a nonzero b ∈ Rm and a column
partition {A•Ii}pi=1 of a matrix A ∈ Rm×N . Suppose A•I1
is invertible, A−1•I1A•Ii is an orthogonal matrix for each i =

1, . . . , s, and ‖(A•Ii)T (A•I1)−TA−1•I1b‖2 < ‖A−1•I1b‖2 for each
i = s+ 1, . . . , p. Then the exact regularization holds for the
group BP.

IV. DUAL PROBLEMS: FORMULATIONS AND PROPERTIES

We develop dual problems of the regularized BP-like,
LASSO-like and BPDN-like problems in this section. These
dual problems and their properties lay a foundation for the
development of column partition based distributed algorithms.

Consider the convex minimization problems (P1)–(P3)
given in Section II, where E ∈ Rr×N and ‖ · ‖� is a gen-
eral norm on Rr. Let ‖ · ‖� be the dual norm of ‖ · ‖�,
i.e., ‖z‖� := sup{zT v | ‖v‖� ≤ 1}, ∀ z ∈ Rr. As an exam-
ple, the dual norm of the �1-norm is the �∞-norm. For
‖x‖G :=

∑p
i=1 ‖xIi‖2 arising from the group LASSO, its

dual norm is ‖z‖G,� = maxi=1,...,p ‖zIi‖2. Clearly, ‖x‖� =
sup{xT v | ‖v‖� ≤ 1}, ∀x ∈ Rr, and the subdifferential of ‖ ·
‖� at x = 0 is B�(0, 1), where B�(0, 1) := {v | ‖v‖� ≤ 1}.

A. Dual Problems: General Formulations

Strong duality will be exploited for the abovementioned prob-
lems and their dual problems. For this purpose, the following
minimax result is needed; see Appendix for a proof.

Lemma IV.1: Consider the convex program (P ) :
infz∈P,Az=b,Cz≤d J(z), where J(z) := ‖Ez‖� + f(z),
f : Rn → R is a convex function, P ⊆ Rn is a polyhedral
set, A,C,E are matrices, and b, d are vectors. Suppose
that (P ) is feasible and has a finite infimum. Then
infz∈P(supy,μ≥0, ‖v‖�≤1[(Ez)T v + f(z) + yT (Az −
b) + μT (Cz − d)]) = supy,μ≥0, ‖v‖�≤1(infz∈P [(Ez)T v +

f(z) + yT (Az − b) + μT (Cz − d)]).

In what follows, we consider a general polyhedral set of the
following form unless otherwise stated

C := {x ∈ RN |Cx ≤ d}, C ∈ R�×N , d ∈ R�. (5)

As before, {Ii}pi=1 is a disjoint union of {1, . . . , N}.
• Dual Problem of the Regularized BP-like Problem Con-

sider the regularized BP-like problem for a constant α > 0:

min
Ax=b, x∈C

‖Ex‖� + α

2
‖x‖22, (6)

where b ∈ R(A) ∩AC with AC := {Ax |x ∈ C}. Let μ ∈ R�
+

be the Lagrange multiplier for the polyhedral constraintCx ≤ d.
It follows from Lemma IV.1 with z = x and P = RN that the
dual problem is

min
y,μ≥0,‖v‖�≤1

bT y+dTμ+
1

2α

p∑
i=1

∥∥(AT y+ET v+CTμ)Ii
∥∥2
2
.

(7)
Let (y∗, μ∗, v∗) ∈ Rm ×R�

+ ×B�(0, 1) be an optimal solution
to the dual problem; its existence is shown in the proof
of Lemma IV.1. Consider the Lagrangian L(x, y, μ, v) :=
(Ex)T v + α

2 ‖x‖22 + yT (Ax− b) + μT (Cx− d). Then by
the strong duality given in Lemma IV.1, we see from
∇xL(x∗, y∗, μ∗, v∗) = 0 that the unique primal solution is
x∗Ii = − 1

α (A
T y∗ + ET v∗ + CTμ∗)Ii for i = 1, . . . , p.

• Dual Problem of the LASSO-like Problem Consider the
LASSO-like problem for A ∈ Rm×N , b ∈ Rm, E ∈ Rr×N :

min
x∈C

1

2
‖Ax− b‖22 + ‖Ex‖�. (8)

By Lemma IV.1 with z = (x, u) andP = RN ×Rm, we obtain
the dual problem:

min
y,μ≥0,‖v‖�≤1

{‖y‖22
2

+ bT y + dTμ : (AT y + ET v + CTμ)Ii

= 0, ∀i
}
. (9)

By Lemma IV.1, the dual problem attains an optimal solution
(y∗, μ∗, v∗) ∈ Rm ×R�

+ ×B�(0, 1). Since the objective func-
tion of (9) is strictly convex in y and convex in (μ, v), y∗ is
unique but (μ∗, v∗) may not.

The following lemma establishes a connection between a pri-
mal solution and a dual solution, which is critical to distributed
algorithm development; its proof is given in Appendix.

Lemma IV.2: Let (y∗, μ∗, v∗) be an optimal solution to the
dual problem (9). Then for any optimal solution x∗ to the primal
problem (8), Ax∗ − b = y∗. Further, if C is a polyhedral cone
(i.e., d = 0), then ‖Ex∗‖� = −(b+ y∗)T y∗.
• Dual Problem of the BPDN-like Problem Consider the

BPDN-like problem with σ > 0:

min
x∈C, ‖Ax−b‖2≤σ

‖Ex‖� = inf
x∈C, u=Ax−b, ‖u‖2≤σ

‖Ex‖�, (10)

where we assume that the problem is feasible and has a positive
optimal value,‖b‖2 > σ, and the polyhedral setC satisfies0 ∈ C.
Note that 0 ∈ C holds if and only if d ≥ 0.

To establish the strong duality, we also assume that there
is an x̃ in the relative interior of C (denoted by ri(C))
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such that ‖Ax̃− b‖2 < σ or equivalently, by [21, Theorem
6.6], there exists ũ ∈ A(ri(C))− b such that ‖ũ‖2 < σ. A
sufficient condition for this assumption to hold is that b ∈
A(ri(C)). Under this assumption, it follows from [21, The-
orem 28.2] that there exist y∗ ∈ Rm, μ∗ ≥ 0, and λ∗ ≥
0 such that infx∈C, u=Ax−b,‖u‖2≤σ ‖Ex‖� = infx∈C,u ‖Ex‖� +
yT∗ (Ax− b− u) + λ∗(‖u‖22 − σ2) + μT

∗ (Cx− d). By the sim-
ilar argument for Lemma IV.1, we obtain the dual problem:

min
y,μ,v

{
bT y + σ‖y‖2 + dTμ : (AT y + ET v + CTμ)Ii = 0,

μ ≥ 0, ‖v‖� ≤ 1, ∀ i = 1, . . . , p} . (11)

Moreover, the dual problem attains an optimal solution
(y∗, μ∗, v∗) ∈ Rm ×R�

+ ×B�(0, 1) along withλ∗ ≥ 0. The fol-
lowing lemma establishes certain solution properties of the dual
problem and a connection between primal and dual solutions,
which is crucial to distributed algorithm development; see Ap-
pendix for its proof. Particularly, it shows that the y-part of a
dual solution is unique when C is a polyhedral cone.

Lemma IV.3: Consider the BPDN (10), where ‖b‖2 > σ,
0 ∈ C, and its optimal value is positive. Assume that the strong
duality holds. The following hold:

(i) Let (y∗, μ∗, v∗) be a dual solution to (11). Then y∗ �= 0, and
for any solutionx∗ to (10),Ax∗ − b = σy∗

‖y∗‖2 . Further, if C is

a polyhedral cone (i.e., d = 0), then ‖Ex∗‖� = −bT y∗ −
σ‖y∗‖2.

(ii) Suppose d = 0. Let (y∗, μ∗, v∗) and (y′∗, μ
′
∗, v
′
∗) be two

arbitrary solutions of (11). Then y∗ = y′∗.
Remark IV.1: The above dual formulations for a general poly-

hedral set C are useful for distributed computation when �� N ,
even if C ∈ R�×N is a dense matrix; see Section V. When both
N and � are large, e.g., C = RN

+ , decoupling properties of C are
preferred. In particular, consider the following polyhedral set of
certain decoupling structure:

C := {x = (xIi)
p
i=1 ∈ RN |CLiIi xIi ≤ dLi , ∀ i}, (12)

where (Li)
p
i=1 is a disjoint union of {1, . . . , �},CLiIi ∈ R�i×|Ii|

and dLi ∈ R�i with �i = |Li| for each i = 1, . . . , p. Also, let
μ = (μLi)

p
i=1 with μLi ∈ R�i

+ be the Lagrange multiplier for
C. The dual problems in (7), (9), and (11) can be extended to
the above C by replacing μT d with

∑p
i=1 μ

T
LidLi and (AT y +

ET v + CTμ)Ii with (AT y + ET v)Ii + (CLiIi)
TμLi , respec-

tively. Lemmas IV.2 and IV.3 also hold for a primal solution x∗
and a dual solution y∗.

Remark IV.2: Consider the box constraint set C := [l1, u1]×
· · · × [lN , uN ] with 0 ∈ C, where −∞ ≤ li < ui ≤ +∞ with
li ≤ 0 ≤ ui for each i = 1, . . . , N . We may write C =
{x ∈ RN | l ≤ x ≤ u}, where l := (l1, . . . , lN )T and u :=
(u1, . . . , uN )T . For any i, define the function θi : R→ R

θi(t) := t2 − (t−Π[li,ui](t))
2, ∀ t ∈ R. (13)

Hence, θi is C1 and convex [6, Theorem 1.5.5, Exercise 2.9.13],
and θi is increasing on R+ and decreasing on R−, and its
minimal value on R is zero. When C = RN , θi(s) = s2, ∀ i;
when C = RN

+ , θi(s) = (s+)
2, ∀ i. The dual problems for such

C can be reduced by removing the dual variable μ. For exam-
ple, the dual of the regularized BP-like problem (6) becomes
miny,‖v‖�≤1 bT y + α

2

∑N
i=1 θi(− 1

α (A
T y + ET v)i). More ex-

amples and details can be found in [22, Section 4.1].
These dual problems can be reduced for specific norms or

polyhedral constraints shown in the following subsections.

B. Applications to the �1-Norm Based Problems

Let ‖ · ‖� be the �1-norm; its dual norm is the �∞-norm. As
before, C is a general polyhedral set given by (5). In this case,
the dual variable v can be removed via the soft thresholding
operatorS : R→ R, i.e.,S(t) = t− sgn(t) if |t| ≥ 1;S(t) = 0
if |t| ≤ 1. For a vector v = (v1, . . . , vk)

T ∈ Rk, let S(v) :=
(S(v1), . . . , S(vk))

T ∈ Rk (cf. [22, Section 4.2]).
•Reduced Dual Problem of the Regularized BP-like Prob-

lem Consider two cases as follows:
Case (a): E = IN . The dual problem (7) reduces to

min
y,μ≥0

(
bT y + μT d+

1

2α

p∑
i=1

‖S (−(AT y + CTμ)Ii
) ‖22
)
.

(14)
Letting (y∗, μ∗) be a dual solution, the unique primal solution

x∗Ii = −
1

α
S
(
(AT y∗ + CTμ∗)Ii

)
, ∀ i = 1, . . . , p. (15)

When C is a box constraint with 0 ∈ C, the dual problem is

min
y∈Rm

[
bT y +

α

2

N∑
i=1

θi ◦
(
− 1

α
S
((
AT y

)
i

))]
. (16)

Letting y∗ be a dual solution, the unique primal solution is x∗i =
max{li, min(− 1

αS((A
T y∗)i), ui)} for each i.

Case (b): E =
[
IN
F

]
for some matrix F ∈ Rk×N . Such an E

appears in the �1 penalty of the fused LASSO or BPDN (cf.
Remark V.7). Let v = (v,′ ṽ). The dual problem is

min
y,μ≥0,‖ṽ‖∞≤1

bT y + μT d

+
1

2α

p∑
i=1

∥∥S (−(AT y + FT ṽ + CTμ)Ii
) ∥∥2

2
. (17)

Letting (y∗, μ∗, ṽ∗) be a dual solution, the primal solution is

x∗Ii = −
1

α
S
(
(AT y∗ + FT ṽ∗ + CTμ∗)Ii

)
, ∀ i. (18)

When C is a box constraint with 0 ∈ C, the dual problem is
miny,‖ṽ‖∞≤1 bT y + α

2

∑N
i=1 θi ◦ (− 1

αS((A
T y + FT ṽ)i)), and

the unique primal solution is: for each i = 1, . . . , N , x∗i =
max{li,min(− 1

αS((A
T y∗ + FT ṽ∗)i), ui)}.

• Reduced Dual Problem of the LASSO-like Problem
Consider the following cases:

Case (a): E = λIN with λ > 0. Its dual problem becomes

min
y,μ≥0

{‖y‖22
2

+ bT y + dTμ : ‖(AT y + CTμ)Ii‖∞ ≤ λ, ∀ i
}
.

(19)
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Case (b): E =

[
λIN

F

]
for some F ∈ Rk×N and λ > 0. Such

anE appears in the fused LASSO. The dual problem (9) reduces
to

min
y,μ,ṽ

{‖y‖22
2

+ bT y + dTμ : μ ≥ 0, ‖ṽ‖∞ ≤ 1,

‖(AT y + FT ṽ + CTμ)Ii‖∞ ≤ λ, i = 1, . . . , p
}
. (20)

•Reduced Dual Problem of the BPDN-like Problem Consider
the following cases under the similar assumptions given below
(10) in Section IV-A:

Case (a): E = IN . The equivalent dual problem (11) is

min
y,μ≥0

{
bT y + σ‖y‖2 + dTμ : ‖(AT y + CTμ)Ii‖∞ ≤ 1, ∀i}.

(21)

Case (b):E =
[
IN
F

]
for someF ∈ Rk×N . The equivalent dual

problem (11) reduces to

min
y,μ,ṽ

{
bT y + σ‖y‖2 + dTμ : μ ≥ 0, ‖ṽ‖∞ ≤ 1,

‖(AT y + FT ṽ + CTμ)Ii‖∞ ≤ 1, i = 1, . . . , p
}
. (22)

C. Applications to Problems Associated With the Norm ‖ · ‖G
From Group LASSO

Consider the norm ‖x‖G :=
∑p

i=1 ‖xIi‖2 from the group
LASSO; its dual norm ‖x‖G,� = maxi=1,...,p ‖xIi‖2.
•Reduced Dual Problem of the Regularized BP-like Prob-

lem under ‖ · ‖G Consider E = IN as follows.
Case (a): C is given by (5). Given a vector w, we see that

min‖v‖G,�≤1
∑p

i=1

∥∥(v − w)Ii
∥∥2
2
=
∑p

i=1 min‖vIi‖2≤1
∥∥vIi −

wIi
∥∥2
2
. Let S‖·‖2(z) := (1− 1

‖z‖2 )+z, ∀ z ∈ Rn denote the
soft thresholding operator with respect to the �2-norm,
and let B2(0, 1) := {z | ‖z‖2 ≤ 1}. It is known that given
w, z∗ := ΠB2(0,1)(w) = w − S‖·‖2(w) and ‖z∗ − w‖22 =
‖S‖·‖2(w)‖22 = [(‖w‖2 − 1)+]

2. Applying these results to (7),
we obtain the reduced dual problem

min
y,μ≥0

(
bT y+μT d+

1

2α

p∑
i=1

[(∥∥(AT y+CTμ)Ii
∥∥
2
−1)

+

]2)
.

(23)
Letting (y∗, μ∗) be a dual solution, the primal solution is

x∗Ii = −
1

α
S‖·‖2

(
(AT y∗ + CTμ∗)Ii

)
, ∀ i = 1, . . . , p. (24)

The above results can be easily extended to the decoupled
polyhedral constraint set given by (12).

Case (b): C is a box constraint with 0 ∈ C. In this case, the
dual variable μ can be removed. By the results at the end of
Section IV-A, the reduced dual problem is

min
y, (vIi )

p
i=1

p∑
i=1

⎡⎣ bT y

p
+

α

2

∑
j∈Ii

θj

(
− 1

α

(
(A•Ii)

T y + vIi
)
j

)⎤⎦ ,

(25)
subject to ‖vIi‖2 ≤ 1 for i = 1, . . . , p, where θj’s are defined
in (13). Given a dual solution (y∗, v∗), the primal solution

x∗Ii = max(lIi ,min(− (A•Ii )
T y∗+(v∗)Ii
α ,uIi)) for i = 1, . . . , p.

When C is a cone, the dual can be further reduced by removing
v. For example, when C = RN , the dual problem becomes
miny∈Rm(bT y + 1

2α

∑p
i=1[(‖(A•Ii)T y‖2 − 1)+]

2 ), and the
primal solution x∗Ii = − 1

αS‖·‖2((A•Ii)
T y∗), i = 1, . . . , p for a

dual solution y∗. Similar results for C = RN
+ are given in [22,

Section 4.3].
• Reduced Dual Problem of the LASSO-like Problem

under ‖ · ‖G Let E = λIN for λ > 0. Then (9) becomes

min
y,μ≥0

{‖y‖22
2

+ bT y + dTμ : ‖(AT y + CTμ)Ii‖2 ≤ λ, ∀i
}
.

(26)
If C = RN , it becomes miny(b

T y +
‖y‖22
2 ) subject to

‖(A•Ii)T y‖2 ≤ λ, i = 1, . . . , p. If C = RN
+ , it is miny(b

T y +
‖y‖22
2 ) subject to (AT y)Ii ∈ B2(0, λ) + R|Ii|+ , i = 1, . . . , p.
•Reduced Dual Problem of the BPDN-like Problem under
‖ · ‖G Let E = IN . Suppose the similar assumptions indicated
in Section IV-A hold. The dual problem (11) reduces to

min
y,μ≥0

{
bT y + σ‖y‖2 + dTμ : ‖(AT y + CTμ)Ii‖2 ≤ 1, ∀i} .

(27)
When C = RN , the dual problem becomesminy(b

T y + σ‖y‖2)
subject to ‖(A•Ii)T y‖2 ≤ 1, i = 1, . . . , p.

V. DEVELOPMENT OF COLUMN PARTITION BASED

DISTRIBUTED ALGORITHMS

In this section, we develop column partition based distributed
schemes for the LASSO-like problem (8) and the BPDN like
problem (10), which include a board class of convex sparse
optimization problems as special cases. As a by-product, column
partition based distributed schemes are also developed for the
regularized BP-like problem (6).

Consider a network of p agents modeled by a graph G(V, E),
where V = {1, . . . , p} is the set of agents, and E denotes the
set of edges, each of which connects two agents in V . For each
i ∈ V ,Ni denotes the set of neighbors of agent i. The following
assumptions are made throughout this section:
A.1 The graph G(V, E) is undirected and connected;
A.2 The matrix A ∈ Rm×N attains a column partition

{A•Ii}pi=1, where {I1, . . . , Ip} is a disjoint union of
{1, . . . , N}. Each agent i knowsA•Ii , b, and possibly other
information but does not know A•Ij ’s with j �= i.

We also consider a general polyhedral set C given by (5)
satisfying �� N or having decoupling structure given by (12),
e.g., the box constraints.

A. Structure of Column Partition Based Distributed Schemes

We first present a general structure of the proposed column
partition based distributed schemes for the LASSO/BPDN-like
problems. Recall that these problems are densely coupled but
not exactly regularized in general (cf. Section III-B). However,
it follows from Proposition II.2 that if Ax∗ is known, where
x∗ is a minimizer of the LASSO/BPDN-like problem, then
an exact primal solution can be solved via the dual of a reg-
ularized BP-like problem using column partition of A, under
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Algorithm 1: Two-stage Distributed Algorithm for LASSO-
like or BPDN-like Problem: General Structure.

1: Initialization
2: Stage 1 Compute a dual solution y∗ to the LASSO-like

problem (8) or BPDN-like problem (10) using a column
partition based distributed scheme;

3: Stage 2 Solve the dual of the following regularized
BP-like problem for a sufficiently small α > 0 using y∗
and a column partition based distributed scheme:

r-BPLASSO : min
Ax=b+y∗, x∈C

‖Ex‖� + α

2
‖x‖22, (28)

or

r-BPBPDN : min
Ax=b+ σy∗

‖y∗‖2 , x∈C
‖Ex‖� + α

2
‖x‖22, (29)

4: Output: obtain the subvector x∗Ii from a dual solution to
(28) or (29) for each i = 1, . . . , p

exact regularization. To find Ax∗, it follows from Lemmas IV.2
and IV.3 that Ax∗ = b+ y∗ (resp. Ax∗ = b+ σy∗

‖y∗‖2 ), where y∗
is a dual solution to the LASSO (resp. BPDN)-like problem.
Since the dual of the LASSO/BPDN-like problem can be solved
distributively using column partition of A, this yields column
partition based two-stage distributed schemes summarized in
Algorithm 1. See Section III-A for more illustration.

The dual problems used in each stage of Algorithm 1 have
been derived in Section IV. We will show that these dual prob-
lems can be formulated as separable or locally coupled convex
optimization problems to which a wide range of existing dis-
tributed schemes can be applied. For the purpose of illustration,
we consider operator splitting method based schemes including
Douglas-Rachford (D-R) algorithm and its variations [5], [10],
consensus ADMM (C-ADMM) schemes [16], and inexact C-
ADMM (IC-ADMM) schemes [4]. Specific distributed schemes
in each stage are given in the next subsections; see Table I for
a summary of dual problems and related schemes. It should be
noted that it is not our goal to improve the performance of the
existing schemes or seek the most efficient existing scheme but
rather to demonstrate their applicability to the obtained dual
problems. Many other distributed schemes can be exploited
under weaker assumptions.

Remark V.1: Before ending this subsection, we discuss a
variation of the BP formulation in the second stage for an
important special case by exploiting solution properties of (8)
and (10). Consider E = λIN with λ > 0 and C is a polyhedral
cone (i.e., d = 0), and let y∗ be the unique dual solution to
(8) or (10). For (8), by Lemma IV.2 and E = λIN , we have
Ax∗ = b+ y∗ and λ‖x∗‖1 = −yT∗ (b+ y∗) for any minimizerx∗
of (8), noting that ‖x∗‖1 is constant on the solution set by Propo-
sition II.1. Suppose x∗ �= 0 or equivalently b+ y∗ �= 0. Then
‖x∗‖1 = − 1

λ
yT∗ (y∗ + b), and Ax∗

‖x∗‖1 = − λ(y∗+b)
yT∗ (y∗+b)

. Consider the
scaled regularized BP (or scaled r-BP) for α > 0:

min
z∈RN

‖z‖1 + α

2
‖z‖22 s.t. Az = − λ(y∗ + b)

yT∗ (y∗ + b)
, z ∈ C. (30)

Once the unique minimizer z∗ of the above r-BP is obtained
(satisfying ‖z∗‖1 = 1), the least 2-norm minimizer x∗ of the
LASSO-like problem is given by x∗ = − 1

λ
yT∗ (y∗ + b)z∗. Sim-

ilarly, for (10), by Lemma IV.3 and the assumption that the
optimal value of (10) is positive, we have−bT y∗ − σ‖y∗‖2 > 0.
Hence, x∗ can be solved from the following scaled r-BP:

min
z∈RN

‖z‖1 + α

2
‖z‖22 s.t. Az = −

b+ σy∗
‖y∗‖2

bT y∗ + σ‖y∗‖2 , x ∈ C.
(31)

Once the unique minimizer z∗ is obtained (satisfying ‖z∗‖1 =
1), the least 2-norm minimizer x∗ of the BPDN-like problem is
given by x∗ = −(bT y∗ + σ‖y∗‖2)z∗.

The advantages of using the scaled r-BP (30) or (31) are two
folds. First, since ‖x∗‖1 may be small or near zero in some
applications, a direct application of the r-BPLASSO or r-BPBPDN

using y∗ in Algorithm 1 may be sensitive to round-off errors.
Using the scaled r-BP (30) or (31) can avoid such a problem.
Second, the suitable value of α achieving exact regularization
is often unknown. A simple rule for choosing such an α is [13]:
α ≤ 1

10‖x̂‖∞ , where x̂ �= 0 is a sparse vector to be recovered. An

estimate of the upper bound of α is 1
10‖x̂‖1 in view of ‖x̂‖1 ≥

‖x̂‖∞. When the scaled r-BP (30) or (31) is used, we can simply
choose α ≤ 1

10 as ‖z∗‖1 = 1.

B. Column Partition Based Distributed Schemes for the
Standard LASSO-Like Problem

Consider the standard LASSO-like problem, i.e., the LASSO-
like problem (8) with E = λIN for a constant λ > 0, ‖ · ‖� =
‖ · ‖1, and a general polyhedral set C given by (5).

Stage One. We solve the dual problem (19), i.e.,

min
y,μ≥0

{‖y‖22
2

+ bT y + dTμ : ‖(AT y + CTμ)Ii‖∞ ≤ λ, ∀i
}
.

Consider �� N first. Let y := (y1, . . . ,yp) ∈ Rmp and
μ := (μ1, . . . ,μp) ∈ R�p. Define the consensus subspace Ay

and the consensus cone Aµ:

Ay := {y |yi = yj , ∀ (i, j) ∈ E}, (32)

Aµ := {μ ≥ 0 |μi = μj , ∀ (i, j) ∈ E}. (33)

Hence, the dual problem (19) is equivalent to the consensus
convex optimization problem:

min
(y,µ)∈Ay×Aµ

p∑
i=1

Ji(yi,μi), s.t. (yi,μi) ∈ Wi, ∀ i, (34)

where for each i = 1, . . . , p, the function

Ji(yi,μi) :=
1

p

(‖yi‖22
2

+ bTyi + dTμi

)
, (35)

and the set Wi := {(yi,μi) | ‖(A•Ii)Tyi + (C•Ii)
Tμi‖∞ ≤

λ}. To present distributed schemes for (34), the following
notation is used: let w := (y,μ) ∈ Rmp ×R�p and wi :=
(yi,μi) ∈ Rm ×R� for each i. Let wk := (yk,μk) ∈ Rmp ×
R�p, zk = (zky, z

k
µ) ∈ Rmp ×R�p, wk

i = (yk
i ,μ

k
i ) ∈ Rm ×

R�, and zki = ((zky)i, (z
k
µ)i) ∈ Rm ×R� for each i = 1, . . . , p.
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TABLE I
DUAL PROBLEMS AND CORRESPONDING DISTRIBUTED SCHEMES. STANDARD PROBLEMS: E = λIN ; FUSED PROBLEMS: E = [λIn FT ]T

Algorithm 2: Distributed Averaging Based Operator Split-
ting Scheme [5] for Solving (34).

1: Initialization with suitable constants η > 0 and � > 0
2: repeat
3: Compute w̃k+1 = (zky, (z

k
µ)+) via a distributed

averaging scheme
4: zk+1

i = zki + �[ΠWi
(2w̃k+1

i − zki −
η∇Ji((w̃k+1)i))− w̃k+1

i ] for each i = 1, . . . , p
5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain a dual solution y∗ = (zky)i for each i.

Algorithm 3: Distributed C-ADMM Scheme [4] for (34).
1: Initialization with a suitable constant η > 0
2: repeat
3: pk+1

i = pk
i + η

∑
j∈Ni

(wk
i −wk

j ) for i = 1, . . . , p

4: wk+1
i = argminwi=(yi,µi) Ji(wi) +wT

i p
k+1
i +

η
∑

j∈Ni

∥∥wi − wk
i +wk

j

2

∥∥2
2

subject to wi = (yi,μi) ∈
Wi, μi ≥ 0 for each i = 1, . . . , p

5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain a dual solution y∗ = yk

i for each i.

1.1) Distributed Averaging based Operator Splitting Scheme.
Given y = (yi)

p
i=1, let y := 1⊗ [ 1p

∑p
i=1 yi] denote the aver-

aging of y. Similarly, μ denotes the averaging of μ = (μi)
p
i=1.

Such averaging can be computed via a distributed averaging
scheme, e.g., [28]. A distributed averaging based operator split-
ting scheme [5] is shown in Algorithm 2.

1.2) Consensus-ADMM (C-ADMM) Scheme. A distributed
consensus-ADMM scheme [4] is given in Algorithm 3.

1.3) Local Averaging based Douglas-Rachford (D-R) Scheme.
Recall wi = (yi,μi) for each i. For each i = 1, . . . , p, de-
fine xi := (wi, (wij)j∈Ni

) with wij denoting local copies
of wj’s for agent i [10], the set AL

i := {xi |μi ≥ 0, wi =

wij , ∀j ∈ Ni}, and Ĵi(xi) := Ji(wi) + δAL
i
(xi) + δWi

(wi),
where δ denotes the indicator function. Similarly, define
ui := (w′i, (w

′
ij)j∈Ni

) for each i. Given u = (ui)
p
i=1, we

also define uLA
i = (w′

LA
i , (w′

LA
ij )j∈Ni

), where w′
LA
i = w′

LA
ji =

1
|Ni|+1 (w

′
i +
∑

s∈Ni
w′si) for all j ∈ Ni denotes the local aver-

aging [10]. This leads to Algorithm 4.
Remark V.2: The values of the parameters for convergence

of the above schemes are as follows: (i) 0 < η < 2
L and 0 <

� < 2− Lη
2 for Algorithm 2, where L > 0 is the Lipschtiz

constant of
∑p

I=1∇Ji [5]; (ii) η > 0 for the C-ADMM scheme
(Algorithm 3) [16]; and (iii) η ∈ (0, 1) and ρ > 0 for the local

Algorithm 4: Local Averaging Based Douglas-Rachford
(D-R) Scheme [10] for Solving (34).

1: Initialization with suitable constants η ∈ (0, 1) and
ρ > 0

2: repeat

3: xk+1
i = uk

LA
i , ∀ i = 1, . . . , p

4: uk+1
i = uk

i + 2η(proxρ ̂Ji
(2xk+1

i − uk
i )− xk+1

i ), ∀ i
5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain a dual solution y∗ = (uk)i for each i.

averaging based D-R scheme (Algorithm 4). Similar values can
be found for the subsequent schemes.

Remark V.3: Consider a large � and C ∈ R�×N given by
(12), i.e. C := {x = (xIi)

p
i=1 ∈ RN |CLiIi xIi ≤ dLi , ∀ i}. Re-

call that μ := (μLi)
p
i=1 ∈ R� with μLi ∈ R�i . By Remark IV.1

and Section IV-B, the dual problem (19) is equivalent to the
consensus convex optimization problem:

min
(y,μ)∈Ay×R�

+

p∑
i=1

Fi(yi, μLi), s.t. (yi, μLi) ∈ Ui, ∀ i, (36)

where, fore each i = 1, . . . , p, the function

Fi(yi, μLi) :=
1

p

(‖yi‖22
2

+ bTyi

)
+ dTLiμLi , (37)

and Ui := {(yi, μLi) | ‖(A•Ii)Tyi + (CLiIi)
TμLi‖∞ ≤ λ}.

Several distributed schemes can be developed for solving (36).
For example, a distributed averaging based operator splitting
scheme similar to Algorithm 2 can be used. Specifically, let
w := (y, μ), wi := (yi, μLi), and z = (zy, zμ). Replacing
w̃k+1 = (zky, (z

k
µ)+) in Line 3 by w̃k+1 = (zky, (z

k
μ)+)

and Wi and Ji in Line 4 by Ui and Fi respectively,
Algorithm 2 is applicable whose output is given by a dual
solution y∗ = (zky)i, ∀ i. A C-ADMM scheme similar to
Algorithm 3 can also be developed, noting that for any fixed yi,
hi(y) := minμLi≥0

∑p
i=1 Fi(yi, μLi) subject to (yi, μLi) ∈ Ui

is a real-valued convex function, and the sub-gradient of hi

exists.
Stage Two. The 2nd stage is defined by the regularized

BP-like problem (6) with the regularization parameterα > 0 and
b replaced by b+ y∗. Further, λ = 1 such that E = IN . When
‖ · ‖� is the �1-norm, Corollary III.1 shows that exact regular-
ization holds, i.e., the regularized problem attains a solution to
the original BP-like problem for all small α > 0.

Consider �� N first. Using the consensus subspace Ay

in (32) and the consensus cone Aµ in (33), the reduced dual
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Algorithm 5: Distributed Averaging Based D-R
Scheme [10] for Solving (38).

1: Initialization with suitable constants η ∈ (0, 1) and
ρ > 0

2: repeat
3: Compute wk+1 = (zky, (z

k
µ)+) via a distributed

averaging scheme
4: zk+1

i =
zki + 2η( proxρGi

(2wk+1
i − zki )−wk+1

i ), ∀ i
5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain (y∗, μ∗) = ((zky)i, (z

k
µ)+)i) for each i.

problem (14) becomes the consensus convex optimization:

min
(y,µ)∈Ay×Aµ

p∑
i=1

Gi(yi,μi), (38)

where for each i = 1, . . . , p, the function

Gi(yi,μi) :=
1

p

(
bTyi + dTμi

)
+

1

2α

∥∥S (−(A•Ii)Tyi − (C•Ii)
Tμi

) ∥∥2
2
. (39)

The same notation introduced below (35) is used, e.g.,
w,wi,w

k,wk
i , z

k, zki for each i = 1, . . . , p. Further, given y =
(yi)

p
i=1 and μ = (μi)

p
i=1, let y and μ be the averaging of y and

μ, respectively.
We present a distributed averaging based D-R scheme first.
An alternative algorithm for solving (38) is a distributed C-

ADMM scheme [4] for a suitable constant η > 0 given below.

pk+1
i = pk

i + η
∑
j∈Ni

(yk
i − yk

j ), ∀ i = 1, . . . , p (40a)

wk+1
i = argmin

wi=(yi,µi)

Gi(wi) +wT
i p

k+1
i

+ η
∑
j∈Ni

∥∥wi −
wk

i +wk
j

2

∥∥2
2

s.t. μi ≥ 0, ∀ i (40b)

The output is a dual solution (y∗, μ∗) = (wk)i for each i.
In the above two algorithms, once a dual solution (y∗, μ∗) is

found, it follows from (15) that the primal solution x∗ is given
by x∗Ii = − 1

αS((A•Ii)
T y∗ + (C•Ii)

Tμ∗) for i = 1, . . . , p.
Remark V.4: Since the function Gi(·) given by (39)

involves the soft thresholding operator S, it may be
difficult to solve the subproblem in (40b). In practice, we
formulate this subproblem as: wk+1

i = (y∗i ,μ
∗
i ), where

wi = (yi,μi) and (y∗i ,μ
∗
i , v
∗
Ii) = arg min (wi,vIi )

1
p (b

Tyi +

dTμi) +
1
2α

∥∥(A•Ii)Tyi + (C•Ii)
Tμi + vIi

∥∥2
2
+wT

i p
k+1
i +

η
∑

j∈Ni

∥∥wi − wk
i +wk

j

2

∥∥2
2

subject to μi ≥ 0 and ‖vIi‖∞ ≤ 1,
for each i. This new subproblem can be efficiently solved via
a quadratic program. Besides, the subproblem in Line 4 of
Algorithm 5 can be solved in a similar way.

Remark V.5: Another scheme for solving (38) is the dis-
tributed averaging based operator splitting scheme [5]:

wk+1 = (zky, (z
k
µ)+), (41a)

zk+1
i = zki + �

[
wk+1

i − zki − η∇Gi

(
wk+1

i

)]
, ∀ i, (41b)

where (41a) is solved via distributed averaging, and ∇Gi is
easy to compute. When C is a box constraint with 0 ∈ C, the
dual problem can be reduced to (16) depending on y only,
and a distributed scheme similar to (41) can be developed. A
drawback of (41) is that the Lipschitz constant of

∑
i∇Gi is

given by (‖A‖2F + ‖C‖2F )/α, which is large for a large N . This
yields a small η > 0 and thus slow convergence. Nonetheless,
the scheme (41) can be used for a small or moderate N .

We then consider a large � with C given by (12). It follows
from Remark IV.1 and Section IV-B that the equivalent dual
problem is given by: recalling that μ := (μLi)

p
i=1 ∈ R�,

min
(y,μ)∈Ay×R�

+

p∑
i=1

F̃i(yi, μLi),

where F̃i(yi, μLi) :=
1
2α

∥∥S(−(A•Ii)Tyi − (CLiIi)
TμLi)

∥∥2
2

+ 1
p (b

Tyi) + dTLiμLi . Let w := (y, μ) and wi := (yi, μLi),
and z = (zy, zμ). Distributed schemes similar to Algorithms 5
or (40) can be developed by replacing Gi with F̃i.

C. Column Partition Based Distributed Schemes for the
Standard BDPN-Like Problem

Consider the standard BPDN-like problem, i.e., the BPDN-
like problem (10) withE = IN , ‖ · ‖� = ‖ · ‖1, and a polyhedral
set C given by (5). Suppose the assumptions given below (10) in
Section IV-A hold. Consider the dual problem (11). As shown in
Lemma IV.3, a dual solution y∗ �= 0. Hence, the function ‖y‖2
is differentiable near y∗.

Stage One. Consider �� N first. In light of (21), it is easy
to verify that the distributed Algorithms 2-4 can be applied by
replacing the functions Ji in (35) with

Ĵi(yi,μi) :=
1

p

(
σ‖yi‖2 + bTyi + dTμi

)
, ∀ i = 1, . . . , p,

and setting λ = 1 in Wi. Moreover, an inexact C-ADMM
scheme [4] can be applied; its details are omitted. When � is large
and C is given by (12), letting μ := (μLi)

p
i=1 ∈ R�, the schemes

discussed in Remark V.3 can be used by replacingFi’s in (37) by
F̂i(yi, μLi) :=

1
p (σ‖yi‖2 + bTyi) + dTLiμLi and setting λ = 1

in Ui. When C = RN or C = RN
+ , μ or μ can be removed; see

the discussions below (21).
Stage Two. The 2nd stage is defined by the regularized

BP-like problem (6) with the regularization parameter α > 0,
b replaced by b+ σy∗

‖y∗‖2 , and E = IN . Hence, all the results
for the 2nd stage of the standard LASSO-like problem given
in Section V-B apply.
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D. Column Partition Based Distributed Schemes for the Fused
LASSO-Like and Fused BDPN-Like Problems

Through this subsection, let ‖ · ‖� be the �1-norm, D1 ∈
R(N−1)×N be the first order difference matrix, and we assume
in addition that the graph G(V, E) satisfies (i, i+ 1) ∈ E , ∀ i =
1, . . . , p− 1. Consider the fused LASSO-like problem first,

i.e., the LASSO-like problem (8) with E =
[

λIN
γD1

]
for positive

constants λ and γ and a general polyhedral set C as before.
Stage One. Consider �� N first. To solve the dual prob-

lem (20) with F = γD1 and ṽ = (ṽ1, . . . , ṽN−1) ∈ RN−1, de-
fine ns :=

∑s
i=1 |Ii| for s = 1, . . . , p. Without loss of gen-

erality, let I1 = {1, . . . , n1}, and Ii+1 = {ni + 1, . . . , ni +
|Ii+1|} for each i = 1, . . . , p− 1. Define the index sets
S1 := I1, Si := {ni−1} ∪ Ii for i = 2, . . . , p− 1, and Sp :=
{np−1, . . . , N − 1}. Define ri := |Si| and vi := ṽSi for each
i = 1, . . . , p. Thus for i = 1, . . . , p− 1, vi and vi+1 over-
lap on one variable ṽni

. Let v := (vi)
p
i=1 ∈ RN+p−2, and

the local coupling constraint ALC := {v ∈ RN+p−2 | (vi)ri =
(vi+1)1, ∀ i = 1, . . . , p− 1}. For each i = 1, . . . , p, define the
function

Hi(yi,μi,vi) :=
1

p

(‖yi‖22
2

+ bTyi + dTμi

)
, (42)

and the set Vi := {(yi,μi,vi) | ‖vi‖∞ ≤ 1, ‖(A•Ii)Tyi +
(C•Ii)

Tμi + γ[(D1)SiIi ]
Tvi‖∞ ≤ λ }. The dual problem (20)

is formulated as the locally coupled convex program:

min
(y,µ,v)∈Ay×Aµ×ALC

p∑
i=1

Hi(yi,μi,vi), (43)

subject to (yi,μi,vi) ∈ Vi, ∀ i = 1, . . . , p.
Letzk = (zky, z

k
µ, z

k
v) ∈ Rmp ×R�p ×RN+p−2, andη, ρ are

suitable positive constants depending on the Lipschitz constant
of
∑p

i=1∇Hi; see [5, Thoerem 1] for details. For any v =
(vi)

p
i=1 ∈ RN+p−2 defined above, ṽ = (ṽi)

p
i=1 := ΠALC

(v) is
(ṽi)ri = (ṽi+1)1 = 1

2 [(vi)ri + (vi+1)1] for i = 1, . . . , p− 1,
and for each i, (ṽi)j = (vi)j for the other indices j. Clearly, this
local averaging can be computed distributively. A distributed
averaging based operator splitting scheme is given in Algo-
rithm 6. A local averaging based operating splitting scheme can
be developed in a similar way. These schemes can be extended to
a large � with C given by (12) and be extended to the generalized
total variation denoising or �1-trend filtering with E = λD1 or
E = λD2.

Stage Two. The 2nd stage is given by the regularized BP-like
problem (6) with the parameter α > 0, b replaced by b+ y∗,

and E =
[

IN
γD1

]
for a constant γ > 0 after scaling. Consider a

general polyhedral set C with �� N first.
We follow the same notation used in the first stage. Hence,

the reduce dual problem (17) can be formulated as the following
locally coupled convex program:

min
(y,µ,v)∈Ay×Aµ×ALC

p∑
i=1

Pi(yi,μi,vi), (44)

Algorithm 6: Distributed Averaging Based Operator Split-
ting Scheme [5] for Solving (43).

1: Initialization with suitable constants η > 0 and � > 0
2: repeat
3: Compute ŵk+1 = (zky, (z

k
µ)+, z̃

k
v), where zky and zkµ

are solved via a distributed averaging scheme, and

z̃kv = ((z̃kv)i)
p
i=1 with (z̃kv)i computed distributively

4: zk+1
i =

zki + �[ΠVi(2ŵ
k+1
i − zki − η∇Hi(ŵ

k+1
i ))− ŵk+1

i ]
for each i = 1, . . . , p

5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain a dual solution y∗ = (zky)i for each i.

Algorithm 7: Distributed Averaging Based D-R
Scheme [10] for (44).

1: Initialization with suitable constants η > 0 and ρ > 0
2: repeat
3: Compute ŵk+1 = (zky, (z

k
µ)+, z̃

k
v), where zky and zkµ

are solved via a distributed averaging scheme, and

z̃kv = ((z̃kv)i)
p
i=1 with (z̃kv)i computed distributively

4: zk+1
i = zki + 2η( proxρPi

(2ŵk+1
i − zki )− ŵk+1

i ), ∀ i
5: k ← k + 1
6: until Stopping criterion is met
7: Output: obtain a dual solution (y∗, μ∗, ṽ∗) from

(zky, (z
k
µ)+, z̃

k
v)

where, for each i = 1, . . . , p, the function

Pi(yi,μi,vi) :=
1

p

(
bTyi + dTμi

)
+

1

2α

∥∥S (−(A•Ii)Tyi − (C•Ii)
Tμi − γ[(D1)SiIi ]

Tvi

) ∥∥2
2
.

Let zk = (zky, z
k
µ, z

k
v) ∈ Rmp ×R�p ×RN+p−2, w :=

(y,μ,v) ∈ Rmp ×R�p ×RN+p−2 and wi := (yi,μi,vi) ∈
Rm ×R� ×Rri for each i. This leads to Algorithm 7.

Once a dual solution (y∗, μ∗, ṽ∗) is obtained from Algorithm 7,
the primal solution (x∗Ii)

p
i=1 is computed using (18). Moreover,

to solve the subproblem in Line 4 of Algorithm 7, we apply
the similar technique given in Remark V.4 to formulate it as a
quadratic program.

Remark V.6: Another scheme for solving (44) is the dis-
tributed averaging based operator splitting scheme [5] by replac-
ingVi andHi in Line 4 of Algorithm 6 byRi andPi respectively,
where the set Ri := Rm ×R� × {vi | ‖vi‖∞ ≤ 1} for each i.
This scheme is suitable for a small or moderate N . Similar dis-
tributed schemes can be developed for the decoupled constraint
given by (12). Moreover, they can be extended to the generalized
total variation denoising and �1-trend filtering where E = λD1

or E = λD2 with λ > 0.
Remark V.7: Consider the fused BPDN-like problem, i.e., the

BPDN-like problem (10) with E =
[

IN
γD1

]
for a constant γ > 0.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on May 18,2022 at 15:28:33 UTC from IEEE Xplore.  Restrictions apply. 



386 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 7, 2021

Suppose the assumptions given below (10) in Section IV-A hold.
In the first stage, to solve the dual problem (22) with F = γD1

and �� N , define the function Ĥi(yi,μi,vi) := (σ‖yi‖2 +
bTyi + dTμi)/p. Then Algorithm 6 can be applied by replacing
Hi with Ĥi. Similar results can be made for a large � with C
given by (12). The second stage is almost identical to that of the
fused LASSO-like problem, except that b+ y∗ is replaced by
b+ σy∗

‖y∗‖2 .

E. LASSO-Like, BPDN-Like, and Regularized BP-Like
Problems With the Norm From the Group LASSO

Consider ‖ · ‖� = ‖ · ‖G arising from the group LASSO (3);
its dual norm ‖x‖G,� = maxi=1,...,p ‖xIi‖2. Many preceding
results for the �1-norm can be extended to this case.

For illustration, consider the standard LASSO-like problem
with E = λIN for λ > 0 and a small �. In the first
stage, by virtue of the dual problem (26), Algorithms 2-4
can be used by replacing the set Wi with the set
Ŵi := {(yi,μi) | ‖(A•Ii)Tyi + (C•Ii)

Tμi‖2 ≤ λ}, which
has nonempty interior. When � is large and C ∈ R�×N is given
by (12), the schemes in discussed in Remark V.3 can be used
after the same replacement. In the second stage, we assume that
exact regularization holds (cf. Section III-C). WhenE = IN and
C is a general polyhedral set, the reduced dual problem (23) is
formulated as the convex consensus optimization problem:
min(y,µ)∈Ay×Aµ

∑p
i=1 Ji(yi,μi), where Ji(yi,μi) :=

(bTyi + dTμi)/p+
1
2α [(

∥∥(A•Ii)Tyi + (C•Ii)
Tμi

∥∥
2
− 1)+]

2

for i = 1, . . . , p, and Ay,Aµ are defined in (32)–(33). Thus a
distributed scheme similar to (41) can be applied.

In the second stage, when C is a box constraint set, consider
the reduced dual problem (25). By introducing p copies of y’s
given by yi and imposing the consensus condition on yi’s, this
problem can be converted to a convex program of the variable
(yi, vIi)

p
i=1 with a separable objective function and separable

constraint sets with nonempty interiors. By Slater’s condition,
the D-R scheme or operator splitting schemes similar to the
scheme (41) can be developed. If, in addition, C is a cone, the
dual problems can be further reduced to unconstrained problems
of the variable y only, e.g., those for C = RN and C = RN

+ given
in Case (b) of Section IV-C. These problems can be formulated
as consensus convex programs and solved by column partition
based distributed schemes. Finally, the primal solutionx∗Ii can be
computed distributively using a dual solution y∗ and the operator
S‖·‖2 (cf. Section IV-C).

The above results can be easily extended to the standard
BPDN-like and fused LASSO/BPDN-like problems.

VI. OVERALL CONVERGENCE OF THE TWO-STAGE

DISTRIBUTED ALGORITHMS

In this section, we analyze the overall convergence of the
two-stage distributed algorithms proposed in Section V, assum-
ing that a distributed algorithm in each stage is convergent. See
Remark V.2 for the convergence conditions.

Consider the following regularized BP-like problem:

min
x∈C,Ax=b

‖Ex‖� + α

2
‖x‖22, (45)

where α > 0, E ∈ Rr×N , 0 �= A ∈ Rm×N , C is a polyhe-
dral set given by (5) with C ∈ R�×N and d ∈ R�, and b ∈
Rm with b ∈ AC := {Ax |x ∈ C}. We shall show that its
unique optimal solution is continuous in b. To achieve this
goal, consider the necessary and sufficient optimality condition
for the unique solution x∗ to (45), i.e., there exist (possibly
non-unique) multipliers λ ∈ Rm and μ ∈ R�

+ such that 0 ∈
ET∂‖Ex∗‖� + αx∗ +ATλ + CTμ, Ax∗ = b, and 0 ≤ μ ⊥
Cx∗ − d ≤ 0. When we need to emphasize the dependence
of x∗ on b, we write it as x∗(b). For a given b ∈ AC, define
the set S(x∗) := {(w, λ, μ)

∣∣w ∈ ∂‖Ex∗‖�, ETw + αx∗ +
ATλ + CTμ = 0, 0 ≤ μ ⊥ Cx∗ − d ≤ 0}. This set contains
all the sub-gradients w and the multipliers λ, μ satisfying the
optimality condition at x∗, and it is often unbounded due to
possible unboundeness of λ andμ (noting thatw’s are bounded).
To overcome this difficulty in continuity analysis, we present the
following proposition.

Proposition VI.1: [22, Proposition 6.1] The following hold
for the problem (45):

(i) LetB be a bounded set in Rm. Then {x∗(b) | b ∈ AC ∩ B}
is a bounded set;

(ii) Let (bk) be a convergent sequence in AC ∩ B. Then there
exist a constant γ > 0 and an index subsequence (ks) such
that for each ks, there exists (wks , λks , μks) ∈ S(x∗(bks))
satisfying ‖(λks , μks)‖ ≤ γ.

The proof of this proposition is technical and relies on the
Lipschitz property of the linear complementarity problem (LCP)
under certain singleton property [6, Proposition 4.2.2], and [25].
See [22, Proposition 6.1] for details.

Theorem VI.1: Let α > 0, E ∈ Rr×N A ∈ Rm×N , C :=
{x ∈ RN |Cx ≤ d} for some C ∈ R�×N and d ∈ R�, and b ∈
Rm with b ∈ AC. Then the unique solution x∗ of the minimiza-
tion problem (45) is continuous in b on AC.

Proof: Fix an arbitrary b ∈ AC. Suppose x∗(·) is discontin-
uous at this b. Then there exist ε0 > 0 and a sequence (bk) in
AC such that (bk) converges to b but ‖xk

∗ − x∗(b)‖ ≥ ε0 for all
k, where xk

∗ := x∗(bk). By Statement (i) of Proposition VI.1,
(xk
∗ ) is bounded and attains a convergent subsequence which,

without loss of generality, can be itself. Let the limit of (xk
∗ )

be x̂. Further, as shown in Statement (ii) of Proposition VI.1,
there exists a bounded subsequence ((wks , λks , μks)) such that
(wks , λks , μks) ∈ S(xks∗ ) for each ks. Without loss of gener-
ality, we assume that ((wks , λks , μks)) converges to (ŵ, λ̂, μ̂).
Since (Exks∗ )→ Ex̂ and (wks)→ ŵ with wks ∈ ∂‖Exks∗ ‖�
for each ks, it follows from [1, Proposition B.24(c)] that ŵ ∈
∂‖Ex̂‖�. By taking the limit, we deduce that (x̂, ŵ, λ̂, μ̂) satisfies
ET ŵ + αx̂+AT λ̂ + CT μ̂ = 0, Ax̂ = b, and 0 ≤ μ̂ ⊥ Cx̂−
d ≤ 0, i.e., (ŵ, λ̂, μ̂) ∈ S(x̂). This shows that x̂ is a solution to
(45) for the given b. Since this solution is unique, we must have
x̂ = x∗(b). Hence, (xks∗ ) converges to x∗(b), a contradiction to
‖xks∗ − x∗(b)‖ ≥ ε0 for all ks. This yields the continuity of x∗
in b on AC. �
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When the norm ‖ · ‖� in the problem (45) is the �1-norm
or a convex PA function in general, the continuity property in
Theorem VI.1 can be enhanced to Lipschitz continuity, which
is useful in deriving the overall convergence rate.

Theorem VI.2: [22, Theorem 6.3] Let f : Rn → R be a con-
vex PA function, A ∈ Rm×N , C be a polyhedral set given by (5),
and b ∈ Rm with b ∈ AC. Then for any α > 0, minx∈C f(x) +
α
2 ‖x‖22 subject to Ax = b has a unique minimizer x∗. Further,
x∗ is Lipschitz continuous in b on AC, i.e., there exists a
constant L > 0 such that ‖x∗(b′)− x∗(b)‖ ≤ L‖b′ − b‖ for any
b, b′ ∈ AC.

The proof of this theorem is technical and uses the global
Lipschitz property of the LCP with singleton property on a
convex set; see [22, Theorem 6.3] for details.

For a polyhedral set C, it follows from Lemmas IV.2 and IV.3
that y∗ + b ∈ AC (respectively σy∗

‖y∗‖2 + b ∈ AC), where y∗ is a
solution to the dual problem (9) (respectively (11)). Practically,
y∗ is approximated by (yk) generated in the first stage. For
the LASSO-like problem (8), one uses yk + b (with a large
k) instead of y∗ + b in the BPLASSO (28) in the second stage.
This raises the question of whether yk + b ∈ AC for all large
k. The same question also arises for the BPDN-like problem
(10). We give a mild sufficient condition for the feasibility under
perturbations to a given b. Suppose C has a nonempty interior
andA has full row rank. In view of ri(AC) = A ri(C) = A int(C)
[21, Theorem 6.6], we see that AC has nonempty interior given
by A ri(C) = A int(C). Thus if b̂ := y∗ + b is such that b̂ = Ax̂

for some x̂ ∈ int(C), then there exists a neighborhood N of b̂
such that b ∈ AC for any b ∈ N . Additional sufficient conditions
independent of b can also be established. For instance, when
C = RN , A need to have full row rank; when C = RN

+ , A need
to have full row rank and A(I +Q) = 0 for a nonnegative
matrix Q.

Based on the above results, we establish the overall conver-
gence of the two-stage algorithms.

Theorem VI.3: Consider the two-stage distributed algorithms
for the LASSO-like problem (8) (resp. the BPDN-like problem
(10)) with the norm ‖ · ‖�. Let (yk) be a sequence generated in
the first stage such that (yk)→ y∗ as k →∞ and b+ yk ∈ AC
(resp. b+ σyk

‖yk‖2 ∈ AC) for all large k, where y∗ is a solution
to the dual problem (9) (resp. (11)), and (xs) be a convergent
sequence in the second stage for solving (28) (resp. (29)). Then

(i) (xs)→ x∗ as k, s→∞, where x∗ is the unique solution
to the regularized BPLASSO (28) (resp. BPBPDN (29)).

(ii) Let ‖ · ‖� be the �1-norm. Suppose (yk) has the conver-
gence rateO( 1

kq ) and (xs) has the convergence rateO( 1
sr ).

Then (xs) converges to x∗ in the rate of O( 1
kq ) +O( 1

sr ).
Proof: We consider the LASSO-like problem only; the sim-

ilar argument holds for the BPDN-like problem.
(i) For each k, let b̂k := b+ yk, where (yk) is a sequence

generated from the first stage that converges to y∗. When b̂k

is used in the BPLASSO (28) in the second stage, i.e., the con-
straintAx = b+ y∗ is replaced byAx = b̂k, we have ‖xs(̂bk)−
x∗‖ ≤ ‖xs(̂bk)− x∗(̂bk)‖+ ‖x∗(̂bk)− x∗‖, where x∗(̂bk) is
the unique solution to the BPLASSO (28) corresponding to the
constraint Ax = b̂k (and x ∈ C). Since (xs(̂bk)) converges to

x∗(̂bk) as s→∞ (for a fixed k), ‖xs(̂bk)− x∗(̂bk)‖ converges
to zero. Further, note that x∗ = x∗(̂b∗) with b̂∗ := b+ y∗. It
follows from Theorem VI.1 that ‖x∗(̂bk)− x∗‖ = ‖x∗(̂bk)−
x∗(̂b∗)‖ converges to zero as k →∞ in view of the convergence
of (yk) to y∗. This establishes the convergence of the two-stage
algorithm.

(ii) When ‖ · ‖� is the �1-norm, we deduce via Theorem VI.2
that x∗ is Lipschitz continuous in b on AC, i.e., there exists
a constant L > 0 such that ‖x∗(b)− x∗(b′)‖ ≤ L‖b− b′‖ for
any b, b′ ∈ AC. Hence, ‖xs(̂bk)− x∗‖ ≤ ‖xs(̂bk)− x∗(̂bk)‖+
‖x∗(̂bk)− x∗(̂b∗)‖ ≤ ‖xs(̂bk)− x∗(̂bk)‖+ L‖b̂k − b̂∗‖ =
‖xs(̂bk)− x∗(̂bk)‖+ L‖yk − y∗‖ = O( 1

sr ) +O( 1
kq ). �

VII. NUMERICAL RESULTS

We present numerical results to demonstrate the performance
of the proposed two-stage column partition based distributed al-
gorithms for the standard LASSO/BPDN, fused LASSO/BPDN,
group LASSO, and their extensions, e.g., those subject to poly-
hedral constraints. Distributed algorithms are implemented on
MATLAB and run on a computer of the following processor:
Intel(R) Core(TM) i7-8550 U CPU with 4 cores @ 1.80 GHz
and RAM: 16.0 GB. We consider a network of p = 40 agents
with two topologies: the first is a cyclic graph, and the second
is a random graph. The matrix A ∈ R100×4000 is random nor-
mal (i.e., m = 100 and N = 4000), and b ∈ R100 is a random
normal vector. For the standard/fused BPDN and its extensions,
‖b‖2 = 11.63 and the parameter σ = 0.2, satisfying ‖b‖2 > σ.
We consider even column partitioning, i.e., each agent has 100
columns.

In each scheme, the stopping criterion is measured by the
absolute error of two neighboring iterates, and its termination
tolerance is given below. Further, to simplify notation, we use the
following abbreviations: DA for distributed averaging, LA for
local averaging, DR for Douglas-Rachford, and OS for operator
splitting. For instance, a DA-OS scheme represents a distributed
averaging based operator splitting scheme. In each table below,
Time stands for the computation time per agent.

In each DA based scheme, we use the distributed averaging
scheme with optimal constant edge weight [28, Section 4.1] for
consensus computation. Numerical experiments show that this
scheme is highly efficient. For instance, to compute the average
ofy = (yi)

p
i=1 withp = 40 andyi ∈ R100, it takes 0.0061 (resp.

0.001) seconds per agent to converge on the cyclic (resp. the
random) graph with the relative error less than 10−7. For the
standard and fused LASSO/BPDN-like problems involving the
�1-norm, the subproblem in each scheme, e.g., the projection
step in an OS scheme, the proximal operator in DR scheme, or
the subproblem in C-ADMM, is solved via a quadratic program;
see Remark V.4. For the group LASSO, the projection step is
formulated as a second order cone program (SOCP) and solved
by SeDuMi.

To evaluate the accuracy of the proposed schemes, letJ denote
the objective function of each (primal) problem, and x∗dist be
a numerical primal solution obtained from a proposed 2-stage
distributed scheme. Let J∗dist := J(x∗dist), J

∗
true be the true optimal
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Fig. 1. Convergence behaviors in stage one of standard LASSO.

Fig. 2. Convergence behaviors in stage two of standard LASSO.

value obtained from a high-precision centralized scheme, and
JRE, o :=

|J∗dist−J∗true|
|J∗true| be the overall relative error of the optimal

value. We also use JRE, s to denote the similar relative error for
stage s = 1, 2.

A. Numerical Results for the LASSO-Like Problems

Consider the cyclic graph and C = RN unless otherwise
stated.
• Standard LASSO The �1-penalty parameter λ = 1.8, and

the regularization parameter in the second stage α = 0.18. We
apply three schemes for each stage: DA-OS (Algorithm 2), C-
ADMM (Algorithm 3), LA-DR (Algorithm 4) for stage one,
and DA-DR (Algorithm 5), C-ADMM (40), LA-DR (similar to
Algorithm 4) for stage two. The termination tolerances for stages
one and two are 10−4 and 10−5, respectively. See the following
table for the numerical results.

The convergence behaviors of these schemes in the two stages
are displayed in Figs. 1 and 2. In the first stage, the errors of
the dual variable is shown; in the second stage, we compute the
corresponding primal variables from its numerical dual solutions

and display its convergence behavior, where y∗ and x∗ are the
true dual and primal solutions, respectively.

We also test the standard LASSO on the random graph via
the DA-OS and C-ADMM for stage one, and the DA-DR for
stage two, which is also used for the scaled regularized BP (cf.
Remark V.1) with the regularization constant α = 0.1 in stage
two. The same termination tolerances are used. See the following
table for a summary of the numerical results.

• LASSO with C = RN
+ This problem is known as the non-

negative garrote in the literature [31]. We apply the DA-OS and
C-ADMM for stage one, and the DA-DR and C-ADMM for
stage two withα = 0.18. The termination tolerances are10−4 for
both the schemes in stage one, 10−4 for the DA-DR in stage two,
and 5× 10−5 for the C-ADMM in stage two. See the following
table for the numerical results.

• Fused LASSO The matrix E =
[

λI

γD1

]
with λ = 0.6 and

γ = 0.4, and the regularization constant α = 0.18. We apply
DA-OS (Algorithm 6) for stage one and the DA-DR (Algo-
rithm 7) for stage two with termination tolerances 8× 10−4 and
10−4, respectively. We obtain JRE, o = 1.6× 10−4.

• Group LASSO The penalty constant λ = 1.8, and the
regularization parameter α = 0.18. For stage one, a DA-OS
scheme similar to Algorithm 2 is used by replacing the set
Wi with Ŵi := {yi | ‖(A•Ii)Tyi‖2 ≤ λ} as in Section V-E.
Its projection step is formulated as a SOCP and solved by
SeDuMi. For stage two, we exploit the reduced dual problem
via the soft thresholding operator S‖·‖2 and apply the DA-OS
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scheme similar to that in (41) by dropping μ and replacing Gi

with Ji(yi) := (bTyi)/p+
1
2α [(

∥∥(A•Ii)Tyi − 1)+]
2 for each

i. The termination tolerances for stages one and two are 10−5

and 8× 10−7, respectively. We obtain JRE, o = 3.6× 10−4.

B. Numerical Results for the BPDN-Like Problems

Consider the cyclic graph and C = RN unless otherwise
stated.
• Standard BPDN The regularization parameter in the sec-

ond stage α = 0.15. We apply DA-OS and IC-ADMM [4] (with
the parameters c andβi’s) for stage one, and DA-DR, C-ADMM,
LA-OS for stage two. The termination tolerances for the first and
second stages are 4× 10−4 and 10−5 respectively.

We also test the standard BPDN on the random graph with
the regularization parameter α = 0.18. We apply DA-OS for
stage one, and DA-DR for stage two. The table below shows the
numerical results with JRE,o = 5.6× 10−4.

• BPDN with C = RN
+ We apply the DA-OS for stage one,

and the DA-DR for stage two with α = 0.18. The termination
tolerances for stage one and stage two are 10−5 and 10−4,
respectively. We obtain JRE, o = 4.9× 10−4.

•Fused BPDN The matrixE =
[

IN
γD1

]
with γ = 2/3, and the

regularization constantα = 0.18. We apply DA-OS and DA-DR

for stage one and stage two with the termination tolerances 10−4

and 2× 10−4, respectively. We obtain JRE, o = 6.9× 10−4.

C. Discussions and Comparison
We compare the proposed two-stage schemes with two ex-

isting distributed schemes: the DC-ADMM [4], [16] for the
standard LASSO with C = RN , and the PDC-ADMM [2] for
the standard LASSO with C = RN

+ . These two schemes cannot
handle the non-polyhedral constraints in the BPDN-like prob-
lems and the additional coupling in the fused LASSO/BPDN.
Hence, we focus on the standard LASSO and its constrained
case. The results of the DC-ADMM and PDC-ADMM over the
cyclic graph on the same computer with the tolerance 10−4 are
given below.

The overall computation time of the proposed two-stage
schemes for the standard (resp. constrained) LASSO is 78-
121 seconds (resp. 57-94 seconds) with smaller JRE, o. Hence,
the proposed schemes outperform the DC-ADMM and PDC-
ADMM in both computation time and numerical accuracy.

Since the communication cost is proportional to the number of
iterations, we compare the number of iterations of the proposed
two-stage schemes vs. DC-ADMM (resp. PDC-ADMM) for the
standard LASSO (resp. constrained LASSO) on the cyclic graph.
The following table summarizes the number of iterations for the
proposed two-stage schemes.

For the standard LASSO, the total iteration numbers of the
two-stage DA based scheme, C-ADMM, and LA-DR scheme
are 5413, 6728, and 12 094, respectively. For the constrained
LASSO, the total iteration number is 3958 for the DA-based
scheme and is 5710 for the C-ADMM. Note that the DA-based
schemes need additional iterations for distributed averaging
computation, leading to extensive communications. Neverthe-
less, the proposed two-stage C-ADMM takes fewer or a similar
number of iterations and less computation time while achieving
better numerical accuracy in comparison with the DC-ADMM
and PDC-ADMM. Finally, the memory costs of the proposed
two-stage schemes are same or similar to those of the DC-
ADMM or PDC-ADMM.
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VIII. CONCLUSIONS

Column partition based distributed schemes are developed for
a class of densely coupled convex sparse optimization problems,
and overall convergence is proved. Future research is to extend
these schemes to a broader class of problems.

A. Proof of Lemma IV.1

Proof: Let J∗ > −∞ be the finite infimum of (P ). SinceP is
polyhedral, it follows from [1, Proposition 5.2.1] that the strong
duality holds, i.e., J∗ = infz∈P [supy,μ≥0 J(z) + yT (Az −
b) + μT (Cz − d)] = supy,μ≥0[infz∈P J(z) + yT (Az − b) +

μT (Cz − d)], and the dual problem of (P ) attains an optimal
solution (y∗, μ∗) with μ∗ ≥ 0 such that J∗ = infz∈P J(z) +
yT∗ (Az − b) + μT

∗ (Cz − d). Therefore,

J∗ = inf
z∈P
‖Ez‖� + f(z) + yT∗ (Az − b) + μT

∗ (Cz − d)

= inf
z∈P

sup
‖v‖�≤1

[
(Ez)T v + f(z) + yT∗ (Az − b) + μT

∗ (Cz − d)
]

= sup
‖v‖�≤1

inf
z∈P

[
(Ez)T v + f(z) + yT∗ (Az − b) + μT

∗ (Cz − d)
]

≤ sup
y,μ≥0, ‖v‖�≤1

inf
z∈P

[
(Ez)T v + f(z) + yT (Az − b)

+μT (Cz − d)
]

≤ inf
z∈P

sup
y,μ≥0, ‖v‖�≤1

[
(Ez)T v + f(z) + yT (Az − b)

+μT (Cz − d)
]
= J∗,

where the third equation follows from Sion’s minimax theo-
rem [27, Corollary 3.3] and the compactness of B�(0, 1), and
the second inequality is due to the weak duality. �

B. Proof of Lemma IV.2

Proof: Consider the equivalent primal problem for (8):
minx∈C,Ax−b=u

1
2‖u‖22 + ‖Ex‖�, and let (x∗, u∗) be its

optimal solution. Consider the Lagrangian L(x, u, y, μ, v) :=
‖u‖22
2 + (Ex)T v + yT (Ax− b− u) + μT (Cx− d). In view of

the strong duality shown in Lemma IV.1, (x∗, u∗, y∗, μ∗, v∗)
is a saddle point of L. Hence, L(x∗, u∗, y, μ, v) ≤
L(x∗, u∗, y∗, μ∗, v∗) for all y ∈ Rm, μ ∈ R�

+, v ∈ B�(0, 1),
and L(x∗, u∗, y∗, μ∗, v∗) ≤ L(x, u, y∗, μ∗, v∗) for all
x ∈ RN , u ∈ Rm. The former inequality implies that
∇yL(x∗, u∗, y∗, μ∗, v∗) = 0 such that Ax∗ − b− u∗ = 0;
the latter inequality shows that ∇uL(x∗, u∗, y∗, μ∗, v∗) = 0,
which yields u∗ − y∗ = 0. These results lead to Ax∗ − b = y∗.
Lastly, when d = 0, it follows from the strong duality
that 1

2‖Ax∗ − b‖22 + ‖Ex∗‖� = −bT y∗ − 1
2‖y∗‖22. Using

Ax∗ − b = y∗, we have ‖Ex∗‖� = −bT y∗ − ‖y∗‖22 =
−(b+ y∗)T y∗. �

C. Proof of Lemma IV.3

Proof: (i) Consider the equivalent primal problem for (10):
minx∈C,Ax=b=u, ‖u‖2≤σ ‖Ex‖�, and let (x∗, u∗) be its optimal
solution. For a dual solution (y∗, μ∗, v∗), we deduce that y∗ �= 0

since otherwise, we have −(bT y∗ + σ‖y∗‖2 + dTμ∗) ≤ 0,
which contradicts its positive optimal value by the
strong duality. Let the Lagrangian L(x, u, y, μ, v, λ) :=
(Ex)T v + yT (Ax− b− u) + λ(‖u‖22 − σ2) + μT (Cx− d).
By the strong duality, (x∗, u∗, y∗, μ∗, v∗, λ∗) is a saddle point
of L such that L(x∗, u∗, y, μ, v, λ) ≤ L(x∗, u∗, y∗, μ∗, v∗, λ∗),
for all y ∈ Rm, μ ∈ R�

+, v ∈ B�(0, 1), λ ∈ R+, and
L(x∗, u∗, y∗, μ∗, v∗, λ∗) ≤ L(x, u, y∗, μ∗, v∗, λ∗) for all
x ∈ RN , u ∈ Rm. The former inequality implies that
∇yL(x∗, u∗, y∗, μ∗, v∗, λ∗) = 0, yielding Ax∗ − b− u∗ = 0,
and the latter shows that∇uL(x∗, u∗, y∗, μ∗, v∗, λ∗) = 0, which
gives rise to 2λ∗u∗ = y∗. Since y∗ �= 0, we have λ∗ > 0 which
implies ‖u∗‖2 − σ = 0 by the complementarity relation. It thus
follows from 2λ∗u∗ = y∗ and ‖u∗‖2 = σ that λ∗ =

‖y∗‖2
2σ . This

leads to u∗ = y∗
2λ∗

= σy∗
‖y∗‖2 . Therefore, Ax∗ − b = u∗ = σy∗

‖y∗‖2 .
Finally, when d = 0, we deduce via the strong duality that
‖Ex∗‖� = −bT y∗ − σ‖y∗‖2.

(ii) Let d = 0. Let (y∗, μ∗, v∗) and (y′∗, μ
′
∗, v
′
∗) be two solu-

tions of (11), where y∗ �= 0 and y′∗ �= 0. Then bT y∗ + σ‖y∗‖2 =
bT y′∗ + σ‖y′∗‖2 = −‖Ex∗‖� < 0. Therefore, ‖y∗‖2(bT y∗

‖y∗‖2 +

σ) = ‖y′∗‖2(bT y′∗
‖y′∗‖2 + σ), and bT y∗

‖y∗‖2 + σ < 0. Proposi-
tion II.1 shows that for any solution x∗ of the primal prob-
lem (10), Ax∗ − b is constant. By the argument for Part (i),
Ax∗ − b = u∗ and Ax′∗ − b = u′∗ such that u∗ = u′∗, and u∗ =
σy∗
‖y∗‖2 and u′∗ =

σy′∗
‖y′∗‖2 . Thus y∗

‖y∗‖2 = y′∗
‖y′∗‖2 so that bT y∗

‖y∗‖2 + σ =

bT y′∗
‖y′∗‖2 + σ < 0. By ‖y∗‖2(bT y∗

‖y∗‖2 + σ) = ‖y′∗‖2(bT y′∗
‖y′∗‖2 +

σ), we have ‖y∗‖2 = ‖y′∗‖2. By y∗
‖y∗‖2 = y′∗

‖y′∗‖2 again, we have
y∗ = y′∗. �
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