Environmental Modelling and Software 145 (2021) 105175

ELSEVIER

Contents lists available at ScienceDirect
Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

StormReactor: An open-source Python package for the integrated modeling

of urban water quality and water balance

Brooke E. Mason ', Abhiram Mullapudi, Branko Kerkez

Check for
updates

Department of Civil and Environmental Engineering, University of Michigan, 2350, Hayward St, Ann Arbor, MI, United States

ARTICLE INFO ABSTRACT

Keywords:

Water quality
Water balance
Model integration
Real-time control
Stormwater

Retrofitting watersheds with sensing and control technologies promises to enable autonomous water systems,
which control themselves in real-time to improve water quality. To realize this vision, there is a need to improve
the degree of fidelity in the underlying representation of pollutant processes. This paper presents an open-source
Python package, StormReactor, which integrates the Stormwater Management Model’s water balance engine with
a new water quality module. StormReactor includes a variety of predefined pollutant generation and treatment

processes, while allowing users to implement additional processes on their own. To demonstrate the range of
possible water quality methodologies that can be modeled, we simulated suspended solids and nitrates in a real
and anonymized stormwater network. To illustrate StormReactor’s real-time control capabilities, a control
strategy was implemented to maximize denitrification. Case study results indicate a controlled asset can achieve
the same pollutant improvements as an uncontrolled asset in a quarter of the spatial footprint.

1. Introduction

A reliable and cost-effective method for treating stormwater pollut-
ants is real-time control (Sun et al., 2020; Garofalo et al., 2017; Shish-
egar et al., 2019). Retrofitting stormwater assets with sensing and
control technologies enables watersheds to adapt in real-time to indi-
vidual storms or pollutant loads (Persaud et al., 2019; Zhang et al.,
2018). These smart stormwater assets can be coordinated at the
watershed-scale to maximize pollutant treatment (Kerkez et al., 2016;
Eggimann et al., 2017; Berglund et al., 2020). In essence, this supports
the analogy of transforming our natural or urbanized watersheds into
distributed treatment plants by combining knowledge from stormwater
systems and process control (Mullapudi et al., 2017). To realize this
vision, we must first be able to model both pollutant transformations and
the impact of real-time control actions on water quality at the watershed
scale (Wong et al., 2006; Garcia et al., 2015; Berglund et al., 2020).This
can be achieved with integrated environmental modeling.

Integrated environmental modeling dynamically links distinctly
separate models during run-time to better understand the environmental
system’s response to human and natural stressors (Laniak et al., 2013;
Sutherland et al., 2017). Recently, integrated environmental modeling
has been used to combine climate and streamflow data with a water
budget model and a dynamic groundwater model (Shuler and Mariner,

* Corresponding author.
E-mail address: bemason@umich.edu (B.E. Mason).

https://doi.org/10.1016/j.envsoft.2021.105175
Accepted 17 August 2021

Available online 24 August 2021
1364-8152/Published by Elsevier Ltd.

2020), simulate the hydrological effects of land use changes on karst
systems (Bittner et al., 2020), link precipitation forecasts with real-time
hydrological and hydraulic modeling for urban flood forecasting
(Brendel et al., 2020), couple hydrodynamic and closed nutrient cycle
ecological models to predict dissolved oxygen (DO) in surface waters
(Suarez et al., 2019), and create a catchment-scale water quality
modeling and monitoring framework (Wang et al., 2019).

Integrated environmental modeling of stormwater requires the
coupling of water quantity and quality models. This necessitates simu-
lating a number of underlying processes, including precipitation, runoff,
climatic variables, land use, flow and pollutant routing, and pollutant
transformations (Deletic and Maksimovic, 1998; Egodawatta et al.,
2007; McCarthy et al., 2007). While a number of existing models are
able to represent these individual components effectively at a granular
scale, an all-in-one modeling package is still lacking. Given the
complexity of stormwater, specifically its nonlinear dynamics (Overton
and Meadows, 2013; Garcia et al., 2015), most existing models under-
standably seem to draw a line between flow and quality (Obropta and
Kardos, 2007; Bach et al., 2014). There has been a stated need to inte-
grate these two types of environmental models (Mullapudi et al., 2017;
Wang et al., 2019; Tuomela et al., 2018). To that end, the specific
contributions of this paper are:

mailto:bemason@umich.edu
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2021.105175
https://doi.org/10.1016/j.envsoft.2021.105175
https://doi.org/10.1016/j.envsoft.2021.105175
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2021.105175&domain=pdf

B.E. Mason et al.

1. StormReactor, a new water quality package implemented as an
extension of the popular US Environmental Protection Agency’s
(EPA) Stormwater Management Model (SWMM), which provides an
open-source Python programming interface for simulating complex
pollutant generation, treatment, and real-time control processes.

2. An evaluation of the package’s ability to model complex pollutant
transformations and real-time control actions using two case studies.

These contributions provide researchers and practitioners more
flexibility in simulating water quality processes and pollutant-based
real-time control at site and watershed scales.

2. State of stormwater quality modeling

Existing stormwater models can be broadly grouped into two cate-
gories: water quantity models and water quality models. Most storm-
water models primarily focus on coupled hydrologic-hydraulic processes
with limited capabilities for modeling water quality (e.g., MIKE
URBAN+, DR3M, STORM, MUSIC, SWMM) (Obropta and Kardos, 2007;
Bach et al., 2014). However, some stormwater models do focus on high
resolution water quality processes. These finite element models (e.g.,
HYDRUS-CWMI, FITOVERT) simulate complex pollutant trans-
formations within individual sites (Rizzo et al., 2014; Palfy and Lan-
gergraber, 2014; Giraldi et al., 2010). Unfortunately, scaling from site to
watershed scale becomes very difficult due to the input data re-
quirements and the difficulty of parameterization. The chasm between
these two types of stormwater models forces a trade-off between either
comprehensively modeling water quality at the site scale, or less
comprehensively modeling watershed-scale processes.

To avoid this tradeoff, researchers have modified existing storm-
water models, like SWMM, to expand their pollutant modeling capa-
bilities. SWMM, widely used in the US stormwater community, is an
open-source urban stormwater model (Rossman, 2015). SWMM’s
water quality model provides users the ability to introduce pollutants
and pollutant treatment, while also routing and calculating mass bal-
ance for each pollutant (Rossman and Huber, 2016). SWMM-TSS
modified SWMM to simulate total suspended solids (TSS) transport,
accumulation, and erosion in sewers and retention tanks (Sun et al.,
2017). As its name implies, this modification is only for TSS. Baek et al.
(2020) modified SWMM’s water quality module for low impact devel-
opment (LID) to include straining, decay, and decomposition of pollut-
ants. However, this modification does not work for stormwater storage
assets or links. Talbot et al. modified PCSWMM, a licensed version of
SWMM, to simulate sediment loading due to soil erosion (Talbot et al.,
2016). This modification is not open source and thus not open for
exploration or expansion by the community. All of these packages are
very useful for specific modeling tasks; however, they do not offer
general water quality modeling solutions.

Although these packages provide additional functionality, SWMM
has many remaining pollutant modeling limitations that must be
addressed. The water quality module is limited by the range of treatment
measures that can be modeled (Wong et al., 2006), specifically, limited
nutrient treatment capabilities inside storage nodes (e.g., basins, wet-
lands) (Troitsky et al., 2019; Niazi et al., 2017). SWMM cannot simulate
pollutant treatment inside links (e.g., conduits, channels) or pollutant
generation processes (e.g., resuspension, erosion) inside any stormwater
asset. Pollutant treatment cannot be turned on or off based on site
conditions or other parameters, requiring treatment to run for the entire
simulation. All of these constraints limit a user’s ability to model com-
plex pollutant transformations, necessitating a more generalizable and
scalable approach.

Aside from water quality limitations, many stormwater quality
models have limited or no ability to simulate real-time control. Real-
time control is made possible through the installation of sensors
(which can monitor the flow and quality parameters) and actuators
(which can control the flow of water) (Kerkez et al., 2016; Schu et al.,

Environmental Modelling and Software 145 (2021) 105175

2004). To realize the goal of autonomous watersheds, we must be able to
model real-time control strategies (Garcia et al., 2015; Vanrolleghem
et al., 2005). One open-source and popular real-time control package is
PySWMM, a Python wrapper for the SWMM computational engine.
PySWMM queries stormwater states directly from SWMM, which is used
to apply control actions by setting the control parameters for valves,
gates, and pumps in real-time (Mcdonnell et al.,, 2020). However,
PySWMM presently only enables real-time control decisions to be made
based on water quantity parameters (e.g., flow, head, depth, volume).
Therefore, there is a need for a comprehensive package that can both
simulate water quality processes and real-time control.

3. New package for modeling stormwater quality

A watershed-scale pollutant transformation model is comprised of
the water quantity and water quality representations of the stormwater
network (Fig. 1). These representations provide insight into which sub-
components are already well addressed by existing models, and which
others should be expanded or developed. The water quantity represen-
tation focuses on the conveyance of water through the network of links
(e.g., channels, conduits) and nodes (e.g., detention basins, retention
basins, wetlands). The hydrologic and hydraulic processes, which un-
derpin the water quantity sub-component, are well established in
stormwater models (Obropta and Kardos, 2007; Bach et al., 2014). The
water quality representation includes the pollutant generation and
treatment processes that occur in stormwater assets (e.g., wetland as a
continuously tank reactor (CSTR), retention basin as a settling tank).
Often, this sub-component is significantly simplified (e.g., first order
decay models) instead of drawing from water treatment process litera-
ture (Mullapudi et al., 2017), leaving room for expansion.

Guided by the state of these sub-components in current stormwater
models, we developed StormReactor, a new water quality Python pack-
age, coupled with SWMM. The choice to build a module for SWMM was
based on a number of factors. First, SWMM has a verified hydraulic
solver, which is critically important for accurately modeling flow and
pollutant routing (Rossman, 2015). In addition, building upon SWMM’s
popularity engages a large user base ensuring it is accessible to more
people. Finally, SWMM is open source, which enables modification of its
code and the use of popular Python wrappers, such as PySWMM.

Section 3.1 and Section 3.2 detail the development and structure of
StormReactor. StormReactor was created by (i) modifying the SWMM and
PySWMM source code to allow water quality states to be modified and
(ii) building an additional Python library to interface water quality
modeling with these popular tools.

3.1. SWMM and PyYSWMM

To address the limitations of SWMM’s water quality module, we
modified SWMM'’s C source code' by introducing getters and setters to
allow for real-time access of the model states during simulation
(Table 1). A getter enables a user to access a variable while a setter en-
ables a user to change the value of a variable. We then modified
PySWMM’s Python source code” to gain access to SWMM water quality
states and to provide the convenience of modeling in a popular scripting
language. While PySWMM already allowed for the interaction with
SWMM’s quantity states (e.g., flows, depths), it needed to be expanded
to support interaction with water quality states (Table 1). Now a user
can interact with a pollutant’s concentration in any node or link during
any routing time step. In this way, SWMM is used to transport pollutants
using its reliable hydraulic and routing engine, PySWMM is used to
support Python interaction with SWMM’s C engine, and StormReactor
adds supplementary support for water quality modeling (Fig. 2).

! https://github.com/OpenWaterAnalytics/Stormwater-Management-Model.
2 https://github.com/OpenWaterAnalytics/pyswmm.

https://github.com/OpenWaterAnalytics/Stormwater-Management-Model
https://github.com/OpenWaterAnalytics/pyswmm

B.E. Mason et al.

Environmental Modelling and Software 145 (2021) 105175

Water Quantity Representation

L

Fig. 1. A watershed-scale pollutant transformation model is comprised of the water quantity and quality representations of the stormwater network. The water
quantity representation, often modeled by SWMM, focuses on the conveyance of water through the network of links (e.g., channels, conduits) and nodes (e.g.,
detention basins, retention basins, wetlands). The water quality representation, often modeled using water treatment plant process literature, focuses on the water

treatment processes that occur in stormwater assets.

Table 1

The getters and setters added to both SWMM and PySWMM.
Variable Type Description
NODEQUAL Getter current pollutant concentration in a node
NODECIN Getter inflow concentration in a node

NODEREACTORC Getter updated concentration after the mass balance of flows

and pollutants in a node

NODEHRT Getter hydraulic residence time (hours) in a node
LINKQUAL Getter current pollutant concentration in a link
TOALLOAD Getter total quality mass loading in a link

LINKREACTORC Getter ~ updated concentration after the mass balance of flows
and pollutants in a link
current pollutant concentration in a link

current pollutant concentration in a node

Node.extQual Setter
Link.extQual Setter

3.2. StormReactor

StormReactor enables users to model water quality, while fully
leveraging the well validated SWMM functionality for flow and routing.
StormReactor provides a high-level programming interface that removes
the user from the complex interactions between SWMM, PySWMM, and
StormReactor, and only requires a few Python command statements to
model pollutant transformations. Users have the ability to select a water
treatment method in any stormwater asset and specify the routing time
steps across which to carry out simulations. To promote uptake by an
existing community of modelers, a user can select any of the already
existing SWMM treatment functions outlined in the SWMM Reference
Manual Volume III: Water Quality (Table 2) (Rossman and Huber, 2016).
Users can also select from a library of our new water quality methods,
including reactor models and stream processes, such as erosion
(Table 2). More importantly, users can implement their own custom
pollutant models using a Python interface (Section 3.2.3). These custom
pollutant models can be built upon states of the various water quantity
and quality parameters in SWMM (e.g., flow, depth, volume, concen-
tration) as well as interact with other Python packages (e.g., SciPy).
Readers are directed to Zenodo for StormReactor’s source code and
documentation (Mason and Mullapudi, 2021).

3.2.1. User experience

StormReactor can be installed using pip.” To use StormReactor, first
import both StormReactor and PySWMM (Fig. 3). Next, define a
configuration dictionary stating at which nodes and links water quality
will be modeled, as well as the desired pollutants, water quality
methods, and the parameters required for each method. Then, create an
instance of the water quality class by calling WaterQuality() which takes
two arguments: config, the configuration dictionary; and sim, a
PySWMM simulation object, which encapsulates all the SWMM simu-
lation functionality (e.g. start/stop simulation, get/set attributes).
Finally, call the class instance method updateWQState() to run the
desired water quality method.

Once initialized, StormReactor executes the simulation loop. First,
StormReactor queries the necessary water quantity and quality param-
eters (e.g., water depth, pollutant concentration) for specific stormwater
assets at the current routing time step. Next, it uses the queried pa-
rameters to compute and set the new pollutant concentration using a
predefined or custom water quality method. If a water quality compu-
tation requires a time parameter, the length of the routing time step is
used. If real-time control is being modeled, selected water quality and/
or quantity data are used to calculate the control decisions. SWMM then
enacts the real-time control decisions and routes the pollutant(s) and
flows through the network. This process can be repeated at any or every
routing time step. The simulation loop terminates after the number of
desired routing time steps or the SWMM model is complete.

3.2.2. Architecture

StormReactor’s architecture follows an object-oriented programming
paradigm. This matches already popular Python conventions and max-
imizes potential for user customization. StormReactor begins by defining
a class: WaterQuality(). The class has an _init_ method which takes
three parameters: self, an instance of the class; sim, the PySWMM
simulation object; and config, the configuration dictionary. When an

3 https://pypi.org/project/stormreactor.

https://pypi.org/project/stormreactor

B.E. Mason et al.

Environmental Modelling and Software 145 (2021) 105175

PySWMM

External Libraries —>
Rt
Inpgt File | —»
| .inp |

@

Q

Configuration :
Dictionary

.rpt, .out

l C Getter and Setter T Uni-directional Information Flow

Fig. 2. StormReactor follows an object-oriented programming paradigm. This modular approach allows for modifications and reuse by users. StormReactor uses a
configuration dictionary and can work with external Python libraries. StormReactor interacts with PyYSWMM which interacts with SWMM all via getters and setters.
SWMM requires an input file and then when a simulation is complete, it creates the report and output files.

Table 2

Overview of the current water quality methods that can be selected from
StormReactor including a method explanation and the asset type (node, link, or

both) it can be used for.

Water quality method Asset Method explanation
type
Event Mean Both Treatment results in a constant concentration
Concentration

Constant Removal Both Treatment results in a constant percent
removal

Co-Removal Both Removal of some pollutant is proportional to
the removal of some other pollutant

Concentration- Both When higher pollutant removal efficiencies

Dependent Removal occur with higher influent concentrations

Nth Order Reaction Both When treatment of pollutant X exhibits nth

Kinetics order reaction kinetics where the
instantaneous reaction rate is kC"

k-C* Model Node The first-order model with background
concentration made popular by Kadlec and
Knight (1996) for long-term treatment
performance of wetlands.

Gravity Settling Both During a quiescent period of time within a
storage volume, a fraction of suspended
particles will settle out

CSTR Node CSTR is a common model for a chemical
reactor. The behavior of this CSTR is modeled
assuming it is not in steady state because
outflow, inflow, volume, and concentration
are constantly changing.

Erosion Link Engelund and Hansen (1967) developed a

procedure for sediment transport in streams.

instance of the class is created, it automatically calls the _init_ method,
which does the following: (1) initializes the asset flag; (2) calls the
PySWMM method sim.start_time to get the start time of the simulation;
(3) initializes the variable last_timestep to aid in calculating the length of
the routing time step; (4) initializes the ordinary differential equation
(ODE) solver for the CSTR water quality method; and (5) defines the
callable names of the water quality instance methods. The WaterQuality
O class also defines two important methods: updateWQState() and
updateWQState_CSTR(), which update the pollutant concentrations
during a SWMM simulation for non-CSTR and CSTR methods, respec-
tively. The class also has a collection of Python instance methods which
specify the various treatment and generation processes that can be
performed on a pollutant (Table 2).

Time steps are handled by StormReactor by relying on SWMM. Many
of the treatment methods do not require a time parameter (e.g., event
mean concentration, constant removal, k-C* method). StormReactor
handles these methods just as they would be handled in native SWMM.
These methods grab the current pollutant concentration and then cal-
culates and sets the new concentration at the end of the current routing
time step. For the methods that do require a time parameter (e.g., N-th
order reaction kinetics, erosion, gravity settling), StormReactor com-
putes the routing time step length (dt) using the same method as SWMM.
To calculate dt, StormReactor calls the PySWMM function sim.current -
time to get the current simulation time, subtracts the previous routing
time step saved in the variable

last_timestep, and then converts it to seconds. In this way, Storm-
Reactor is dependent on SWMM to get dt. Once dt is calculated and the
current concentration is queried, the new concentration is computed
and set at the end of the current routing time step. This new concen-
tration then becomes the concentration at the beginning of the next
routing time step. Routing time steps are usually on the order of seconds,
whereas water quality processes may take much longer. Therefore, users
must also parameterize water quality coefficients on the order of
seconds.

3.2.3. Implementing custom pollutant models

To implement a new custom pollutant model, users can either (1) add
their new class instance method to StormReactor’s code base or (2) build
their model directly in their Python script using the appropriate getters
and setters (Table 1). We recommend the first option if code is to be more
seamlessly shared with others. To add a new method to the code base a
user must:

1. Define the new method using the following convention: NewMethod
(self, ID, pollutantID, parameters, flag). Non-public Python instance
methods should always start with an underscore. The new method
requires five parameters: self, an instance of the class; ID, the node or
link name in SWMM; pollutantID, the pollutant index in SWMM;
parameters, the water quality method parameters; and flag, used to
determine if the method is for a link or node.

2. Provide a text description of the method including the water quality
method parameters and their required units. Be sure to note if the
method is for links, nodes, or both.

3. Write the pollutant transformation code for the new method.

B.E. Mason et al.

Environmental Modelling and Software 145 (2021) 105175

import packages
from StormReactor import WaterQuality

from pyswmm import Simulation

build water quality configuration dictionary

{ 'pollutant': @, 'method': 'GravitySettling',

initialize water quality

config = { 'detention_basin': { 'pollutant': @, 'method': 'GravitySettling', 'parameters': {'k': 0.0005,'C_s': 21.0}, \
‘retention_basin': { 'pollutant': @, 'method': 'GravitySettling', ‘'parameters': {'k': 0.0005,'C_s': 21.0} }, \
‘wetland': { 'pollutant’': 1, 'method': 'CSTR', 'parameters': {'k': -0.000089,'n': 1.0,'Co': 0.0} }, \
‘channel': { 'pollutant': @, 'method': 'Erosion', 'parameters': {'w': 10.0,'So': 0.037,'Ss': 1.6, 'd50': 0.04} }, \

‘parameters’': {'k': 0.0005, 'C_s': 21.0} } }

with Simulation ('example.inp') as sim:
WQ = WaterQuality(sim,config)

) . Detention
for step in sim: Basin

update each routing time step

Channel

Retention
Basin Wetland

WQ.updateWQState()

Fig. 3. A Python code snippet that illustrates how some of the TSS and nitrate methods from the two case studies were implemented using StormReactor. The package
is imported and the configuration dictionary is defined. The configuration dictionary includes the node/link IDs from the SWMM input file, the pollutant indices
based on the order in which they are defined in the SWMM input file, the pollutant transformation methods selected, and the required pollutant transformation
parameters. The methods are initialized by calling waterQuality(sim,config) and the pollutant transformations are computed by calling updateWQState() each

routing time step.

(a) Define any variables that may be needed for the pollutant
transformation calculations.

(b) Query SWMM variables that are necessary for the computation
(e.g., pollutant concentration, water depth, current simulation
time) using PySWMM getters.

(c) Compute the pollutant transformation concentration.

(d) Set the new pollutant concentration using PySWMM setters.

4. Define the callable name in the _init_ method.
5. Write unit tests for the new method and add them to test_links.py
and/or test_nodes.py in the tests folder.

Once the new method is added to StormReactor’s code base, the user
can then use it following the steps outlined in Section 3.2.1.

4. Water quality case studies

The study area is a 7.8 km? urban, separated stormwater network
(Fig. 1) located in Michigan, which suffers from erosion problems due to
high flashy flows. In this network, stormwater first flows through a
detention basin into a long channel. A detention basin has its outlet at
the bottom of the basin so between storms it is usually dry. The long
channel then flows into a retention basin. A retention basin has its outlet
at a higher point so it tends to retain a permanent pool of water. If the
height of the water in the retention basin is less than a specified
threshold, water flows directly into a constructed treatment wetland.
Otherwise, water bypasses the wetland and overflows into another
channel. Water leaving the wetland flows into the same channel as the
overflow from the retention basin. The end of this channel is considered
the outfall of the stormwater network.

For the two case studies, we isolated the network described above
from a calibrated SWMM model of the larger, regional stormwater
network. Since we removed the upstream assets from the model, we
added inflows to simulate the real system response. The network was
forced with a 5-year, 12-h storm, which corresponds with design
guidelines in the study region (Wong and Kerkez, 2018). Readers are
directed to Zenodo for the SWMM input files and simulation code
(Mason, 2021a,b).

We provide these case studies to illustrate the following capabilities
of StormReactor: (1) StormReactor can model SWMM’s pollutant treat-
ment equations as if we used SWMM’s water quality module directly; (2)

StormReactor can model new water quality processes (e.g., channel
erosion, CSTRs in series); and (3) StormReactor enables water quality-
based real-time control actions. The first case study uses TSS to illus-
trate the first two capabilities (Section 4.1) and the second case study
uses nitrate to demonstrate the third capability (Section 4.2).

4.1. TSS case study

TSS (often measured as concentration in mg/L) is a commonly
monitored pollutant because it negatively impacts water quality. These
impacts include increasing turbidity, inhibiting plant growth, reducing
species diversity, as well as providing transportation for nutrients and
heavy metals (Shammaa and Zhu, 2001; Schilling et al., 2017; Dong
et al,, 1984). To mitigate these negative impacts, researchers and
practitioners must be able to model deposition, erosion, and transport
processes. Section 4.1.1 details how StormReactor was used to model
these TSS processes and Section 4.1.2 provides the simulation results
and discussion.

4.1.1. TSS methods

Gravity settling was assumed to occur in the wetland, basins, and
channels. We selected the gravity settling equation from the SWMM
Reference Manual Volume III: Water Quality to illustrate how StormReactor
allows users to model and match existing SWMM treatment equations
(Rossman and Huber, 2016). The gravity settling equation is defined as:

C=C"+(C—C)exp(—kAt/d) 1)

The values for the steady state concentration (C* = 21 mg/L) and the
settling velocity (k = 0.0005 m/s) were selected based on prior moni-
toring campaigns in the region. At each routing time step (At), depth (d)
was queried from SWMM and the current concentration (C) was
computed.

Along with gravity settling, erosion was also assumed to occur in
both channels. Many equations exist for modeling erosion and sediment
transport, many of which can be implemented in our library. For illus-
tration purposes, we selected the Engelund-Hansen sediment transport
formula (Engelund and Hansen, 1967).

The formula of Engelund and Hansen formula (1967) can be
expressed as:

B.E. Mason et al.

f-o =0.10"? @)
where

f= (z.g.d.gu)/vz 3)
0= (d’Su)/[(SA - 1)d50} (C))
g = o[(s,~ Dg-dy] ®)

where f is a friction factor, ¢ is a dimensionless sediment transport
function, 0 is a dimensionless shear parameter, g is gravitational accel-
eration, d is hydraulic depth, S, is channel slope, v is mean channel
velocity, S; is specific gravity of sediment, ds(is mean particle diameter,
and g, is total bed-material sediment discharge by weight per unit width
(USDA, 1983; Wu et al., 2004). The values for mean particle diameter
(dsp = 0.04 mm), sediment specific gravity (S; = 1.6), and channel slope
(0.037-1.8 m/m) were selected based on site data. At each routing time
step, the required parameter values were queried from SWMM, the
sediment discharge concentration was computed, and the new TSS
concentration was set in SWMM.

Root mean square error was used to validate both settling and
erosion in the nodes and links. For gravity settling in the nodes, root
mean square error was calculated for the cumulative TSS load from the
StormReactor simulation and a native SWMM simulation (Fig. 4). The
root mean squared error was zero for all three nodes. Since treatment in
SWMM links is a new feature of StormReactor, gravity settling and
erosion in the channels had to be validated differently. The load leaving
the channel was compared to the load entering the outfall. The root

Environmental Modelling and Software 145 (2021) 105175

mean squared error was 6.19E-13.

TSS concentrations measured directly downstream of our outfall
average 21 mg/L during steady state conditions and 175 mg/L during
storm conditions. For our simulation, TSS was assumed to follow an
event mean concentration (EMC) wash-off model (Rossman, 2015).
Since this network is dominated by channel erosion and not subcatch-
ment wash-off, the steady state EMC was used in the wash-off model.
The additional TSS needed to match storm event concentrations was
provided by the erosion model.

4.1.2. TSS results and discussion

Results show that this system is dominated by erosion processes with
only small reductions due to gravity settling (Fig. 5). The detention
basin’s TSS concentration averaged 13 mg/L due to the small EMC used
in the wash-off model. The retention basin saw higher concentrations
throughout the simulation, with an average TSS concentration of 121
mg/L. This was a result of significant erosion occurring in the channel
that connects the two basins. The wetland’s TSS concentration was
lower than in the retention basin, but still averaged 100 mg/L during the
simulation. The reduction was due to settling in the wetland. The out-
fall’s average TSS concentration was 107 mg/L. The increase in con-
centration at the outfall was again due to channel erosion occurring
between the wetland and the outfall.

StormReactor improved TSS process representation by including
channel erosion. Prior to StormReactor, users could not model pollutant
generation processes unless they modified the parameters in the SWMM
build-up and wash-off equations. In our case study, this would have not
reflected reality because it would have resulted in high TSS

Retention
Basin
StormReactor
4 4 == SWMM 4 - 4 -
’———1 ’—
/7~ /
/ J
23- ! 3 - 3 - /
— I II
® I f
S I I
(0] ' l
= |
E 2 I 2 2 4 'l
£ ' I
> I 1
O | I
! I
191 | 1 11 I
! I
| I
| 1
I 1
I
O - T T T 0 - T T T T 0 { T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Time (days)

Fig. 4. Cumulative TSS load comparing gravity settling using SWMM'’s traditional water quality module and StormReactor’s water quality module for the detention
basin, retention basin, and wetland. Root mean squared error was zero for each asset.

B.E. Mason et al.

Environmental Modelling and Software 145 (2021) 105175

Channel
Retention
Basin

2 9 9 9 9
£ 6- 6 6 6 -
FRER 3- 3- 3-
£ 0 0 0 0
%;150— 150 - 150 - 150 -
£ 1001 100 - 100 - 100 -
v 50 - 50 - 50 - 50 -
F oo 0 0 0
3 3 3 3
£ 5] 2 - 2 - 2 -
<
a1 1 1 1
o

0 0 0 0
- 9 9 9 9
E 61 6 1 61 6
3 3- 31 31 3 -
45 0 T T T T 0 A 0 1 T T 1 0 T T T 1
o 0123465 012345 0123465 0123465

Time (days)

Fig. 5. Simulation results for the various assets in the stormwater network including inflow rate (top panel), TSS concentration (second panel), storage depth (third

panel), and outflow rate (bottom panel).

concentrations in the detention basin. Since most of the TSS added to
this system comes from downstream channel erosion, high TSS con-
centrations should only be found in the downstream assets. StormReactor
now provides the ability to model pollutant generation processes in the
assets in which they occur.

The TSS simulation took 42.35 s on a 2018 MacBook Pro (Processor:
2.2 Ghz 6-Core Intel Core i7; Memory: 16 GB 2400 MHz DDR4) as
compared to 6.75 s without the TSS model. As we scale to larger net-
works, future work must evaluate the computational efficiency of
StormReactor.

4.2. Nitrate case study

Excess nitrogen can cause water quality impairments, such as
eutrophication, harmful algal blooms, and fish kills (Conley et al., 2009;
Howarth and Paerl, 2008). In order to mitigate these negative impacts,
researchers and practitioners must be able to model the nitrogen cycle.
This is presently not possible in models like SWMM, because the
multiphase, multicomponent reactions which are affected by the aero-
bic/anoxic conditions in the network cannot be simulated (Troitsky
et al., 2019; Niazi et al., 2017).

Section 4.2.1 details how StormReactor was used to model nitrate.
Section 4.2.2 explains the addition of real-time control, which will
control the stormwater network in response to water quality states. To
our knowledge, this case study is the first to model nitrate treatment
through real-time control at the scale of an entire stormwater network.

4.2.1. Nitrate methods
Modeling nitrogen interactions in stormwater is difficult because

nitrogen exists in various forms (e.g., nitrate, nitrite, particulate nitro-
gen, ammonia, ammonium, dissolved organic nitrogen, nitrogen gas)
and undergoes numerous transformations (e.g., denitrification, nitrifi-
cation, ammonification, fixation, and dissimilatory reduction) (Troitsky
et al., 2019). In stormwater basins and wetlands, nitrogen is typically
removed through three main mechanisms: assimilation, sedimentation,
and denitrification. However, the primary mechanism is denitrification
(Yang and Lusk, 2018). High denitrification rates are a result of high
nitrate concentrations, low DO concentrations, and readily available
sources of carbon (e.g., decaying plants and grass) (Kadlec and Wallace,
2009; Perryman et al., 2011).

For this case study, we focused only on nitrogen in the form of nitrate
and therefore, denitrification as the primary removal mechanism. We
selected nitrate because site data and other studies indicate runoff is
dominated by this form of nitrogen (Kadlec and Wallace, 2009). Deni-
trification was assumed to occur only in the wetland because wetlands
tend to have large quantities of biomass and thus higher denitrification
capacity than other storage nodes (White and Reddy, 2009; Scholes
et al., 2008). Since this case study assumed high nitrate concentrations
and readily available sources of carbon, DO became the limiting factor
for denitrification, necessitating us to model DO concentrations as well.

The wetland DO model was implemented using the CSTR method in
StormReactor. Based on findings by Kadlec (2010), we assumed the
wetland functioned as three CSTRs in series. We selected CSTRs to
illustrate how StormReactor enables wastewater treatment process
models. Often CSTRs are modeled assuming steady state conditions,
where the influent concentration, inflow rate, and outflow rate are
constant, and therefore, the concentration in the control volume is also
constant. Steady state condition allows for a closed form solution to the

B.E. Mason et al.

CSTR equation. However, in a wetland, influent concentration and flows
are dynamic and therefore, the CSTR should be assumed to be unsteady.
We solved the unsteady CSTR with an ODE solver to show how Storm-
Reactor integrates with other computational Python packages. We
selected the SciPy ODE numerical solver using the explicit runge-kutta
method* (Virtanen et al., 2020). The CSTR equation is defined as:

dc

— V=0uCy -

it C — kCV 6
i Qou (6)

Based on data collected in this network, the influent DO concentra-
tion (Cy) to the wetland was assumed to be 9.6 mg/L. The reaction rate
constant (kpp) was assumed to be 0.2/hr (Reddy and Patrick, 1984). At
each routing time step, the dynamic parameters were queried from
SWMM (Qin, Qout, V) and the ODE solver computed the current con-
centration (C). Since the DO concentration was only relevant to trig-
gering denitrification in the wetland, DO was tracked only in Python and
therefore, the new DO concentration did not need to be set in SWMM (i.
e., DO was not added as a pollutant in the SWMM input file).

Nitrate treatment was triggered when the DO concentration dropped
below 1 mg/L, signaling anoxic conditions. Nitrate treatment in the
wetland was also modeled in StormReactor using three CSTRs in series
(Kadlec and Wallace, 2009). The nitrate concentration in the real
stormwater network averages less than 1 mg/L during steady state and
storm conditions. Although this low level may exceed recommended
water quality criteria (EPA, 2002), assuming a larger concentration will
result in higher rates of denitrification for simulation purposes. There-
fore, for our simulation, nitrate was added to the system using SWMM’s
wash-off model assuming an EMC of 10 mg/L, which aligns with 13% of
stream sites monitored by Mueller and Spahr (2005). The nitrate reac-
tion rate constant (kyop) was assumed to be 1.5/day (Reddy and Patrick,
1984). At each routing time step, the dynamic parameters were queried
from SWMM (Qin, Qouts Cin, V), the ODE solver computed the current
concentration (C), and that concentration was then set in SWMM. To
validate the CSTRs in series model, StormReactor’s steady state con-
centration at the end of the simulation was compared with the steady
state analytical solution. The wetland’s nitrate concentration from
StormReactor converged to the computed steady state analytical solution
(5.7% error).

4.2.2. Nitrate real-time control strategy

A water quality-based controller was constructed to maximize
denitrification without flooding the wetland (Algorithm 1). The
controller held water in the wetland until the nitrate was treated or
flooding was imminent. It also held water in the upstream detention
basin until the downstream wetland had sufficient storage capacity to
handle more inflow. When the controller opened a valve, it regulated the
size of the opening (0-100%) to release water at a rate proportional to
the asset’s water level by solving the submerged orifice equation
(Rossman, 2015). It was assumed that the network had the necessary
water quantity and quality sensors and the outlets of the detention basin
and the wetland had controllable valves. To reflect real world imple-
mentation, control decisions were constrained to every 15 min. The
controlled scenario was compared against a baseline, uncontrolled sce-
nario to determine the effectiveness of the controller.

Algorithm 1. The controller’s objective was to maximize denitrifica-
tion without flooding the wetland. The controller computed the valve’s
percent opening for the detention basin (valvepg) and wetland (valvey).
Water was released proportionally by solving the submerged orifice
equation (Qmgx = CA/ \/@) for C, the discharge coefficient, where
Qmax Was the maximum flow rate desired (Qme, = 2 m°/s), A was the
completely open orifice area, g was acceleration due to gravity, and

4 https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.
html.

Environmental Modelling and Software 145 (2021) 105175

d was water depth. Qnq was the flow rate threshold at which down-
stream sediments were assumed to re-suspend (Mullapudi et al., 2017).
The computed value for C was multiplied by a scaling factor f (f = 1.75 in
this study).

1 Compute wetland’s DO and nitrate concentrations:
dC _ Qin,-Cin,—Qout,-Cout,
dr v, kt Ct

2 for i in controllable valves do

3 if DO' > 1lmg/L then
4 if dy <3m then
5 valvey, =0

6 valvepp = f - Qpax/AppV2- 8- dpp

7 else

8 UaerW=f-Qmax/AW\/2-g~dW

9 UaerDB = 0

10 else if DO < Img/L then
11 if C, <5mg/L then

12 | valve, = f - Qpax/AiN2 -8 - dy)

13 else

14 if dy, < 3m then

15 | valve; =0

16 else

17 UaerW=f'Qmax/AWV2'g'dW)
18 valvepp =0

19 end

4.2.3. Nitrate results and discussion

The controller met the control objective of maximizing denitrifica-
tion (Fig. 6). The controlled scenario saw a 95% nitrate load reduction at
the outfall as compared to the uncontrolled scenario. The load reduction
was a result of keeping the valves closed when either the wetland was
oxic or the wetland’s nitrate concentration was too high. The controller
used both the wetland and the upstream basin for storage until the
conditions were appropriate to release flows. To put this load reduction
into context, SWMM was used to determine how large the studied
wetland would need to be to obtain the same load reduction without
real-time control. After incrementally increasing the area of the wetland
and rerunning the SWMM simulation several times, it was determined
that the wetland would need to be four times as large to obtain the same
load reduction.

The controller also ensured that flooding did not occur in any of the
assets (Fig. 6). The water depths in the detention basin and wetland were
kept below their flooding thresholds. These two assets did not flood
because the detention basin had significant storage capacity, and the
controller opened the wetland valve whenever it was close to its
maximum capacity. In both scenarios, the retention basin depth resulted
in some flows bypassing the wetland. Unfortunately, this is because of
how the retention basin/wetland system was designed. If a control valve
was installed or the bypass height was increased on the retention basin,
these bypass flows could have been reduced.

StormReactor provided the ability to implement a water quality-
based controller in SWMM. Prior to this package, users trying to meet
water quality goals with controllers could only access water quantity
states. Now, users can access water quality states and build a pollutant
concentration-based controller with only a few lines of Python code.

The real-time controlled nitrate simulation took 86.84 s on a 2018
MacBook Pro (Processor: 2.2 Ghz 6-Core Intel Core i7, Memory: 16 GB

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

B.E. Mason et al.

Environmental Modelling and Software 145 (2021) 105175

Channel
Retention
Basin
9 9 9 9
32 6 6 1 6 1 6 1
€E
== 8] 3—k 3 3—t
18 -
0 \ — O-L 0 = 0-..’13—-:_
60 60 60 1 60
— 40 1 a
(@]
05, 40 40 - 204 p 40
9¢E 0
20 - 20 - 2511 20 -
N [0 ====== U o LIz
6 I — 3 3
I\ N
2F [
o= 34 1.5 1 1591 1.5 1
(a) L l \\
N\ » Pryp—— N | .
R 0 - 0 - 0 T ———
$.10 8T 1.0 87
5801 "o
> 2?} 4 91 4—:
=¥
5% n - N
3E o = 0 - 0 0 -
o 21 e 2 2
§A / f————————-
.2 141 1 mmm—————— 171
E= : I 1
U O_ T T T T T T O_ T T T T T O_7'I T T T T T 0 'I T T T T T
0 2 4 6 8 1012 0 2 4 6 8 101 0 2 4 6 8 1012 0 2 4 6 8 1012
Time (days)

Fig. 6. Comparison of the uncontrolled (dotted lines) and controlled (solid lines) scenarios for the various assets in the stormwater network including inflow rate (top
panel), nitrate and DO concentration (second panel), storage depth (third panel), valve position and outflow rate (fourth panel), and cumulative nitrate load (bottom
panel). In the depth panel, the gray solid lines depict the flooding thresholds for the detention basin and the wetland and the bypass threshold for the retention basin.
No flooding occurred but some flows did bypass the wetland in both the uncontrolled and controlled scenarios.

2400 MHz DDR4). The nitrate simulation without real-time control took
86.22 s, as compared to the simulation without water quality or real-
time control which took 12.30 s. The increased computational time
was a result of the longer simulation (twelve days instead of five) and the
ODE solver. Therefore, to increase computational efficiency in the
future, a discrete form update could be used instead of an ODE solver.

5. Discussion

As shown in the case studies, StormReactor improved water quality
process representation at both the site and watershed scale. Rather than
implementing an all-in-one quality-quantity model, we coupled the
popular water quantity features of SWMM with StormReactor’s water
quality model. To illustrate the fidelity of StormReactor, we showed how
a variety of pollutant transformations (e.g., erosion, settling, CSTR)
matched expectations from established models and methods. Therefore,
StormReactor was shown to be an effective tool for modeling water
quality.

To the best of our knowledge, our modular framework supports

many of the features seen in advanced hydraulic and water quality
packages. For advanced users, StormReactor’s integration with Python
will support numerical solvers and packages, higher order reaction ki-
netics, wastewater process models (e.g., ASM-1), and combined sewer
networks. In its present implementation, StormReactor poses a few
constraints which users need to be aware of before choosing to use it in
their stormwater studies. It does not presently support LID (i.e., green
infrastructure) water quality processes because SWMM handles LID
water quality outside of its link and node data structures. In addition,
StormReactor does not support high spatial resolution water quality
processes (e.g., advection, diffusion, dispersion). Both LID access and
high spatial resolution models can be added and are proposed as future
work. Aside from these limitations, StormReactor provides a general
water quality modeling solution that is flexible and expandable.

The nitrate case study points to the potential of using real-time
control or “smart” stormwater systems for ecological benefits. Water-
shed water quality goals can be acheived by tuning real-time control.
The ability to model complex water quality interactions enables the
development and testing of real-time control algorithms that use

B.E. Mason et al.

pollutant concentration, load, and sensor data. We can now utilize
formal control theory (e.g., PID, MPC, genetic algorithms) to explore
emergent behavior, stability, and optimal control strategies at both the
site and watershed scale. We can then use this information to optimize
asset treatment performance, pushing our watersheds to behave like
distributed water treatment plants, and ultimately improve watershed
water quality.

6. Conclusions

StormReactor improves the fidelity of modeling pollutant trans-
formations and pollutant-based real-time control; moving us a step
closer to realizing the goal of controlling entire watersheds as real-time
distributed treatment plants. Additional fidelity could be gained by
adding LID access and high spatial resolution models to StormReactor.
The flexibility of StormReactor gives researchers and practitioners
immense freedom in modeling water quality. We hope that this package
will become a community-driven resource. We see opportunities for the
research community to collaborate on the development of StormReactor
by contributing their own pollutant generation and treatment methods.
As we scale to larger networks, future work must evaluate the compu-
tational efficiency of StormReactor. In addition, significant future
research stands to be enabled through the use of holistic frameworks,
such as those posed in this paper. In particular, future studies have the
potential to evaluate how to control entire watersheds in response to
ecological objectives.

Software availability

Name of software: StormReactor Developers: Brooke Mason, Abhiram
Mullapudi Year first available: 2020 Operating system: OSX, Windows,
or Linux Software required: Python 3.6.0+, pyswmm 1.0.1+4, numpy
1.21.0+, scipy 1.7.0+ Availability and online documentation: https://g
ithub.com/kLabUM/StormReactor. A snapshot of the GitHub repository
consistent with the description in this paper is available in Zenodo
(Mason and Mullapudi, 2021).

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was funded by the U.S. National Science Foundation
(Award Numbers: 1750744 and 1737432).

References

Bach, P.M., Rauch, W., Mikkelsen, P.S., McCarthy, D.T., Deletic, A., 2014. A critical
review of integrated urban water modelling - urban drainage and beyond. Environ.
Model. Software 54, 88-107. https://doi.org/10.1016/j.envsoft.2013.12.018.

Baek, S.S., Ligaray, M., Pyo, J., Park, J.P., Kang, J.H., Pachepsky, Y., Ahn Chun, J., Hwa
Cho, K., 2020. A novel water quality module of the SWMM model for assessing Low
Impact Development (LID) in urban watersheds. J. Hydrol. 586 https://doi.org/
10.1016/J.JHYDROL.2020.124886.

Berglund, E.Z., Monroe, J.G., Ahmed, 1., Noghabaei, M., Do, J., Pesantez, J.E., Khaksar
Fasaee, M.A., Bardaka, E., Han, K., Proestos, G.T., Levis, J., 2020. Smart
infrastructure: a vision for the role of the civil engineering profession in smart cities.
J. Infrastruct. Syst. 26 https://doi.org/10.1061/(ASCE)IS.1943-555X.0000549.

Bittner, D., Rychlik, A., Kloffel, T., Leuteritz, A., Disse, M., Chiogna, G., 2020. A gis-based
model for simulating the hydrological effects of land use changes on karst systems —
the integration of the lukars model into freewat. Environ. Model. Software 127.
https://doi.org/10.1016/j.envsoft.2020.104682.

Brendel, C.E., Dymond, R.L., Aguilar, M.F., 2020. Integration of quantitative
precipitation forecasts with real-time hydrology and hydraulics modeling towards
probabilistic forecasting of urban flooding. Environ. Model. Software 134. https://
doi.org/10.1016/j.envsoft.2020.104864.

10

Environmental Modelling and Software 145 (2021) 105175

Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E.,
Lancelot, C., Likens, G.E., 2009. Controlling eutrophication: nitrogen and
phosphorus. Science 323. https://doi.org/10.1126/science.1167755.

Deletic, A.B., Maksimovic, C.T., 1998. Evaluation of water quality factors in storm runoff
from paved areas. J. Environ. Eng. 124, 869-879. https://doi.org/10.1061/(ASCE)
0733-9372(1998)124:9(869).

Dong, A., Chesters, G., Simsiman, G.V., 1984. Metal composition of soil, sediments, and
urban dust and dirt samples from the Menomonee River Watershed, Wisconsin, U.S.
A. Water, Air, and Soil Pollution 22, 257-275. https://doi.org/10.1007/
BF00159348.

Eggimann, S., Mutzner, L., Wani, O., Schneider, M.Y., Spuhler, D., Moy De Vitry, M.,
Beutler, P., Maurer, M., 2017. The Potential of Knowing More: A Review of Data-
Driven Urban Water Management. Environ. Sci. Technol. 51, 2538-2553. https://
doi.org/10.1021/acs.est.6b04267.

Egodawatta, P., Thomas, E., Goonetilleke, A., 2007. Mathematical interpretation of
pollutant wash-off from urban road surfaces using simulated rainfall. Water Res. 41,
3025-3031. https://doi.org/10.1016/j.watres.2007.03.037.

Engelund, F., Hansen, E., 1967. A Monograph on Sediment Transport in Alluvial Streams.
2. Teknisk Forlag, Copenhagen.

EPA, 2002. Summary Table for the Nutrient Criteria Documents. Technical Report.
United States Environmental Protection Agency.

Garcia, L., Barreiro-Gomez, J., Escobar, E., Téllez, D., Quijano, N., Ocampo-Martinez, C.,
2015. Modeling and real-time control of urban drainage systems: A review. Adv.
Water Resour. 85, 120-132. https://doi.org/10.1016/J. ADVWATRES.2015.08.007.

Garofalo, G., Giordano, A., Piro, P., Spezzano, G., Vinci, A., 2017. A distributed real-time
approach for mitigating CSO and flooding in urban drainage systems. J. Netw.
Comput. Appl. 78, 30-42. https://doi.org/10.1016/j.jnca.2016.11.004.

Giraldi, D., de Michieli Vitturi, M., Iannelli, R., 2010. FITOVERT: A dynamic numerical
model of subsurface vertical flow constructed wetlands. Environ. Model. Software
25, 633-640. https://doi.org/10.1016/j.envsoft.2009.05.007.

Howarth, R., Paerl, H.W., 2008. Coastal marine eutrophication: Control of both nitrogen
and phosphorus is necessary. In: Proceedings of the National Academy of Sciences of
the United States of America, vol. 105. https://doi.org/10.1073/pnas.0807266106.

Kadlec, R.H., 2010. Nitrate dynamics in event-driven wetlands. Ecol. Eng. 36, 503-516.
https://doi.org/10.1016/j.ecoleng.2009.11.020.

Kadlec, R.H., Knight, R.L., 1996. Treatment Wetlands. Lewis Publishers, Boca Raton, FL.

Kadlec, R.H., Wallace, S.D., 2009. Treatment Wetlands, 2 ed. CRC Press. https://doi.org/
10.2166/9781780408774.

Kerkez, B., Gruden, C., Lewis, M., Montestruque, L., Quigley, M., Wong, B.P., Bedig, A.,
Kertesz, R., Braun, T., Cadwalader, O., Poresky, A., Pak, C., 2016. Smarter
Stormwater Systems. Environ. Sci. Technol. 50, 7267-7273. https://doi.org/
10.1021/acs.est.5b05870.

Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., Whelan, G.,
Geller, G., Quinn, N., Blind, M., Peckham, S., Reaney, S., Gaber, N., Kennedy, R.,
Hughes, A., 2013. Integrated environmental modeling: A vision and roadmap for the
future. Environ. Model. Software 39, 3-23. https://doi.org/10.1016/j.
envsoft.2012.09.006.

Mason, B., 2021a. bemason/StormReactor-CaseStudy-Nitrate: Release for StormReactor
Research Article (V1.0). Zenodo. https://doi.org/10.5281/zenodo.4913515.

Mason, B., 2021b. bemason/StormReactor-CaseStudy-TSS: Release for StormReactor
Research Article (v1.0). Zenodo. https://doi.org/10.5281/zenodo.4913501.

Mason, B., Mullapudi, A., 2021. kLabUM/StormReactor: Version for StormReactor
Research Article (v1.0). Zenodo. https://doi.org/10.5281/zenodo.4913493.

McCarthy, D.T., Mitchell, V.G., Deletic, A., Diaper, C., 2007. Escherichia coli in urban
stormwater: Explaining their variability. Water Sci. Technol. 56, 27-34. https://doi.
org/10.2166/wst.2007.752.

Mcdonnell, B.E., Ratliff, K., Tryby, M.E., Jia, J., Wu, X., Mullapudi, A., 2020. PySWMM:
The Python Interface to Stormwater Management Model (SWMM). J. Open Source
Software 5, 2292. https://doi.org/10.21105/j0ss.02292.

Mueller, D.K., Spahr, N.E., 2005. Water-quality, streamflow, and ancillary data for
nutrients in streams and rivers across the nation, 1992-2001. Technical Report.
United States Geological Survey. https://doi.org/10.3133/ds152.

Mullapudi, A., Wong, B.P., Kerkez, B., 2017. Emerging investigators series: building a
theory for smart stormwater systems. Water Research & Technology 3, 66-77.
https://doi.org/10.1039/C6EW00211K.

Niazi, M., Nietch, C., Maghrebi, M., Asce, A.M., Jackson, N., Bennett, B.R., Tryby, M.,
Massoudieh, A., Asce, M., 2017. Storm water management model: Performance
review and gap analysis. J. Sustainable Water Built Environ. 3 https://doi.org/
10.1061/JSWBAY.0000817.

Obropta, C.C., Kardos, J.S., 2007. Review of Urban Stormwater Quality Models:
Deterministic, Stochastic, and Hybrid Approaches. JAWRA.J. Am. Water Resour.
Assoc. 43, 1508-1523. https://doi.org/10.1111/j.1752-1688.2007.00124.x.

Overton, D.E., Meadows, M.E., 2013. Stormwater Modeling. Elsevier Science.

Palfy, T.G., Langergraber, G., 2014. The verification of the Constructed Wetland Model
No. 1 implementation in HYDRUS using column experiment data. Ecol. Eng. 68,
105-115. https://doi.org/10.1016/j.ecoleng.2014.03.016.

Perryman, S.E., Rees, G.N., Walsh, C.J., Grace, M.R., 2011. Urban Stormwater Runoff
Drives Denitrifying Community Composition Through Changes in Sediment Texture
and Carbon Content. Microb. Ecol. 61, 932-940. https://doi.org/10.1007/500248-
011-9833-8.

Persaud, P.P., Akin, A.A., Kerkez, B., Mccarthy, D.T., Hathaway, J.M., 2019. Real time
control schemes for improving water quality from bioretention cells. Blue Green
Systems 1, 55-71. https://doi.org/10.2166/bgs.2019.924.

Reddy, K.R., Patrick, W.H., 1984. Nitrogen Transformations and Loss in Flooded Soils
and Sediments. Crit. Rev. Environ. Contr. 13, 273-309. https://doi.org/10.1080/
10643388409381709.

https://github.com/kLabUM/StormReactor
https://github.com/kLabUM/StormReactor
https://doi.org/10.1016/j.envsoft.2013.12.018
https://doi.org/10.1016/J.JHYDROL.2020.124886
https://doi.org/10.1016/J.JHYDROL.2020.124886
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000549
https://doi.org/10.1016/j.envsoft.2020.104682
https://doi.org/10.1016/j.envsoft.2020.104864
https://doi.org/10.1016/j.envsoft.2020.104864
https://doi.org/10.1126/science.1167755
https://doi.org/10.1061/(ASCE)0733-9372(1998)124:9(869)
https://doi.org/10.1061/(ASCE)0733-9372(1998)124:9(869)
https://doi.org/10.1007/BF00159348
https://doi.org/10.1007/BF00159348
https://doi.org/10.1021/acs.est.6b04267
https://doi.org/10.1021/acs.est.6b04267
https://doi.org/10.1016/j.watres.2007.03.037
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref11
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref11
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref12
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref12
https://doi.org/10.1016/J.ADVWATRES.2015.08.007
https://doi.org/10.1016/j.jnca.2016.11.004
https://doi.org/10.1016/j.envsoft.2009.05.007
https://doi.org/10.1073/pnas.0807266106
https://doi.org/10.1016/j.ecoleng.2009.11.020
http://refhub.elsevier.com/S1364-8152(21)00217-6/optdgEL4Z6iJw
https://doi.org/10.2166/9781780408774
https://doi.org/10.2166/9781780408774
https://doi.org/10.1021/acs.est.5b05870
https://doi.org/10.1021/acs.est.5b05870
https://doi.org/10.1016/j.envsoft.2012.09.006
https://doi.org/10.1016/j.envsoft.2012.09.006
https://doi.org/10.5281/zenodo.4913515
https://doi.org/10.5281/zenodo.4913501
https://doi.org/10.5281/zenodo.4913493
https://doi.org/10.2166/wst.2007.752
https://doi.org/10.2166/wst.2007.752
https://doi.org/10.21105/joss.02292
https://doi.org/10.3133/ds152
https://doi.org/10.1039/C6EW00211K
https://doi.org/10.1061/JSWBAY.0000817
https://doi.org/10.1061/JSWBAY.0000817
https://doi.org/10.1111/j.1752-1688.2007.00124.x
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref27
https://doi.org/10.1016/j.ecoleng.2014.03.016
https://doi.org/10.1007/s00248-011-9833-8
https://doi.org/10.1007/s00248-011-9833-8
https://doi.org/10.2166/bgs.2019.924
https://doi.org/10.1080/10643388409381709
https://doi.org/10.1080/10643388409381709

B.E. Mason et al.

Rizzo, A., Langergraber, G., Galvao, A., Boano, F., Revelli, R., Ridolfi, L., 2014. Modelling
the response of laboratory horizontal flow constructed wetlands to unsteady organic
loads with HYDRUS-CWM1. Ecol. Eng. 68, 209-213. https://doi.org/10.1016/j.
ecoleng.2014.03.073.

Rossman, L.A., 2015. Storm Water Management Model User’s Manual Version 5 . 1. U.S.
EPA, Cincinnati.

Rossman, L.A., Huber, W.C., 2016. Storm Water Management Model Reference Manual
Volume III-Water Quality. United States Environmental Protection Agency,
Cincinnati.

Schilling, K.E., Kim, S.W., Jones, C.S., 2017. Use of water quality surrogates to estimate
total phosphorus concentrations in Iowa rivers. J. Hydrol.: Reg. Stud. 12, 111-121.
https://doi.org/10.1016/j.ejrh.2017.04.006.

Scholes, L., Revitt, D.M., Ellis, J.B., 2008. A systematic approach for the comparative
assessment of stormwater pollutant removal potentials. J. Environ. Manag. 88,
467-478. https://doi.org/10.1016/j.jenvman.2007.03.003.

Schu, Tze, M., Campisano, A., Colas, H., Schilling, W., Vanrolleghem, P.A., 2004. Real
time control of urban wastewater systems - Where do we stand today? J. Hydrol.
299, 335-348. https://doi.org/10.1016/j.jhydrol.2004.08.010.

Shammaa, Y., Zhu, D.Z., 2001. Techniques for Controlling Total Suspended Solids in
Stormwater Runoff. Can. Water Resour. J. 26, 359-375. https://doi.org/10.4296/
cwrj2603359.

Shishegar, S., Duchesne, S., Pelletier, G., 2019. An Integrated Optimization and Rule-
based Approach for Predictive Real Time Control of Urban Stormwater Management
Systems. J. Hydrol. 577, 124000. https://doi.org/10.1016/j.jhydrol.2019.124000.

Shuler, C.K., Mariner, K.E., 2020. Collaborative groundwater modeling: Open-source,
cloud-based, applied science at a small-island water utility scale. Environ. Model.
Software 127. https://doi.org/10.1016/j.envsoft.2020.104693.

Suarez, V.V.C., Brederveld, R.J., Fennema, M., Moreno-Rodenas, A., Langeveld, J.,
Korving, H., Schellart, A.N., Shucksmith, J.D., 2019. Evaluation of a coupled
hydrodynamic-closed ecological cycle approach for modelling dissolved oxygen in
surface waters. Environ. Model. Software 119, 242-257. https://doi.org/10.1016/j.
envsoft.2019.06.003.

Sun, C., Joseph-Duran, B., Maruejouls, T., Cembrano, G., Meseguer, J., Puig, V.,
Litrico, X., 2017. Real-Time Control-Oriented Quality Modelling in Combined Urban
Drainage Networks. In: IFAC-PapersOnLine, pp. 3941-3946. https://doi.org/
10.1016/j.ifacol.2017.08.142.

Sun, C., Svensen, J.L., Borup, M., Puig, V., Cembrano, G., Vezzaro, L., 2020. An MPC-
Enabled SWMM Implementation of the Astlingen RTC Benchmarking Network.
Water 12, 1-13. https://doi.org/10.3390/w12041034.

Sutherland, J., Townend, I.H., Harpham, Q.K., Pearce, G.R., 2017. From integration to
fusion: The challenges ahead. Geol. Soc. Spec. Publ. 408, 35-54. https://doi.org/
10.1144/5P408.6.

Talbot, M.T., Mcguire, O., Olivier, C., Fleming, R., 2016. Parameterization and
Application of Agricultural Best Management Practices in a Rural Ontario Watershed

11

Environmental Modelling and Software 145 (2021) 105175

Using PCSWMM. Journal of Water Management Modeling C400. https://doi.org/
10.14796/JWMM.C400.

Troitsky, B., Zhu, D.Z., Loewen, M., van Duin, B., Mahmood, K., 2019. Nutrient processes
and modeling in urban stormwater ponds and constructed wetlands. Can. Water
Resour. J. 44, 230-247. https://doi.org/10.1080/07011784.2019.1594390.

Tuomela, C., Sillanpaa, N., Koivusalo, H., 2018. Assessment of stormwater pollutant
loads and source area contributions with storm water management model (SWMM).
J. Environ. Manag. 233, 719-727. https://doi.org/10.1016/j.jenvman.2018.12.061.

USDA, 1983. Transmission of Sediment by Water (chapter 4). In: National Engineering
Handbook, pp. 1-39.

Vanrolleghem, P.A., Benedetti, L., Meirlaen, J., 2005. Modelling and real-time control of
the integrated urban wastewater system. Environ. Model. Software 20, 425-442.
https://doi.org/10.1016/j.envsoft.2004.02.004.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M.,
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E.,
Carey, C.J., Polat, d., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J.,
Cimrman, R., Henriksen, 1., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.
H., Pedregosa, F., van Mulbregt, P., Contributors, S., 2020. SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nat. Methods 1-12. https://doi.org/
10.1038/541592-019-0686-2.

Wang, Q., Zou, R., Khalid, A., Yang, T., 2019. Uncertainty-based parameter estimation
for urban pollutant buildup and washoff simulation using a multiple pattern inverse
modeling approach. Math. Comput. Simulat. https://doi.org/10.1016/J.
MATCOM.2019.07.009.

White, J.R., Reddy, K., 2009. Biogeochemical Dynamics I: Nitrogen Cycling in Wetlands.
In: Maltby, E., Barker, T. (Eds.), The Wetlands Handbook. Blackwell Publishing Ltd,
pp. 213-227 (chapter 9).

Wong, B.P., Kerkez, B., 2018. Real-Time Control of Urban Headwater Catchments
Through Linear Feedback: Performance, Analysis, and Site Selection. Water Resour.
Res. 54, 7309-7330. https://doi.org/10.1029/2018WR022657.

Wong, T.H.F,, Fletcher, T.D., Duncan, H.P., Jenkins, G.A., 2006. Modelling urban
stormwater treatment-A unified approach. Ecol. Eng. 27, 58-70. https://doi.org/
10.1016/j.ecoleng.2005.10.014.

Wu, B., Asce, M., Molinas, A., Julien, P.Y., 2004. Bed-Material Load Computations for
Nonuniform Sediments. J. Hydrol. Eng. 130 https://doi.org/10.1061/(ASCE)0733-
9429(2004)130:10(1002).

Yang, Y.Y., Lusk, M.G., 2018. Nutrients in Urban Stormwater Runoff: Current State of the
Science and Potential Mitigation Options. Current Pollution Reports 4, 112-127.
https://doi.org/10.1007/540726-018-0087-7 (publisher: Springer International
Publishing).

Zhang, P., Cai, Y., Wang, J., 2018. A simulation-based real-time control system for
reducing urban runoff pollution through a stormwater storage tank. J. Clean. Prod.
183, 641-652. https://doi.org/10.1016/j.jclepro.2018.02.130.

https://doi.org/10.1016/j.ecoleng.2014.03.073
https://doi.org/10.1016/j.ecoleng.2014.03.073
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref33
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref33
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref34
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref34
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref34
https://doi.org/10.1016/j.ejrh.2017.04.006
https://doi.org/10.1016/j.jenvman.2007.03.003
https://doi.org/10.1016/j.jhydrol.2004.08.010
https://doi.org/10.4296/cwrj2603359
https://doi.org/10.4296/cwrj2603359
https://doi.org/10.1016/j.jhydrol.2019.124000
https://doi.org/10.1016/j.envsoft.2020.104693
https://doi.org/10.1016/j.envsoft.2019.06.003
https://doi.org/10.1016/j.envsoft.2019.06.003
https://doi.org/10.1016/j.ifacol.2017.08.142
https://doi.org/10.1016/j.ifacol.2017.08.142
https://doi.org/10.3390/w12041034
https://doi.org/10.1144/SP408.6
https://doi.org/10.1144/SP408.6
https://doi.org/10.14796/JWMM.C400
https://doi.org/10.14796/JWMM.C400
https://doi.org/10.1080/07011784.2019.1594390
https://doi.org/10.1016/j.jenvman.2018.12.061
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref48
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref48
https://doi.org/10.1016/j.envsoft.2004.02.004
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/J.MATCOM.2019.07.009
https://doi.org/10.1016/J.MATCOM.2019.07.009
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref52
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref52
http://refhub.elsevier.com/S1364-8152(21)00217-6/sref52
https://doi.org/10.1029/2018WR022657
https://doi.org/10.1016/j.ecoleng.2005.10.014
https://doi.org/10.1016/j.ecoleng.2005.10.014
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:10(1002)
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:10(1002)
https://doi.org/10.1007/s40726-018-0087-7
https://doi.org/10.1016/j.jclepro.2018.02.130

	StormReactor: An open-source Python package for the integrated modeling of urban water quality and water balance
	1 Introduction
	2 State of stormwater quality modeling
	3 New package for modeling stormwater quality
	3.1 SWMM and PySWMM
	3.2 StormReactor
	3.2.1 User experience
	3.2.2 Architecture
	3.2.3 Implementing custom pollutant models

	4 Water quality case studies
	4.1 TSS case study
	4.1.1 TSS methods
	4.1.2 TSS results and discussion

	4.2 Nitrate case study
	4.2.1 Nitrate methods
	4.2.2 Nitrate real-time control strategy
	4.2.3 Nitrate results and discussion

	5 Discussion
	6 Conclusions
	Software availability
	Declaration of competing interest
	Acknowledgements
	References

