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ABSTRACT. We use the framework of perfectoid big Cohen-Macaulay algebras to define a
class of singularities for pairs in mixed characteristic, which we call purely BCM-regular
singularities, and a corresponding adjoint ideal. We prove that these satisfy adjunction and
inversion of adjunction with respect to the notion of BCM-regularity and the BCM test ideal
defined by the first two authors. We compare them with the existing equal characteristic PLT
and purely F-regular singularities and adjoint ideals. As an application, we obtain a uniform
version of the Briangon-Skoda theorem in mixed characteristic. We also use our theory to
prove that two-dimensional KL T singularities are BCM-regular if the residue characteristic
p > 5, which implies an inversion of adjunction for three-dimensional PLT pairs of residue
characteristic p > 5. In particular, divisorial centers of PLT pairs in dimension three are
normal when p > 5. Furthermore, in the appendix we provide a streamlined construction
of perfectoid big Cohen-Macaulay algebras and show new functoriality properties for them
using the perfectoidization functor of Bhatt and Scholze.
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1. INTRODUCTION

In algebraic geometry one can often understand the singularities of a variety X by studying
the singularities of its hyperplane sections. For example, if D C X is a regular Cartier
divisor, then X turns out to be regular along D as well. More generally, one can ask if
the singularities of X are mild provided that those of D are. This question has a fairly
satisfactory answer both in characteristic zero and characteristic p > 0, and the goal of our
article is to address this problem in mixed characteristic.

To be more formal, consider a variety X, an integral Weil divisor D and a Q-divisor A > 0
not containing D in its support such that Kx + D + A is Q-Cartier, which we collect into a
pair (X, D + A). We wish to compare X with the normalization DY of D. Given this data,
there is canonically defined divisor diff pv (A + D) on DY called the different [Kc92, Sho92],
which satisfies

(Kx + D+ A)|py = Kp~v +diff pn (D + A).

In characteristic zero, the log terminal variant of inversion of adjunction (see [Kol13, Theo-
rem 4.9 (1)]) says that (X, D+A) is purely log terminal (PLT) if and only if (D, diff o~ (D +
A)) is Kawamata log terminal (KLT). In positive characteristic, a similar result is proved in
[Tak13] and [Das15], where one replaces KLT with strongly F-regular and PLT with purely
F-regular. In this paper, we prove an analogous result in mixed characteristic, in which KL'T
is replaced by BCM-regular (defined in [MS18b]), and PLT is replaced by a new definition
which we call purely BCM-regular.

The BCM-regularity of R is defined in terms of a big Cohen-Macaulay (BCM) algebra
B, which plays the role of a resolution of singularities in characteristic zero, and R* (the
colimit of all finite domain extensions of R) in positive characteristic. In what follows, we
will usually fix big Cohen-Macaulay R- and R/Ip-algebras, B and C' respectively, which fit
into a diagram as follows:

R R* B
I
R/Ip — (R/Ip)* —— C.

We call such B — C' compatibly chosen, and such a choice always exists by [And20,
Theorem 1.2.1]. In fact, André proved that if we start with a perfectoid big Cohen-Macaulay
R*-algebra B, then we can always find a perfectoid big Cohen-Macaulay (R/Ip)*-algebra
C with which it is compatibly chosen. For this reason, when our results are applied, it will
usually be with perfectoid big Cohen-Macaulay algebras, but most of the results themselves
hold more generally. Furthermore, if we are given that R is a big Cohen-Macaulay algebra
(as has been announced by Bhatt), then we can simply let B and C' be the completion of R*
and (R/Ip)" respectively. Using R' as a big Cohen-Macauay algebra would simplify some
of the functoriality arguments used in particular in Section 5. See Remark 2.2 for additional

discussion about when this particular big Cohen-Macaulay algebra is sufficient.
2



As in the equal characteristic settings, we obtain a more precise restriction theorem for
a new adjoint-like ideal, which we denote by adjgﬁc(R, A + D), and the BCM test ideals
Te(R,A) introduced by the first two authors [MS18b| from which the above mentioned
inversion of adjunction result follows immediately.

Theorem A. (Theorem 3.1, Corollary 3.4, and Corollary 3.3) Let (R, m) be a complete
normal local domain of residual characteristic p > 0. Let D be a prime Weil divisor on
Spec(R) with ideal Ip, denote the normalization of R/Ip by Rp~, and let B and C be
compatibly chosen big Cohen-Macaulay algebras for R and R/Ip. Finally let A > 0 be a
Q-divisor such that D is not contained in the support of A and Kr + D + A is Q-Cartier.
Then:
adjp (R, D+ A) - Rpx = t¢(Rp~, diff g _ (D + A)).

In particular, (R, D + A) is purely BCMp_c-regular if and only if (Rpn,diffg_, (D + A))

is BCM¢-regular. Furthermore, these conditions imply that D is normal.

We prove compatibilities of our new adjoint ideal with those already in use in equal
characteristic. First, that for appropriately chosen big Cohen-Macaulay algebras B and C,
the ideal audt]'g_)c(R7 A + D) is contained in the valuatively defined adjoint ideal originating
in characteristic zero birational algebraic geometry:

Theorem B. (Theorem 5.4) Let (R, m) be a complete normal local domain of residual char-
acteristic p > 0, A > 0 a Q-divisor, and D a prime Weil divisor such that Kr + D + A is
Q-Cartier and D is not contained in the support of A. Then for any proper birational map
w:'Y — Spec(R) from a normal variety Y there exists a compatibly chosen perfectoid big
Cohen-Macaulay R- and R/Ip-algebras, B and C' such that

adjp_o(R, D+ A) C Oy ([Ky — p*(Kr+ D+ A) + D),
where D' is the strict transform of D.

In fact, there is a single choice of B — C' such that the above containment holds for all
i Y — Spec(R) by Theorem A.13. Note that, if log resolutions exist and the variety Y
is taken to be a resolution, then the right hand side coincides with the adjoint ideal from
birational geometry.

We then show that in characteristic p > 0 the big Cohen-Macaulay algebras B and C
can be chosen to ensure the ideal adjp_ (R, D + A) coincides with the adjoint-like ideal of
Takagi [Tak08, Tak10, Tak13].

Theorem C. (Theorem 6.6) Suppose that (R, m) is a complete local F'-finite normal domain
of positive characteristic p > 0, A > 0 a Q-divisor, and D a prime Weil divisor such that
Kgr+ D+ A is Q-Cartier and D is not contained in the support of A. Then there exists a
map B — C of big Cohen-Macaulay R*- and (R/Ip)*-algebras, such that

1, (R, D+ A) = adi?_(R, D + A).

The most frustrating limitation of the BCM test ideal as defined in [MS18b] is that it is
not clear if its formation commutes with localization. As a consequence of our inversion of
adjunction result, we obtain the following partial verification of localization.

Theorem D. (Theorem 4.1) Suppose (R,m) is a complete normal local domain of residual

characteristic p > 0 and that A > 0 is a Q-divisor such that Kr + A is Q-Cartier. Further
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suppose that () € Spec R is a point such that the localization (Rg,Ag) is simple normal
crossing with |Ag| = 0 (in particular, Rg is regular). Then for any perfectoid big Cohen-
Macaulay R*-algebra B,

(TB(Ra A))Q = RQ

As a corollary, we get the following Briancon—Skoda type result that is new in mixed
characteristic.

Theorem E. (Corollary 4.2) Let (R, m) be a complete normal local domain of residue char-
acteristic p > 0 and of dimension d. Let J be the defining ideal of the singular locus of R.
Then there exists an integer N such that JNIh C T for all I C R where h is the analytic
spread of I. In particular, JNIAC [ forall I C R.

By passing to an argument involving the inversion of adjunction on the extended Rees
algebra, we also obtain the following result.

Theorem F. (Lemma 7.2) Suppose (R, m, k) is a complete normal Q-Gorenstein local do-
main of dimension > 2 with residual characteristic p > 0 and R/p F-finite. Let X = Spec R
and suppose that m 1Y — X 1s the blowup of some m-primary ideal I that'Y is normal.
Further suppose that I - Oy = Oy(—mFE) where E is a prime exceptional divisor. Let A be
a Q-divisor such that Kx + A is Q-Cartier.

Let Ag denote the different of Ky + E + i, A along E. Suppose that (E, Ag) is globally
F-reqular, then (R, A) is BCM-regular and in particular, R itself is BCM-regular.

This implies that many simple singularities are BCM-regular. Furthermore it shows that
KLT surface singularities (R, A) are BCM-regular as long as the residual characteristic p >
5,see Theorem 7.11. In fact, the main results of [CGS16] also hold in mixed characteristic,
see Theorem 7.14. As a corollary, we obtain the inversion of adjunction for PLT pairs of
dimension three in mixed characteristic with p > 5, see Corollary 7.13. This then implies
that divisorial centers of mixed characteristic three-dimensional PLT pairs with p > 5 are
normal.

Theorem G. (Corollary 7.13) Suppose that (R, m, k) is a normal 3-dimensional local ring,
essentially of finite type over an excellent DVR with F-finite residue field of characteristic
p > b5, and let X = Spec R. Suppose that D is a prime divisor on X and that A > 0 is
a Q-divisor such that Kx + D + A s Q—Qmjz’er Qnd A has standard coefficients. Suppose
that (DN, diff pv (A + D)) is KLT, then (R, D + A) is purely BCM-regular. In particular,
(X,D+ A) is PLT and D is normal.

Finally, in [MS18b] it was proved that in a proper family over a Dedekind domain, if
one fiber is strongly F-regular then the fibers over an open set are strongly F-regular and
the generic fiber is KLT. We remove a technical assumption on the index from that theo-
rem in Section 8, as well as prove the corresponding result for purely F-regular and PLT
singularities.

Theorem H. (Proposition 8.5 and Proposition 8.3) Let ¢: X — U = Spec(A) be a proper

flat family where A is a localization of a finite extension of 7, with fraction field K. Let D be

an integral Weil divisor which is horizontal over U (resp. D =0), and A > 0 which does not

contain D in its support, such that Kx+D+A is Q-Cartier. Suppose (X, D,+A,) is purely

F-regular (resp. (Xp,A,) is strongly F-regular) for some p € A. Then (Xk,Ax + Dk) is
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PLT (resp. (X,,A,) is KLT) and there is an open subset V of U such that (X,, Dy +A,) is
purely F-reqular (resp. (X4, 2A,) is strongly F-regular) for all g € V.

Since pure and strong F-regularity can be checked (and is easily computable) via Fedder-
type criterion, this theorem provides an efficient and computable algorithm to test whether
a variety in characteristic zero is PLT or KLT.

Acknowledgements: The authors thank Yves André, Bhargav Bhatt, Kestutis Cesnavi-
cius, Ray Heitmann, Mel Hochster, Craig Huneke, Srikanth Iyengar and Zsolt Patakfalvi for
valuable conversations related to this project. We thank Zsolt Patakfalvi for comments on
previous drafts of this paper. They would also like to thank the referees for their careful
reading of the paper and many helpful comments and suggestions. This material is partially
based upon work done while the authors were in residence at the Mathematical Sciences
Research Institute in Berkeley California during the Spring 2019 semester. The authors also
worked on this while attending an AIM SQUARE in June 2019.

2. DEFINITIONS AND BASIC PROPERTIES

Throughout this paper, we will use perfectoid algebras as in [BMS18], which is recalled in
Appendix A. We note that when the ring is p-torsion free and contains a compatible system
of p-power roots of p, then this is the same as the definition given in [And20, Section 2] and
[MS18b, Subsection 2.1]. Following the tradition of commutative algebra, when we call a
ring local, we implicitly mean it is a Noetherian ring. A (not necessarily Noetherian) algebra
B over a local ring (R, m) is called big Cohen-Macaulay if every system of parameters of R
is a regular sequence on B. In particular, mB # B.

We now recall the definition of BCM test ideal from [MS18b]. Let (R, m) be a complete
normal local domain of residue characteristic p > 0. Fix an effective canonical divisor Kg,
and let A > 0 be a Q-divisor such that Kr + A is Q-Cartier. Then there exists n € N and
[ € R such that n(Kg + A) = divg(f).

Definition 2.1. [MS18b, Definition 6.2] In the above set-up, let B be a big Cohen-Macaulay
Rt-algebra. Then we set

fl/n

Ot o™ = ker <H§(R) SN H;i(B)) .

The corresponding BCM test ideal is defined as:

B,Kp+A
t5(R,A) = Ann,,, OH,‘%(E;F :

Equivalently, we can define t5(R,A) to be the Matlis dual of im(HZ(R) LN Hi(B)).
It is proved in [MS18b, Proposition 6.10] that we can take a sufficiently large perfectoid B
such that t5(R,A) C t/(R,A) for any other perfectoid big Cohen-Macaulay R'-algebra
B'. We say that (R, A) is BCMp-regular if T5(R,A) = R, and that it is BCM-regular! if
it is BCMg-regular for all (and hence for a single sufficiently large) perfectoid big Cohen-
Macaulay B. It is known that BCM-regularity coincides with strong F-regularity if R has
positive characteristic p > 0 (and Ky + A is Q-Cartier), see [MS18b, Corollary 6.23]

More accurately, it is called perfectoid BCM-regular in [MS18b] to emphasize that we only consider perfectoid
algebras. In this paper we suppress this notion for simplicity.
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Now suppose that (R, m) is a complete normal local domain of mixed characteristic (0, p)
or characteristic p > 0. Fix a prime Weil divisor D on Spec R with Ip = R(—D) the defining
ideal. For every diagram

(2.1.1) 0 Ip R R/Ip ——0

o

0 (Ip)* R* (R/Ip)t —— 0

o

Ip.c B C

+1

where B and C are big Cohen-Macaulay R* (respectively (R/Ip)") algebras, we can con-
struct an object in Iz_.c € D°(R) as pictured above.

Here, (Ip)* is some minimal prime ideal over IpR*. With this choice R*/(Ip)* may be
identified with (R/Ip)* (see [Hoc07, p. 27]).

Remark 2.2. Recently, Bhatt [Bha20] proved that the p-adic completion of R is a (per-
fectoid) big Cohen-Macaulay algebra, thus in (2.1.1), we may simply let B = R* and

—

C = (R/Ip)*. In this case, Ip.¢ is an ideal of B = R*, and we don’t need to work in
D*(R). This suffices for many applications in this paper (and it strengthens some of our
results, see Remark 5.6). On the other hand, it doesn’t seem allow us to build in “perturba-
tion elements”. In particular, it is not enough for our proof of a Briancon—Skoda type result,
see Corollary 4.2.

Definition 2.3. With notation as above, fix a Q-divisor A > 0 such that Kz + D + A is
Q-Cartier and no component of A is equal to D. Select Kr = —D + G with G > 0 and
choose f € R such that divg(f) = n(Kr+ D+ A). By the commutative diagram above, we

have a map
fl/n

f
Ypam: Ip — Ip.c — Ip.c.

We define the BCM adjoint ideal with respect to B, C', denoted adle)HC(R,D + A), to be

the Matlis dual of
Tmage (Hm(ID) o, Hm([Bﬁc)).

Remark 2.4. We have the factorization:
L fl/n
R — R(Kr+ D) L5 Rt — B.
If one chooses a different representative of Kg, say K, = Kg + div(h), even such that K}
has components in common with D or is non-effective, and so obtains f' = h™f € K(R), one
f1l/n

still has a map R(Kj+ D) ", B which induces HI(R(KkL+ D)) — HY(B), the image of
which is still Matlis dual to adj5 (R, D+ A), as we shall see in the proof of Lemma 2.5(b)
below.

We prove two basic properties.

Lemma 2.5. With notation as in Definition 2.5:

(a) adjh_ (R, D+ A) is an ideal in R.
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(b) The ideal adjh (R, D + A) is independent of the choice of Kg, f and f'/™ € R*.

Proof. First we prove (a). The map Ip iliﬂ—) Ip_.c factors as Ip — R(KRg) L/n> Ig_c by
construction. Since Ip — R(KR) is generically an isomorphism, HS(Ip) — HI(R(KR)) is
surjective and so both H¢(Ip) and HE(R(Kg)) have the same image in H¢(Ip.¢). Thus,
by Matlis duality, we have an injection

adjp_co(R, D+ A) — (HL(R(KR)))” = R.

This makes adj5 (R, D + A) an ideal and proves (a). Additionally, it is worth noting that
we could just as well have defined

(2.5.1) zuﬁgﬁC(R,[)+wA)::aAnaner(Hﬁ(R(B}a)—j1ﬁ>EﬁK[BHC)>.

To prove (b), first note that the diagram defining /5. was independent of all choices
of K, f and n. It is clear that the ideal adjf (R, D + A) is independent of n if it is
independent of f, for if we choose n(Kx + D+ A) = div(f) and kn(Kx + D+ A) = div(f*),
and choose the same nth root of f, the definitions read the same. Next, for fixed Ky, two
choices of f or of f/" differ only by units of R*, which certainly does not change (2.5.1).

Finally, to show independence on K, suppose we have n and f such that n(Kgr+D+A) =
div(f) and n(Kp+D+A) = div(fg"). Thatis, (Kp—Kg) = div(g), and we may assume that
div(g) > 0. Notice that R(K%) % R(Kg) is an isomorphism. Consider the commutative
diagram:

l/n
HE(R(KL)) 2% HI (I 00)

|- |
Hi(R(KR)) 5 e Hi(Ip-c)
By the proof of (a), the Matlis dual of the image of the top row is J' = adjh_ (R, D + A);
the adjoint ideal computed with respect to K%. The Matlis dual of the bottom row is
J = adjg_)C(R, D+A); the adjoint ideal computed with respect to Kg. From the diagram, we
see that the two horizontal images are the same. Hence the diagram induces an isomorphism
J — J'. Now, the Matlis dual of the map

Hy(R(KR)) = Hy(R(Kr))

is just an R-module isomorphism between rank-1 free R-modules, hence it can be identified
with multiplication by a unit. This multiplication by a unit also induces our isomorphism
J— J andso J =J". O

Remark 2.6 (Non-effective A). With notation as above, suppose that d € R does not vanish
at the generic point of D. It then easily follows by the arguments above that

d-adjb (R, D+ A) = adjb (R, D + A + div(d)).
Hence if A is non-effective, we can choose such a d so that A + div(d) > 0. Thus we can
define

1
=~ adjb_ (R, D+ A + div(d)).

z@&ARD+M:d
7



Many of the results of this paper easily generalize to this setting by the formula above, but
we leave details to the reader.

Definition 2.7. Let R be a complete normal local domain of residue characteristic p > 0.
Let A > 0 be a Q-divisor and D a prime Weil divisor such that (R, A+ D) is Q-Cartier and
no component of A is equal to D. Let B and C be compatibly chosen big Cohen-Macaulay
Rt and (R/Ip)*-algebras respectively. We say that (R, A + D) is purely BCMpg_c-reqular
if
adil_o(R, D +A) = R.
We can then give a definition of purely BCM-regular that is independent of choices:

Definition 2.8. With notation as in Definition 2.7, we say that (R, A + D) is purely BCM-
reqular if it is purely BCM p_ ¢-regular for every compatible choice of perfectoid big Cohen-
Macaulay algebras B and C over R and (R/Ip)* respectively.

Remark 2.9. It will follow from Theorem A.13 that, in fact, (R, A+ D) is purely BCM-regular
if and only if it is purely BCM g_¢-regular for one single sufficiently large compatible choice
of perfectoid big Cohen Macaulay R™- and (R/Ip)*- algebras B — C.

We now compare the ideal adj5 (R, D + A) with the BCM test ideal T5(R, A), defined
in [MS18b] and recalled in Definition 2.1. This is an analog of the fact that if (X, D+ A) is
PLT then (X, (1 —€)D + A) is KLT.

Proposition 2.10. Let (R, m) be a complete normal local domain of residue characteristic
p > 0 and let D be a prime divisor. Suppose that A, A" > 0 are two Q-divisors with no
common components with D such that Kr + A’ is Q-Cartier. Further suppose that D + A
1s Q-Cartier. Then

adjp_ (R, A+ D+ A) C1p(R,A + (1 —€)(D + A)) C 1p(R,A)
for any rational number 1 > ¢ > 0.

Proof. The second containment is clear (see [MS18b, Lemma 6.11]), so we need only prove
the first one. Choose g € K(R) such that divg = n(Kr+ A"+ (1 —¢)(D + A)) (note g is
only in the fraction field of R) and choose h € R such that divh = ne(D + A). We have the
diagram:

0 Ip R R/Ip ——0

|

0 (Ip)* R* (R/Ip)t —— 0

L]

Ip.c B c 1

Since h € Ip we have h'/™ € (Ip)*, since (Ip)* is prime, and hence from the map of triangles

0—— h¥"B—— B—— B/(h/"B) — 0

T

Ip.0 B C

+1



we obtain a map v : h'/"B — Ip_¢. Consider the factorization:

1/nh1/n\‘

H&(Ip) — HL(R(KR)) Hi hl/"B)—>H (Ip-c).

\

1m2

The vertical dotted arrow is surjective by the diagram. On the other hand, via the isomor-

ql/n
phism of h'/"B = B, we may view the middle map (defining im;) to be H¢(R(Kg)) L—
HZ(B), and hence we see that the Matlis dual of im, is just Tp(R, A’+ (1 —¢€)(D+A)) (note

g1/n
that Kp is not effective, but there is still a well defined map R(Kg) AN B).
Taking Matlis duals ()" of the entire diagram, we have

(Ha(Kr))" >(imy ) >(imy)”

] | |

R+—15(R, A+ (1 — €)(D + A)) «——adjh (R, D+ A" + A)

which completes the proof. O

Corollary 2.11. With notation as in Proposition 2.10, if (R, D + A + A’) is purely BCM-
reqular then (R, A"+ (1 — €)(D + A)) is BCM-regular.

Proof. Choose a sufficiently large perfectoid big Cohen-Macaulay algebra B such that tg(R, A'+
(1—€)(D+A)) = Rif and only if (R, A'+(1—¢€)(D+A)) is BCM-regular by [MS18b, Propo-
sition 6.10]. Let C' be an perfectoid big Cohen-Macaulay R/Ip-algebra such that B — C'is a
compatible choice, which exists by [And20, Theorem 1.2.1]. The result follows by applying
Proposition 2.10 to B - C. O

Remark 2.12 (Non-prime D). For non-prime D, there are several potential definitions and
we work exclusively in the case that D is prime in this paper. Nevertheless, let us suggest a
more general definition inspired by [BMP*20, Lemma 4.22], also see [TY21]. If D = 3"!_, D;,
we choose a C}, a perfectoid big Cohen-Macaulay (R/Ip,)"-algebra for each i with a map
B; — C}, for B; a perfectoid big Cohen-Macaulay R™ algebra, satisfying the diagram (2.1.1).
We define

¢
adilp _yoc, (R, A+ D)= adjp_, (R,A+D).
i=1
Several properties of this object are effectively proven in [BMP120] in the special case that,
for all 4, B; is the m-adic completion of R* and C; is the m-adic completion of (R/Ip,)" for
all 7. Simply set X = Spec R.

2.1. The different vs the different. Let R be a Noetherian normal domain, X = Spec R,
D a prime Weil divisor, and A > 0 a Q-divisor with no components of A equal to D and

such that Kp + D 4+ A is Q-Cartier of index n. Let m: DV — D be the normalization of
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D. By abuse of notation, we also denote the composition DY — D <+ X = Spec R by 7.
Following [Kol13, Section 4.1], we can define a Q-divisor diffg_, (D 4+ A) on DV so that

T (Kp+ D+ A) ~q Kpv +diffg_, (D + A).

This is done as follows. Since R is normal, we can pick U C Spec R to be a regular
open subset with complement of codimension at least two and such that D N U is regular.
The residue map induces an isomorphism wg(D)|pry =~ wp|pnu (cf. [Koll3, Definition 4.1])
which in turn yields a rational section s of the rank-1-reflexive sheaf

Homg, . (7 Ox (n(Kg+D+A)), Ops (0 px)) = O px (1 p) @7 (Ox (n(K g + D+ A))) .
We define diffg_ (D + A) = —1-div(s).

Equivalently, we can choose Ky (using prime avoidance) to be equal to —D + G for some
Weil divisor G with no common components with D. Consider the exact sequence

0 — wr — wr(D) — wp — K™ wy) — ...

coming from applying Grothendieck duality to 0 — O(—=D) — O — Op — 0 and taking
cohomology. Since R is S2, it is Cohen-Macaulay in codimension 2. Thus, h=4"1(w},) is zero
in codimension 2 on R and hence in codimension 1 on R/Ip. In particular, the S2-ification of
coker(wr — wg(D)) is isomorphic to wp, using [Sta, 0AWE]. Now then, since Kz + D > 0,
we have a chosen section 1 € wg(D) and its image in wp. On the other hand, we have the
generic isomorphism wpy — wp, and so we obtain a rational section of wpw~, and hence a
possibly non-effective divisor Kp~ (if D is normal, it is effective). We can now define

: 1. .
diffp (D + A) = EleDN 7 f — Kp~
for f such that divg(f) = n(Kr+ D+ A). It is easy to see that the above two constructions,
in fact, coincide.
3. ADJUNCTION AND INVERSION OF ADJUNCTION
We prove the first main result of this article.

Theorem 3.1. Suppose (R,m) is a complete normal local domain of residue characteristic
p > 0. Fiz a prime Weil divisor D on Spec R with Ip = R(—D) the defining ideal and
set Rp = R/Ip as well as Rp~ to be the normalization of R/Ip. Suppose that A > 0 is a
Q-divisor such that no component of A is equal to D and such that Kr+ D+ A is Q-Cartier.
Then for compatibly chosen B,C as in (2.1.1), we have

adji.o(R, D+ A) - Rpy = 1¢(Rpy, diffg_ (D + A))).

Proof. Fix a canonical divisor Kr = —D + G, where G > 0 does not contain D as a
component. Following the notation as in Section 2, choose f € R such that div(f) =
n(Kgr+ D + A). Consider the diagram:

0 Ip R R/Ip —0

fl/nJ fl/nJ{ lfl/n

0—— (Ip)t — RT —— (R/Ip)" —— 0.
10




Since in a normal finite extension R C S C R* with f/" € S, we have that divg(f'/") >
7 (Kr + D), it follows that fY/" . R(Kg + D) C f'/"S(7*(Kr + D)) C R*. Hence we have
the following diagram:

0 Ip R R/Ip —0

| l |

0 —— R(Kg) — R(Kr + D) —— (coker) —— 0

0—— (]D)Jr R+ (R/\]/D)Jr —0

As in Section 2.1, the S2-ification of (coker) is isomorphic to wp, and so /™ multiplies wp
into (R/Ip)™.
We see by Section 2.1 that

1 —
diﬁRDN (D + A) = — diVDN f - KDN.
n
for f = f|p~. Consider the following diagram:

0 — R(Kr) — R(Kr + D) —— (coker) —— 0

fl/n fl/n .fl/n wp <_CL)DN
Tr
,fl/n
0—— (ID)+ R+ (R/[D)+ —0
]B—>C' B C 1

Since Kp~ +diffg (D + A) = %diVDN £, by construction in [MS18b], the Matlis dual of
Image (HE ' (wpn) — HEH(C))

is T (Rpw, diffp_ (D + A))). On the other hand, the maps H& (wpy) — HE ! (wp) and
HZ=Y(coker) — HZ (wp) are surjective, since the modules agree generically. Therefore, the
Matlis dual of

f£1l/n

Image (Hg ' (coker) AN HIHC))

is also T¢ (Rpx, diffg (D + A))).
11



Taking local cohomology, we obtain the following diagram with images of maps in the
middle row:

Hi=Y(coker) —— HI(R(KR)) — HL(R(Kg + D)) —— 0

l l

0 im1 ( il’Ilg

l |

HI"Y(B)=0—— HSYCO) ——— Hi(Ig.c) ——— HY(B)

Recall that the S2-ification of (coker) is wp, and hence Ha!(coker) = HI *(wp). Taking
Matlis dual of the top and middle row yields the diagram

adjp_c(R, A+ D) —» tc(Rpx, diffr (D + A))

R (R/Ip)N = Rpx.
This completes the proof. 0

Remark 3.2 (Adjunction for non-prime D). Using the notation of Remark 2.12, if D =
ZZ 1 D; is only reduced but not prime, then notice that adj? B—>C, (X,D; + A+ Z] i D;)

is contained in the Matlis dual of Image (HZ(R(Kg)) — Hd(R(KR + Dj))) = I}, for any
j # i. Hence adj?_m_(X, Di+A+3,,,D;) CIp,. In particular,

(adj%, o0, (R, A+ D)) - RY, = (Zﬁzl adj? _, (R.A+ D)) R},
= (adjgjﬁcj(R, A+D)) Ry
= TCj (RIN)J s diHRDN (D+A) )

Therefore, since RY := (R/Ip)N = H;Zl(R/IDj)N = szl R%J, we obtain that

(adjZp _soc, (R, A+ D)) - RY = Tac, (R}, diff gy (D4a) )
where we define the right side to be the product of the t¢; (RD ,diffp N(D+A)) since RY is

not local. This generalizes Theorem 3.1 to the case of a non-prime D.

Corollary 3.3. With notations as in Theorem 3.1, if (DY, diffg_\ (D+A)) is BCM¢-regular,
then D is normal.

Proof. Theorem 3.1 tells us that adjh (R, D+A)-Rpxy = Rp~. But adjh (R, D+A) C R.
So R — Rpn = (R/Ip)N is surjective (see the last diagram in the proof of Theorem 3.1)
and hence D = DN. O

Corollary 3.4. With notation as in Theorem 3.1, (R, D + A) is purely BCM g_,c-reqular if
and only if (R/Ip)N,diff px(D + A)) is BCM¢-regular. In either case D = DN.

Proof. The first statement follows from Nakayama’s lemma and Theorem 3.1. The second

statement follows from Corollary 3.3. O
12



Corollary 3.5. With notation as in Theorem 3.1, (R, D+ A) is purely BCM-regular if and
only if (R/Ip)N,diff px (D + A)) is BCM-regular.

Proof. Firstly, if (R/Ip)N,diff px(D+A)) is BCM-regular, then given any compatible choice
B - C, (R/Ip)N,diff px (D + A)) is BCM¢-regular and so by Corollary 3.4 (R, D + A) is
purely BCMp_ -regular.

Conversely, suppose (R, D+ A) is purely BCM-regular, in which case we may assume that
D is normal, and let C' be a perfectoid big Cohen-Macaulay (R/Ip)* algebra large enough
to ensure BCM regularity. Then choose a compatible B — C’ by [And20 Theorem 1.2.1].
By [MS18b, Lemma 4.5] there exists C' which comes with maps €' — C and C' — C, so
that by Corollary 3.4 applied to B — C, (R/Ip,diffp(D + A)) is BCMgs-regular, and hence
BCM¢-regular, and hence BCM-regular by our choice of C'. O

4. APPLICATION TO BCM TEST IDEAL AND THE BRIANCON—SKODA THEOREM

We prove the following result which substantially generalizes [MS18b, Theorem 6.27 and
Proposition 6.31].

Theorem 4.1. Suppose (R, m) is a complete normal local domain of residual characteristic
p > 0 and that A > 0 is a Q-divisor such that Kr + A is Q-Cartier. Further suppose
that @ € Spec R is a point such that the localization (Rg,Ag) is simple normal crossing
with [Ag| = 0 (in particular, Rq is regular). Then for any perfectoid big Cohen-Macaulay
R -algebra B,

(t8(R,A))q = Rq.

Proof. We proceed by induction on the dimension of Rg. Consider first the case where
dim Ry = 0. Then Ry, is a field and the statement is obvious since 15(R, A) is nonzero.

Now suppose we know the statement for dimension < d and dim R = d. There are two
cases. First suppose that the localization Ag = 0. In this case choose D to be a prime
divisor on Spec R passing through () such that D¢ is nonsingular. Further we may choose
an effective Q-divisor © > A and © > 0, both not containing () in their support, such that
Kr+ ©" and D + © are Q-Cartier (in fact, we can take © = A in this case).

Otherwise if Ag # 0, choose D € Supp A to be some prime divisor passing through Q).
Now, K+ AV D need not be Q-Cartier. Fix Ap = A — (A A D) and choose © > Ap such
that © = (Ap)q and Kx + ©" is Q-Cartier. Further choose © > 0, not containing @ in its
support, so that D + O is Q-Cartier.

Under either assumption, we have D + © + ©’ > A while Kz + ©' + D + O is Q-Cartier.
Furthermore (Rq, Dg +©¢q + ©p) is SNC and | Dg + O¢q + O | = Dg. Choosing a suitably
compatible perfectoid big Cohen-Macaulay (R/Ip)*-algebra C, we know that

(R, A) D 15(R,0 + (1 —€)(D +0)) D adjp (R0 + O + D)
where the first inequality is simply because ©" 4+ (1 — ¢€)(D + ©) > A and the second is by
Proposition 2.10. Multiplying by (R/Ip)N = Rpx we use Theorem 3.1 to obtain that
adjp_o(R,© + O+ D) - Rpy = 1 (Rp~, diff g (6' + © 4 D))).

By the induction hypothesis, the right side localized at @) is (Rp~)q. Hence by Nakayama's

lemma, so is the left side. The result follows. O
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As an application, we obtain the following Briangon—Skoda type result in mixed charac-
teristic. To the best of our knowledge this version of the Briangon-Skoda theorem was not
known before in mixed characteristic.

Corollary 4.2 (Briangon—Skoda Theorem). Let (R, m) be a complete normal local domain
of residue characteristic p > 0 and of dimension d. Let J be the defining ideal of the singular
locus of R. Then there exists an integer N such that JNI" C I for all I C R where h is the
analytic spread of I. In particular, JNI¢ C T for all I C R.

Proof. First note that we can replace I by its minimal reduction, so without loss of generality
we may assume that I is generated by h elements. Now by [HM17, Theorem 2.7], [" C [P/
where I°?/ denotes the extended plus closure of I:

I?f .= {» € R | there exists ¢ # 0 such that ¢/?z € (I,p")R" for all e and all n}.
Next we fix a perfectoid RT-algebra B’, it is clear that
I°?f C {2 € R | there exists ¢ # 0 such that ¢'/?” 2 € (I, p")B’ for all n}.

For a fixed ¢, we now apply Gabber’s construction (see [Gabl8, page 3|) by setting B =
S:7'B*, where B = ([ B")/(@" B') and S, is the multiplicative system consisting of
(c?0, ¢, ...) € B such that ¢; € N[1/p] and ¢; — 0. It is straightforward to check that B
is a big Cohen-Macaulay algebra of R (see [Gab18]) and that if ¢!/?” 2 € aB’ for some ideal
a C R, then z € aB. Moreover, we can replace B by its m-adic completion to assume that
it is a perfectoid big Cohen-Macaulay R*-algebra (first use [BIM19, Example 3.8 (7)], the
p-adic completion of B is perfectoid, and then note that m-adic completion is the same as
(p, xa, ..., xq)-adic completion where p, z,, . .., z4 is a regular sequence since B is big Cohen-
Macaulay, so [And20, Proposition 2.2.1] applies). We can now either take a direct limit of
this construction for all ¢ # 0, or pick ¢ that works for every generator of I’/ (note that
I°P is a finitely generated ideal since it is inside R) to assume that we have a perfectoid big
Cohen-Macaulay R*-algebra B such that:

I*f C {2 € R| 2 € (I,p")B for all n}.

Thus I* C (I,p")B N R for some fixed perfectoid big Cohen-Macaulay R*-algebra B and
every n. For all () € Spec R such that R is regular, we can pick A > 0 such that Kr+A is Q-
Cartier and Ag = 0 (since Kp is principal at ()). If we pick f such that divg(f) = n(Kg+A),

fU/n

then R =75 B factors through wp = R(Kg) so we have induced maps
Y HA(wg) — HE(B ® wg) — HA(B).

Applying Matlis duality, we have

S

Hﬁ(wR)v — Hgl(B & (.UR>\/ — Hr(i

O

R +——— Hompg(B, R) +—— Hompg(B, wg)

)\/

1%

By construction we know that Image( H(B)Y — H%(wg)V) is T5(R, A) (see [MS18b, Proof
of Theorem 6.12]). Therefore by the commutative diagram, we know that

Image(Homg(B, R) — R) 2 15(R, A).
14



By Theorem 4.1, T5(R,A)g = Rg. Thus we know there exists ¢ € Hompg(B, R) such that
¢(1) = x for some x ¢ (). Since this is true for every @ such that R is regular, we see that

J C /Image(Homg(B, R) — R).

Thus there exists N such that JV C Image(Hompg(B, R) — R), that is, for every r € JV,
there exists ¢ € EomR(B7 R) such that ¢(1) = r. Finally, since I" C (I,p")B N R, applying
¢ we see that rI" C (I,p"). As this is true for all » € JV and every n, we have that

JNTR C N, (1, p") = 1. O

5. COMPARISON WITH THE ADJOINT IDEAL FROM BIRATIONAL GEOMETRY

The main result of this section, Theorem 5.4, is a variant of [MS18b, Theorem 6.21]
stating that the BCM-test ideal is contained in the multiplier ideal sheaf. Before moving on
to the main result, we first give a slightly different proof of [MS18b, Theorem 6.21] based on
[MS18b, Proposition 3.7]. We will apply the same strategy in the proof of Theorem 5.4.

Theorem 5.1. [MS18b, Theorem 6.21] Given a complete normal local domain (R, m, k) of
dimension d of residue characteristic p > 0, a Q-diwvisor A > 0 for which Kgr + A s Q-
Cartier, and a proper birational map p: Y — Spec R with Y normal, there exists a big
Cohen-Macaulay R*-algebra B such that

TB<R, A) - ,U*OY<[KY - M*(KR + A)])

Proof. First, we may assume that u is projective, and so it is the blow up of some ideal sheaf
J C R, that is Y = Proj R[Jt]. Second, by replacing R[Jt] by its integral closure, we may
assume R[Jt] is normal. Let E be the reduced pre-image of {m}. Arguing as in [MS18b,
Proposition 3.7], we can find a commutative diagram

B'—— B

|

R[J{] — R

with B and B’ being big Cohen-Macaulay algebras over R™ and (R[jt],: J¢)T respectively.
This combined with the Sancho-de-Salas sequence [SdS87] fits in the following diagram:

0= HngJt(B,) B Hi(B)

T T

HY, o (R[Jt])o — Hg(R) — HE(Y, Oy),

where the bottom row is exact. Here HZ, ;,(B') = 0, as R[Jt] is of dimension d + 1 and B’ is
a big Cohen-Macaulay algebra, while HZ(R) — H%(Y, Oy) is surjective, because it is Matlis
dual to the injective morphism p,wy — wg.
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In particular, we get an induced map H§(Y,0y) = HY(B). Let f € R be as in Defini-
tion 2.1, assuming Kr > 0. The following commutative diagram

1
fra

H{(B) +— HE(Y, Oy (lu*(Kr + A)]))

Hy(R) ————— Hy(Y, Oy)

shows that the image of HI(R) — HE(Y,Oy(|pu*(Kg + A)]) surjects onto the image of
1
HI(R) EAN HZ(B). Thus by Matlis duality

(R, A) C Oy ([Ky — 1" (Kr + A)]). O

Remark 5.1.1. The proof above goes through in characteristic zero except that we do not
know of a reference for the existence of weakly functorial BCM R*-algebras, but only weakly
functorial R-algebras [HH95, Theorem 3.9], see also the discussion at the end of [Hoc17].

However, in the proof of Theorem 5.1 we really only needed that /™ € B, which we can
arrange again letting S be the normalization of R[f'/"] and applying [HH95, Theorem 3.9]
to S[JSt] — S. Thus the result also holds in characteristic zero as long as one chooses a
large enough big Cohen-Macaulay R-algebra.

We now recall the definition of the adjoint ideal from characteristic zero birational geom-
etry.

Definition 5.2. Let R be a normal local domain, A a Q-divisor and D a prime Weil divisor
such that Kr + D + A is Q-Cartier. We define the birational adjoint to be

adji(R,D+A)= (]  mOy([Ky — " (Kp+D+A)+D')
w:Y —>Spec(R)

where the intersection runs over all proper birational morphisms, and D’ is the strict trans-
form of D. If log resolutions exist in dimension dim(R) then the intersection stabilizes and
can be computed on any log resolution of (R, D + A) such that the strict transform of D is
nonsingular.

Remark 5.3 (Nonprime D). If R is finite type over a field of characteristic zero and if
D = Y"'_, D; where the D; are prime divisors, then one still defines adj;, (R, D + A) with
the same formula. In that case, we believe it is well known to experts that

t
(5.3.1) adji (R, D+ A) =Y adjli(R, D+ A).

i=1

The O containment is straightforward from the definitions. To show C, suppose 7 : Y —
Spec R is a log resolution separating the components of D and D) (respectively D') is the

strict transform of D; (respectively D). Then, setting M = p*(Kgr + D + A) we have the
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diagram:

0 — @;_y 10y ([Ky = M1) = @iy 1Oy ([Ky = M + D)) — @iy 1O py([Kp; — M|pr]) — 0

| l l

0 —— Oy ([Ky — M) ——— uOy ([Ky = M + D) ——— uOp/([Kp — M|p/]) ——0

where the zeros on the right are due to local vanishing for multiplier ideals (in other words,
relative Kawamata-Viehweg vanishing). The maps on the left and right are surjective, hence
so is the map in the middle. As a consequence the containment C holds in (5.3.1).

In view of this, we suggest that in positive characteristic it may be better to define
adjp (R, D+ A) as a sum as in (5.3.1) as well. We continue to work with prime D however.

Now we state and prove our main comparison result.

Theorem 5.4. Let (R, m) be a complete local normal domain of residue characteristic p > 0,
A >0 a Q-divisor, and D a prime Weil divisor such that Kr + D + A is Q-Cartier. Then
for any proper birational map p:Y — Spec(R) from a normal variety Y, there ezists a
compatibly chosen perfectoid big Cohen-Macaulay RY- and (R/Ip)*-algebras B and C' such
that

adjp_c(R, D+ A) C 1.0y ([Ky — p*(Kg + D + A) + D').

Proof. As in Theorem 5.1, we may assume that Y = Proj R[Jt] for some ideal J C R such
that R[Jt] is normal and E the reduced pre-image of {m}. Let J be the image of J in R/Ip.
By Theorem A.7,%> we can find perfectoid big Cohen-Macaulay algebras B’ and C”" of the
completions of R[Jt] and (R/Ip)[Jt] respectively, as well as perfectoid big Cohen-Macaulay
R*- and (R/Ip)*-algebras B and C, sitting inside the following commutative diagram:

— S pec

/ e

B
0 Tp J R[J1] T (R/Ip)|JY] T 0
—|— Ip.c B C

0 Ip R R/Ip 0,

1

c— =

where Jp, Ig.c, and Jg/_ o are appropriate kernels and homotopy kernels.

2Note that the assumption of Theorem A.7 is satisfied: the Rees algebra R[Jt] (completed at the maximal
ideal m + Jt) is normal, P; = (Jt) and Py = ker(R[Jt] — (R/Ip)[Jt]) are height one primes and their sum
is a height two prime in R[Jt] whose localization is regular (as it is isomorphic to Ry, [(JRi,)t]).
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Pick f as in Definition 2.3. Analogously to Theorem 5.1, we can apply the Sancho-de-Salas
sequence (see [Lip94, page 150]) to obtain the following diagram with exact bottom row

0=H ;,(Tp-c)o — Hi(Ip-c)

% o

9 (Tp)o s HA(Ip) ——» HA(Y, Oy (~D))

Here HY, ;,(Jp~c’) = 0 for dimension reasons, because it sits in an exact sequence
d—1 ! d d A
0= Hn-i—Jt(C) - Hn+Jt(jB’—’C’) - Hn—l—Jt(B ) =0.

The bottom right arrow in the diagram is surjective as it is Matlis dual to p.wy (D) —
wx (D). In particular, the morphism

H(Ip) %, g 4 (T5 c)

factors through HZ(Ip) — HL(Y,Oy(|p*(Kr + D + A) — D'|), and so the image of the
latter surjects onto the image of the former. Thus, by Matlis duality

adjb (R, D+ A) C 1,0y ([Ky — u*(Kg + D + A) + D'7). O

Remark 5.5. In the above theorem, we can in fact pick a compatible choice of perfectoid big
Cohen-Macaulay R"- and (R/Ip)*-algebras B and C' that works for all possible birational
maps p. This follows from Theorem A.13. An alternative method might be possible by using
the perfectoid nature of B and C, and such comparisons should follow from [MS18a, Section
5]. We leave the interested reader to carry out the details of the alternative approach.

Remark 5.6. Recently, Bhatt [Bha20] proved that the p-adic completion of RT is a (perfec-
toid) blg Cohen- Macaulay algebra. Therefore, in Theorem 5.1 and Theorem 5.4, we can take

B=Rtand C = (R/ Ip)* and they work for all possible i already. As a consequence of this
fact, Theorem 5.1 (resp., Theorem 5.4) holds for arbitrary big Cohen-Macaulay R*-algebra

B (resp., arbitrary compatibly chosen big Cohen-Macaulay R¥ and (]g};) -algebras) be-
cause Tp(R,A) C 15(R,A) and adjb (R, D + A) C adjZ- (R, D+ A). We will

not need this stronger result in the sequel though.

Rt —( R/I

6. COMPARISON WITH THE TEST IDEAL IN CHARACTERISTIC p>0

The notions of pure BCM-regularity and pure F-regularity agree in positive character-
istic. Indeed, this follows by adjunction as BCM-regularity and strong F-regularity agree
by [MS18b, Proposition 5.3]. In this section we show that in fact our BCM adjoint ideal
coincides with Takagi’s adjoint ideal in positive characteristic. Throughout this section all
rings will be F-finite and of characteristic p > 0.

First, we recall the definition of the latter ideal, [Tak08, Tak10, Tak13].

Definition 6.1. Suppose that R is a normal F-finite complete local domain of characteristic
p > 0 and that (R, D4+A) is a pair with D reduced and A > 0 a Q-divisor with no components

in common with D. Let E = H%(R(KR)) be the injective hull of the residue field. Set R*P
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to be the elements of R not in any minimal prime of I (in other words, the elements that
do not vanish on any component of D). We define

O*ED(D+A) ={z € E|3c € R" such that 0 = (Fc)®z € (FFR((p°—1)D+[p°A])®RgrE, Ve > 0}.

We define
T[D (R, D + A) = AnnR(OED(D+A)).

The roundings in [Tak08] are slightly different than the ones above, however any difference
can be absorbed into c. It turns out if a ¢ € R*P is chosen such that Supp(A) C Supp(div(c))
and such that R. and (Rp). are regular, then a fixed power® ¢ = ¢™ of that ¢’ can be chosen
that works in the definition of all z € 03 (P8)
test element).

Note that, since F = HZI(R(Kpg)), we have that (FCR((p® — 1)D + [p°A])) ®g F =
FeHR(R(p*(Kg + D) — D+ [p°A)])).

On the other hand, by [Tak13, Proposition 1.1] 77, (R, D + A) is the smallest ideal J not
contained in any minimal prime of Ip, such that for every

6 € Homp (FR([(p° — 1)(D + A))), B) € Homp, (FR, R)
we have ¢(FfJ) C J.

Remark 6.2. Even if D 4+ A is not effective we can still make sense of this definition. The
point is that 77, (R, D+ A +div(c)) = c77, (R, D+ A) for ¢ € R>P as can be easily checked.
Therefore if D + A is not effective, choose ¢ € R*P so that D + A + div(c) is effective, and
define the fractional ideal:

1
T, (R, D+ A) = i (R, D + A+ div(c)).

in other words, such a ¢ = ¢ is a divisorial

Thus for what follows we will reduce without mention to the case that D + A > 0.

Remark 6.3 (Non-prime D). Suppose D = Zle D; with each D; prime. It follows from the
definition that 77, (R, D + A) C 77, (R, D + A) for every i. Thus

t
Ty (R, D+ A) D) 71, (R, D+ A).
i=1

However, the right side is also compatible with every ¢ as above and so by the minimality
of 71, (R, D4 A) we see that 77, (R, D+ A) = >'_, Tip, (R, D+ A). Hence, if one makes the
definition of adj,p. ¢, (R, D + A) as suggested in Remark 2.12, then the main result of this
section, Theorem 6.6, immediately generalizes to the case of non-prime D since we can work
one D; at a time.

We now prove a containment relating Takagi’s characteristic p > 0 adjoint ideal with ours.
The strategy is similar to [Smi97].

Proposition 6.4. Suppose that (R,m) is an F-finite complete local ring of characteristic
p >0 and (R,D + A) is as in Definition 6.1. Further assume that D is prime. Then

TID(R> D+ A) - adjgeC(R7 D+ A)

3To see this, using [Tak08, Proposition 3.5(1)], we must show that ¢ € 77, (R, D + A) for some n. But
we know that the formation of 77, (R, D + A) commutes with localization by [Tak08, Corollary 3.4] and for
such a ¢, it is not difficult to see that 77, (R, D + A)o = Re.
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Proof. Recall first that
adjgaC(R7 D + A) : (R/]D>N = T¢ (RDN, diffRDN (D + A)))

by Theorem 3.1. Hence since the right side is nonzero by Theorem 4.1 (¢f. [MS18al) the
left side is also nonzero. Thus, to prove the proposition, we must show that adj qu(R, D+
A) - (R/Ip)N is compatible with the maps ¢ € Hompg ((FCR([(p® — 1)(D + A)])),R) C
Hompg(F¢R, R).

Let f € R be such that divg(f) = n(Kr+D+A) as in Section 2. Fix a finite normal local

fl/n
extension 7: SpecS — Spec R with f1/™ € S. We have the map R(KR) C S(n*Kg) RAEN

SU/n
Ip_c. The Matlis dual of the image of HZ(S(n*Kg)) S H&(Ip.c) is a submodule £ C
Hompg(S, R) = S(Ks — n*Kpr) whose image under the evaluation-at-1 map to R is exactly
adjgaC(R7 D+ A)
Any ¢ € Hompg ((FER([(p° — 1)(D + A)])), R) € Hompg(F?R, R) induces a map
o - Hompe (FCS, FER) "8 00m%, y o (S, FER) 2%, Hom(S, R).
It would suffice to show that ¢(Ffk) C & since the following diagram commutes:

F: HOHlR(S, R)

ev@l

HOIIlF*eR(FfS7 F*eR) —_— FfR

wl Lﬁ
Hompg(S, R) —1— R.
Notice that ¢ factors through
Hom e p(F2S, FER([(p° — 1)(D + A)])) = FES(Ks — i Kn +0*[(5 — 1)(D + A)])
and hence it also factors through the smaller module
(6.4.1) FeS(Ks — 1 Kn + [ (0" — 1)(D + A)]),

Now, we have the following commutative diagram

d * U d
HS(S(n*Kgr)) —— Hy(Ip-c)

.Fff(Pel)/nl lFe

Hﬁ(FfS(U*KR)).WLHﬁ(IBHc)-
The Matlis dual of the image of the first row is k. The Matlis dual of the image of the second
row is F¢k. Therefore by Matlis duality, the dual to the left vertical map, ¢: F¢S(Kg —
n*Kg) & F¢Hompg(S, R) — Hompg(S, R) = S(Ks — n*Kg) induced by -F¢f®* =D/ sends
Fek to k. Tt is not difficult to see that any map which factors through F¢S(Kg — n*Kg +
n*(p® — 1)(D + A)), is an F¢S-pre-multiple of 1. Indeed, this follows since the dual to
HI(S) — HL(FES) generates Homg(Ffwg,ws) as an S-module (since both are dual in
various ways to the Frobenius map S — F°S which generates the Frobenius structures as

an F¢S-module on S). Thus ¢ sends F¢k to k as well as desired. U
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Before showing the reverse containment for appropriately chosen B, C', we first record the
following analog of a transformation rule for 7;, (R, D + A) under certain finite morphisms.
Note that recently Carvajal-Rojas and Stébler [CRS19, Theorem 6.12] have proven a similar
result, which for the most part holds much more generally. Unfortunately, we do not believe
that the implicit Cartier algebra we are using on S is exactly the one pulled back in the sense
of Carvajal-Rojas and Stébler (although the test ideal may be the same). For this reason,
we provide a direct proof.

Proposition 6.5. Let R be an F-finite normal local domain of characteristic p > 0, A a
Q-dwisor and D a reduced Weil divisor. Suppose that R C S is a module finite normal
extension and consider w: Spec(S) — Spec(R). Assume m is étale in a neighborhood of the
generic point of any component of D. Let D" be a reduced divisor on Spec S with D' < 7*D
and such that for each prime component of D, there exists at least one component of D' lying
over it. Then the trace map Tr: S(Kg) — R(Kg) induces

(6.5.1) Tr(7r,, (S, 7" D+7"A—Ram,)) = Tr(r7. (S, 7" D+7"A—Ram,)) = 71,(R, D+A)
Proof. First notice that
71, (S, 7D + A — Ram,) C 77, (S, 7" D + 7" A — Ram,).

Using the map-divisor correspondence [BS13, Section 4], an alternate formulation of 77, (R, D+
A) is given by

11, (R, D + A)
= D eso Trpe (FER([(1 = p)(Kr + D) — pA = dive(c)]))
= 2eso Trpe (FYR((1 = p°) (KR + D) — [p*A] — divg(c)))

where ¢ € R is (an appropriate power of ) an element of R*P with Supp(A) C Supp(divg(c))
and such that R. and (Rp). are regular. Assuming further that the ramification locus of
7 is contained in Supp(divg(c)), applying the analogous formula on S, and using that the
functoriality of the trace gives Trge 0o Tr = Trpeor; = Trrope = Tro Trpe, we have

Tr (77, (S, 7*D + m*A — Ram,))

=> oo TroTrpe (FES([(1—p°)(Kg + D) — p°(7*A — Ram,) — divg(c)]))
=D oo Trpe (FTr (S([(1 = p°)(Ks + W*D) — p°(7*A — Ram,) — divg(c)])))

= euoTrpe (FETr (S(Kg + (1 —p°)n*D — [p*n*A| — p*m* K — 7* divg(c))

C D eno Trpe (FL Tr (S(Ks + (1 — p)m *D — 7 |pfA] — pr* K — n* divg(c))

C D eno Trpe (FER(KR + (1= p°)D — |p°A] — p° K — divg(c)))

=711,(R, D+ A).

The reverse inclusion for the equality in (6.5.1) follows similarly, using the strategy of
proof in Proposition 6.4 stemming from [Smi97] to say that Tr (T]D, (S, 7D + A — Ramﬂ))
is appropriately uniformly compatible and not contained in any minimal prime of Ip. By
definition 77, (S,7*D + 7*A — Ram,) is not contained in any minimal prime of Ip/, and
hence since 7 is étale over the generic points of D, neither is its trace. We have, for b €
71, (S, m*D+7*A—Ram;,) but b not in any minimal prime of I/ (in other words a “divisorial

test element”), the following chain of containments. Here the sum in the first line above is
21



taken over all ¢ € Homp, ((F<R([(p° — 1)(D + A)))), R).
>y (Tr (71, (S, 7D + 7*A — Ram,)) )
— Trp. (F (R((1 = p*)Kr — [(p° — 1)(D + A)]) - Tr (71, (S, 7D + 7 A — Ram,)) ))
— Trpe (Ff Te(S((1 — p*)r*Kp — 7 [(0° — 1)(D + A)]) - 71, (S, 7D + A — Ramﬂ))>
= Tr (32, Tepe(FE(S((1 = p*)m* K = [ (0 = 1)(D + A)))
T (FES([(1 = p*) (K + 7 D) = p (7°A = Ramy) — divs(5)1))) )
=Tr (Ze/ Trpeser (FHS(p (1= p*)m* K — 777 [(p° = 1)(D + A)]
+(1 = p)(Ks +7°D) — pe’w*A ~ Ram,) — divs(b)])))
_ (ze, Tt peser (FH S(Kg — p+o'n* K + (1 — p+¢)m* D — divs(b)
1Tt (1 - p)A ] — Lpe'w*AD))
C T (ze, Tt peyer (FH S(Kg — p+e'n* K + (1 — p¢ )" D — divs(b) — [p=+e 7 A )))
= T (5 Tt (B S([(1 — p+) (K +7D) — p(+"A — Ram,) — divs(2)])))
C Tr (7, (S, 7D + A — Ramﬂ))
This completes the proof of the equality in (6.5.1). O

Theorem 6.6. Suppose that (R, m) is an F-finite complete local ring of positive characteris-
ticp >0 and (R, D+ A) is a pair as in Definition 6.1. Additionally assume that D is prime
and that Kg + D + A is Q-Cartier. Then for any map B — C' of big Cohen-Macaulay R*
and (R/R(—D))* modules (for instance B = R and C = (R/R(—D))*), we have that

TIp (R7 D+ A) = adngC(R, D+ A)

Proof. We begin by supposing that Kr = —D + G where G has no components common
with D. Thus if div(f) = n(Kgr+ D + A), we see that f is a unit at the generic point of D.
Since we are in characteristic p > 0, by [BST15, Lemma 4.5], there exists a finite separable
extension R C S with 7 : SpecS — Spec R with 7*(Kr + D + A) Cartier. If n is not
divisible by p, this is very easy, simply take the nth root of f. If n is divisible by p, then by
construction in that proof, 7 is ramified only where f vanishes, and f does not vanish at D.
Either way 7 is étale over the generic points of D. Choose the prime divisor D’ on S lying
over D with Ip contained in our choice of If.

In this case, we write 7*(Kgr+ D+ A) = Kg+ D'+ (n*D — D' + 7*A — Ram,) = div(g).
Note that (7*D — D’ + 7*A — Ram, ) may not be effective, and so we implicitly use the idea
of Remark 2.6 to reduce to the case that it is. Consider the factorization

o HYR(KR)) — HY(S(rKR) 5 HA(IE)

Since HA(S(Kg)) = Hi(S(m*Kr — Ram)) — HZ(S(7*Kpg)) surjects for dimension reasons,
we see that the image of 3 is the Matlis dual of adjB_ (S, 7*(D + A) — Ram,), and the
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image of a is adj5_ (R, D + A). Hence we have that
Tr (adjj (S, 7" (D + A) — Ram,)) = adjg_ (R, D + A).

Therefore, in view of Proposition 6.5, it suffices to prove the result on S. Hence, we may
now assume that Kr + D + A = div(f) is Cartier.

Suppose z € OfED(D”LA). This just means that there exists ¢ € R>” such that
M 02=0e (R(p° —1)(D+A)V" @ E.
But
(R((p° = (D + 0)))/"" @ B = FH(R(Kp + (p° = 1)(Kg + D + A)) = F{E.
Define:
IpT2% = U (R((p° = 1)(D + A)V7" C K(R)'™ C K(R").
Claim 6.7. We have f - [T @g E maps into H(I)).
Proof of claim Claim 6.7. We work at a finite level.

[ (R((p° = 1)(D+ Q)" @r E
= (R((p° = 1)(D+A) —p°(Kr+ D+ M)V @r HL(KR)
= HI(R(—D — A)Y)

which certainly maps into Hd(I})) under the natural map. O

Since ¢'/7*®z = 0 in one term in the limit, we see that ¢'/7* annihilates 1®z in I > QzE.
Hence by Claim 6.7, the image of z under the map

Hy(R) % Hy(If)
is also annihilated by ¢!/7°.

Claim 6.8. If z € HL(I}) is such that c*/? z = 0 for all e and some fived ¢ € R*P, then
z=0.
Proof of claim Claim 6.8. We have
0 — HY ' (R}) — HE(If) — HL(RT) — 0.

The image 2’ of z in H(R*) also has ¢'/?"z = 0. But now, 2/ € HZ(S) for some finite
extension S of R. By the valuative criterion of tight closure, [Hoc07, Theorem on page 194],
since /7 ® 2/ = 0 € ST ®g H(S), we see that 2 is in the tight closure of 0 in H%(S). But
the tight closure of zero is just the kernel of H¢(S) — HE(RT) by [Smi94]. Hence 2’ = 0.

Thus there exists y € Hi~1(R})) mapping to z and by the fact BT is big Cohen-Macaulay,

c'/?"yy = 0 for all e. Repeating the above argument, we see that y = 0. Thus z = 0 as well,
proving Claim 6.8. 0

We just showed that
0774 C ker (Ha(R(Kr)) = Ha(IH)).
and so by duality, 77, (R, D + A) 2 adjg_o(R, D + A). O

Corollary 6.9. In the notation of Theorem 6.6, (R, D + A) is purely BCM-reqular if and
only if it is purely F-reqular.
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7. APPLICATION TO SURFACE AND THREEFOLD LOG TERMINAL SINGULARITIES

Our goal in this section is to prove that a 2-dimensional KLT singularity is BCM-regular
if the residual characteristic p is bigger than 5, generalizing a result of [CRMP*19]. This
implies the inversion of adjunction for three-dimensional PLT pairs with p > 5 and normality
of divisorial centres for such pairs.

First we state a lemma that was essentially proven in [MS18b].

Lemma 7.1. Suppose (R,m) is a Q-Gorenstein complete normal local ring with residual
characteristic p > 0. Suppose that A = 1/ndivg(g) is a Q-Cartier divisor and B is a big-
Cohen-Macaulay R*-algebra (or at least containing a fized g'/"). Then (R, A) is BCMp-

al/n
regular if and only if the map R 2— B is pure.

Proof. The proof is essentially the same as [MS18b, Theorem 6.12] and [MS18b, Proposition
6.14]. Indeed, to modify those proofs write Kr = & div(f) and A = £ div(g). Replace the
map /£ in the diagrams of those proofs by multiplication by ¢'/" followed by the map p. O

We now prove a crucial lemma which can be thought of as a special case of inversion of
adjunction in higher codimension.

Lemma 7.2. Suppose (R, m, k) is a complete normal Q-Gorenstein local domain of dimen-
sion > 2 with residual characteristic p > 0 and R/m F-finite. Let X = Spec R and suppose
that m :' Y — X s the blowup of some m-primary ideal I such that Y is normal. Further
suppose that I-Oy = Oy (—mFE) where E is a prime exceptional divisor.Let A be a Q-divisor
such that Kx + A is Q-Cartier and let Ag denote the different of Ky + E + 7, 1A along E.
Suppose that (E, Ag) is globally F-reqular, then (R, A) is BCM-regular and in particular, R
itself is BCM -reqular.

Remark 7.3. In the statement of Lemma 7.2, suppose we write
™ (Kx +A) = Ky + BE + n, A,

Then Ky + E+ 7, 'A =7*(Kx +A)+ (1 — 8)E. Thus —(Kg + Ag) ~g (8 —1)E|g. Since
global F-regularity forces —(Kg + Ag) to be big and we have that —FE' is relatively ample,
we thus see that g < 1.

Proof. Let T = @,,c, H*(Y, Oy (—nE))t" denote the generalized extended Rees algebra.

Notice that by replacing m by a multiple ml and I by I', we can assume that if we take
the mth Veronese subring of 7', then we obtain the usual extended Rees algebra R[Is,s™!]
(which we can assume is normal, see Appendix B). Also notice that [T]; = Rt" when i < 0.

Notice that T" has a prime ideal Jg corresponding to the prime exceptional divisor F, in
fact it is easy to see by Section B.1 that Jg = t~'T. This ideal agrees with 7" in negative
degrees, and agrees with m in degree zero since 7(F) = V(m). On the other hand, 7" has a

maximal ideal n = ¢t 717 + mT + T.(. Let T denote the completion of T with respect to n.
Claim 7.4. For every integer ¢ > 0, the map R — T sending 1 to t=°¢ is pure.

Proof. Since the map factors as R — T, — T and T, — T is faithfully flat, it is enough
to show that R — T, sending 1 to ¢t™¢ is pure. Since R is a complete local domain, it is
approximately Gorenstein and thus it is enough to show that R/J — T,/JT, sending 1 to

t~¢ is injective for every m-primary ideal J C R by [Hoc77]. Now we pick | > ¢ such that
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[T);—. C Jt'=¢. Consider the ideal J' := t~'T +T5; + JT of T. Clearly J' is an n-primary
ideal of T" that contains J7. Thus in order to show R/J — T,/JT, sending 1 to ¢t ¢ is
injective, it is enough to show that R/J — T,/J'T, = T/J' sending 1 to t~¢ is injective.
But since [T];_. C Jt!7¢, it is easy to check that the degree —c piece of T'/J’ can be identified
with R/J. Thus the map R/J — T'/J' sending 1 to ¢~¢ is split. O

We now fix g € R such that nA = divyx(g). We notice that 7*A = 7, 'A+ {\}E + |\| E.
Let ¢ = [A].

~ ~ .ql/njc
Claim 7.5. Fiz a map Rt — Ti. Ifr il—t—> C' is pure for every perfectoid big Cohen—
Macaulay T -algebra C (e.g., if (T, % diva(gt™) +1I') is BCM-regular for some I' > 0), then
(R,A) is BCM-regular.

Proof of Claim 7.5. Let B be a perfectoid big Cohen—Macaulay @f—algebra. By Theo-
rem A.5 we see that there exists a perfectoid big Cohen—Macaulay T -algebra C' such that
the following diagram commutes:

B——C

.gl/nT T.gl/nt‘:

RL5ST.

where the top row is a map of Rt-algebras. Notice that the bottom row R — T — T is
~ .o1l/nysc .gl/n
pure by Claim 7.4. Therefore since T’ S Cis pure, we also have that R -2— C' is pure.
al/n
This implies that R 2— B is also pure. Therefore by Lemma 7.1 (R, A) is BCM g-regular.
As this is true for every B, (R, A) is BCM-regular. O

Continuing the proof of Lemma 7.2, it suffices to show that (7T, L diva(gte)) satisfies the
condition of Claim 7.5. We let E= and (7w 'A)s correspond to E and m; ' A respectively via
Section B.1. Notice also that

— L. cn
(' A)q + {\} Bz = —divg(gt™)

Let T" denote the mth Veronese subalgebra of T" and let Jy» denote the ideal of F in T".
We consider 77 — T with induced map « : SpecT — SpecT’. We know by Lemma B.7
that there is a W : T' — T which generates Homp (T, 7T") as a T-module and which sends
the homogeneous maximal ideal of T" to the homogeneous maximal ideal of T7”. Following the
argument of [CRMP*19, Lemma 5.1], we see that the completion of (77, ©) is BCM-regular
if and only if the completion of (T, x*(0)) is BCM-regular. In particular, by Lemma B.8, it
suffices to show that

(T", (7' A) + {\} )

is BCM-regular. Hence by Corollary 2.11 it suffices to show that (17, (7 'A)7 + Ez) is
purely BCM-regular.

Let Jj; denote the ideal defining E7v on T’. The normalization SN of S = T"/J}, is the
section ring of E with respect to the very ample divisor —mFE|g. By [SS10, Proposition 5.3],
the pair (S¥, (Ag)gn) is strongly F-regular and hence the completion is BCM-regular by

[MS18b, Corollary 6.23].
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Claim 7.6. The divisor (Ag)g~ agrees with the different of K + (7,

A) + Epi along the
normalization of Ep.

Proof. We are essentially computing the different in two different ways. Note that Ag can
be computed by considering the rational sheaf map

Oy (n(Ky + 7T*_1A + E)) --» Op(nKEg),

noting the left side is a line bundle for n sufficiently divisible. After tensoring this map by
Oy (—n(Ky +7,'A+ E)), we let —Dg be the divisor corresponding to the image of 1. Then
the different of Ky + 7, !A + E along E is simply %DE. But we can apply our I', 7+ functor
(with respect to —mFE) to that map of sheaves, and so obtain the map:

T'(n(Kp + (77 A)p 4 Epr)) --» SN (nKgy).

Since the left side is (abstractly) isomorphic to 77, it also selects an effective divisor Dg
with %Ds the different of Ky + (7;'A)p + Ep along Ep.. Note that (Dg)gy = Dg by
construction. The claim follows. O

But now by Corollary 3.5 we have that (f ", E= 4 (1,'A)=) is purely BCM-regular. This
completes the proof of Lemma 7.2. O

Remark 7.7. The proof above shows that the map T" — SN is surjective, since if (’f’, Er +
Arv) is purely BCM-regular, then E7v is normal by Corollary 3.3. Taking graded pieces, this
means that

HY(X, Oy (=lmE)) — H(E,0p ® Oy(—ImE))

surjects for all [. In particular, it surjects for [ = 0.

Example 7.8. Consider the ring R = Zy[xa,...,z4]/(p" + x5 + --- + 27) for n < d. We
blowup the origin and obtain ¥ — X = Spec R. The exceptional divisor £ is isomorphic
to ProjFy[zy,...,z4)/(z} + 25 + -+ + 2l). We also have Ky = (d — 1 — n)E which since
Kx =0, we have 7" Ky = Ky + SE with 8 = (n —d+ 1) < 1. Thus R is BCM-regular
whenever F is globally F-regular.

Note that in this case we can also argue directly as follows using only [MS18b]. Indeed,

consider the completion of the extended Rees algebra: T = R[mt,¢~!], where the completion
is at (t7Y) +mt. If T/t7'T = gro,R is Gorenstein and F-rational (which happens pre-
cisely when F is globally F-regular), then T is Gorenstein and BCM-rational by [MS18b,

Proposition 3.4 and 3.5], hence BCM-regular by [MS18b, Corollary 6.15]. This implies R is
BCM-regular since R — T' is pure by Claim 7.4.

Example 7.9. Consider R = Z,[y] and let D = div(py(y — p)). Then one can define
the BCM -regular-threshold of (R,tD), denoted ¢(R,tD), to be the supremum of ¢ such that
(R,tD) is BCM-regular. If we replace Z, by I, [z] and D by div(xy(y—=)), then this is simply
the F-pure threshold, which is well known to be % if p=31 and % — % if p =3 2. Therefore
by switching between a graded ring and the Proj as in [SS10], we see (P!, tP, +tPy +tPs) is
globally F-regular for ¢t < % ifp=3landt< % — 3% if p =3 2. But if we blowup the origin in
Spec R, we have the same P! and same boundary divisors restricted to the boundary divisor.

Thus we also obtain that (R, tD) is BCM-regular for the same values of t. Since t = 2/3 is
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certainly an upper limit on the BCM-regular-threshold (since BCM-regular implies KLT),
we therefore obtain that

2

and that

2 1
S~ <RtD)<

if p=4 2.
3 3p Hp=s

[GVIN )

Example 7.10. Consider the ring R = Z,[y] and let D = div(y* — p*) (nothing essential
changes if let D = div(p* — 4?®)). The log resolution of singularities of (R, D) is obtained
in the same way it is in equal characteristic. We again compute the BCM-regular-threshold
¢(R,D). Let 7 : Y — X = Spec R denote the blowup of (y%,yp? p*). It is not difficult
to check that this blowup has a single prime exceptional divisor £ = P}. There are two
singular points on this blowup, and the strict transform D of D is a Cartier divisor that
meets E transversally. By understanding this blowup in view of a log resolution of (R, D), or

by doing direct computations on local charts, one can see that the different of Ky + F + tD
along F is %Pl + %Pg + tP5. Straightforward computation then gives that if

c=c(R,tD)
is the BCM-regular-threshold of (R,tD), then we have by Lemma 7.2 that

% < ¢ <5/6 ifp=2.
3 < ¢ <5/6 ifp=3.
2—56% < ¢ <5/6 %fp565.
G = ¢ if p=¢ 1.

We can generalize these examples and obtain the following generalization of a result of
[CRMPT19]. In particular, it follows from their work that if R is 2-dimensional KLT with
perfect residue field and that the index of Kg is not divisible by p > 0, then R is BCM-
regular. We remove the index not divisible by p hypothesis. We also add a boundary divisor
with standard coefficients.

Theorem 7.11. Let (R, m, k) be a normal 2-dimensional excellent local ring with a dualizing
complex, and with F-finite residue field of characteristic p > 5. If (R, A) is KLT and A has

standard coefficients, then (E, 3) is BCM-reqular.

Proof. Note that R is Q-factorial by [Lip69] or [Tanl8, Corollary 4.11] (note the latter’s
results hold when the regular base is replaced by a base that is excellent, finite-dimensional,
and has a dualizing complex). Set X = Spec R. By the same argument as in [CGS16,
Proposition 2.13] (cf. [ST18, Lemma 5.6]), we can construct a projective morphism 7: Y —
X such that 7 is an isomorphism over X \ {m}, the exceptional divisor F is irreducible,
—(Ky + E+ Ay) is ample where Ay is the strict transform of A, and (Y, F 4+ Ay) is purely
log terminal. The proof uses log resolutions of singularities which are valid for quasi-excellent
Noetherian rings and the Minimal Model Program for quasi-projective surfaces over S (see
[Tan18]). By adjunction, write

Kp+Ap=(Ky + E+ Ay)|g.
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Then Ap has standard coefficients and —(Kpr + Ag) is ample. Thus, (E, Ag) is globally
F-regular by [ST18, Proposition 5.5]. Therefore (R, A) satisfies the hypotheses of Lemma 7.2
and hence (R, A) is BCM-regular. O

By taking canonical covers, we obtain the following generalization of [CRMP*19, Theorem
A}, which handled the Gorenstein case.

Corollary 7.12. Let (R,m,k = k) be a local 2-dimensional KLT singularity of mized char-
acteristic (0,p > 5) that is essentially of finite type over an excellent DVR S. Then there

exists a finite split extension R C S to a regular ring.

Proof. By Theorem 7.11 we know that R is/l\BCM—regular. Since R is KLT it is Q-Gorenstein
and we may take a finite canonical cover R C R’. Now by [CRMP*19, Lemma 5.1], R is
BCM-regular and it is Gorenstein by construction. Now applying [CRMP19, Theorem A]
to R’ completes the proof. O

Theorem 7.11 also implies that we have the KLT to PLT inversion of adjunction in di-
mension 3 if the residual characteristic is > 5.

Corollary 7.13. Suppose that (R, m, k) is a normal 3-dimensional excellent local ring with
a dualizing complex, and with F-finite residue field of characteristic p > 5. Set X = Spec R.
Suppose that D is a prime divisor on X and that A > 0 is a Q-divisor such that Kx + D+ A
is Q-Cartier and A has standard coefficients. Suppose that (DN, diff pv (A + D)) is KLT,

then (ﬁ, D+ ﬁ) is purely BCM -reqular. In particular, (X, D+ A) is PLT and D is normal.

Proof. We see that (DN,giEDN(A + D)) is BCM-regular by Theorem 7.11. Thus by Corol-
lary 3.4 we see that (fA{, D+ ﬁ) is purely BCM-regular. Finally, as being PLT is unaffected
by passing to completion, we see that (X, D + A) is PLT by Theorem 5.4. Notice that here
resolutions of singularities exist by [CP19]. O

Finally, we also observe that the main results of [CGS16] essentially holds in mixed char-
acteristic, replacing strongly F-regular with BCM-regular. In particular:

Theorem 7.14. Following the notation of [CGS16], suppose I C (0,1) N Q ia a finite set
and let T'= D(I). Then there exists a positive constant py, depending only on I, such that if
o (R,A) is a KLT pair,
o R is a mixed characteristic 2-dimensional complete local ring,
o R has F-finite residue field of characteristic p > py,
o and the coefficients of A belong to T,

then (R, A) is BCM-regular.

Proof. This is essentially the same as [CGS16]. The bounds py were constructed by analyzing
global F-regularity of (P!, A) or equivalently the strong F-regularity of a line arrangement
on A% see [CGS16, Corollary 3.13]. The corresponding arguments for the F-finite residue
field case were completed in [ST18, Proposition 5.5]. Thus, as in the proof of Theorem 7.11,
we may construct a projective morphism 7: Y — X such that 7 is an isomorphism over
X \ m, the exceptional divisor E is irreducible, —(Ky + E + Ay) is ample where Ay is the
strict transform of A, and (Y, E 4+ Ay) is purely log terminal then apply the arguments of
[CGS16, ST18]. O
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8. APPLICATION TO F-SINGULARITIES IN FAMILIES

In this section, we generalize the results of [MS18b, Section 7] from the BCM test ideal to
the adjoint-like ideal we have defined earlier in this paper.

Setting 8.1. Let A be a Dedekind domain which is a localization of a finite extension of
Z, with fraction field K. Let f: X — U := Spec(A) be a flat family essentially of finite
type and let A be an effective Q-divisor with no vertical components. For p € U, denote
the fiber over p by (X,,A,), that is to say A, = Alx,. In some situations X will be affine:
X = Spec(R).

First we give a strengthening of [MS18b, Theorem 7.9] using our new adjunction. The
difference is that we no longer need to assume that the index is not divisible by the charac-
teristic. Note that if f: X — U is not proper, then we cannot expect strong F-regularity
of X, for some p € U to imply that X is BCM-regular over a neighborhood of p € U (see
[MS18b, Remark 7.7]). What we show is that this is true at the closed points lying along a
horizontal point of X which intersects X,,.

Proposition 8.2. Suppose X = Spec(R) is affine and of finite type and flat over U, as
in Setting 8.1, and let A > 0 be a Q-dwisor such that Kr + A is Q-Cartier. Choose a
prime ideal Q C R such that Q N A = (0). For eacht € A let /tR+Q = N q:; be a
decomposition into minimal primes. Let

W = {t € m-SpecA | {q;}i~, is nonempty and (R/t,A;),,, is strongly F-regular for all q;;}

Then W is open in m-Spec A, and (ﬁqt\, ﬁqm) is BCM-regular for allt € W and all 7.

Proof. Suppose that {q,;}:?, is nonempty for some p € m-Spec(A), and that (R/p,4,) is
strongly F-regular at all q,;. Note that this implies div(p) is a prime Cartier divisor after
localizing R at qp;. In particular, we have diffg;y(y)(div(p) + A) = A, after localizing and
taking completion along qp,;.

By [And20, Theorem 4.1.1], for any given perfectoid big Cohen—Macaulay (ﬁqp\ .)tT-algebra
—

B there is a compatibly chosen perfectoid big Cohen-Macaulay (R/p) o, 8lgebra C. By

[MS18b, Corollary 6.23], ((ﬁ/\p)qpﬂ., (&)qm) is BCM¢-regular. Now we apply Theorem 3.1
to obtain that (R, ,, div(p) +£qp,i) is purely BCM p_,¢-regular. Accordingly this implies that
(Rq,.» qu,i) is BCM g-regular by Proposition 2.10. In particular this implies that (R, ,, ﬁqm)
is KLT by Theorem 5.1, and thus (R,A), , is KLT since being KLT is unaffected up to
completion. But then (R,A)qg is KLT since KLT is preserved under localization (even
without resolution of singularities). Finally, a KLT singularity is of strongly F-regular type
by [Tak04], so we obtain the required open subset. Now the above argument applies to all p
in this open subset and all given B, which proves the final statement. U

Proposition 8.3. Let ¢: X — U be a proper flat family and A > 0 a Q-divisor such that
Kx + A is Q-Cartier. Suppose (X,,A,) is strongly F-reqular for some point p € U. Then
(Xk,Ag) is KLT, and there exists a non-empty open subset V' of U such that the closed
fibers of (X, A) over V' are strongly F-regular. Furthermore, the completion of (X,A), is

BCM-regular at all points q € X which are vertical over V.
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Proof. Fix a point @ € X which is surjective to U. Then V(Q) N X,, is non-empty, since ¢ is
proper. Therefore at every point q € V(Q) N X, (X,, A,)q is strongly F-regular. It follows
from the same argument as in Proposition 8.2 that (X, A)x is KLT at Qg, and therefore by
varying ) we see that (X, A)g is KLT everywhere. Hence it is of strongly F-regular type
by [Tak04]. The final claim follows from the same argument as in Proposition 8.2. U

We obtain analogous results for pure BCM-regularity.

Proposition 8.4. Suppose X = Spec(R) is affine and of finite type and flat over U, as
in Setting 8.1, and choose a prime ideal Q C R such that @ N A = (0). For each t € A
write /IR + Q) = N,q:; a decomposition into minimal primes. Suppose D is an integral
Weil divisor which is horizontal over U, and A > 0 a Q-divisor such that Kr + D + A s
Q-Cartier, then the following set

W = {t € m-SpecA | {q¢,};~, is nonempty and (R/t, D;4A,)g,, is purely F-regular for all q;;}

is open in m-Spec(A). Furthermore, (E;, ﬁqgi +£qt_i) is purely BCM -reqular for allt € W
and all 1.

Proof. Suppose t € m-Spec(A) is such that {q;;};, is non-empty and (R/t, Dy + A),,, is
purely F-regular for all ¢, which in particular implies that div(t) is a prime Cartier divisor
near all q;;. For each q;; ¢ Supp(D) the statement follows from Proposition 8.2. So we
may assume that q,; € Supp(D) for some i. Let B and C' be a compatible choice of big
Cohen—Macaulay f/i; " and <I§B)&:‘ algebras respectively.

By assumption, (R/t, D;+A;) is purely F-regular at q;,;, and so X; = Spec(R/t) is a prime
Cartier divisor near q;, and so is Dy = Spec(Rp/t) near q;,. It follows that near q;;, we have
diffx, (X;+D+A) = (D+A)|x, = D+ Ay, and diff p, (diff p(D+A)+ D;) = diff p(D+A)| p, .
So our assumption becomes that (R/t,diffx,(X; + D + A)) is purely F-regular at qq .

Therefore at q¢;, we have

(R/t)p, diff p, (diffx, (X, + A + D)) = ((R/t)p, diff p, (diff p (X, + D + A)))

= ((R/t)p, diffp(D + A)|p,)
is strongly F-regular. Now Proposition 8.2 provides an open subset V' of U such that for any
choice of qz; which is vertical over a point ¢t € V, the completion of (Rp, diffp(D + A))qf,z-
is BCM-regular, and its reduction mod ¢ is strongly F-regular. By inversion of adjunction
Theorem 3.1, we know that (eq\z , ﬁqii + ﬁqf,i) is purely BCM-regular. Also by inversion

of F-adjunction (see [Daslb, Theorem A}, whose proof only uses that the ground field is
F-finite), we also know that (R/t, D; + A;),, . is purely F-regular. O

Proposition 8.5. Let p: X — U be a proper flat family and let D be an integral Weil divisor
such that Kx + D + A is Q-Cartier, and D is horizontal over U. Suppose (X,, D, + A,) is
purely F-reqular for somep € U. Then (Xk, Dk +Axk) is PLT and there ezists a non-empty
open subset V' of U such that the closed fibers of (X, D + A) over V' are purely F-reqular.
Furthermore, the completion of (X, D+ A)q is purely BCM-regular at all points q € X which
are vertical over V.

Proof. Fix a point () € X which is surjective to U. Then V(@) N X, is non-empty since ¢

is proper. Therefore there is a point in this intersection at which (X,, D, + A,) is purely
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F-regular. It follows from Proposition 8.4 that there is a non-empty open V such that for
any ¢ vertical over V, the completion of (X, D + A), is purely BCM-regular. Therefore by
Theorem 5.4 and the fact that being PLT is unaffected up to completion, (X, D+ A) is PLT
at these points, and hence is PLT at ). By varying ) we obtain that (X, D + Ag) is
PLT everywhere. Hence this pair is of purely F-regular type by [Tak08, Corollary 5.4]. The
final claim follows from the same argument as in Proposition 8.4. U

APPENDIX A. PERFECTOID BIG COHEN-MACAULAY ALGEBRAS

In this appendix, we use techniques of André [And20] together with the “perfections in
mixed characteristic” of Bhatt—Scholze [BS19, Sections 7 and 8] to prove:

(a) The existence of weakly functorial perfectoid big Cohen-Macaulay algebras of certain
diagrams: Theorem A.7.

(b) A domination result for certain maps of perfectoid big Cohen-Macaulay algebras:
Theorem A.11.

We believe these results can also be proved carefully using techniques from [And20] alone
(i.e., without referring to [BS19]). However, we think that the treatment using perfections in
mixed characteristic is the simplest in terms of presentation in many situations. Along the
way, we also obtain slight generalizations and somewhat neater proofs of results in [And20]
and [MS18b] which we believe are of independent interest.

Throughout this appendix, we freely use some language on perfectoid rings as in [BMS18,
BS19]. A ring S is perfectoid if and only if it is m-adically complete for some element 7 € S
such that 77 divides p, the Frobenius on S/pS is surjective, and the kernel of Fontaine’s map
0: W(S") — S is principal.* We point out that if S is p-torsion free and © = p'/?, then
this is the same as [And20, 2.2] (or [MS18b, Definition 2.2]) by [BMS18, Lemma 3.10]. The
advantage of this definition is that if S has characteristic p > 0, then a perfectoid ring is
the same as a perfect ring, see [BMS18, Example 3.15]. Moreover, there is an equivalence of
categories between perfectoid rings and the category of perfect prisms, see [BS19, Theorem
3.10]. We will repeatedly use that perfectoid rings are reduced.

Further, note that if I is an ideal of a perfectoid ring R, then R/I need not be p-adically
separated. We define I~ =" (I +p"), which is the closure of I in the p-adic topology. Then
the p-adic completion of R/I is isomorphic to R/I~. If {f;}", is a sequence of elements in
R, each admits a compatible system of p-power roots {fil/poo}, and I = (fll/poo, e ﬁ/pm),
then R/I~ is perfectoid.

We next recall a definition from [MS18b] which we will use throughout.

Definition A.1. Let (R, m) be a complete local domain such that R/m has characteristic
p > 0. An R-algebra S is called a perfectoid seed if S is perfectoid and it maps to a perfectoid
big Cohen-Macaulay R-algebra.

Now if R is a perfectoid ring and S is a derived p-adic complete R-algebra, then [BS19]
defined the perfectoidization Sperta of S using (derived) prismatic cohomology. In general
Sperta only lives in D=(R), but it is an honest perfectoid ring in all the cases that we
consider. We will not give the precise definition here but we point out the following facts:

We refer to [BMS18, Section 3] for detailed definition of #: essentially, this is the unique map lifting the
natural surjection S> — S/p.
31



(1) In characteristic p > 0, Spersa is the usual perfection ligle FeS [BS19, Example 8.3].

(2) If S is a derived p-complete quotient of R (e.g., S = R/J for a finitely generated ideal
J C R), then Spea is a perfectoid ring and is a quotient of S [BS19, Theorem 7.4].

(3) If R — S is the p-adic completion of an integral map, then Speq is a perfectoid ring
[BS19, Theorem 10.11].

(4) Sperta can be characterized as the derived limit of R’ over all maps from S to perfectoid
rings R, and it does not depend on the choice of R [BS19, Proposition 8.5]. In particular,
if Sperfa is a perfectoid ring then S — Spera is the universal map to a perfectoid ring.

As a consequence of (2), for any finitely generated ideal J C R, we can define an ideal
Jperta = ker(R — (R/J)perta). It turns out that we have a well-behaved almost mathematics
theory with respect to Joera, see [BS19, Section 10] (the essential point that lurks behind
this is André’s flatness lemma, see [BS19, Theorem 7.12 and Theorem 7.4]).

Now suppose (A, m) is a Noetherian complete local domain of residue characteristic p > 0
and S is a perfectoid A-algebra. Let 1, ..., x4 be a system of parameters of A and 0 # g € A.
We say that S is (¢)perta-almost big Cohen-Macaulay with respect to zy,..., 24 (note that
(9)perfa makes sense in S by the above discussion) if:

O Ty,...,%q 18 a (g)perta-almost regular sequence on S, i.e., the ideal (g)perta annihilates
(@1::20)8:5Tit1 {1 each 4.
(l‘l,...,ﬂfl)s

o S/(x1,...,24)S is N0t (g)perta-almost zero, i.e., (¢)perta € (1, ..., 24)S.

One fact that we will be using repeatedly is that if S is a perfectoid A-algebra that is (¢)perta-
almost big Cohen-Macaulay with respect to x1, xs,..., x4, and if A has mixed characteristic
we assume x; = p,” then S is a perfectoid seed. The proof of this fact follows the same line
as in [And20, Proof of Theorem 3.1.1 (1)]: the point is to first apply the flatness lemma (see

[BS19, Theorem 7.12]) to assume zy,...,z4 and g all have compatible system of p-power
roots and then map S” to a perfect algebra C' such that . ,xz is a regular sequence on
C, then untilt to obtain S* := (S°)¥ — C* such that x1,...,z4 is a regular sequence on

gﬁ. Since S is perfectoid, S = S% and we can replace C* by its m-adic completion so that
C™ is perfectoid and (balanced) big Cohen-Macaulay [And20, Proposition 2.2.1] and [BH93,
Corollary 8.5.3].

We record the following lemma on perfectoidization which we will use throughout. We
would like to thank Bhargav Bhatt for providing us the argument.

Lemma A.2. Let S be a p-torsion free ring over a perfectoid ring R. Suppose Spera @S a
(perfectoid) ring, then Spea S p-torsion free.

Proof. Let S|4 be the largest p-torsion free quotient of Speta. Then S, 4 is a perfectoid ring
and we know that ker(Sperta — S)epq) can be identified with ker((Spera/p)pert = (S/P)pert —
(S} erta/P)pert) by [CS19, 2.1.3] or [Bhal9, Lecture IV, Proposition 3.2]. Thus it is enough to
prove that (S/p)pert — (Sperta/P)pert 18 injective.

Since (S/p)pert is perfect, it embeds into a product of perfect fields [[ K; (each K; corre-
sponds to the quotient field of each minimal prime of (S/p)perr). Fix such a K;, it is enough to

5This assumption is actually not necessary, one can first enlarge S to S’ using [BS19, Theorem 7.12] such
that g admits a compatible system of p-power roots so that (g)perta = (¢'/?” )7, and then map S’ to a
perfectoid big Cohen-Macaulay algebra using Gabber’s method [GR04, 17.5]. We omit the details since in
our context, we can always arrange x; = p in mixed characteristic.
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show that each map (S/p)pers — K; factors over (S 14/P)pert- Since S is p-torsion free, the
minimal prime P € Spec(S/p) corresponding to K; admits a generalization () € Spec S not
containing p. We can then choose a map S — W such that W is a valuation ring witnessing
this generalization (i.e., W is supported at () and the maximal ideal m of W contracts to P).
We can enlarge W to assume W is perfectoid without changing this property (e.g., we can
replace W by the p-adic completion of the absolute integral closure of W). Since the map
S/P — W/m factors over K;, we can further replace W by W Xy K; to assume W is a
perfectoid valuation ring whose residue field is K;. Since W is p-torsion free and perfectoid,
we have factorizations:

!
S — Sperfd — Sperfd — W — K.

Since K is a perfect field, this induces

(S/p)pert — (S;erfd/p)perf — K;
as desired. O

We start by providing a shorter proof of the existence of perfectoid big Cohen-Macaulay
RT-algebras.

Theorem A.3. Let (R,m) be a Noetherian complete local domain of mized characteristic
(0,p). Then there exist perfectoid big Cohen-Macaulay R -algebras.

Proof. By enlarging R if necessary, we may assume k = R/m is algebraically closed. We
fix a complete unramified regular local ring A = W (k)|[[za,...,z4]] such that A — R is a
module-finite extension. Then we fiz

Ao 1= p-adic completion of A[pl/poo, xé/poo, e ,:Eil/poo] C ]?,

which is a perfectoid algebra. Now for any module-finite domain extension S of R in R*,
con51der Sperfd = (A0 @4 S)perta- By the almost purity theorem [BS19, Theorem 10.9],

Asop/p" — 54 Lerta/P" 18 (9)perta-almost finite projective where g is the discriminant of A — S.
By Lemma A.2 and [And18a, Lemma 4.1.3 (b)], S5 iS (9)perta-almost big Cohen-Macaulay

with respect to p, s, ..., x4 and hence Sperfd is a perfectoid seed. Thus by [MS18b, Lemma
4.8], @ SSI‘)“erfd is a perfect01d seed. Since RT = @S — @ SSI‘)“erfdG, R*isa perfectoid seed
and hence it maps to a perfectoid big Cohen-Macaulay algebra. 0

The next theorem gives a simpler proof of the existence of weakly functorial perfectoid
big Cohen-Macaulay RT-algebras for surjective maps, recovering [And20, Theorem 1.2.1].
One advantage of this argument is that we do not need to induct on the height of P as in
[And20].

Theorem A.4. Let (R,m) be a Noetherian complete local domain of mized characteristic
(0,p) and let S = R/P. Then given any perfectoid big Cohen-Macaulay R -algebra B and a
map RT — ST, there exists a perfectoid big Cohen-Macaulay S™-algebra C' that fits in the

SIn fact, as each Sperfd maps to BT by the universal property of the perfection functor, we also have

hm Sperfd — R* and hence R¥ is a direct summand of lim SS’perfd
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following commutative diagram:
R—— S

|

Rt —— S*

.y

B——C.

Proof. Given a map R™ — ST is the same as choosing a prime P+ of RT such that ST =
R*/P*. We can write R" as a direct limit of module-finite domain extensions of R, and Pt
is a thus direct limit of certain primes @ lying over P of R. Thus B/P™B = hﬂ 0 B/QB

and so B/P*B maps to @Q<B/QB)perfd. Therefore by [MS18b, Lemma 4.8], it is enough

to prove that each (B/QB)peta is a perfectoid seed. But then it is enough to show that
(B/PB)peta is a perfectoid seed (as @ lives on some finite domain extension of R so the
argument for such @ is the same as for P).

Now we pick (fi,..., f.) € P such that fi,..., f.is part of a system of parameters of R and
P is a minimal prime of (f,..., f.). Thus there exists g ¢ P such that gP € \/(f1,..., fe).
Moreover, if p € P, we take f; = p, and if p ¢ P, we can assume p, fi,..., f. is also part
of a system of parameters and that g = pg’ for ¢ € R. Extend fi,..., f. to a full system
of parameters fi,..., fe.,y1,...,y; on R such that the image of y,...,y; forms a system
of parameters on S = R/P (and if p ¢ P we take y; = p). Since fi,..., f. is a regular
sequence on B and they all have a compatible system of p-power roots in B, we know
that (B/(f1, .., f)B)peta = B/(f17", ..., f2*")=. In particular, since B is big Cohen-
Macaulay, by the way we choose fl, . fc,yl, ..., Y, we know that yi,...,y; is a regular
sequence on (B/(f1,..., fe)B)pertd-

Since gP € +/(f1,...,f.), we know that gP = 0 in (B/(f1,..., fc)B)perta and hence
g/ P =01in (B/(f1,..., fe)B)perta s the latter is reduced. Therefore

g (B (fr, - f)B)perta := Hom((g"77), (B/(fu. ., fe) B)perta)

is a ¢'/P*-almost big Cohen-Macaulay S-algebra with respect to v1, ..., v:: to check the non-
triviality condition, note that B is a big Cohen-Macaulay R-algebra and g ¢ P, applying
[And20, Proposition 2.5.1]) to 7 = g we see that B/(mB + v/ PB) is not ¢g/?”-almost zero,
but since

(B/(fla"'afc)B)perfd o B — B B /PB
Wy (B/(fro - fo)Blpata (g1, y) B+ (f1777, . fP7) B /(mB+ )

the former is not g'/P*-almost zero. Now if p ¢ P, then by [And20, 2.3.1], we know that
B = (97" (B/(fr,- - J)Blperta) — 97 "7 (B/ (1, f) B)perta
is a (pg)'/?”-almost (and hence g'/ —almost) isomorphism. Here, we implicitly used that

g P (B/(fr. - fo) B)perta

is spectral: indeed (B/(f1, ..., fc)B)pertd is perfectmd and one can check that Hom((¢g'/?™), —)

preserves spectrality (see [And18b, (2.16)] or [And20, 2.3.2]).
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If p € P, then we set B = g YP(B/(f1,- ., fo)B)perta. Hence in both cases, Bis a
perfectoid B/ P B-algebra and is g'/?” -almost big Cohen-Macaulay with respect to yy, ..., y.
Thus, it is a perfectoid seed. By the universal property of the perfection functor, there exists
amap (B/PB)peta — B which implies that the former ring is also a perfectoid seed. O

We can actually prove the following slight generalization of André’s result. This will be
used in the proof of Claim 7.5.

Theorem A.5. Let (R,m) — (S,n) be a local map of Noetherian complete local domains
such that R has mized characteristic (0,p) and R, S have the same residue field. Then given
any perfectoid big Cohen-Macaulay R -algebra B, there exists a commutative diagram:

R——S

|

Rt —— ST

|

B——C
where C' is a perfectoid big Cohen-Macaulay ST -algebra.

Proof. Since R, S have the same residue field, the image of any coefficient ring of R in
S is a coefficient ring of S. Hence by [AFH94, Proof of Theorem 1.1], the map R — S
can be factored as R — T — S where T = R|[zy,...,x,]] and T — S is surjective.
By Theorem A.4, it is enough to construct the diagram for (R,m) — (7,n) where n =
m+(:v1,...,:nn). _

Let p,ya, ..., yq be a system of parameters of R and let B be the (p,y2, ..., Ya, T1, ..., Tpn)-

adic completion of B[x}/poo, . ,x}/poo]. Since p,yo, ..., Y4, T1,. .., T, iS a regular sequence
on B[:L&/ N Oo] (as B is big Cohen-Macaulay over R), applying [And20, Proposition

2.2.1] we know that B is a perfectoid big Cohen-Macaulay T-algebra and the following
diagram commutes:

R+—>R+®RT

|

B— B

For every module-finite domain extension R’ of R inside R*, we let 7" := R' Qp T =
R'[[x1,...,x,]] be compatibly chosen inside T*. For every module-finite domain extension

T" of T inside T, consider (B @ T" )Nperfd. By [BS19, Theorem 10.9], (§ Q1 T ) perta /D™

is (g)perta-almost finite projective over B/p™ where g € T" is such that T, — T}’ is finite

étale. In particular, by Lemma A.2, (B @7 T")perta is a perfectoid seed and hence B’ :=

@R,T,(E Q1 T")perta 1s a perfectoid seed by [MS18b, Lemma 4.8]. As a consequence,

B Qrteyr) It = hgi B Bep T" maps to a perfectoid seed B’, and hence to a perfectoid
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big Cohen—-Macaulay T-algebra C', so we have the following commutative diagram:

RT— s R"@QrT ———T7F

| l

B B §®(R+®RT) 7t —— B —C

It is clear that C' is the desired perfectoid big Cohen—Macaulay T *-algebra. O
The next result is a slightly different proof of [MS18b, Lemma 4.5].

Theorem A.6. Let (R,m) be a Noetherian complete local domain of mized characteristic
(0,p) and let By, By be two perfectoid big Cohen-Macaulay R™-algebras. Then B1&p+Bs

maps Rt -linearly to another perfectoid big Cohen-Macaulay R™-algebra B.

Proof. We fix a complete unramified regular local ring A inside R such that A — R is
module-finite. Let p,xs,..., x4 be a regular system of parameters of A. Next, as in the
first paragraph of the proof of [MS18b, Lemma 4.5, we can replace By, By by their m-adic
completions to assume that B, By are algebras over Ag := W (k)[[x2, ..., 4] where k = R/m
(the reason we do this step is because k is not necessarily perfect). We next fix

Anoo := p-adic completion of Ag[p"/?™, xé/poo, . ,x(li/poo] C Ag®4sR",

which is a perfectoid algebra. Now for any module-finite domain extension S of R in R*,
consider Sﬁsrfd = (A0 ®a S)perta- Note that since By, By are perfectoid, they are algebras
over Sg‘erfd by the universal property of the perfection functor.

Since By, B, are faithfully flat over Ao mod p, Bi®a_ B> is also faithfully flat over

Aso o mod p. Therefore Bi® Aseo B2 is perfectoid and is big Cohen-Macaulay with respect to
p, X, ..., xq. Consider the following map:

B By~ B A A B, 4B By~ B Bo.
18400 D2 ! ®S;>4erfd (Sperfd ®Aoo,0 Sperfd) ®Sf)4erfd 2 1 ®S§erfd Sperfd ®S§erfd 2 1 ®S§erfd 2

By the almost purity theorem [BS19, Theorem 10.9], Ay o/p" — Siera/P™ iS (9)persa-almost

€
unramified where g is the discriminant of A — S. In particular, the multiplication map

(S;‘erfd ® Ao 0 Séerfd)/p 5 S}?erfd/p

is () pera-almost projective, i.e., S{¢q/p is a (¢)perta-almost direct summand of (S5 @4,

Sitea)/p. Therefore B® A By is a () perta-almost direct summand of B;® Aso B2 mod p.
We next claim that B’ := B;® gA deQ is (g)perta-almost big Cohen-Macaulay with respect
per.

to r1 := p,x9,...,x4 and hence a perfectoid seed. To see this, first note that z;,; is a
(9)perta-almost nonzerodivisor on B'/(z1,...,x;)B’ for each i, because this module almost
injects into (Bi®a. ,B2)/(21,...,2:)(B1®a. ,Bs) (by the (g)pera-almost direct summand
condition) and x;,; is a nonzerodivisor on the latter. Second, if we use 7" to denote the
perfectoid (31@) AsoB2)-algebra obtained by adjoining compatible system of p-power roots
of g (see [BS19, Theorem 7.12]), then it is shown in [MS18b, diagram on page 2836] that the
natural map
S®4S — Bi1®a,, By — (9_1/p°oT)u
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factors through the multiplication map S ®4 S - S. As a consequence we have an induced
map Bi®a_ ,0,5B2 — (¢7/P"T)* and hence by the universal property of the perfectoidiza-
ton functor (see also [BS19, Proposition 8.12]) we have an induced map

B = Bi®gs By — (g7 /" T)F — g 7T
per

If B'/(z1,...,24)B"is (g)pera-almost zero, then so is (¢~ V2= T) /(z1,. .., x4)(g~/?"T) which
contradicts [MS18b, Claim 4.6]. Therefore B'/(x1,...,24)B’ is not (g)pera-almost zero.
It follows that B’ = Bl(@S;xerdeg is (g)perta-almost big Cohen-Macaulay with respect to
D, o, ..., xq as desired.

Finally, as each S maps to Ao ®4 S, we know that BT maps to lim SSlferfd. Since each
B® sa,, B2 s a perfectoid seed, by [MS18b, Lemma 4.8] we know that l@ S(Bl® ngerdeg) is
also a perfectoid seed. But then as B; ® g+ By maps to B, ®“$ SA By = hﬂs B ® SA Bs

S

and the latter maps to @S(Bl@)sfx de2>, we know that B; @p+ By maps to a perfectoid
per
seed and so B1®pg+ By maps to another perfectoid big Cohen-Macaulay algebra B. 0

We next prove the existence of weakly functorial perfectoid big Cohen-Macaulay algebras
for certain diagrams (with a certain map factorizing through R™). This will be a crucial
ingredient in our comparison result with the adjoint ideal from birational geometry. Note
that [Gabl8, Theorem F on page 10] claims a version of functorial big Cohen-Macaulay
algebras, but to the best of our knowledge, that is not enough for our purpose.

Theorem A.7. Let (R,m) be a Noetherian complete local domain of mized characteristic
(0,p). Let Py, Py be two height one primes of R such that Q = Py + Py is a height two prime
with Rg regular. Then there exists a commutative diagram:

R R/P
NNIERAN
R/ P, R/Q
B By
\B2 \C

where B, By, By and C are perfectoid big Cohen-Macaulay algebras over R, R/Py, R/ P,
and R/Q respectively. Moreover, we can take B, By and C' to be algebras over R, (R/Py)*,
and (R/Q)* respectively for a given compatibly chosen R™ — (R/P1)* — (R/Q)*, and B
can be given in advance.

Proof. We first prove the following claim:
Claim A.8. There exists v € Py and g ¢ Q such that gP, C () and x ¢ P;.

Proof of Claim. Since R is regular and P»RRg is a principal ideal, we can pick z € P, and

h ¢ @ such that Ry, is regular and such that (z) Ry, = P,R);,. Note that x ¢ P; since otherwise
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PRy, € PRy, and thus ,Rg C PR contradicting P, + P, = () has height two. Therefore
there exists g = Y such that gP, C (). O

Now we prove the theorem. We start with a perfectoid big Cohen-Macaulay R*-algebra
B. By Theorem A.4, we have a commutative diagram:

R——R/P,

|

RJF —_— (R/P1)+

|

B—— B

where Bj is a perfectoid big Cohen-Macaulay (R/P;)*-algebra. Since gP> C (z), we know
that the image of P, is g-torsion in B/(x'/?™)~ (respectively, the image of @ is g-torsion in
By /(x'/?™)7). Since B/(z'/?*)~ and B, /(2'/?™)~ are perfectoid algebras, they are reduced
so any g-torsion is g'/P”-torsion (note that ¢*/?” exists in B and B, since they are algebras
over Rt and (R/P;)"). Thus we have

R/ P R/Q

l l

g V(B (@) ) —— g7V (B (@PT)7).

The bottom row in the above diagram are ¢'/?™-almost perfectoid and ¢*/P”-almost big
Cohen-Macaulay algebras over R/P, and R/Q respectively’. At this point, we apply Gab-
ber’s method to construct perfectoid big Cohen-Macaulay algebras from the ¢/?™-almost
ones®. More precisely, by [Gab18, second paragraph on page 3] (see also [GR04, 17.5] for

more details), we have

<

B, := p-adic completion of S;l (gfl/poo(B/(ivl/poo)f))

is a perfectoid big Cohen-Macaulay R/Ps-algebra where T° = ([T T)/(@" T') for any com-
mutative ring 7" and S, denote the multiplicative system consisting of (¢, ¢°', ... ) such that
ei € N[1/p] and &; — 0. Similarly, Cy := p-adic completion of St (g~/** (Bl/(.asl/poo)_))<>
is a perfectoid big Cohen-Macaulay R/Q-algebra. Putting all these together, we have now

See [And20, proof of 4.3.3], which can be also adapted to characteristic p > 0, or we can use the same
argument as in the proof of Theorem A.4 (the essential point is [And20, Proposition 2.5.1 (2)]).
8 Alternatively, we can also proceed carefully using the strategy as in [And20, proof of Theorem 3.1] simul-
taneously to g~ /P~ (B/(z'/?”)~) and ¢~/ (B, /(z'/?7)").
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constructed a commutative

(A.8.1) R R/Py

S
Fe—

By Co

satisfying all the conclusions ezcept that Cj is not necessarily an algebra over (R/Q)". The
last step is to modify Cy to an (R/Q)"-algebra, the idea is very similar to the proof of
Theorem A 4.

We set R = R/P; and we abuse notations a bit and still use Q to denote the image of @

in R. Note that Cy is an algebra over R / QEJF by construction and the diagram:

R R R/Q

l

Rf— R —ROR

|

B B, Co

is commutative. Note that given the map (R/P;)" = R — (R/Q)* is the same as given
a prime Q* inside B such that (R/Q)* = R /QT, and Q1 contracts to a certain height
one prime Q' lying over () in each finite domain extensions S of R. Therefore we can write
(R/Q)* = lim o R’ / QR" and thus we have a commutative diagram:

RJQR" —— (R/Q)*

l |

CO E— hﬂ@/ CO/Q/OO — liEQ/(6(0/62,6(0)p‘3rfd'

It is enough to show that @Q/(CO/Q/CO)perfd is a perfectoid seed. By then by [MS18b,

Lemma 4.8], it is enough to prove that each (Cy/Q'Co)perta is a perfectoid seed. Since
R/Q — S/Q' is a finite domain extension, Q' is a minimal prime of v/QS. So there exists
g €8, g ¢ Q, such that ¢Q € /QS. Since Cy is reduced, +/QS maps to zero in Cy. It
follows that the image of Q' in Cj is ¢’-torsion and thus ¢’'/?*-torsion in Cj (again because
Cy is reduced). By the universal property of the perfection functor, we have

C(0 - (CO/Q/CO)perfd — (g/_l/pooCO)ha
39



where (¢'~1/P*Cy)? denotes ¢'~'/?™Cy if it has characteristic p > 0. The composition map
is an almost isomorphism (where almost is measured with respect to (pg’)'/?” in mixed
characteristic, and is measured with respect to ¢’'/?™ in characteristic p > 0), thus as the
first map is surjective, (Co/Q'Co)perta — (¢’ ~1/P7 Cp)? is also an almost isomorphism. Since
(g=1/P*Cy)F is almost big Cohen-Macaulay (for the non-triviality condition, again one makes
use of [And20, Proposition 2.5.1] as in the proof of Theorem A.4), so is (Co/Q'Co)perta and
hence (Cy/Q'Co)perta is a perfectoid seed as desired.

We have showed that hgn Q,(Co /Q'Co)perta is a perfectoid seed, therefore it maps to a

perfectoid big Cohen-Macaulay algebra C'. Moreover, by construction we have a commutative
diagram:

R R R/Q
RF—— R — TR [QR — (R/Q)*
B By Co C
Putting this together with (A.8.1) we get all the desired conclusions. U

To establish our last result, we need the following definition.

Definition A.9. Let (R, m) — (S5,n) be a local map of Noetherian complete local domains
such that R/m has characteristic p > 0. We say a map B’ — (' is a perfectoid seed mor-
phism if B’, C" are perfectoid R- and S-algebras respectively and there exists a commutative
diagram

R—— S

|

B —— '

|

B——C
where B, C are perfectoid big Cohen-Macaulay algebras over R and S respectively.

Lemma A.10. Let (R,m) be a Noetherian complete local domain such that R/m has charac-
teristicp > 0. Let S = R/ P for a prime ideal P and suppose { By — C\} is a direct system
of perfectoid seed morphisms for R — S. Then @AB,\ — @1/\0,\ 1s also a perfectoid seed
morphism.

Proof. The idea is basically to run the proofs of [MS18b, Lemma 4.8] and [Die07, Lemma
3.2] for maps. First we want to reduce to the case that R has characteristic p > 0. We fix a
system of parameters z1,...,x,, y1,...,ys of R such that y,...,ys is a system of parameters
for S = R/P, and such that if S has mixed characteristic, then we set y; = p and if S has
characteristic p > 0 and R has mixed characteristic, then we set 1 = p. Note that by the
refinement of André’s flatness lemma [BS19, Theorem 7.12], we can enlarge each By to B}

such that z1,...,2,,v1,...,ys have compatible system of p-power roots in B and that B /p
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is faithfully flat over B, /p. Thus replacing By — C\ by B}, — C} = C’,\@)BAB;?Q we may

assume that each B, admits a compatible system of p-power roots of x1,..., 2, y1,...,Ys.
Now if If B — (" is any perfectoid seed morphism such that B’ admits a compatible
system of p-power roots of x1,..., 2., y1,...,ys, then we have

B — ("

5o
where the completion is taken with respect to the ideal (2%,...,2% 4, ..., 1), Where ZL’b =
(z1, 27", 27 ..) € B” exists by our assumption. By [BHO3, Corollary 8.5.3], B — s

2

a map of (balanced) perfectoid big Cohen-Macaulay algebras for the map
Fpllxll’ cee 7xk;°7yllv ce 73/2]] — Fpllyllv ce 7y2ll

Thus B” — C” is a perfectoid seed morphism for the above map.
By the above discussion, { B} — CK} A 1s a direct system of perfectoid seed morphisms in

characteristic p > 0. If we can show hﬂ Bb — lgl C is a perfectoid seed morphism in
characteristic p > 0, i.e., we have a commutative diagram

—p’ —p’
Ly, B} — Ly, a3

|

B——C,

then we can untilt to get a commutative diagram

@AB’\ - @AC’\

L

Bt ——

| |

B
where Bf and CF are perfectoid big Cohen-Macaulay algebras over R and S respectively
(see [MS18b, proof of Lemma 4.8]). Therefore, without loss of generality we can assume that
R has characteristic p > 0.

Now in characteristic p > 0, it is clear that if we can map B’ — C’ to amap B — C of big
Cohen-Macaulay algebras, then we can always replace B and C' by their usual perfections
(i.e., lig6 F¢B) to assume B and C are perfect (equivalently, perfectoid). But then by the
proof of [Hoc02, Theorem 4.2] (see also [HM18, section 1.2]), we know that B’ — C’ is
a perfectoid seed morphism in characteristic p > 0 if and only if there is no bad double

9Tt is easy to check that B — C}, is still a perfectoid seed morphism: if By — C) maps to B — C, then

B} — C} maps to B’ := B&p, By — C" := C®p, B} with B'/p (resp. C'/p) faithfully flat over B/p (resp.

C/p), and so B 0 s a map of balanced big Cohen-Macaulay algebras by [BH93, Corollary 8.5.3].
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sequence of partial algebra modifications of B’ over B’ — C’. Now if there exists a bad
double sequence of partial algebra modification of lig/\ B, over ligl)\ B, — liﬂA Cl, then
by the finiteness nature of (partial) algebra modifications, there exists A such that the bad
double sequence is defined over By — C', contradicting that B, — C\ is a perfectoid seed.

Therefore liglA B, — hg’l/\ C) is a perfectoid seed morphism and so passing to completions,
b b

we know that @i B, — @qi C) is also a perfectoid seed morphism. 0

We next prove a crucial result for our adjoint ideal, the idea is similar to the proof of
Theorem A.6 and [MS18b, Theorem 4.9].

Theorem A.11. With notation as in Definition 2.3, let { B, — C,}er be a set of compatible
choices of perfectoid big Cohen-Macaulay R*- and (R/Ip)*-algebras. Then we can find
another B — C such that

adjp_e(R, D+ A) Cadjp o (R, D+ A)
for all vy €T

Proof. We assume R has mixed characteristic (0,p) in the proof.!® We first fix S a finite
normal domain extension of R that contains f/" and a height one prime ideal P C S
lying over Ip. By enlarging S and P, we may assume that S is module-finite over A =
Vl[xa, ..., z4)] where (V, ) is a complete DVR such that the discriminant of the map A — S
is not contained in P: if S/P has characteristic p > 0, this follows from [Orgl4, Theorem
4.2.2] and in this case P contracts to (m) in A; if S/P has mixed characteristic, then this
essentially follows from [Hei21, Theorem 0.14]: more precisely, the proof of [Hei21, Theorem
0.14] shows that we can find # € P such that S/xS is reduced and p, z is part of a system
of parameters on S, thus we can use Cohen’s structure theorem to find A inside S with
p,xe = x part of a regular system of parameters, and it follows that P contracts to (x2)
and the discriminant of A — S is not contained in (x3) because A(,,) — Sg is étale for
each @ lying over (z3) (since S/x2S is reduced and the residue fields of A(,,) and Sg have
characteristic 0). It follows that in both cases, we can construct a diagram:

A——A=A/zA

|l

S——S=8/P

where z = x5 if p ¢ P, and z = 7 if p € P. By the way we choose S and A, we know that
there exists g € A — zA, such that A — S and A — S are both finite étale.

We next consider an integral extension V' — V' where (V’,7) has the same uniformizer
as V but the residue field V' /7 is perfect. Then as in the first paragraph of the proof of
[MS18b, Lemma 4.5], we can replace each B, by its m-adic completion to assume that each

OWe believe a similar and simpler argument also works when R has characteristic p > 0: one needs to
replace the citation to Theorem A.6 by [Die07, Theorem 8.4], and for choosing S and A we use [Hei2l,
Theorem 0.14]. We omit the details since, at least when R is F-finite of characteristic p > 0, the conclusion
of Theorem A.11 follows from our more general Theorem 6.6.
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B, is an algebra over Ay := V'[[z2, ..., 24]| (the reason we do this step is because the residue
field of S and A may not be perfect). We next fix

Ane := p-adic completion of V'[x/P™ P 7$[1i/poo] C Ay®sRT,

which is a perfectoid algebra. Similarly we replace each C, by its m-adic completion and fix

Ao (note that if z = 7, then Zoo,o is just Zperf). Now we consider Sg‘erfd = (A0 ®4S)pertd
and gserfd = (Ao ®Z§)perfd = (Ao 0® Ag)perfd. Note that since the B,’s (respectively, C,’s)

: : —A :
are perfectoid, they are algebras over S;‘erfd (respectively, S|..q) by the universal property
of the perfection functor. Now, for any finite subset A = {71,...,7,} C I', we consider the
map
o Bgr By —Cyi=CoBs CoBs -Bx C

Tn
perfd Sperfd Sperfd

By = BVI@SS‘erfd BVQ@S?erfd perfd
of perfectoid algebras. By the same argument as in Theorem A.6 (applied repeatedly), we
know that By is (¢)perta-almost big Cohen-Macaulay with respect to 7, xa, ..., 24 and Cy is
(9)perta-almost big Cohen-Macaulay with respect to x,zs, ..., x4 where z = 7 if p ¢ P and
x = o if p € P. Hence using the same strategy as in [And20, Theorem 3.1] simultaneously
to By and C (or use Gabber’s method [GR04, 17.5] as in the proof of Theorem A.7), we
have a commutative diagram:

BA—>CA

|

B——C

where B — (' is a map of perfectoid big Cohen-Macaulay algebras. In other words, By —
C) is a perfectoid seed morphism. Now clearly,

{Bx — Cr}acr,aj<oo

is a direct system of perfectoid seed morphisms (where the transition maps are the obvious
ones). Therefore by Lemma A.10, hﬂ Ba — hg ACA is also a perfectoid seed morphism.
So there exists a commutative diagram of perfectoid big Cohen-Macaulay algebras

BA—>CA

|

B——C

where B — C is a map of perfectoid big Cohen-Macaulay algebras. In particular, B — C
dominates all B, — C, for v € I' via S;‘erfd—linear maps. Finally, note that B and € are
certainly algebras over R™ and (R/Ip)™ respectively, but there are potentially multiple R*-
and (R/Ip)*-algebra structures on B and €, coming from different B, and C,,. Nonetheless,
the inclusion

adj'B—»G(R7 D + A) g aij.YAC»Y (R7 D + A)

holds regardless of the different R*- and (R/Ip)*-algebra structures. This is because f1/" €
S C S g and f/7 is all we need to define adjy (R, D+ A). O
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Remark A.12. In connection with Theorem A.6, it is natural to ask that, suppose (R, m) is
a complete normal local domain of mixed characteristic (0,p) and P is a height one prime
of R. Then whether given any two perfectoid seed morphisms of R*- and (R/P)*-algebras
By — C} and By — (5, the map

B1®R+B2 — 01®(R/p)+02

is also a perfectoid seed morphism? We expect this should be true but we do not have a
precise argument at this moment. The subtlety is that, while we know that Bi®ga de2 —
per:

Ci®_x (4 is a perfectoid seed morphism for certain domain extension S of R inside R*
perfd

as in the proof of Theorem A.13, it is not clear that these S}f‘erfd form a direct system (the

choice of A depends on S) and thus Lemma A.10 does not immediately apply.

Finally, we prove the result on the uniform choice of B — C' in our definition of adjoint
ideal. This can be viewed as an analog of [MS18b, Proposition 6.10].

Theorem A.13. With notations as in Definition 2.3, there exists a single compatible choice
of perfectoid big Cohen-Macaulay R - and (R/Ip)*-algebras B — C, such that

a’dj’Bﬁe(R7 D + A) g a’ij*)C(R7 D + A)

for all other compatible choices of perfectoid big Cohen-Macaulay R*- and (R/Ip)*-algebras
B —C.

Proof. Let I be the largest ideal contained in adjgz_ (R, D + A) for every compatible choice
of B — (. By the axiom of choice and the collection principle, for every element \ &€
R — I, there exists a choice of By — C) such that A ¢ adjg, ¢, (R, D + A). Now apply
Theorem A.11 to the set {By — C)}xer_1, we know that there exists B — C, such that

adjp_e(R, D+ A) C adjg, .o, (R, D+ A)
for all A\. In particular, adjg_e(R, D + A) C I and hence
adjp_e(R, D+ A) Cadjg_o(R, D+ A)
for all B — C. 0

APPENDIX B. EXTENDED REES ALGEBRAS OF KOLLAR COMPONENT EXTRACTIONS

Suppose 7 : Y — X = Spec R is a projective birational map with (R, m, k) normal and
local of dimension > 2 and Y normal. Further suppose that 7 is obtained by blowing up
an m-primary ideal I and so 7 is an isomorphism away from V(m). Suppose further that
I- 0Oy = Oy(—mEFE) where E is a prime Weil divisor. Note that this last assumption can be
substantially weakened throughout, but it simplifies many arguments.

We can form the following rings:

S =D, HO(Y, Oy (—nE))t"

T =@, H(Y. 0y (—nE))i"
Note that S is a N-graded ring and 7" is a Z-graded ring and we have a canonical inclusion
S C T. Also note that the mth Veronese subring of S is just the normalization of Rees
algebra R[Is] and the mth Veronese subring of T is the normalization of the extended Rees

algebra R[Is,s™!]. Hence, replacing m by a multiple, and I by F, we may assume that mth
44



Veronese of S is exactly the Rees algebra, and the mth Veronese of T, T is exactly the
extended Rees algebra R[Is,s!]. It is also clear that T<g = R[t"!] and Proj S =Y.
We let
Nng = mS + S>0
np =ml'+ T+ T
denote the homogeneous maximal ideals of S and T respectively. Note in the case when
m =1, ng is simply m + It and ny is m + It + ¢ 1.

Lemma B.1. If ft/ € S is homogeneous of degree j > 0, then S[(ft/)Y] — T[(ft?)7] is
an isomorphism.

Proof. Note that S[(ft’)~!] contains t 7 = f - (ft/)~!. Since S is normal, so is S[(ft/)~!].
Therefore since t~! is in the fraction field, we have that

t=h e S[(f)7"].
But this proves the lemma. [l

Lemma B.2. Suppose that 0 # f € m C [S]o C S. Then S[f™'] = R[f7'][t] and in
particular, S[f~'] — T[f™'] is étale.

Proof. Since we are blowing up an m-primary ideal, we have that ft/ € [S]; for some j > 0
and so t/ € S[f7!]. Thus since S[f~!] is normal, it contains ¢ as well. Hence S[f™!] =

R[f=H[t). O

Putting these two elements together we have that S — T is étale outside of ng. Now,
notice that T'//ngT = k[t™'] hence ngT is of codimension > 2 in T'. Therefore S — T is étale
outside a set of codimension 2 on both S and 7'. In conclusion:

Lemma B.3. If p: SpecT — Spec S is the canonical map, then p*Kg = Kr.
We next prove a consequence of graded local duality.

Proposition B.4. With notation as above, for any divisor D on Y let Mp denote the
T-module @, H'(Y, Oy (—nE + D)). We have:

P Homp(H(Y, Oy (Ky + nE — D)), Er) = HiH (Mp).

nez
Here ER is the injective hull of the residue field of R.

Proof. By looking at the spectral sequence of low degree terms and then using Grothendieck
duality, we have

LY, Oy (Ky +nE — D))

AR (Y, R #om(Oy(—nE + D),wy))

h= "R Homp(RI(Y, Oy (—nE + D)), ws).

By Grothendieck local duality we know that

HOIDR(HO(Y, Oy(KY + nk — D)), ER)
Hompz(h™“R Homp(RI(Y, Oy (—nE + D)),w;), ER)
hRT (RT(Y, Oy (—nE + D)))
hRT (Y, Oy (—nE + D)).
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Thus it is enough to show that
B Hi(Y, Oy (—nE + D)) = HE (Mp).

nez
Fix a generating set {g1, ..., gs} of Sso = T, so each g; = f;#/ for some j. Since T},;; = Sy,
and by our choice {Spec[Sy,]o} forms an affine cover of Y, we know from the Cech complex
of T on gy, ..., gs that we have a triangle (see [Lip94, page 150])

P RI(Y, 0y (—nE + D))[~1] — RI'z.,(Mp) — Mp = .

nez

Applying RI'wry-1)(—) to the triangle, we obtain

R w1 (@ RI(Y, Oy (—nE + D))) [~1] = RTwri -y RUz, (Mp) — RTwr-1)(Mp) 5 .

neL

Next we note that in each T}, t77 = f;/(fit?) and hence t7! € \/mT},;. Therefore

Rlwri(1) (D,c, RI(Y, Oy (—nE + D)))
= Rlwr (@, RO(Y, Oy (—nE + D)))
= @, RIs(Y,0y(—nE + D)).

On the other hand, we have m7" C /(t!) and thus RI'wry-1)(T) = RI-1)(T). So the
above triangle simplifies to
1

PRI u(Y, Oy (—nE + D))[~1] — RIy, (Mp) — R 1) (Mp) = .
neL
Taking cohomology and noting that since d > 2, h(RT 4-1)(Mp)) = h*(RT ;-1 (Mp)) = 0,
we obtain
h T (EPRI (Y, Oy (—nE + D))[-1]) = h** (R, (Mp)),
neZ
which is precisely saying that

@D HAY, Oy(—nE + D)) = H(Mp)
neL

as desired. O

Corollary B.5. The module Mp = @,,., H*(Y, Oy (D —nkE)) defined in Proposition B.4 is
S2, or equivalently reflexive.

Proof. First note that @,,., Homz(H°(Y, Oy (Ky +nE — D)), Eg) is the graded Matlis dual
of @, H'(Y,O0y(—nE + Ky — D)) = Mg, _p. Since D is arbitrary, it suffices to show
that My, _p is S2, or in other words, that the graded Matlis dual of HZ™(Mp) is S2. But
the graded Matlis dual of top local cohomology is always S2. Let My, —p — M’ denote the
S2-ification with respect to T'. The cokernel has codimension > 2 by definition, so their top
local cohomologies are isomorphic. This completes the proof. 0

Proposition B.6. With notation as above,

wr = P H(Y, wy (—nE)).
neE”L
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We provide multiple proofs.
Proof #1 of Proposition B.6. We know by definition that

wr = @HOH]R(H;Z;_I(T)”, ER)
ne”L
Thus by Matlis duality, it is enough to show that €, ., Homp(H"(Y,wy(nE)), Eg) =
HY(T) where Ep denotes the injective hull of the residue field of R. But this is just
Proposition B.4 taking D = 0. 0

Proof #2 of Proposition B.6. We know that the reflexification of wg-T is wr by Lemma B.3.
In positive degrees, wg-T already agrees with our desired module. We see that @, ., H*(Y, wy (—nE))
is a S2 and hence reflexive T-module by Corollary B.5.

Thus we need to show that

ws - T — P H (Y, wy (—nE))
ne”L
is an isomorphism in codimension 1. It is already an isomorphism in degree > 0 since
ws = P, H(Y,wy(—nkE)) by [HS03, 2.6.2]. To this end, observe that for all n < 0,
we have that H°(wy(—nE)) = wg since m : Y — Spec R is an isomorphism outside of E.
On the other hand, wg - T is simply H(Y,wy(—FE)) in all negative degrees since we can
multiply by ¢t7'. Since wr/H°(Y,wy(—FE)) is supported in dimension 0, it is easy to see
that wg - T — @,,c; H*(Y,wy(—nE)) is an isomorphism outside of codimension 1. This
completes the proof. O

B.1. Discrepancy computations and extended Rees algebras. Suppose7:Y — X =
Spec R is a projective birational map between normal integral schemes with (R, m, k) local.
For any (prime) Weil divisor Dy on Y, we can form the associated coherent Oy-module
Oy (Dy) and then construct the T-module

I.7(0y(Dy)) = @ H(Y, Oy (Dy — nE)).
nez
This is an S2 T-module by Corollary B.5. It corresponds to a (prime) divisor on Spec T,
Dp. In other words T(Dy) = I'ur(Oy(D)). Note our previous work guarantees that
Lur(Oy(Ky)) = T(K7). Let v : SpecT — Spec R be the canonical map. Suppose we have
that A is a Q-divisor on X such that Kx + A is Q-Cartier, say that divx(f) = n(Kx + A).
We can write the following two formulae:
W*(KX +A) = Ky +Ay
V'(Kx+A) =Kr+Ar

for some Q-divisors Ay and Ar. Since Oy (nm*(Kx + A)) = %Oy, T (Kx + A)) = %T
and F*(%Oy) = %T, we see that Ar and Ay also correspond to each other. Note this requires

our choice of K from Proposition B.6. Explicitly, if

Ay = ZGZ‘D%
AT = ZaiDT

where D is the prime divisor corresponding to Dy as above.
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B.2. Veronese covers. Consider T" as above and consider the mth Veronese subalgebra T".
Note T" = R[It™,t~™] is isomorphic to the standard extended Rees algebra.

Lemma B.7. The T-module Homp (T, T") is generated by the map ¥ : T — T which
projects onto the m-divisible summands. Furthermore, we have that V(nr) = ng.

Proof. The projection onto the m-divisible summands certainly sends ny to ny so we only
need to show that W generates the Hom-set. Note that since £ and E7 corresponds to £ on
Y (more precisely, Er = divp(t™!) and mEr = divp (t™)), T'(iEp) = @&, H(Y, Oy (—nmE+
iF)) and thus T = @©",'T'(iE7) by construction. In other words, T is precisely the mth
cyclic cover of 7" associated to the divisor Er. Since the index of E7+ is m (because this is
the index of E on Y, alternatively, one can also check that 7"(iEr) is not isomorphic to 7"
for every 1 < i < m — 1), by [CR17, proof of Proposition 4.21], we know that ¥ generates
the Homy (T, T") as a T-module. O

Lemma B.8. Suppose that T" — T is the inclusion of the mth Veronese subalgebra as above
with k : SpecT — SpecT” the induced map. Let D be a Weil divisor on'Y and let Dy and
Dy denote associated divisors on T and T respectively. Then k* Dy = Drp.

Proof. 1t suffices to consider the case when D is a prime divisor. In the case that D = F,
this follows immediately from the observation that 7' is an index-1 cover of the Q-Cartier
WEeil divisor D7 as in Lemma B.7. Otherwise we may assume that D is the strict transform
of a divisor on Spec R. In particular, =™ is not in @' = I, (Oy(—D)) C T". But now
notice that
R[t™™ t™ = T'[t™] C T[t™] = R[t,t ]

In particular, we then see that the extension of Q'R[t™™,t™] is still prime in R[t,¢~']. This
completes the proof. O
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