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ABSTRACT The composition of microbial communities found in association with
plants is influenced by host phenotype and genotype. However, the ways in which
specific genetic architectures of host plants shape microbiomes are unknown. Genome
duplication events are common in the evolutionary history of plants and influence
many important plant traits, and thus, they may affect associated microbial commun-
ities. Using experimentally induced whole-genome duplication (WGD), we tested the
effect of WGD on rhizosphere bacterial communities in Arabidopsis thaliana. We per-
formed 16S rRNA amplicon sequencing to characterize differences between micro-
biomes associated with specific host genetic backgrounds (Columbia versus Landsberg)
and ploidy levels (diploid versus tetraploid). We modeled relative abundances of bacte-
rial taxa using a hierarchical Bayesian approach. We found that host genetic back-
ground and ploidy level affected rhizosphere community composition. We then tested
to what extent microbiomes derived from a specific genetic background or ploidy
level affected plant performance by inoculating sterile seedlings with microbial com-
munities harvested from a prior generation. We found a negative effect of the tetra-
ploid Columbia microbiome on growth of all four plant genetic backgrounds. These
findings suggest an interplay between host genetic background and ploidy level and
bacterial community assembly with potential ramifications for host fitness. Given the
prevalence of ploidy-level variation in both wild and managed plant populations, the
effects on microbiomes of this aspect of host genetic architecture could be a wide-
spread driver of differences in plant microbiomes.

IMPORTANCE Plants influence the composition of their associated microbial commun-
ities, yet the underlying host-associated genetic determinants are typically unknown.
Genome duplication events are common in the evolutionary history of plants and
affect many plant traits. Using Arabidopsis thaliana, we characterized how whole-ge-
nome duplication affected the composition of rhizosphere bacterial communities
and how bacterial communities associated with two host plant genetic backgrounds
and ploidy levels affected subsequent plant growth. We observed an interaction
between ploidy level and genetic background that affected both bacterial commu-
nity composition and function. This research reveals how genome duplication, a
widespread genetic feature of both wild and crop plant species, influences bacterial
assemblages and affects plant growth.

KEYWORDS Arabidopsis thaliana, whole-genome duplication, multinomial modeling,
plant-microbe interactions

Plant-microbe interactions can exhibit a positive feedback cycle in which changes in
the microbiome affect plant phenotype and, conversely, the phenotype of the

plant host alters microbial community composition (1–3). Rhizosphere bacteria, in
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particular, affect many aspects of plant performance, such as increasing access to
nutrients (4), relieving abiotic and biotic stress (5), and promoting growth (6). Even
slight changes in the rhizosphere microbiome can affect host plant phenotype (7). For
instance, Korir et al. found that increased abundance of one taxon, Bacillus megaterium,
enhanced nitrogen access and growth of Phaseolus vulgaris under field conditions (8).
Wholesale changes in the abundance of taxa composing rhizosphere microbiomes also
affect plant performance (9, 10). For example, in Arabidopsis thaliana, differences in mi-
crobial community composition, attributable to past or nearby plant communities,
strongly influenced host growth (11, 12).

A plant host’s genetic background can also affect the composition of microbiomes
comprising thousands of taxa (13–15). For instance, over a range of environmental condi-
tions, host genotype in maize explains on average;19% of the variance in relative abun-
dance of root microbial taxa (16). Among host genotypes, allelic variation segregating at
loci with diverse functions could potentially contribute to differences in rhizosphere com-
munity composition. The contribution of specific host plant loci and pathways has been
demonstrated experimentally using genetic knockouts or transgenic overexpression (17,
18). Genetic manipulation to shift the plant circadian clock by 64 h explained ;22% of
the variance in rhizosphere bacterial communities among experimental Arabidopsis lines
(12). However, the number of studies characterizing causal genetic factors is small, and
the extent to which specific host genetic and genomic features alter the assembly and
function of microbial communities remains largely unknown, despite the demonstrably
important effect of the rhizosphere microbiome on host plant performance.

Whole-genome duplication (WGD) is one genetic feature of host plants that could
potentially influence microbial community composition. WGD can drastically affect
host phenotype, including inducing changes in life history and physiology, and can
even induce changes at the cellular level (19, 20). WGD occurs naturally in wild popula-
tions and is ubiquitous in the evolutionary history of plants and in the domestication
history of many crop species (21). For all these reasons, we hypothesize that WGD
could have an important influence on the composition of plant microbiomes.

We tested this hypothesis through experimental induction of WGD in A. thaliana
using colchicine. This compound is used to induce autopolyploidization and create sta-
ble lines of tetraploids in A. thaliana. The colchicine-induced mutation is reported to
produce no genetic changes besides those associated with genome duplication (22).
Therefore, the comparison of microbiomes between A. thaliana tetraploid genotypes
developed from inbred diploid lines allows characterization of the influence of host
ploidy level on microbial community composition, without the confounding effects of
allelic variation or fixed differences in heterozygosity between tetraploids and diploid
progenitors. Shifts in ploidy have a variety of phenotypic consequences in A. thaliana,
including changes in core metabolic pathways such as the tricarboxylic acid cycle
(TCA), malate and citrate concentrations, and potassium uptake (23, 24). For the spe-
cific genotypes of A. thaliana that we used here (Columbia [Col] and Landsberg erecta
[Ler]), cell and organ size, circadian rhythms, biomass, chlorophyll and starch content,
and other traits are all known to be influenced by shifts in ploidy (25–27).

In the current study, we tested how WGD affects rhizosphere bacterial composition.
Rhizosphere microbes are of particular interest because of the influence they have on
their hosts (see above) and because plants are known to shape rhizosphere microbial
communities via root exudation of low-molecular-weight organic compounds (28–30),
which are known to be influenced by WGD (23). Thus, the potential effects of WGD on
many aspects of host phenotype support the hypothesis that rhizosphere microbiomes
are influenced by genome duplication. We tested this hypothesis and also examined how
WGD-induced changes in bacterial community composition affected plant performance.

RESULTS
Sequencing results. After quality filtering and removal of nontarget taxa, we recov-

ered 1,647,741 reads, remaining from an initial 3,282,410 raw reads. We retained
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36,033 to 143,254 reads per plant rhizosphere (Table S1). In total, there were 2,689 mi-
crobial taxa (amplicon sequence variants [ASVs]) present (Fig. 1).

Genetic background (Col versus Ler) affected both the presence (P = 0.021) and
abundance of taxa (P = 0.016) and explained 5.8% and 7.2% of the variance between
groups (in terms of Jaccard and Bray-Curtis dissimilarity matrices) (Table 1), respectively
(corroborating results are reported in references 14 and 28).

Host genetic background and ploidy level influenced the relative abundances of vari-
ous bacterial taxa, as demonstrated via the Dirichlet-multinomial model (DMM), though
wholesale shifts in the microbiome at the phylum level among treatment groups were
not observed (Fig. 1). We identified 25 taxa that were significantly enriched in both Ler
genotypes and 29 taxa that were more abundant in the Col genotypes (Fig. 2a). A taxon
of the genus Pedobacter was the most highly enriched in Ler associated bacterial com-
munities, with an 8-fold increase. In Col bacterial communities, the most enriched taxon
was Pseudomonas, with a 4.8-fold increase in abundance. DMM also identified 17 taxa
that were significantly enriched in all diploid genotypes. Of these taxa, the most enriched
taxon was a member of the genus Bacillus, enriched 3.1-fold relative to tetraploid com-
munities. Tetraploid communities’ most enriched member was Mucilaginibacter, which
was present at a 4-fold-greater relative abundance than in rhizosphere microbiomes in
diploids. Twenty-three taxa were significantly enriched across both tetraploid geno-
types (Fig. 2b). Our model identified 16 taxa as having higher abundance in the
Columbia tetraploid rhizosphere and 30 taxa enriched across the bacterial micro-
biomes of the other three host genotypes. In Col-4x, a bacterium hypothesized to be
Sphingomonas had the highest change in abundance at 6-fold. Conversely, a taxon of
the genus Pedobacter was enriched in all other microbiomes. This taxon appeared at

FIG 1 Relative abundance of each rhizosphere associated bacterial phylum in plants with differing genetic backgrounds. Each colored bar represents an
individual rhizosphere sample. Phyla are arranged alphabetically. ASVs with a relative abundance of less than 0.05 were removed for graphical clarity.
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a 5.8-fold-greater frequency in these microbiomes than Col-4x. Across all compari-
sons, ASVs within the phylum Proteobacteria were more commonly differentially
abundant than taxa within any other phylum.

When examining shifts in the entirety of the rhizosphere community we observed
only subtle effects of ploidy level (permutational multivariate analysis of variance
[PERMANOVA]) (Table 1), whether we considered all taxa (Fig. S2) (PERMANOVA,
P = 0.52 and P = 0.456) or only the 742 most abundant taxa, which were represented
by .100 reads across all replicates. However, because we observed differential growth
effects of Col-4x versus all other rhizospheres, we performed a post hoc comparison of
the rhizosphere microbiome of the Col-4x genotype to that of other genotypes, includ-
ing Col-2x. We found that Col-4x differed significantly from all other rhizospheres
based on both Jaccard and Bray-Curtis dissimilarities (Table 1) (PERMANOVA, P = 0.018
and P = 0.013).

Shannon’s diversity index revealed no significant differences between genotypes
(P = 0.911), between ploidy levels (P = 0.565), or between ploidy levels nested within
genotype (Landsberg, P = 0.768; Columbia, P = 0.564), based on Welch’s two-sample t
test. The average diversity across all samples was 4.59 (60.043; n = 29).

Effects of rhizosphere microbes on plant performance. When microbiomes from
plant-conditioned soil were harvested following experiment 1 and used as inoculants
in experiment 2, plants grown in soils inoculated with the Col-4x microbiome had sig-

TABLE 1 Effects of plant (versus soil only), plant genotype, and ploidy level on microbial
community composition as estimated using PERMANOVAa

Comparison

Jaccard Bray-Curtis

P F R2 P F R2

Landsberg vs. Columbia 0.021* 1.665 0.058 0.016* 2.102 0.072
Diploid vs. tetraploid 0.530 0.950 0.0340 0.449 0.958 0.034
Col-2x vs. Col-4x 0.165 1.225 0.0927 0.158 1.342 0.101
Ler-2x vs. Ler-4x 0.978 0.693 0.051 0.959 0.611 0.045
Col-4x vs. all others 0.018* 1.743 0.061 0.013* 2.218 0.0759
aAsterisks indicate P value, 0.05.

FIG 2 Genotype and ploidy influence rhizosphere bacterial relative abundances. (a) Bacterial families identified as more abundant
in the diploid rhizosphere are shown above the gray line, and those more abundant in the tetraploid rhizosphere appear below
the gray line. (b) Bacterial families identified as more abundant in the Landsberg rhizosphere are shown above the gray line, and
those more abundant in the rhizosphere of Columbia plants appear below the gray line. Log10 fold change were calculated from
relative abundance estimates obtained through hierarchical Bayesian modeling of read counts (see the text). Points represent
individual ASVs within families.
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nificantly lower aboveground and belowground biomass than plants grown in soils
inoculated with the Col-2x microbiome (ANOVA, P , 0.001 and P = 0.012) or micro-
biomes influenced by either of the two Ler genotypes (Fig. 3a and b) (P , 0.001 and
P , 0.001). The soil microbiome had no effect on phenological characteristics or fruit
number (Table S2).

DISCUSSION

Whole-genome duplication (WGD) is estimated to have occurred across 30 to 70%
of the angiosperm phylogeny over its evolutionary history and is a common genetic
feature of many plant taxa (31). Here, we report that WGD can influence rhizosphere
microbiomes and that the effects of host genotype on rhizosphere microbiomes can
feed back to influence plant growth.

Specifically, we found that many individual taxa shifted in relative abundance in
response to host ploidy level (Fig. 2a). This provides support for the hypothesis that
these taxa are directly responsive to genome duplication. Although the causal physio-
logical mechanisms remain unclear, one candidate mechanism is root exudation.
Previous studies suggest that root exudates can affect the occurrence and abundance
of microbial taxa in the rhizosphere (2, 32) and that these exudates can be influenced
by genome duplication (23). Consequently, shifts in root exudates, or other metabo-
lites produced by the plant, in response to WGD could be partially responsible for the
association between ploidy and the relative abundance of microbial taxa that we
observed (33, 34). This hypothesis awaits further testing.

Given that the number of microbial taxa with a credible response to WGD was in
the tens rather than the hundreds or thousands, we conclude that while host ploidy
level affects the abundance of some taxa, it may not lead to broad-scale changes in
the rhizosphere microbiome. A caveat to this result is that we used soil with a history
of Arabidopsis occurrence as an inoculant (this is in contrast to prior studies of the A.
thaliana microbiome [35]). It is possible that WGD could have a stronger influence on
microbiota of plants growing in soil with a different history and, thus, with potentially
fewer microbes adapted to living alongside A. thaliana.

We found that differences in the rhizosphere bacterial microbiome led to differen-
ces in host performance (9, 36, 37). Specifically, plants grown in soils inoculated with
microbial rhizosphere communities harvested from Col-4x plants had reduced vigor

FIG 3 (a and b) Residuals of observed growth differences in above- and belowground biomass for plants grown in soils inoculated with microbiomes
shaped by each genotype, with effects of experimental block removed (blocking factors were host genetic background and ploidy level). Bar height
represents the mean of residuals; bar color corresponds to soil inoculum across all plant genotypes. Error bars represent standard errors of the means.
Lowercase letters denote significant differences among groups as determined by Tukey’s honestly significant difference (HSD) test. All genotypes
inoculated with Columbia tetraploid microbiome had significantly reduced above- and belowground biomass. (c) Bacterial families identified as more
abundant in the Columbia tetraploid rhizosphere are shown above the gray line. Those more abundant in the rhizosphere of all other treatment groups
(inocula) appear below the gray line. The data depicted in this figure are sequencing data describing the rhizospheres from plants in each treatment
group and are the data referenced in Fig. 1 and 2. Log10 fold changes were calculated from relative abundance estimates obtained through hierarchical
Bayesian modeling of rhizosphere associated ASV read counts following processing described in Materials and Methods. Points represent individual ASVs
within families.
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compared to plants grown in soils inoculated with microbial communities from all
other genotypes (Fig. 3). While our experiment was not designed to parse the individ-
ual effects of specific microbial taxa on host phenotype, we did find an intriguing
enrichment of the bacterial species Noviherbaspirillum autotrophicum in the Columbia
tetraploid genotype that could plausibly have influenced host growth. N. autotrophi-
cum is a facultative autotroph capable of denitrification (38). It is plausible that the
greater abundance of N. autotrophicum that we observed in tetraploid Columbia plants
may have resulted in a decrease in available nitrogen in the rhizosphere, causing the
lower overall biomass that we observed for this treatment group.

Regardless of causal mechanism, the reduction of biomass we observed for tetra-
ploid Columbia plants compared to the other genetic backgrounds we considered
may have effects on nutrient cycling or plant fitness. This result highlights the likely
widespread feedback between plant ploidy level and genetic background, microbiota,
and plant phenotype. The implications of this feedback could be particularly notable in
mixed populations of diploid and tetraploid individuals (which is common for many
plant taxa, including members of Arabidopsis [39]), where stressful conditions could be
compounded or mitigated by host-associated microbes that are themselves influenced
by host genetic background (40). To speculate, it may even be the case that the ASVs
enriched (or reduced) in the rhizosphere of tetraploid hosts could partially explain the
advantages tetraploids appear to have in stressful environments (41, 42).

Conclusions. Given the prevalence of WGD among plants in both natural and agri-
cultural systems, our results highlight a novel mechanism by which plant evolutionary
history influences the root-associated microbiome. Moreover, the finding that ploidy
level-induced shifts in microbiota were associated with plant phenotypic response sug-
gests ways in which the feedback between host genetic background, microbiome, and
phenotype could influence ecosystem-level processes.

MATERIALS ANDMETHODS
Plant material and growth conditions. To test the effects of whole-genome duplication and plant

genetic background on rhizosphere bacterial community composition and plant host performance, we
selected two A. thaliana diploid genotypes: Columbia (Col-2x) and Landsberg erecta (Ler-2x) and their
tetraploid counterparts (Col-4x CS922178 and Ler-4x CS3900). Tetraploid genotypes were multiple gen-
erations removed from initial colchicine treatment and therefore can be assumed to be mutationally sta-
ble (43). In our first experiment, each genotype was planted into sterilized potting mix (Redi-Earth pot-
ting mix; Sungro Horticulture, Agawam, MA, USA) and inoculated with a microbial community from the
Catsburg region of Durham, NC, USA (36.0622°N, 278.8496°W), a site with a history of A. thaliana
growth. The microbiomes associated with each host plant genotype were characterized by 16S rRNA
gene amplicon sequencing in the first experiment and, in a second experiment, tested for effects on
growth of a second generation of plants (Fig. S1).

In both experiments, seeds were surface sterilized using a solution of 15% bleach, 0.1% Tween, and
autoclave-sterilized reverse osmosis-purified water (RO H2O). This treatment is unlikely to remove
microbes that colonize the interior of the seed, but seed-associated microbial assemblages are generally
very species poor (44). Seeds were thoroughly rinsed in RO H2O to remove any remaining detergents.
Seeds were placed in 1.5-ml tubes containing 1 ml RO H2O, stored at 4°C for 7 days, and then placed on
greenhouse benches in natural 14-h photoperiods to induce synchronous germination (45). On the day
root radicles were observed, seeds were transferred to 2-in.-diameter net pots filled with a mixture of
autoclaved potting mix and 2 ml of liquid inoculant (described below). To ensure sterility, potting mix
was autoclaved on a wet cycle for 60 min at 121°C, allowed to rest for at least 1 h, and autoclaved for
another 60 min. No microbes could be cultured on tryptic soy agar medium using serial dilutions of
autoclaved soil as the inoculum. It is unclear if autoclaving sufficiently denatures DNA such that it would
not occur in our 16S analysis; however, any DNA that remained and was sequenceable would be ran-
domly distributed among samples and not confound treatment. To create inoculants for the first
experiment, 60 g of the Catsburg soil was mixed with 540 ml of autoclaved RO H2O and sieved through
1,000-mm, 212-mm, and 45-mm sterile sieves to remove nematodes that could potentially affect plant
performance (46). The Catsburg site not only has a well-documented occurrence of naturalized A. thali-
ana populations but also has a soil pH approximately identical to that of the potting substrate (5.4 and
5.3, respectively), which minimized potential selection by the common soil matrix on microbial commu-
nity composition (47–49).

For the second experiment, we used four randomly selected plant-conditioned soil samples from
each host genotype to create inocula. Soil for this inocula was harvested concurrent with and in the
same manner as rhizosphere samples collected during experiment 1. Soil was combined by genotype,
manually homogenized, and used to create the inoculum, as described above. In all experiments, after
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10 days of growth, seedlings were thinned to one plant per pot. All experiments were performed at the
Williams Conservatory or the Agricultural Experiment Station at the University of Wyoming.

Experimental design. (i) Experiment 1: effects of host plant genotype and ploidy on microbial
community. To measure the influence of host ploidy on rhizosphere bacterial community composition,
20 replicates of Col-2x, Col-4x, Ler-2x, and Ler-4x were planted in a fully randomized four-block design.
To avoid confounding the effects of ploidy with developmental stage, eight rhizosphere samples from
each genotype were collected on day 24, by which time all plants displayed visible elongation of the pri-
mary inflorescence from the apical meristem (n = 29; 1 replicate each of Col-2x, Col-4x, and Ler-2x were
lost during processing). Unharvested plants were allowed to grow until senescence to quantify addi-
tional traits. To account for variation in microbial communities due to greenhouse conditions and intrin-
sic variation in soil independent of plant host effects, we collected soil from empty pots containing only
soil that were potted simultaneously with our experiment (n = 7).

(ii) Experiment 2: microbial effects on plant performance. To investigate how host performance is
affected by microbiomes associated with specific host genotypes, we used a fully factorial design with
four host plant genotypes grown in four host-influenced microbiomes (harvested from the host geno-
types in experiment 1). For logistical reasons, we pooled soils from four randomly selected plants from
each genotype to create our soil inocula, which we then used to determine the influence of rhizosphere
microbes on plant performance. We note that pooling soils from replicate plants from each experimental
treatment obscures variation among replicates, and we cannot exclude the possibility that the results
we observed were driven by unusual replicate plants within a treatment group. Forty replicates of each
plant genotype were grown in sterilized potting mix inoculated with one of the four rhizosphere micro-
biomes from plant-conditioned soil in a fully randomized block design. Plants were checked daily for
bolting and flowering. Upon the first observation of plant bolting (day 24), a subset of plants was col-
lected for above- and belowground biomass (n = 382) to measure plant growth and resource allocation.
A subset of plants were allowed to senesce, and seeds were harvested to quantify seed mass (n = 152).
All phenotypic measurements were performed as described by Rubin et al. (50).

DNA extraction and sequencing. Rhizosphere samples were collected from the root surface as
described in reference 51 by first uprooting plants, manually agitating them, removing loosely adhering
soil particles up to 2 mm from the roots, placing roots with closely adhering soil (,2 mm distant from
roots) in a buffer of sterile phosphate-buffered saline (PBS) with 0.1% Silwet (Momentive, Waterford, NY,
USA) in a 15-ml tube, and vortexing for 10 min on maximum speed. Rhizosphere samples were centri-
fuged at a relative centrifugal force (RCF) of 3,714, and a total soil mass of no more than 250 mg was
transferred from each tube into a sterile Qiagen PowerSoil (Qiagen, Valencia, CA, USA) bead tube; a simi-
lar soil mass was collected for the plantless soil controls. DNA was extracted following the manufac-
turer’s instructions. Extracted DNA was shipped to the Marine Biological Laboratories (Woods Hole, MA,
USA) for amplification and sequencing of the V4-V5 (primers 518f and 926r) region of the 16S rRNA gene
(52) on an Illumina MiSeq system (paired-end 2 � 250; Illumina, San Diego, CA, USA).

Sequence and data analysis. We used Trimmomatic version 0.36 (53) to remove adapters and
primer sequences. We used default settings in the R package dada2 (ver. 1.5.8) to filter and trim reads
based on quality (forward reads trimmed to 220 bp and reverse reads trimmed to 210 bp), estimate the
error rate using 1,000,000 reads, dereplicate reads, infer amplicon sequence variants (ASVs), merge
paired-end reads, remove chimeras, and assign unique sequences to taxa using the SILVA 16S database
(ver. 128) (54, 55). We removed ASVs corresponding to chloroplasts, mitochondria, and eukaryotes and
ASVs for which the SILVA 16S database could not determine a kingdom-level classification. All other
ASVs assigned an “NA” taxonomic classification at any level were retained. Next, we ascertained the rela-
tive abundance of taxa by quantifying unique sequences and amplicon sequence variants using the
default settings in the microbiome R package (56). We used adonis (permutational multivariate analysis
of variance using distance matrices) on Jaccard (presence-absence) and Bray-Curtis (abundance) dissimi-
larities between community samples to characterize the effects of genotype (Col-2x and Col-4x versus
Ler-2x and Ler-4x) and ploidy (Col-2x and Ler-2x versus Col-4x and Ler-4x), and calculated Shannon’s di-
versity index to characterize intra- and intergenotype variation, using the vegan and phyloseq R pack-
ages (57–59).

Dissimilarity analyses identify coarse-grained changes in community composition across treatments,
which arise from the combined effects of all community members, with particular weight given to abun-
dant taxa. However, significant differences in relative abundance may exist in comparisons of individual
taxa between treatments that are not discernible when effects of whole communities are aggregated.
To test for differences in the relative abundances of individual taxa between treatment levels (contrasts
of host ploidy and host genotype), we used a hierarchical Bayesian modeling approach reliant upon the
Dirichlet and multinomial distributions (60, 61). The Dirichlet-multinomial model (DMM) accounts for the
compositional nature of community sampling (whether in sequencing data or any finite number of taxa
observations from an assemblage), allows information sharing among replicates within a category, and
obtains estimates of the relative abundance of each microbial taxon, while propagating uncertainty in
those estimates. We estimated differences in the relative abundance of each microbial taxon between
experimental treatments through comparison of parameter estimates as per Harrison et al. (60).

Briefly, DMM estimates the multinomial parameters describing the relative abundances of each
taxon in a replicate, designated a vector of parameters (p). These multinomial parameters were informed
by a Dirichlet distribution, with parameters characterizing the expected frequencies of each taxon (p ),
where p is a vector describing the expected relative abundance of each taxon in the sampling group
(60, 62). To quantify differences in the relative abundance of taxa between groups, we calculated the
posterior probability distribution for the difference in p i parameters between groups for taxon i. The
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probability of an effect of treatment on a focal taxon can be determined by the location of zero in this
distribution of differences. Following convention, if 95% or more of the distribution did not overlap
zero, then there was little evidence that the relative abundance of the focal taxon differed between
treatment groups.

The DMM offers several advantages over existing analytical methods. First, parameters were esti-
mated while propagating uncertainty, thus avoiding cumbersome multiple-comparison correction and
precluding the use of P values. Second, information was shared among replicates and treatment groups.
Third, rarefaction is unnecessary because analyses are performed on proportions, which are estimated
using information from all replicates within a sampling group. Fourth, the Dirichlet and multinomial dis-
tributions have interdependent parameters that reflect the compositional nature of sequencing data;
thus, we modeled the composition as a whole as opposed to estimating the relative abundance of each
taxon separately.

DMM was specified in the Stan probabilistic programming language and implemented through the
rstan (ver. 2.18.2) package in the R statistical computing environment (ver. 3.6.0) (63, 64). For each of
four chains, the sampler was run for 1,500 steps as a burn-in period and was followed by an additional
1,000 steps (a total of 4,000 samples were drawn from the posterior distributions of focal parameters [p
from each sampling group]). The Gelman-Rubin statistic was computed to measure convergence among
chains (65). Separate models were constructed for the following comparisons: all diploid versus all tetra-
ploid hosts, Columbia versus Landsberg erecta, and Columbia tetraploid versus all other treatments
(pooled).

For taxa that differed credibly among our treatment groups, we used NCBI BLAST to confirm 16S
rRNA identifications generated using the SILVA database (66, 67). We report species-level identification
in cases where reads align 100% with entries in the 16S rRNA sequence database and report the bacte-
rial family if genus-level resolution was not corroborated by SILVA (68).

To assess effects on plant performance in experiment 2, we used fixed-effect, three-way ANOVA,
where inoculum, genotype, and block were the explanatory variables. For purposes of data representa-
tion, residuals were plotted after statistically accounting for the effect of genotype and block. Finally, we
used planned comparisons to contrast plant performance between plants grown in the Col-2x versus
Col-4x inocula and Ler-2x versus Ler-4x inocula.

Data availability. Raw sequences were uploaded to the NIH NCBI Short Read Archive under project
ID PRJNA474006. Code for all analyses is available via the Dryad database (DOI: 10.5061/dryad.
hqbzkh1ff).
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