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Third generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star

binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected

to be challenging owing to both high signal-to-noise ratios and long-duration signals. We demonstrate that

current Bayesian inference paradigms can be extended to the analysis of binary neutron star signals without

breaking the computational bank. We construct reduced-order models for ∼90-min-long gravitational-wave

signals covering the observing band (5–2048 Hz), speeding up inference by a factor of ∼1.3 × 104

compared to the calculation times without reduced-order models. The reduced-order models incorporate

key physics including the effects of tidal deformability, amplitude modulation due to Earth’s rotation, and

spin-induced orbital precession. We show how reduced-order modeling can accelerate inference on data

containing multiple overlapping gravitational-wave signals, and determine the speedup as a function of the

number of overlapping signals. Thus, we conclude that Bayesian inference is computationally tractable for

the long-lived, overlapping, high signal-to-noise-ratio events present in 3G observatories.

DOI: 10.1103/PhysRevLett.127.081102

Introduction.—Third generation (3G) gravitational-

wave detectors such as Cosmic Explorer (CE) [1] and

the Einstein Telescope (ET) [2] will observe hundreds of

thousands to millions of binary neutron star (BNS)

mergers a year [3,4]. Many of the observed signals will

be extremely loud, with signal-to-noise ratios (SNRs)

∼Oð100–1000Þ. These signals will provide exquisite

measurements of neutron star masses, tidal deformability,

and spins, facilitating breakthroughs in cosmology and

fundamental physics [5,6]. Analyzing signals in the 3G era

will require scaling data analysis methods by orders of

magnitude beyond their current capabilities: Signals will

be in band up to around 40 times longer than in Advanced

LIGO and Virgo, the event rate will be thousands of times

higher, and multiple signals will be in band at any one

time [1,2].

Bayesian inference is the gold standard for measuring

the properties of gravitational-wave signals [7–10]. In

Bayesian inference, the posterior probability density of

source parameters Θ given experimental data d and a

hypothesis for the data H is

pðΘjd;HÞ ¼
πðΘjHÞLðdjΘ;HÞ

ZðdjHÞ
; ð1Þ

where πðΘjHÞ is the prior distribution, LðdjΘ;HÞ is the

likelihood function, and ZðdjHÞ is the evidence. The

posterior pðΘjd;HÞ is the target of parameter estimation,

and the evidence is the target for hypothesis testing or

model selection. As research and development of 3G

instruments ramps up, there is increasing interest in the
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posterior density of gravitational-wave source properties

because it is fundamental to answering interesting ques-

tions about the astrophysics capabilities of the detectors.

However, because of the high cost of computing the

posterior density for BNSs, approximate methods are often

used to study the capabilities of 3G detectors; see, e.g.,

Ref. [11]. Fisher-matrix analyses have been used to

approximate the width of pðΘjd;HÞ, assuming the like-

lihood is well approximated by a Gaussian distribution.

While this assumption is valid for some projections of the

posterior, it is not generally valid—even when the SNR is

in the thousands—and must be carefully vetted [9]. Hence,

a Bayesian treatment of parameter estimates is timely in

order to reliably study topics in neutron star astrophysics

with networks of 3G detectors.

In this Letter, we demonstrate how Bayesian inference

can be performed on BNS signals using reduced-order

models (ROMs) [12–14] of gravitational waveforms. Our

work extends previous applications of reduced-order mod-

eling to signals that are up to 90 min in duration from a low

frequency of 5 Hz, which is close to the expected low-

frequency cutoff for 3G detectors [1,2]. In addition, the

ROMs incorporate effects of Earth’s rotation on gravita-

tional-wave signals, tidal deformability of neutron stars,

and spin-induced orbital precession. We show that our

ROMs are accurate representations of the original wave-

forms at around the 10−12 level, ensuring that the ROM

approximation is valid up to SNR ≈ 106 [15]—good

enough for essentially all foreseeable 3G science.

The ROMs form highly efficient approximations of the

likelihood function—the most expensive part of inference.

This approximation is known as a reduced-order quadrature

(ROQ) [12,13,16]. We show that the ROQ can speed up the

evaluation of the likelihood function by a factor of around

13 000 on individual BNS signals. This makes inference

on these signals tractable. Additionally, we show that the

ROM and ROQ framework can be applied to accelerate

likelihood calculations on multiple overlapping in-band

signals. At any given time, there are likely to be hundreds

of BNSs in the Universe emitting gravitational waves in

the 3G observing band [17]. However, signals are suffi-

ciently separated in time that they can usually be analyzed

separately, though sometimes two or more signals

are sufficiently close that a simultaneous analysis is

required [4]. We determine the theoretical speedup factor

for multiple in-band signals and show that the ROM and

ROQ framework can speed up inference by a factor of

around 10 000 for several overlapping signals.

We perform Bayesian inference on a 90-min-long signal

at a similar luminosity distance to GW170817, added into

synthetic data of a 3G network consisting of CE, ET, and

a Southern-Hemisphere CE-like detector which we call

CE-South. The signal has SNR ≈ 2400. We are able to

perform Bayesian inference in around 1600 CPU-hours.

Without the ROQ, the run-time of the analysis would be

around 107 CPU-hours. We overcome limitations of the

Fisher information matrix by accurately determining the

uncertainties of source parameters whose posterior den-

sities are highly non-Gaussian. Our results demonstrate that

even loud 3G signals can be analyzed with modest

computational resources. However, reduced-order methods

are essential for controlling the computational cost.

The likelihood function and reduced-order models.—

The most expensive part of evaluating the posterior

probability is the likelihood function because it involves

computing gravitational waveforms. The log-likelihood

function is [18]

lnL ∝ −
1

2
hd − h; d − hi ¼ hd; hi −

1

2
hh; hi −

1

2
Zn; ð2Þ

where the constant Zn ¼ hd; di is known as the “noise

evidence” and quantifies the likelihood of the data under

the hypothesis that they are Gaussian noise [19]. The angle

brackets ha; bi denote the usual noise-weighted inner

product [20].

In the frequency domain, the gravitational waveforms h
have the general form [11]

hðf;ΘÞ ¼
1

DL

½Fþðf; ξÞhþðf; θ; ι;ϕc; tcÞ

þ F×ðf; ξÞh×ðf; θ; ι;ϕc; tcÞ�; ð3Þ

where hðþ;×Þðf; θ; ι;ϕc; tcÞ are the individual gravitational-

wave polarizations and are a function only of the intrinsic

parameters θ, orbital inclination ι, and phase and time at

coalescence ϕc and tc. DL is the luminosity distance to the

source. The quantities Fðþ;×Þ are the detector response

functions, which depend on the binary’s right ascension α,

declination δ, and polarization phase ψ , which define

ξ ¼ ðα; δ;ψÞ. The full set of parameters Θ which appears

on the left-hand side is the combined set of intrinsic

and extrinsic parameters, i.e., Θ ¼ ðθ; ξ; ι;ϕc; tc; DLÞ.
The detector response functions are also functions of time

and frequency due to Earth’s rotation, which cannot be

neglected for BNS signals starting from 5 Hz [11]. Since

the time evolution of the response functions is slow

compared to that of the gravitational-wave signal, we

can use the stationary phase approximation which allows

us to separate Fðþ;×Þ and hðþ;×Þ; see Ref. [11] for details and

the explicit form of the frequency-dependent Fðþ;×Þ.

In the frequency domain, the ROMs of h [Eq. (3)] have

the following general form [13]:

hROMðf;ΘÞ ¼
X

N

J¼1

hðF J;ΘÞBJðfÞ: ð4Þ

The quantities BJðfÞ are a basis set which span the space of
the signal. The hðF J;ΘÞ which appear on the right-hand
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side of Eq. (4) are the unapproximated waveform [Eq. (3)]

evaluated at a frequency F J from a reduced set of N

frequencies fF Jg
N
J¼1. Previous work on reduced-order

modeling for gravitational-wave parameter estimation also

constructed ROMs for the waveform amplitude h�h which

is used to approximate the hh; hi term in the likelihood

[Eq. (2)] [13]. We find this unnecessary, and this term can

be computed at negligible cost, which we discuss below.

The ROM requires M=N fewer waveform evaluations

than the unapproximated expression for the waveform,

where M ¼ T × ½fmax − fmin� and T is the signal duration.

This is given by the Nyquist theorem, assuming a fixed

sampling rate. For 3G detectors, we assume fmax ¼
2048 Hz, fmin ¼ 5 Hz, T ¼ 90 min (5400 s). When

ROMs are substituted into the likelihood function, they

formacompressed inner product knownas aROQ.TheROQ

speeds up the likelihood function by a factor [12,13]

S ≈M=N; ð5Þ

and in general S ≫ 1. This speedup assumes that the

waveforms have a closed-form expression, which

frequency-domain waveforms typically do.

ROM construction.—The ROMs are constructed in three

steps: (i) make a representative “training space” of gravi-

tational waveforms which span the parameter range of

interest, (ii) select basis elements from the training set, and

(iii) determine the reduced set of frequency nodes. All steps

are achieved using a greedy algorithm [21–23]. We con-

struct ROMs of 90-min-long gravitational-wave signals

including spin precession and tidal deformability. That we

can build ROMs for 90-min-long BNS signals should not

be taken for granted. Previous studies [12,13,24] have not

established whether ROMs for such signals can be made in

practice or if they would be practical for data analysis. In

Refs. [12,13,24], various scalings for ROM basis sizes are

given as a function of the low frequency of the signals or

parameter-space ranges. However, there has been no

systematic study of the size of ROM bases on both low

frequency and parameter-space size. The fundamental issue

is whether the parameter space can be made small enough

to be both effective and efficient for long-duration signals.

Below, we show that it is indeed the case.

We focus on individual signals and target a small

region of intrinsic parameter space on which we build a

training set. The parameters are the chirp mass Mc,

symmetric mass ratio η, tidal deformabilities ðλ1; λ2Þ, spin
components projected along the orbital angular momen-

tum axis ðχz1; χ
z
2Þ, effective-precession spin and the initial

value of the azimuthal precession angle ðχp; α0Þ, and

orbital inclination ι. We use the waveform model

IMRPHENOMPV2-NRTIDALV2 [25–27], which is parame-

trized by the vector θ ¼ fM; η; χz1; χ
z
2; χp;α0; ι; λ1; λ2g.

Inclination appears here because it evolves during the

inspiral due to spin-induced orbital precession.

The size of the ROM basis is sensitive to the range in

chirp mass. We pick a fiducial chirp-mass value of M� ¼
1.385 M⊙ and restrict the width of the chirp mass of the

training set to be �5 × 10−4 M⊙. This mass range is

approximately 1 × 103ΔM, where ΔM is the Fisher-

matrix error estimated using GWBENCH [28]. Following

the Fisher-matrix error treatment in Ref. [29], we find that

signals with SNRs of around 10 have Fisher errors

ΔM ∼ 10−4 M⊙. Hence, our chirp-mass range ensures

that we can analyze signals with SNRs around 10 without

artificially railing against prior bounds in mass. In practice,

we may want to use broader priors in mass than are possible

with a single parameter-space patch. Broader prior ranges

can be employed simply by utilizing multiple ROM bases

that individually span small parameter-space ranges.

Around 1000 such patches in M − η would be needed

to cover the full BNS mass space, assuming BNSs have

chirp masses approximately in the range 1 M⊙–2 M⊙.

All other intrinsic parameters are chosen to have physi-

cally motivated ranges. The symmetric mass ratio is

restricted to 0.2 ≤ η ≤ 0.25. Assuming a minimum neutron

star mass of 1 M⊙, this range ensures we describe neutron

stars with masses up to 2.6 M⊙ (around the maximum

plausible nonrotating neutron star mass [30–32]). For

all other parameters, we consider the following ranges:

0<χp≤0.1, −0.1≤ χz1;2≤0.1, 0≤ λ1;2≤5000. Additionally,

the ROM is constructed to be valid for all values of sky

location parameters ξ ¼ ðα; δ;ψÞ, luminosity distance DL,

phase at coalescence ϕc, ι, and α. We consider three starting

frequencies fmin ¼ 5; 10; 20 Hz, maximum frequency

fmax ¼ 2048 Hz, and signal duration of T ¼ 90 min.

These values of fmin test how the size of the ROM bases

scales with the low-frequency cutoff.

We construct a training set of waveforms for the param-

eter space defined above. The basis and reduced frequency

nodes are selected using a greedy algorithm. Details about

the training set and greedy algorithm are described in the

Supplemental Material [33]. For signals starting in band

from 5, 10, 20 Hz, the ROMs haveN ¼ 522, 291, 179 basis

elements. The basis size only increases by a factor of 3 when

going from 20 to 5 Hz, despite the signals being over 40

times longer in duration. Bases of around 500 elements

should be typical for ROMs of BNS signals starting from

5 Hz with parameter ranges similar to those used here.

Reducing the chirp mass to that of a 1 M⊙ þ 1 M⊙ binary

will change the signal duration only by a factor of 2, much

less than the difference in the duration of signals starting

from 20 vs 5 Hz. Hence, the basis size should be roughly

constant for lower-mass systems.

The computational cost of building the ROM is relatively

small. We require 160 16-core 2.20 GHz Intel Xeon

E5-2660 CPUs running for around 7 min, and then a

single CPU running for around 2 h to complete the basis

construction; see step (ii) of the ROM building strategy in

the Supplemental Material [33]. The memory footprint of
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the basis is around 90 GB. Thus, it would be feasible to

build reduced-order models covering the full chirp-mass

range of BNSs.

Likelihood speedup.—The most efficient use of ROMs in

Bayesian inference is to compress the large inner products

in the likelihood function. The compressed inner products

are known as a ROQ integration rule. We obtain the ROQ

likelihood by substituting the ROM [Eq. (4)] into the

likelihood [Eq. (2)]. The ROQ likelihood is

lnLROQ ∝ LðΘÞ −
1

2
QðΘÞ −

1

2
Zn; ð6Þ

where the functions LðΘÞ and QðΘÞ are given by

LðΘÞ ¼ ℜ
X

N

J¼1

hðFJ;ΘÞωJðtcÞ; ð7Þ

QðΘÞ ¼
X

N

I¼1

X

N

J¼1

h�ðFI;ΘÞhðFJ;ΘÞψ IJ: ð8Þ

The quantities ωJðtcÞ and ψ IJ are integration weights

that depend only on the basis functions, data, and noise

power spectral density, and are defined in the Supplemental

Material [33].

The computational cost of the ROQ likelihood scales as

lnL ∼OðN ×WÞ; ð9Þ

where W is the number of operations required to evaluate

the waveform at a given frequency. Unlike previous work

[13], we have chosen to write theQ term without the use of

an explicit basis for the waveform amplitude h�h. The
scaling of Eq. (8) is independent of W because waveforms

at the reduced frequencies have already been computed as

part of L [Eq. (7)]. Thus, Eq. (8) scales like ∼OðN2Þ, and
we find that N is small enough such that N2 ≪ N ×W. For

our basis starting from 5 Hz (which contains N ¼ 522

basis elements), the theoretical speedup [Eq. (5)] is

S ¼ 5400 s × ð2048–5Þ Hz=522 ≈ 21 000. Empirically,

we find a speedup of around 13 000. The degradation in

performance is due to fixed overheads, such as allocating

data structures for the waveforms. The integration weights

ωIJðtcÞ and ψ IJ are dependent on the data and noise power

spectral density and have to be computed before data

analysis can take place. The cost of computing both is

negligible in practice.

Validation and accuracy.—The accuracy of the ROQ

likelihood [Eq. (6)] is limited by the accuracy of the ROM.

We validate the accuracy by computing the mismatch M
between the ROM representation of h [Eq. (4)] and its

unapproximated form [Eq. (3)]:

MðhÞ ¼ 1 −
hhROM; hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhROM; hROMihh; hi
p : ð10Þ

In the noise-weighted inner products, we assume a flat

power spectrum, meaning our mismatches are more

conservative than if one used a gravitational-wave detector

noise power spectral density. In Fig. 1, we show the

mismatch MðhÞ for 2 × 106 random parameter values Θ

that were not included in the training space. We include

random sky locations, inclinations, luminosity distances,

and phases at coalescence. We also include the

frequency-dependent response functions in the mismatch

calculations, demonstrating that the ROM is accurate

describing signals with amplitudes modulated by Earth’s

rotation. The mismatch is strongly peaked around 10−12,

ensuring that parameter estimation will be unbiased up to

SNR ≈ 106 (so that twice the mismatch multiplied by the

SNR squared is less than unity [15,34]).

Inference with a high-SNR signal.—As an illustrative

example, we consider inference on a signal, which we

nickname GW370817. The parameters are Θ370817 ¼
fM ¼ 1.3854 M⊙; η ¼ 0.24925; χz1 ¼ −0.0113; χz2 ¼
0.01070; χp ¼ 0.03; α0 ¼ 1.1; ι ¼ 0.785; λ1 ¼ 422.5; λ2 ¼
839.4; DL ¼ 38.77 Mpc; α ¼ 1h57 min 20.5 s; δ ¼ −14.9

deg;ψ ¼ 2.012;ϕc ¼ 0g. This signal has a luminosity

distance consistent with GW170817. We add the signal

into synthetic data of a three-detector network consisting of

CE, ET, and CE-South. We use a “zero-noise” realization of

Gaussian noise [35], which (statistically) is the most likely

realization. This noise realization has the added conven-

ience that if we use flat priors, the posterior peaks at exactly

the true parameter values which serves as a useful diag-

nostic check. The signal has SNR ¼ 2400. We use flat

priors on all parameters, and the ranges are given by the

range of validity of the ROM. In addition, we impose a

physically motivated prior constraint on the component

tidal deformability: λ2 > λ1. Lastly, we use a uniform prior

over a 0.2 s interval centered on the true trigger time. In

FIG. 1. Accuracy of the ROM approximation for 90-min-long

BNS signals starting from 5 Hz. The signals include amplitude

modulation due to Earth’s rotation.

PHYSICAL REVIEW LETTERS 127, 081102 (2021)

081102-4



general, it is not necessary to restrict the chirp mass prior to

such a narrow range. Provided that ROMs exist in local

patches covering an extended chirp-mass region, a wide

prior can be utilized by building ROQ weights from

multiple ROM bases.

We use the DYNESTY nested sampling package to infer

the posterior density. In order to obtain well-converged

posteriors, we set the number of live points to 5000, and use

a random-walk proposal from the BILBY [10,36] inference

library, which takes a number of steps equal to 70 times the

running estimate of the autocorrelation length. The analysis

is parallelized over 160 cores. The analysis takes 10 h

(1600 CPU-hours) on a cluster of 16-core 2.20 GHz Intel

Xeon E5-2660 CPUs. The large CPU time occurs because

the implementation of the nested sampling algorithm in

Refs. [10,36] is extremely slow to converge when the SNR

is in the thousands. However, only a handful of events are

likely to be detected at these SNRs, with the vast majority

of signals having “moderate” SNRs less than 100. Analysis

of signals with moderate SNRs takes on the order of a day

using a single CPU using ROM or ROQ techniques [13]. In

contrast, the CPU time without ROM or ROQ methods

would be on the order of 20 × 106h, i.e., prohibitively

expensive. This analysis highlights the need for improve-

ments to the convergence of stochastic-sampling-based

approaches to inference.

In Fig. 2, we show the one- and two-dimensional

posterior densities for the component masses and tidal

deformabilities. The component masses can be constrained

to the ∼5 × 10−3 M⊙ level at the 90% credible intervals,

which is consistent with Fisher information estimates.

The tidal deformabilities have broad uncertainty and are

highly non-Gaussian, demonstrating the importance of

full Bayesian inference for understanding how well tidal

effects—and hence, nuclear physics—can be constrained

by 3G observatories.

Overlapping signals.—When multiple signals are

present simultaneously, the log-likelihood function is

lnL ∝ −
1

2

��

d −

X

n

i¼1

hi

�

;

�

d −

X

n

j¼1

hj

��

¼

�

d;
X

n

i¼1

hi

�

−
1

2

X

ij

hhi; hji −
1

2
Zn; ð11Þ

where the sums run over the independent gravitational-

wave signals. The double sum
P

ij runs over all pairs ði; jÞ.
In the multiple-signal case, the ROQ likelihood and its

scaling are

lnLROQ ¼
X

n

i¼1

LðΘiÞ −
X

n

i¼1

1

2
QðθiÞ

þ
X

n2=2

fj;kg

RjkðΘj;Θk;Δt
jkÞ −

1

2
Zn

∼OðN × n ×W þ N2 × ðnþ n2=2ÞÞ; ð12Þ

where L and Q are given by Eqs. (7) and (8). The Rjk term

sums over products of all pairs of waveforms fj; kg, with
j > k, and is also a function of the relative time offset

between two signals,Δtjk. The functionRjkðΘj;Θk;Δt
jkÞ is

hhðΘjÞ;hðΘkÞi≈RjkðΘj;Θk;Δt
jkÞ

¼ℜ
X

N

K¼1

X

N

L¼1

h�ðFK;ΘjÞhðFL;ΘkÞΓKLðΔt
jkÞ;

ð13Þ

where the matrix ΓKLðΔt
jkÞ is a set of integration weights

given in theSupplementalMaterial [33].Theoverall speedup

of the multiple-signal ROQ likelihood Eq. (12) with respect

to non-ROQ likelihood [Eq. (11)] is

S ≈
MnW þMn2=2

NnW þ Nn2=2
; with n > 1; ð14Þ

where we have kept terms at OðWÞ and Oðn2Þ. The N2n2

scaling is potentially problematic if the number of in-band

signals is large. However, most overlapping signals—

roughly between 96% and 99.5%—are well separated in

time so that they can be analyzed separately (Tables I and IV

FIG. 2. One- and two-dimensional posterior densities for

component masses and component tidal deformabilities. Dark

and light shading indicates the one-sigma and two-sigma credible

interval, respectively. True parameter values are indicated by

dashed lines.
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of Ref. [4]). Thus, we only consider the speedup for the

simultaneous analysis of a few in-band signals. We empiri-

cally determine a speedup of ∼Oð104Þ compared to the

calculation time without ROM for up to ten in-band signals.

We show the speedup as a function of the number of in-band

signals in the Supplemental Material [33].

Discussion.—Reduced-order models of gravitational-

wave signals from BNS mergers can be used to accelerate

parameter estimation in 3G observatories, thereby remov-

ing a computational hurdle. This work lays the groundwork

for detailed studies of BNS systems in the 3G era. Further,

the ROM and ROQ framework can be used to efficiently

carry out inference on data containing multiple overlapping

signals. Further avenues to pursue include ROMs of more

sophisticated waveforms, e.g., with higher-order gravita-

tional-wave modes, which can place tighter constraints

on parameter estimates [37]. Bayesian inference on very

loud signals—SNR ∼Oð1000Þ—requires significantly

more likelihood evaluations than in analyses of LIGO

and Virgo signals. Sampling-based methods for Bayesian

inference will have to be significantly adapted and scaled

up in order to efficiently analyze data in the 3G era. For

instance, Hamiltonian Monte Carlo methods [38] (which

exploit gradients of posterior densities) and machine

learning techniques, e.g., Refs. [39–42] (which provide

rapid approximations to reduced-order models and pos-

terior densities) may be promising avenues to explore.
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