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Abstract. We use the framework of perfectoid big Cohen-Macaulay algebras to define a
class of singularities for pairs in mixed characteristic, which we call purely BCM-regular
singularities, and a corresponding adjoint ideal. We prove that these satisfy adjunction and
inversion of adjunction with respect to the notion of BCM-regularity and the BCM test ideal
defined by the first two authors. We compare them with the existing equal characteristic PLT
and purely F -regular singularities and adjoint ideals. As an application, we obtain a uniform
version of the Briançon-Skoda theorem in mixed characteristic. We also use our theory to
prove that two-dimensional KLT singularities are BCM-regular if the residue characteristic
p > 5, which implies an inversion of adjunction for three-dimensional PLT pairs of residue
characteristic p > 5. In particular, divisorial centers of PLT pairs in dimension three are
normal when p > 5. Furthermore, in the appendix we provide a streamlined construction
of perfectoid big Cohen-Macaulay algebras and show new functoriality properties for them
using the perfectoidization functor of Bhatt and Scholze.
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1. Introduction

In algebraic geometry one can often understand the singularities of a variety X by studying
the singularities of its hyperplane sections. For example, if D ⊆ X is a regular Cartier
divisor, then X turns out to be regular along D as well. More generally, one can ask if
the singularities of X are mild provided that those of D are. This question has a fairly
satisfactory answer both in characteristic zero and characteristic p > 0, and the goal of our
article is to address this problem in mixed characteristic.

To be more formal, consider a variety X, an integral Weil divisor D and a Q-divisor ∆ ≥ 0
not containing D in its support such that KX +D+ ∆ is Q-Cartier, which we collect into a
pair (X,D+ ∆). We wish to compare X with the normalization DN of D. Given this data,
there is canonically defined divisor diffDN (∆ +D) on DN called the different [Kc92, Sho92],
which satisfies

(KX +D + ∆)|DN = KDN + diffDN (D + ∆).

In characteristic zero, the log terminal variant of inversion of adjunction (see [Kol13, Theo-
rem 4.9 (1)]) says that (X,D+∆) is purely log terminal (PLT) if and only if (DN , diffDN (D+
∆)) is Kawamata log terminal (KLT). In positive characteristic, a similar result is proved in
[Tak13] and [Das15], where one replaces KLT with strongly F -regular and PLT with purely
F -regular. In this paper, we prove an analogous result in mixed characteristic, in which KLT
is replaced by BCM-regular (defined in [MS18b]), and PLT is replaced by a new definition
which we call purely BCM-regular.

The BCM-regularity of R is defined in terms of a big Cohen-Macaulay (BCM) algebra
B, which plays the role of a resolution of singularities in characteristic zero, and R+ (the
colimit of all finite domain extensions of R) in positive characteristic. In what follows, we
will usually fix big Cohen-Macaulay R- and R/ID-algebras, B and C respectively, which fit
into a diagram as follows:

R //

��

R+ //

��

B

��

R/ID // (R/ID)+ // C.

We call such B −→ C compatibly chosen, and such a choice always exists by [And20,
Theorem 1.2.1]. In fact, André proved that if we start with a perfectoid big Cohen-Macaulay
R+-algebra B, then we can always find a perfectoid big Cohen-Macaulay (R/ID)+-algebra
C with which it is compatibly chosen. For this reason, when our results are applied, it will
usually be with perfectoid big Cohen-Macaulay algebras, but most of the results themselves
hold more generally. Furthermore, if we are given that R+ is a big Cohen-Macaulay algebra
(as has been announced by Bhatt), then we can simply let B and C be the completion of R+

and (R/ID)+ respectively. Using R+ as a big Cohen-Macauay algebra would simplify some
of the functoriality arguments used in particular in Section 5. See Remark 2.2 for additional
discussion about when this particular big Cohen-Macaulay algebra is sufficient.
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As in the equal characteristic settings, we obtain a more precise restriction theorem for
a new adjoint-like ideal, which we denote by adjDB�C(R,∆ + D), and the BCM test ideals
τC(R,∆) introduced by the first two authors [MS18b] from which the above mentioned
inversion of adjunction result follows immediately.

Theorem A. (Theorem 3.1, Corollary 3.4, and Corollary 3.3) Let (R,m) be a complete
normal local domain of residual characteristic p > 0. Let D be a prime Weil divisor on
Spec(R) with ideal ID, denote the normalization of R/ID by RDN, and let B and C be
compatibly chosen big Cohen-Macaulay algebras for R and R/ID. Finally let ∆ ≥ 0 be a
Q-divisor such that D is not contained in the support of ∆ and KR + D + ∆ is Q-Cartier.
Then:

adjDB�C(R,D + ∆) ·RDN = τC
(
RDN , diffR

DN
(D + ∆)

)
.

In particular, (R,D + ∆) is purely BCMB�C-regular if and only if (RDN , diffR
DN

(D + ∆))
is BCMC-regular. Furthermore, these conditions imply that D is normal.

We prove compatibilities of our new adjoint ideal with those already in use in equal
characteristic. First, that for appropriately chosen big Cohen-Macaulay algebras B and C,
the ideal adjDB�C(R,∆ + D) is contained in the valuatively defined adjoint ideal originating
in characteristic zero birational algebraic geometry:

Theorem B. (Theorem 5.4) Let (R,m) be a complete normal local domain of residual char-
acteristic p > 0, ∆ ≥ 0 a Q-divisor, and D a prime Weil divisor such that KR + D + ∆ is
Q-Cartier and D is not contained in the support of ∆. Then for any proper birational map
µ : Y −→ Spec(R) from a normal variety Y there exists a compatibly chosen perfectoid big
Cohen-Macaulay R- and R/ID-algebras, B and C such that

adjDB�C(R,D + ∆) ⊆ µ∗OY (dKY − µ∗(KR +D + ∆) +D′e),
where D′ is the strict transform of D.

In fact, there is a single choice of B −→ C such that the above containment holds for all
µ : Y −→ Spec(R) by Theorem A.13. Note that, if log resolutions exist and the variety Y
is taken to be a resolution, then the right hand side coincides with the adjoint ideal from
birational geometry.

We then show that in characteristic p > 0 the big Cohen-Macaulay algebras B and C
can be chosen to ensure the ideal adjDB�C(R,D + ∆) coincides with the adjoint-like ideal of
Takagi [Tak08, Tak10, Tak13].

Theorem C. (Theorem 6.6) Suppose that (R,m) is a complete local F -finite normal domain
of positive characteristic p > 0, ∆ ≥ 0 a Q-divisor, and D a prime Weil divisor such that
KR + D + ∆ is Q-Cartier and D is not contained in the support of ∆. Then there exists a
map B −→ C of big Cohen-Macaulay R+- and (R/ID)+-algebras, such that

τID(R,D + ∆) = adjDB�C(R,D + ∆).

The most frustrating limitation of the BCM test ideal as defined in [MS18b] is that it is
not clear if its formation commutes with localization. As a consequence of our inversion of
adjunction result, we obtain the following partial verification of localization.

Theorem D. (Theorem 4.1) Suppose (R,m) is a complete normal local domain of residual
characteristic p > 0 and that ∆ ≥ 0 is a Q-divisor such that KR + ∆ is Q-Cartier. Further
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suppose that Q ∈ SpecR is a point such that the localization (RQ,∆Q) is simple normal
crossing with b∆Qc = 0 (in particular, RQ is regular). Then for any perfectoid big Cohen-
Macaulay R+-algebra B,

(τB(R,∆))Q = RQ.

As a corollary, we get the following Briançon–Skoda type result that is new in mixed
characteristic.

Theorem E. (Corollary 4.2) Let (R,m) be a complete normal local domain of residue char-
acteristic p > 0 and of dimension d. Let J be the defining ideal of the singular locus of R.
Then there exists an integer N such that JNIh ⊆ I for all I ⊆ R where h is the analytic
spread of I. In particular, JNId ⊆ I for all I ⊆ R.

By passing to an argument involving the inversion of adjunction on the extended Rees
algebra, we also obtain the following result.

Theorem F. (Lemma 7.2) Suppose (R,m, k) is a complete normal Q-Gorenstein local do-
main of dimension ≥ 2 with residual characteristic p > 0 and R/p F -finite. Let X = SpecR
and suppose that π : Y −→ X is the blowup of some m-primary ideal I that Y is normal.
Further suppose that I · OY = OY (−mE) where E is a prime exceptional divisor. Let ∆ be
a Q-divisor such that KX + ∆ is Q-Cartier.

Let ∆E denote the different of KY +E + π−1
∗ ∆ along E. Suppose that (E,∆E) is globally

F -regular, then (R,∆) is BCM-regular and in particular, R itself is BCM-regular.

This implies that many simple singularities are BCM-regular. Furthermore it shows that
KLT surface singularities (R,∆) are BCM-regular as long as the residual characteristic p >
5,see Theorem 7.11. In fact, the main results of [CGS16] also hold in mixed characteristic,
see Theorem 7.14. As a corollary, we obtain the inversion of adjunction for PLT pairs of
dimension three in mixed characteristic with p > 5, see Corollary 7.13. This then implies
that divisorial centers of mixed characteristic three-dimensional PLT pairs with p > 5 are
normal.

Theorem G. (Corollary 7.13) Suppose that (R,m, k) is a normal 3-dimensional local ring,
essentially of finite type over an excellent DVR with F -finite residue field of characteristic
p > 5, and let X = SpecR. Suppose that D is a prime divisor on X and that ∆ ≥ 0 is
a Q-divisor such that KX + D + ∆ is Q-Cartier and ∆ has standard coefficients. Suppose

that (DN, diffDN (∆ + D)) is KLT, then (R̂, D̂ + ∆̂) is purely BCM-regular. In particular,
(X,D + ∆) is PLT and D is normal.

Finally, in [MS18b] it was proved that in a proper family over a Dedekind domain, if
one fiber is strongly F -regular then the fibers over an open set are strongly F -regular and
the generic fiber is KLT. We remove a technical assumption on the index from that theo-
rem in Section 8, as well as prove the corresponding result for purely F -regular and PLT
singularities.

Theorem H. (Proposition 8.5 and Proposition 8.3) Let φ : X −→ U = Spec(A) be a proper
flat family where A is a localization of a finite extension of Z, with fraction field K. Let D be
an integral Weil divisor which is horizontal over U (resp. D = 0), and ∆ ≥ 0 which does not
contain D in its support, such that KX+D+∆ is Q-Cartier. Suppose (Xp, Dp+∆p) is purely
F -regular (resp. (Xp,∆p) is strongly F -regular) for some p ∈ A. Then (XK ,∆K + DK) is
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PLT (resp. (Xp,∆p) is KLT) and there is an open subset V of U such that (Xq, Dq + ∆q) is
purely F -regular (resp. (Xq,∆q) is strongly F -regular) for all q ∈ V .

Since pure and strong F -regularity can be checked (and is easily computable) via Fedder-
type criterion, this theorem provides an efficient and computable algorithm to test whether
a variety in characteristic zero is PLT or KLT.

Acknowledgements: The authors thank Yves André, Bhargav Bhatt, Kestutis Cesnavi-
cius, Ray Heitmann, Mel Hochster, Craig Huneke, Srikanth Iyengar and Zsolt Patakfalvi for
valuable conversations related to this project. We thank Zsolt Patakfalvi for comments on
previous drafts of this paper. They would also like to thank the referees for their careful
reading of the paper and many helpful comments and suggestions. This material is partially
based upon work done while the authors were in residence at the Mathematical Sciences
Research Institute in Berkeley California during the Spring 2019 semester. The authors also
worked on this while attending an AIM SQUARE in June 2019.

2. Definitions and basic properties

Throughout this paper, we will use perfectoid algebras as in [BMS18], which is recalled in
Appendix A. We note that when the ring is p-torsion free and contains a compatible system
of p-power roots of p, then this is the same as the definition given in [And20, Section 2] and
[MS18b, Subsection 2.1]. Following the tradition of commutative algebra, when we call a
ring local, we implicitly mean it is a Noetherian ring. A (not necessarily Noetherian) algebra
B over a local ring (R,m) is called big Cohen-Macaulay if every system of parameters of R
is a regular sequence on B. In particular, mB 6= B.

We now recall the definition of BCM test ideal from [MS18b]. Let (R,m) be a complete
normal local domain of residue characteristic p > 0. Fix an effective canonical divisor KR,
and let ∆ ≥ 0 be a Q-divisor such that KR + ∆ is Q-Cartier. Then there exists n ∈ N and
f ∈ R such that n(KR + ∆) = divR(f).

Definition 2.1. [MS18b, Definition 6.2] In the above set-up, let B be a big Cohen-Macaulay
R+-algebra. Then we set

0B,KR+∆

Hd
m(R)

= ker

(
Hd

m(R)
f1/n−−→ Hd

m(B)

)
.

The corresponding BCM test ideal is defined as:

τB(R,∆) = AnnωR 0B,KR+∆

Hd
m(R)

.

Equivalently, we can define τB(R,∆) to be the Matlis dual of im(Hd
m(R)

f1/n−−→ Hd
m(B)).

It is proved in [MS18b, Proposition 6.10] that we can take a sufficiently large perfectoid B
such that τB(R,∆) ⊆ τB′(R,∆) for any other perfectoid big Cohen-Macaulay R+-algebra
B′. We say that (R,∆) is BCMB-regular if τB(R,∆) = R, and that it is BCM-regular1 if
it is BCMB-regular for all (and hence for a single sufficiently large) perfectoid big Cohen-
Macaulay B. It is known that BCM-regularity coincides with strong F -regularity if R has
positive characteristic p > 0 (and KR + ∆ is Q-Cartier), see [MS18b, Corollary 6.23]

1More accurately, it is called perfectoid BCM-regular in [MS18b] to emphasize that we only consider perfectoid
algebras. In this paper we suppress this notion for simplicity.
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Now suppose that (R,m) is a complete normal local domain of mixed characteristic (0, p)
or characteristic p > 0. Fix a prime Weil divisor D on SpecR with ID = R(−D) the defining
ideal. For every diagram

(2.1.1) 0 // ID

��

// R

��

// R/ID

��

// 0

0 // (ID)+

��

// R+

��

// (R/ID)+

��

// 0

IB�C // B // C
+1

//

where B and C are big Cohen-Macaulay R+ (respectively (R/ID)+) algebras, we can con-
struct an object in IB�C ∈ Db(R) as pictured above.

Here, (ID)+ is some minimal prime ideal over IDR
+. With this choice R+/(ID)+ may be

identified with (R/ID)+ (see [Hoc07, p. 27]).

Remark 2.2. Recently, Bhatt [Bha20] proved that the p-adic completion of R+ is a (per-

fectoid) big Cohen-Macaulay algebra, thus in (2.1.1), we may simply let B = R̂+ and

C = ̂(R/ID)+. In this case, IB�C is an ideal of B = R̂+, and we don’t need to work in
Db(R). This suffices for many applications in this paper (and it strengthens some of our
results, see Remark 5.6). On the other hand, it doesn’t seem allow us to build in “perturba-
tion elements”. In particular, it is not enough for our proof of a Briançon–Skoda type result,
see Corollary 4.2.

Definition 2.3. With notation as above, fix a Q-divisor ∆ ≥ 0 such that KR + D + ∆ is
Q-Cartier and no component of ∆ is equal to D. Select KR = −D + G with G ≥ 0 and
choose f ∈ R such that divR(f) = n(KR +D+ ∆). By the commutative diagram above, we
have a map

ψf1/n : ID −→ IB�C
·f1/n−−−→ IB�C .

We define the BCM adjoint ideal with respect to B,C, denoted adjDB�C(R,D + ∆), to be
the Matlis dual of

Image
(
Hd

m(ID)
Hd

m(ψ
f1/n

)

−−−−−−→ Hd
m(IB�C)

)
.

Remark 2.4. We have the factorization:

R −→ R(KR +D)
·f1/n−−−→ R+ −→ B.

If one chooses a different representative of KR, say K ′R = KR + div(h), even such that K ′R
has components in common with D or is non-effective, and so obtains f ′ = hnf ∈ K(R), one

still has a map R(K ′R +D)
·f ′1/n−−−→ B which induces Hd

m(R(K ′R +D)) −→ Hd
m(B), the image of

which is still Matlis dual to adjDB�C(R,D+ ∆), as we shall see in the proof of Lemma 2.5(b)
below.

We prove two basic properties.

Lemma 2.5. With notation as in Definition 2.3:

(a) adjDB�C(R,D + ∆) is an ideal in R.
6



(b) The ideal adjDB�C(R,D + ∆) is independent of the choice of KR, f and f 1/n ∈ R+.

Proof. First we prove (a). The map ID
·f1/n−−−→ IB�C factors as ID −→ R(KR)

·f1/n−−−→ IB�C by
construction. Since ID −→ R(KR) is generically an isomorphism, Hd

m(ID) −→ Hd
m(R(KR)) is

surjective and so both Hd
m(ID) and Hd

m(R(KR)) have the same image in Hd
m(IB�C). Thus,

by Matlis duality, we have an injection

adjDB�C(R,D + ∆) −→
(
Hd

m(R(KR)))∨ ∼= R.

This makes adjDB�C(R,D+ ∆) an ideal and proves (a). Additionally, it is worth noting that
we could just as well have defined

(2.5.1) adjDB�C(R,D + ∆) := AnnR ker
(
Hd

m(R(KR))
·f1/n−−−→ Hd

m(IB�C)
)
.

To prove (b), first note that the diagram defining IB�C was independent of all choices
of KR, f and n. It is clear that the ideal adjDB�C(R,D + ∆) is independent of n if it is
independent of f , for if we choose n(KX +D+ ∆) = div(f) and kn(KX +D+ ∆) = div(fk),
and choose the same nth root of f , the definitions read the same. Next, for fixed KR, two
choices of f or of f 1/n differ only by units of R+, which certainly does not change (2.5.1).

Finally, to show independence on KR, suppose we have n and f such that n(KR+D+∆) =
div(f) and n(K ′R+D+∆) = div(fgn). That is, (K ′R−KR) = div(g), and we may assume that

div(g) ≥ 0. Notice that R(K ′R)
·g−→ R(KR) is an isomorphism. Consider the commutative

diagram:

Hd
m(R(K ′R))

·g ∼
��

·f1/ng
// Hd

m(IB�C)

Hd
m(R(KR))

·f1/n
// Hd

m(IB�C)

By the proof of (a), the Matlis dual of the image of the top row is J ′ = adjDB�C(R,D + ∆);
the adjoint ideal computed with respect to K ′R. The Matlis dual of the bottom row is
J = adjDB�C(R,D+∆); the adjoint ideal computed with respect to KR. From the diagram, we
see that the two horizontal images are the same. Hence the diagram induces an isomorphism
J −→ J ′. Now, the Matlis dual of the map

Hd
m(R(K ′R))

·g−→ Hd
m(R(KR))

is just an R-module isomorphism between rank-1 free R-modules, hence it can be identified
with multiplication by a unit. This multiplication by a unit also induces our isomorphism
J −→ J ′ and so J = J ′. �

Remark 2.6 (Non-effective ∆). With notation as above, suppose that d ∈ R does not vanish
at the generic point of D. It then easily follows by the arguments above that

d · adjDB�C(R,D + ∆) = adjDB�C(R,D + ∆ + div(d)).

Hence if ∆ is non-effective, we can choose such a d so that ∆ + div(d) ≥ 0. Thus we can
define

adjDB�C(R,D + ∆) =
1

d
· adjDB�C(R,D + ∆ + div(d)).
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Many of the results of this paper easily generalize to this setting by the formula above, but
we leave details to the reader.

Definition 2.7. Let R be a complete normal local domain of residue characteristic p > 0.
Let ∆ ≥ 0 be a Q-divisor and D a prime Weil divisor such that (R,∆ +D) is Q-Cartier and
no component of ∆ is equal to D. Let B and C be compatibly chosen big Cohen-Macaulay
R+ and (R/ID)+-algebras respectively. We say that (R,∆ + D) is purely BCMB�C-regular
if

adjDB�C(R,D + ∆) = R.

We can then give a definition of purely BCM-regular that is independent of choices:

Definition 2.8. With notation as in Definition 2.7, we say that (R,∆ +D) is purely BCM-
regular if it is purely BCMB�C-regular for every compatible choice of perfectoid big Cohen-
Macaulay algebras B and C over R+ and (R/ID)+ respectively.

Remark 2.9. It will follow from Theorem A.13 that, in fact, (R,∆+D) is purely BCM-regular
if and only if it is purely BCMB�C-regular for one single sufficiently large compatible choice
of perfectoid big Cohen Macaulay R+- and (R/ID)+- algebras B −→ C.

We now compare the ideal adjDB�C(R,D + ∆) with the BCM test ideal τB(R,∆), defined
in [MS18b] and recalled in Definition 2.1. This is an analog of the fact that if (X,D+ ∆) is
PLT then (X, (1− ε)D + ∆) is KLT.

Proposition 2.10. Let (R,m) be a complete normal local domain of residue characteristic
p > 0 and let D be a prime divisor. Suppose that ∆,∆′ ≥ 0 are two Q-divisors with no
common components with D such that KR + ∆′ is Q-Cartier. Further suppose that D + ∆
is Q-Cartier. Then

adjDB�C(R,∆′ +D + ∆) ⊆ τB(R,∆′ + (1− ε)(D + ∆)) ⊆ τB(R,∆′)

for any rational number 1 ≥ ε > 0.

Proof. The second containment is clear (see [MS18b, Lemma 6.11]), so we need only prove
the first one. Choose g ∈ K(R) such that div g = n(KR + ∆′ + (1 − ε)(D + ∆)) (note g is
only in the fraction field of R) and choose h ∈ R such that div h = nε(D+ ∆). We have the
diagram:

0 // ID //

��

R //

��

R/ID

��

// 0

0 // (ID)+ //

��

R+ //

��

(R/ID)+ //

��

0

// IB�C // B // C
+1

//

Since h ∈ ID we have h1/n ∈ (ID)+, since (ID)+ is prime, and hence from the map of triangles

0 // h1/nB

ν

��

// B //

��

B/(h1/nB) //

��

0

IB�C // B // C
+1

//
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we obtain a map ν : h1/nB −→ IB�C . Consider the factorization:

im1

��

� s

%%

Hd
m(ID)

** **

// // Hd
m(R(KR))

99 99

·g1/nh1/n
// Hd

m(h1/nB)
ν

// Hd
m(IB�C).

im2
& �

33

The vertical dotted arrow is surjective by the diagram. On the other hand, via the isomor-

phism of h1/nB ∼= B, we may view the middle map (defining im1) to be Hd
m(R(KR))

·g1/n−−−→
Hd

m(B), and hence we see that the Matlis dual of im1 is just τB(R,∆′+(1− ε)(D+∆)) (note

that KR is not effective, but there is still a well defined map R(KR)
·g1/n−−−→ B).

Taking Matlis duals (•)∨ of the entire diagram, we have(
Hd

m(KR)
)∨

∼
��

(im1)∨? _oo

∼
��

(im2)∨? _oo

∼
��

R τB(R,∆′ + (1− ε)(D + ∆))? _oo adjDB�C(R,D + ∆′ + ∆)? _oo

which completes the proof. �

Corollary 2.11. With notation as in Proposition 2.10, if (R,D + ∆ + ∆′) is purely BCM-
regular then (R,∆′ + (1− ε)(D + ∆)) is BCM-regular.

Proof. Choose a sufficiently large perfectoid big Cohen-Macaulay algebra B such that τB(R,∆′+
(1−ε)(D+∆)) = R if and only if (R,∆′+(1−ε)(D+∆)) is BCM-regular by [MS18b, Propo-
sition 6.10]. Let C be an perfectoid big Cohen-Macaulay R/ID-algebra such that B � C is a
compatible choice, which exists by [And20, Theorem 1.2.1]. The result follows by applying
Proposition 2.10 to B � C. �

Remark 2.12 (Non-prime D). For non-prime D, there are several potential definitions and
we work exclusively in the case that D is prime in this paper. Nevertheless, let us suggest a
more general definition inspired by [BMP+20, Lemma 4.22], also see [TY21]. If D =

∑t
i=1 Di,

we choose a Ci, a perfectoid big Cohen-Macaulay (R/IDi)
+-algebra for each i with a map

Bi −→ Ci, for Bi a perfectoid big Cohen-Macaulay R+ algebra, satisfying the diagram (2.1.1).
We define

adjD⊕Bi−→⊕Ci(R,∆ +D) =
t∑
i=1

adjDi
Bi−→Ci

(R,∆ +D).

Several properties of this object are effectively proven in [BMP+20] in the special case that,
for all i, Bi is the m-adic completion of R+ and Ci is the m-adic completion of (R/IDi)

+ for
all i. Simply set X = SpecR.

2.1. The different vs the different. Let R be a Noetherian normal domain, X = SpecR,
D a prime Weil divisor, and ∆ ≥ 0 a Q-divisor with no components of ∆ equal to D and
such that KR + D + ∆ is Q-Cartier of index n. Let π : DN −→ D be the normalization of

9



D. By abuse of notation, we also denote the composition DN � D ↪→ X = SpecR by π.
Following [Kol13, Section 4.1], we can define a Q-divisor diffR

DN
(D + ∆) on DN so that

π∗(KR +D + ∆) ∼Q KDN + diffR
DN

(D + ∆).

This is done as follows. Since R is normal, we can pick U ⊆ SpecR to be a regular
open subset with complement of codimension at least two and such that D ∩ U is regular.
The residue map induces an isomorphism ωR(D)|D∩U ' ωD|D∩U (cf. [Kol13, Definition 4.1])
which in turn yields a rational section s of the rank-1-reflexive sheaf

H omO
DN

(
π∗OX(n(KR+D+∆)),ODN(nKDN)

) ∼= ODN(nKDN)⊗π∗(OX(n(KR+D+∆)))−1.

We define diffR
DN

(D + ∆) = − 1
n
div(s).

Equivalently, we can choose KR (using prime avoidance) to be equal to −D+G for some
Weil divisor G with no common components with D. Consider the exact sequence

0 −→ ωR −→ ωR(D) −→ ωD −→ h−d+1(ω
q
R) −→ . . .

coming from applying Grothendieck duality to 0 −→ O(−D) −→ O −→ OD −→ 0 and taking
cohomology. Since R is S2, it is Cohen-Macaulay in codimension 2. Thus, h−d+1(ω

q
R) is zero

in codimension 2 on R and hence in codimension 1 on R/ID. In particular, the S2-ification of
coker(ωR −→ ωR(D)) is isomorphic to ωD, using [Sta, 0AWE]. Now then, since KR +D ≥ 0,
we have a chosen section 1 ∈ ωR(D) and its image in ωD. On the other hand, we have the
generic isomorphism ωDN −→ ωD, and so we obtain a rational section of ωDN , and hence a
possibly non-effective divisor KDN (if D is normal, it is effective). We can now define

diffR
DN

(D + ∆) =
1

n
divDN π∗f −KDN

for f such that divR(f) = n(KR+D+∆). It is easy to see that the above two constructions,
in fact, coincide.

3. Adjunction and inversion of adjunction

We prove the first main result of this article.

Theorem 3.1. Suppose (R,m) is a complete normal local domain of residue characteristic
p > 0. Fix a prime Weil divisor D on SpecR with ID = R(−D) the defining ideal and
set RD = R/ID as well as RDN to be the normalization of R/ID. Suppose that ∆ ≥ 0 is a
Q-divisor such that no component of ∆ is equal to D and such that KR+D+∆ is Q-Cartier.
Then for compatibly chosen B,C as in (2.1.1), we have

adjDB�C(R,D + ∆) ·RDN = τC
(
RDN , diffR

DN
(D + ∆))

)
.

Proof. Fix a canonical divisor KR = −D + G, where G ≥ 0 does not contain D as a
component. Following the notation as in Section 2, choose f ∈ R such that div(f) =
n(KR +D + ∆). Consider the diagram:

0 // ID

·f1/n
��

// R

·f1/n
��

// R/ID

·f1/n
��

// 0

0 // (ID)+ // R+ // (R/ID)+ // 0.
10



Since in a normal finite extension R ⊆ S ⊆ R+ with f 1/n ∈ S, we have that divS(f 1/n) ≥
π∗(KR + D), it follows that f 1/n · R(KR + D) ⊆ f 1/nS(π∗(KR + D)) ⊆ R+. Hence we have
the following diagram:

0 // ID

��

// R

��

// R/ID

��

// 0

0 // R(KR)

·f1/n
��

// R(KR +D)

·f1/n
��

// (coker)

·f1/n
��

// 0

0 // (ID)+ // R+ // (R/ID)+ // 0

As in Section 2.1, the S2-ification of (coker) is isomorphic to ωD, and so f 1/n multiplies ωD
into (R/ID)+.

We see by Section 2.1 that

diffR
DN

(D + ∆) =
1

n
divDN f −KDN .

for f = f |DN . Consider the following diagram:

0 // R(KR)

·f1/n

��

// R(KR +D)

·f1/n

��

// (coker)

·f1/n

��

((

// 0

ωD
·f1/n

vv

ωDN
Tr

oo

0 // (ID)+ //

��

R+ //

��

(R/ID)+ //

��

0

IB�C // B // C
+1

//

Since KDN + diffR
DN

(D + ∆) = 1
n

divDN f , by construction in [MS18b], the Matlis dual of

Image
(
Hd−1

m (ωDN) −→ Hd−1
m (C)

)
is τC

(
RDN , diffR

DN
(D + ∆))

)
. On the other hand, the maps Hd−1

m (ωDN) −→ Hd−1
m (ωD) and

Hd−1
m (coker) −→ Hd−1

m (ωD) are surjective, since the modules agree generically. Therefore, the
Matlis dual of

Image
(
Hd−1

m (coker)
·f1/n−−−→ Hd−1

m (C)
)

is also τC
(
RDN , diffR

DN
(D + ∆))

)
.
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Taking local cohomology, we obtain the following diagram with images of maps in the
middle row:

Hd−1
m (coker) //

����

Hd
m(R(KR))

����

// Hd
m(R(KR +D))

��

// 0

0 // im1_�

��

� � // im2� _

��

Hd−1
m (B) = 0 // Hd−1

m (C) // Hd
m(IB�C) // Hd

m(B)

Recall that the S2-ification of (coker) is ωD, and hence Hd−1
m (coker) = Hd−1

m (ωD). Taking
Matlis dual of the top and middle row yields the diagram

adjDB�C(R,∆ +D)
_�

��

// // τC
(
RDN , diffR

DN
(D + ∆))

_�

��

R // (R/ID)N = RDN .

This completes the proof. �

Remark 3.2 (Adjunction for non-prime D). Using the notation of Remark 2.12, if D =∑t
i=1 Di is only reduced but not prime, then notice that adjDi

Bi−→Ci
(X,Di + ∆ +

∑
j 6=iDj)

is contained in the Matlis dual of Image
(
Hd

m(R(KR)) −→ Hd
m(R(KR + Dj))

)
= I∨Dj for any

j 6= i. Hence adjDi
Bi−→Ci

(X,Di + ∆ +
∑

j 6=iDj) ⊆ IDj . In particular,(
adjD⊕Bi−→⊕Ci(R,∆ +D)

)
·RN

Dj
=

(∑t
i=1 adjDi

Bi−→Ci
(R,∆ +D)

)
·RN

Dj

=
(

adj
Dj

Bj−→Cj
(R,∆ +D)

)
·RN

Dj

= τCj
(
RN
Dj
, diffR

DN
j

(D+∆)

)
.

Therefore, since RN
D := (R/ID)N =

∏t
j=1(R/IDj)

N =
∏t

j=1 R
N
Dj

we obtain that(
adjD⊕Bi−→⊕Ci(R,∆ +D)

)
·RN

D = τ⊕Cj
(
RN
D, diffR

DN (D+∆)

)
where we define the right side to be the product of the τCj

(
RN
Dj
, diffR

DN
j

(D+∆)

)
since RN

D is

not local. This generalizes Theorem 3.1 to the case of a non-prime D.

Corollary 3.3. With notations as in Theorem 3.1, if (DN, diffR
DN

(D+∆)) is BCMC-regular,
then D is normal.

Proof. Theorem 3.1 tells us that adjDB�C(R,D+∆)·RDN = RDN . But adjDB�C(R,D+∆) ⊆ R.
So R −→ RDN = (R/ID)N is surjective (see the last diagram in the proof of Theorem 3.1)
and hence D = DN. �

Corollary 3.4. With notation as in Theorem 3.1, (R,D+ ∆) is purely BCMB�C-regular if
and only if ((R/ID)N, diffDN(D + ∆)) is BCMC-regular. In either case D = DN.

Proof. The first statement follows from Nakayama’s lemma and Theorem 3.1. The second
statement follows from Corollary 3.3. �

12



Corollary 3.5. With notation as in Theorem 3.1, (R,D+ ∆) is purely BCM-regular if and
only if ((R/ID)N, diffDN(D + ∆)) is BCM-regular.

Proof. Firstly, if ((R/ID)N, diffDN(D+∆)) is BCM-regular, then given any compatible choice
B � C, ((R/ID)N, diffDN(D + ∆)) is BCMC-regular and so by Corollary 3.4 (R,D + ∆) is
purely BCMB�C-regular.

Conversely, suppose (R,D+∆) is purely BCM-regular, in which case we may assume that
D is normal, and let C be a perfectoid big Cohen-Macaulay (R/ID)+ algebra large enough
to ensure BCM-regularity. Then choose a compatible B � C ′ by [And20, Theorem 1.2.1].
By [MS18b, Lemma 4.5] there exists C̃ which comes with maps C ′ −→ C̃ and C −→ C̃, so
that by Corollary 3.4 applied to B −→ C̃, (R/ID, diffD(D+ ∆)) is BCMC̃-regular, and hence
BCMC-regular, and hence BCM-regular by our choice of C. �

4. Application to BCM test ideal and the Briançon–Skoda theorem

We prove the following result which substantially generalizes [MS18b, Theorem 6.27 and
Proposition 6.31].

Theorem 4.1. Suppose (R,m) is a complete normal local domain of residual characteristic
p > 0 and that ∆ ≥ 0 is a Q-divisor such that KR + ∆ is Q-Cartier. Further suppose
that Q ∈ SpecR is a point such that the localization (RQ,∆Q) is simple normal crossing
with b∆Qc = 0 (in particular, RQ is regular). Then for any perfectoid big Cohen-Macaulay
R+-algebra B,

(τB(R,∆))Q = RQ.

Proof. We proceed by induction on the dimension of RQ. Consider first the case where
dimRQ = 0. Then RQ is a field and the statement is obvious since τB(R,∆) is nonzero.

Now suppose we know the statement for dimension < d and dimR = d. There are two
cases. First suppose that the localization ∆Q = 0. In this case choose D to be a prime
divisor on SpecR passing through Q such that DQ is nonsingular. Further we may choose
an effective Q-divisor Θ′ ≥ ∆ and Θ ≥ 0, both not containing Q in their support, such that
KR + Θ′ and D + Θ are Q-Cartier (in fact, we can take Θ′ = ∆ in this case).

Otherwise if ∆Q 6= 0, choose D ∈ Supp ∆ to be some prime divisor passing through Q.
Now, KR + ∆∨D need not be Q-Cartier. Fix ∆D = ∆− (∆∧D) and choose Θ′ ≥ ∆D such
that Θ′Q = (∆D)Q and KR + Θ′ is Q-Cartier. Further choose Θ ≥ 0, not containing Q in its
support, so that D + Θ is Q-Cartier.

Under either assumption, we have D + Θ + Θ′ ≥ ∆ while KR + Θ′ +D + Θ is Q-Cartier.
Furthermore (RQ, DQ + ΘQ + Θ′Q) is SNC and bDQ + ΘQ + Θ′Qc = DQ. Choosing a suitably
compatible perfectoid big Cohen-Macaulay (R/ID)+-algebra C, we know that

τB(R,∆) ⊇ τB(R,Θ′ + (1− ε)(D + Θ)) ⊇ adjDB�C(R,Θ′ + Θ +D)

where the first inequality is simply because Θ′ + (1 − ε)(D + Θ) ≥ ∆ and the second is by
Proposition 2.10. Multiplying by (R/ID)N = RDN we use Theorem 3.1 to obtain that

adjDB�C(R,Θ′ + Θ +D) ·RDN = τC
(
RDN , diffR

DN
(Θ′ + Θ +D))

)
.

By the induction hypothesis, the right side localized at Q is (RDN)Q. Hence by Nakayama’s
lemma, so is the left side. The result follows. �
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As an application, we obtain the following Briançon–Skoda type result in mixed charac-
teristic. To the best of our knowledge this version of the Briançon–Skoda theorem was not
known before in mixed characteristic.

Corollary 4.2 (Briançon–Skoda Theorem). Let (R,m) be a complete normal local domain
of residue characteristic p > 0 and of dimension d. Let J be the defining ideal of the singular
locus of R. Then there exists an integer N such that JNIh ⊆ I for all I ⊆ R where h is the
analytic spread of I. In particular, JNId ⊆ I for all I ⊆ R.

Proof. First note that we can replace I by its minimal reduction, so without loss of generality
we may assume that I is generated by h elements. Now by [HM17, Theorem 2.7], Ih ⊆ Iepf

where Iepf denotes the extended plus closure of I:

Iepf := {z ∈ R | there exists c 6= 0 such that c1/pez ∈ (I, pn)R+ for all e and all n}.
Next we fix a perfectoid R+-algebra B′, it is clear that

Iepf ⊆ {z ∈ R | there exists c 6= 0 such that c1/p∞z ∈ (I, pn)B′ for all n}.
For a fixed c, we now apply Gabber’s construction (see [Gab18, page 3]) by setting B =

S−1
c B′�, where B′� = (

∏NB′)/(
⊕NB′) and Sc is the multiplicative system consisting of

(cε0 , cε1 , . . . ) ∈ B′� such that εi ∈ N[1/p] and εi −→ 0. It is straightforward to check that B
is a big Cohen-Macaulay algebra of R (see [Gab18]) and that if c1/p∞z ∈ aB′ for some ideal
a ⊆ R, then z ∈ aB. Moreover, we can replace B by its m-adic completion to assume that
it is a perfectoid big Cohen-Macaulay R+-algebra (first use [BIM19, Example 3.8 (7)], the
p-adic completion of B is perfectoid, and then note that m-adic completion is the same as
(p, x2, . . . , xd)-adic completion where p, x2, . . . , xd is a regular sequence since B is big Cohen-
Macaulay, so [And20, Proposition 2.2.1] applies). We can now either take a direct limit of
this construction for all c 6= 0, or pick c that works for every generator of Iepf (note that
Iepf is a finitely generated ideal since it is inside R) to assume that we have a perfectoid big
Cohen-Macaulay R+-algebra B such that:

Iepf ⊆ {z ∈ R | z ∈ (I, pn)B for all n}.

Thus Ih ⊆ (I, pn)B ∩ R for some fixed perfectoid big Cohen-Macaulay R+-algebra B and
every n. For all Q ∈ SpecR such that RQ is regular, we can pick ∆ ≥ 0 such that KR+∆ is Q-
Cartier and ∆Q = 0 (since KR is principal at Q). If we pick f such that divR(f) = n(KR+∆),

then R
·f1/n−−−→ B factors through ωR ∼= R(KR) so we have induced maps

·f 1/n : Hd
m(ωR) −→ Hd

m(B ⊗ ωR) −→ Hd
m(B).

Applying Matlis duality, we have

Hd
m(ωR)∨

∼=
��

Hd
m(B ⊗ ωR)∨oo

∼=
��

Hd
m(B)∨

∼=
��

oo

R HomR(B,R)oo HomR(B,ωR)oo

By construction we know that Image(Hd
m(B)∨ −→ Hd

m(ωR)∨) is τB(R,∆) (see [MS18b, Proof
of Theorem 6.12]). Therefore by the commutative diagram, we know that

Image(HomR(B,R) −→ R) ⊇ τB(R,∆).
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By Theorem 4.1, τB(R,∆)Q = RQ. Thus we know there exists φ ∈ HomR(B,R) such that
φ(1) = x for some x /∈ Q. Since this is true for every Q such that RQ is regular, we see that

J ⊆
√

Image(HomR(B,R) −→ R).

Thus there exists N such that JN ⊆ Image(HomR(B,R) −→ R), that is, for every r ∈ JN ,

there exists φ ∈ HomR(B,R) such that φ(1) = r. Finally, since Ih ⊆ (I, pn)B ∩R, applying

φ we see that rIh ⊆ (I, pn). As this is true for all r ∈ JN and every n, we have that

JNIh ⊆ ∩n(I, pn) = I. �

5. Comparison with the adjoint ideal from birational geometry

The main result of this section, Theorem 5.4, is a variant of [MS18b, Theorem 6.21]
stating that the BCM-test ideal is contained in the multiplier ideal sheaf. Before moving on
to the main result, we first give a slightly different proof of [MS18b, Theorem 6.21] based on
[MS18b, Proposition 3.7]. We will apply the same strategy in the proof of Theorem 5.4.

Theorem 5.1. [MS18b, Theorem 6.21] Given a complete normal local domain (R,m, k) of
dimension d of residue characteristic p > 0, a Q-divisor ∆ ≥ 0 for which KR + ∆ is Q-
Cartier, and a proper birational map µ : Y −→ SpecR with Y normal, there exists a big
Cohen-Macaulay R+-algebra B such that

τB(R,∆) ⊆ µ∗OY (dKY − µ∗(KR + ∆)e).

Proof. First, we may assume that µ is projective, and so it is the blow up of some ideal sheaf
J ⊆ R, that is Y = ProjR[Jt]. Second, by replacing R[Jt] by its integral closure, we may
assume R[Jt] is normal. Let E be the reduced pre-image of {m}. Arguing as in [MS18b,
Proposition 3.7], we can find a commutative diagram

B′ // B

R[Jt]

OO

// R

OO

with B and B′ being big Cohen-Macaulay algebras over R+ and ( ̂R[Jt]n+Jt)
+ respectively.

This combined with the Sancho-de-Salas sequence [SdS87] fits in the following diagram:

0 = Hd
n+Jt(B

′) // Hd
m(B)

Hd
n+Jt(R[Jt])0

OO

// Hd
m(R) // //

OO

Hd
E(Y,OY ),

where the bottom row is exact. Here Hd
n+Jt(B

′) = 0, as R[Jt] is of dimension d+ 1 and B′ is
a big Cohen-Macaulay algebra, while Hd

m(R) −→ Hd
E(Y,OY ) is surjective, because it is Matlis

dual to the injective morphism µ∗ωY −→ ωR.
15



In particular, we get an induced map Hd
E(Y,OY )

α−→ Hd
m(B). Let f ∈ R be as in Defini-

tion 2.1, assuming KR ≥ 0. The following commutative diagram

Hd
m(B) Hd

E(Y,OY (bµ∗(KR + ∆)c))f
1
n α

oo

Hd
m(R) // //

f
1
n

OO

Hd
E(Y,OY )

?�

OO

shows that the image of Hd
m(R) −→ Hd

E(Y,OY (bµ∗(KR + ∆)c) surjects onto the image of

Hd
m(R)

f
1
n−−→ Hd

m(B). Thus by Matlis duality

τB(R,∆) ⊆ µ∗OY (dKY − µ∗(KR + ∆)e). �

Remark 5.1.1. The proof above goes through in characteristic zero except that we do not
know of a reference for the existence of weakly functorial BCM R+-algebras, but only weakly
functorial R-algebras [HH95, Theorem 3.9], see also the discussion at the end of [Hoc17].

However, in the proof of Theorem 5.1 we really only needed that f 1/n ∈ B, which we can
arrange again letting S be the normalization of R[f 1/n] and applying [HH95, Theorem 3.9]
to S[JSt] −→ S. Thus the result also holds in characteristic zero as long as one chooses a
large enough big Cohen-Macaulay R-algebra.

We now recall the definition of the adjoint ideal from characteristic zero birational geom-
etry.

Definition 5.2. Let R be a normal local domain, ∆ a Q-divisor and D a prime Weil divisor
such that KR +D + ∆ is Q-Cartier. We define the birational adjoint to be

adjDbir(R,D + ∆) =
⋂

µ:Y−→Spec(R)

µ∗OY (dKY − µ∗(KR +D + ∆) +D′e)

where the intersection runs over all proper birational morphisms, and D′ is the strict trans-
form of D. If log resolutions exist in dimension dim(R) then the intersection stabilizes and
can be computed on any log resolution of (R,D + ∆) such that the strict transform of D is
nonsingular.

Remark 5.3 (Nonprime D). If R is finite type over a field of characteristic zero and if
D =

∑t
i=1 Di where the Di are prime divisors, then one still defines adjDbir(R,D + ∆) with

the same formula. In that case, we believe it is well known to experts that

(5.3.1) adjDbir(R,D + ∆) =
t∑
i=1

adjDibir(R,D + ∆).

The ⊇ containment is straightforward from the definitions. To show ⊆, suppose π : Y −→
SpecR is a log resolution separating the components of D and D′i (respectively D′) is the
strict transform of Di (respectively D). Then, setting M = µ∗(KR + D + ∆) we have the
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diagram:

0 //
⊕t

i=1 µ∗OY (dKY −Me)

��

//
⊕t

i=1 µ∗OY (dKY −M +D′ie) //

��

⊕t
i=1 µ∗OD′i(dKD′i

−M |D′e) //

��

0

0 // µ∗OY (dKY −Me) // µ∗OY (dKY −M +D′e) // µ∗OD′(dKD′ −M |D′e) // 0

where the zeros on the right are due to local vanishing for multiplier ideals (in other words,
relative Kawamata-Viehweg vanishing). The maps on the left and right are surjective, hence
so is the map in the middle. As a consequence the containment ⊆ holds in (5.3.1).

In view of this, we suggest that in positive characteristic it may be better to define
adjDbir(R,D+ ∆) as a sum as in (5.3.1) as well. We continue to work with prime D however.

Now we state and prove our main comparison result.

Theorem 5.4. Let (R,m) be a complete local normal domain of residue characteristic p > 0,
∆ ≥ 0 a Q-divisor, and D a prime Weil divisor such that KR +D + ∆ is Q-Cartier. Then
for any proper birational map µ : Y −→ Spec(R) from a normal variety Y , there exists a
compatibly chosen perfectoid big Cohen-Macaulay R+- and (R/ID)+-algebras B and C such
that

adjDB�C(R,D + ∆) ⊆ µ∗OY (dKY − µ∗(KR +D + ∆) +D′e).

Proof. As in Theorem 5.1, we may assume that Y = ProjR[Jt] for some ideal J ⊆ R such
that R[Jt] is normal and E the reduced pre-image of {m}. Let J̄ be the image of J in R/ID.
By Theorem A.7,2 we can find perfectoid big Cohen-Macaulay algebras B′ and C ′ of the
completions of R[Jt] and (R/ID)[J̄t] respectively, as well as perfectoid big Cohen-Macaulay
R+- and (R/ID)+-algebras B and C, sitting inside the following commutative diagram:

// IB′�C′ //

��

B′ //

��

C ′

��

+1
//

0 // ID

<<

//

��

R[Jt]

<<

//

��

(R/ID)[J̄t]

::

��

// 0

// IB�C // B // C
+1

//

0 // ID

<<

// R

<<

// R/ID

99

// 0,

where ID, IB�C , and IB′�C′ are appropriate kernels and homotopy kernels.

2Note that the assumption of Theorem A.7 is satisfied: the Rees algebra R[Jt] (completed at the maximal
ideal m + Jt) is normal, P1 = (Jt) and P2 = ker(R[Jt] −→ (R/ID)[J̄ t]) are height one primes and their sum
is a height two prime in R[Jt] whose localization is regular (as it is isomorphic to RID [(JRID )t]).
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Pick f as in Definition 2.3. Analogously to Theorem 5.1, we can apply the Sancho-de-Salas
sequence (see [Lip94, page 150]) to obtain the following diagram with exact bottom row

0 = Hd
n+Jt(IB′�C′)0

// Hd
m(IB�C)

Hd
n+Jt(ID)0

OO

// Hd
m(ID) // //

OO

Hd
E(Y,OY (−D′))

hh

Here Hd
n+Jt(IB′�C′) = 0 for dimension reasons, because it sits in an exact sequence

0 = Hd−1
n+Jt(C

′) −→ Hd
n+Jt(IB′�C′) −→ Hd

n+Jt(B
′) = 0.

The bottom right arrow in the diagram is surjective as it is Matlis dual to µ∗ωY (D′) ↪→
ωX(D). In particular, the morphism

Hd
m(ID)

f
1
n−−→ Hd

m(IB�C)

factors through Hd
m(ID) −→ Hd

E(Y,OY (bµ∗(KR + D + ∆) − D′c), and so the image of the
latter surjects onto the image of the former. Thus, by Matlis duality

adjDB�C(R,D + ∆) ⊆ µ∗OY (dKY − µ∗(KR +D + ∆) +D′e). �

Remark 5.5. In the above theorem, we can in fact pick a compatible choice of perfectoid big
Cohen-Macaulay R+- and (R/ID)+-algebras B and C that works for all possible birational
maps µ. This follows from Theorem A.13. An alternative method might be possible by using
the perfectoid nature of B and C, and such comparisons should follow from [MS18a, Section
5]. We leave the interested reader to carry out the details of the alternative approach.

Remark 5.6. Recently, Bhatt [Bha20] proved that the p-adic completion of R+ is a (perfec-
toid) big Cohen-Macaulay algebra. Therefore, in Theorem 5.1 and Theorem 5.4, we can take

B = R̂+ and C = ̂(R/ID)+ and they work for all possible µ already. As a consequence of this

fact, Theorem 5.1 (resp., Theorem 5.4) holds for arbitrary big Cohen-Macaulay R̂+-algebra

B (resp., arbitrary compatibly chosen big Cohen-Macaulay R̂+ and ̂(R/ID)+-algebras) be-
cause τB(R,∆) ⊆ τ

R̂+(R,∆) and adjDB�C(R,D + ∆) ⊆ adjD
R̂+� ̂(R/ID)+

(R,D + ∆). We will

not need this stronger result in the sequel though.

6. Comparison with the test ideal in characteristic p > 0

The notions of pure BCM-regularity and pure F-regularity agree in positive character-
istic. Indeed, this follows by adjunction as BCM-regularity and strong F-regularity agree
by [MS18b, Proposition 5.3]. In this section we show that in fact our BCM adjoint ideal
coincides with Takagi’s adjoint ideal in positive characteristic. Throughout this section all
rings will be F -finite and of characteristic p > 0.

First, we recall the definition of the latter ideal, [Tak08, Tak10, Tak13].

Definition 6.1. Suppose that R is a normal F -finite complete local domain of characteristic
p > 0 and that (R,D+∆) is a pair withD reduced and ∆ ≥ 0 a Q-divisor with no components
in common with D. Let E = Hd

m(R(KR)) be the injective hull of the residue field. Set R◦,D
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to be the elements of R not in any minimal prime of ID (in other words, the elements that
do not vanish on any component of D). We define

0
∗D(D+∆)
E = {z ∈ E | ∃c ∈ R◦,D such that 0 = (F e

∗ c)⊗z ∈ (F e
∗R((pe−1)D+bpe∆c)⊗RE, ∀e > 0}.

We define
τID(R,D + ∆) = AnnR(0

∗D(D+∆)
E ).

The roundings in [Tak08] are slightly different than the ones above, however any difference
can be absorbed into c. It turns out if a c′ ∈ R◦,D is chosen such that Supp(∆) ⊆ Supp(div(c))
and such that Rc′ and (RD)c′ are regular, then a fixed power3 c = c′n of that c′ can be chosen

that works in the definition of all z ∈ 0
∗D(D+∆)
E (in other words, such a c = c′n is a divisorial

test element).
Note that, since E ∼= Hd

m(R(KR)), we have that (F e
∗R((pe − 1)D + bpe∆c)) ⊗R E ∼=

F e
∗H

d
m(R(pe(KR +D)−D + bpe∆)c)).

On the other hand, by [Tak13, Proposition 1.1] τID(R,D + ∆) is the smallest ideal J not
contained in any minimal prime of ID, such that for every

φ ∈ HomR

(
(F e
∗R(d(pe − 1)(D + ∆)e)), R

)
⊆ HomR

(
F e
∗R,R

)
we have φ(F e

∗J) ⊆ J .

Remark 6.2. Even if D + ∆ is not effective we can still make sense of this definition. The
point is that τID(R,D+ ∆ + div(c)) = cτID(R,D+ ∆) for c ∈ R◦,D as can be easily checked.
Therefore if D + ∆ is not effective, choose c ∈ R◦,D so that D + ∆ + div(c) is effective, and
define the fractional ideal:

τID(R,D + ∆) =
1

c
τID(R,D + ∆ + div(c)).

Thus for what follows we will reduce without mention to the case that D + ∆ ≥ 0.

Remark 6.3 (Non-prime D). Suppose D =
∑t

i=1 Di with each Di prime. It follows from the
definition that τIDi (R,D + ∆) ⊆ τID(R,D + ∆) for every i. Thus

τID(R,D + ∆) ⊇
t∑
i=1

τIDi (R,D + ∆).

However, the right side is also compatible with every φ as above and so by the minimality
of τID(R,D+ ∆) we see that τID(R,D+ ∆) =

∑t
i=1 τIDi (R,D+ ∆). Hence, if one makes the

definition of adj⊕Bi�Ci(R,D + ∆) as suggested in Remark 2.12, then the main result of this
section, Theorem 6.6, immediately generalizes to the case of non-prime D since we can work
one Di at a time.

We now prove a containment relating Takagi’s characteristic p > 0 adjoint ideal with ours.
The strategy is similar to [Smi97].

Proposition 6.4. Suppose that (R,m) is an F -finite complete local ring of characteristic
p > 0 and (R,D + ∆) is as in Definition 6.1. Further assume that D is prime. Then

τID(R,D + ∆) ⊆ adjDB�C(R,D + ∆).
3To see this, using [Tak08, Proposition 3.5(1)], we must show that c′n ∈ τID (R,D + ∆) for some n. But
we know that the formation of τID (R,D + ∆) commutes with localization by [Tak08, Corollary 3.4] and for
such a c′, it is not difficult to see that τID (R,D + ∆)c′ = Rc′ .

19



Proof. Recall first that

adjDB�C(R,D + ∆) · (R/ID)N = τC
(
RDN , diffR

DN
(D + ∆))

)
by Theorem 3.1. Hence since the right side is nonzero by Theorem 4.1 (cf. [MS18a]) the
left side is also nonzero. Thus, to prove the proposition, we must show that adjDB�C(R,D +
∆) · (R/ID)N is compatible with the maps φ ∈ HomR

(
(F e
∗R(d(pe − 1)(D + ∆)e)), R

)
⊆

HomR(F e
∗R,R).

Let f ∈ R be such that divR(f) = n(KR+D+∆) as in Section 2. Fix a finite normal local

extension η : SpecS −→ SpecR with f 1/n ∈ S. We have the map R(KR) ⊆ S(η∗KR)
·f1/n−−−→

IB�C . The Matlis dual of the image of Hd
m(S(η∗KR))

·f1/n−−−→ Hd
m(IB�C) is a submodule κ ⊆

HomR(S,R) ∼= S(KS − η∗KR) whose image under the evaluation-at-1 map to R is exactly
adjDB�C(R,D + ∆).

Any φ ∈ HomR

(
(F e
∗R(d(pe − 1)(D + ∆)e)), R

)
⊆ HomR(F e

∗R,R) induces a map

ϕ : HomF e∗R(F e
∗S, F

e
∗R)

restrict domain−−−−−−−−→ HomR(S, F e
∗R)

Hom(S,φ)−−−−−→ Hom(S,R).

It would suffice to show that ϕ(F e
∗κ) ⊆ κ since the following diagram commutes:

F e
∗ HomR(S,R)

OO

∼
��

HomF e∗R(F e
∗S, F

e
∗R)

ϕ

��

ev@1
// F e
∗R

φ

��

HomR(S,R)
ev@1

// R.

Notice that ϕ factors through

HomF e∗R(F e
∗S, F

e
∗R(d(pe − 1)(D + ∆)e)) ∼= F e

∗S(KS − η∗KR + η∗d(pe − 1)(D + ∆)e)
and hence it also factors through the smaller module

(6.4.1) F e
∗S(KS − η∗KR + dη∗(pe − 1)(D + ∆)e).

Now, we have the following commutative diagram

Hd
m(S(η∗KR))

·F e∗ f (p
e−1)/n

��

·f1/n
// Hd

m(IB�C)

F e

��

Hd
m(F e

∗S(η∗KR))
·F e∗ f1/n

// Hd
m(IB�C).

The Matlis dual of the image of the first row is κ. The Matlis dual of the image of the second
row is F e

∗κ. Therefore by Matlis duality, the dual to the left vertical map, ψ : F e
∗S(KS −

η∗KR) ∼= F e
∗ HomR(S,R) −→ HomR(S,R) ∼= S(KS − η∗KR) induced by ·F e

∗ f
(pe−1)/n sends

F e
∗κ to κ. It is not difficult to see that any map which factors through F e

∗S(KS − η∗KR +
η∗(pe − 1)(D + ∆)), is an F e

∗S-pre-multiple of ψ. Indeed, this follows since the dual to
Hd

m(S) −→ Hd
m(F e

∗S) generates HomS(F e
∗ωS, ωS) as an S-module (since both are dual in

various ways to the Frobenius map S −→ F e
∗S which generates the Frobenius structures as

an F e
∗S-module on S). Thus ϕ sends F e

∗κ to κ as well as desired. �
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Before showing the reverse containment for appropriately chosen B,C, we first record the
following analog of a transformation rule for τID(R,D + ∆) under certain finite morphisms.
Note that recently Carvajal-Rojas and Stäbler [CRS19, Theorem 6.12] have proven a similar
result, which for the most part holds much more generally. Unfortunately, we do not believe
that the implicit Cartier algebra we are using on S is exactly the one pulled back in the sense
of Carvajal-Rojas and Stäbler (although the test ideal may be the same). For this reason,
we provide a direct proof.

Proposition 6.5. Let R be an F -finite normal local domain of characteristic p > 0, ∆ a
Q-divisor and D a reduced Weil divisor. Suppose that R ⊆ S is a module finite normal
extension and consider π : Spec(S) −→ Spec(R). Assume π is ètale in a neighborhood of the
generic point of any component of D. Let D′ be a reduced divisor on SpecS with D′ ≤ π∗D
and such that for each prime component of D, there exists at least one component of D′ lying
over it. Then the trace map Tr : S(KS) −→ R(KR) induces

(6.5.1) Tr(τID′ (S, π
∗D+π∗∆−Ramπ)) = Tr(τIπ∗D(S, π∗D+π∗∆−Ramπ)) = τID(R,D+∆)

Proof. First notice that

τID′ (S, π
∗D + π∗∆− Ramπ) ⊆ τIπ∗D(S, π∗D + π∗∆− Ramπ).

Using the map-divisor correspondence [BS13, Section 4], an alternate formulation of τID(R,D+
∆) is given by

τID(R,D + ∆)

=
∑

e>0 TrF e (F e
∗R(d(1− pe)(KR +D)− pe∆− divR(c)e))

=
∑

e>0 TrF e (F e
∗R((1− pe)(KR +D)− bpe∆c − divR(c)))

where c ∈ R is (an appropriate power of) an element of R◦,D with Supp(∆) ⊆ Supp(divR(c))
and such that Rc and (RD)c are regular. Assuming further that the ramification locus of
π is contained in Supp(divR(c)), applying the analogous formula on S, and using that the
functoriality of the trace gives TrF e ◦Tr = TrF e◦π = Trπ◦F e = Tr ◦TrF e , we have

Tr (τIπ∗D(S, π∗D + π∗∆− Ramπ))

=
∑

e>0 Tr ◦TrF e (F e
∗S(d(1− pe)(KS + π∗D)− pe(π∗∆− Ramπ)− divS(c)e))

=
∑

e>0 TrF e (F e
∗ Tr (S(d(1− pe)(KS + π∗D)− pe(π∗∆− Ramπ)− divS(c)e)))

=
∑

e>0 TrF e (F e
∗ Tr (S(KS + (1− pe)π∗D − bpeπ∗∆c − peπ∗KR − π∗ divR(c))))

⊆
∑

e>0 TrF e (F e
∗ Tr (S(KS + (1− pe)π∗D − π∗bpe∆c − peπ∗KR − π∗ divR(c))))

⊆
∑

e>0 TrF e (F e
∗R(KR + (1− pe)D − bpe∆c − peKR − divR(c)))

= τID(R,D + ∆).

The reverse inclusion for the equality in (6.5.1) follows similarly, using the strategy of
proof in Proposition 6.4 stemming from [Smi97] to say that Tr

(
τID′ (S, π

∗D + π∗∆− Ramπ)
)

is appropriately uniformly compatible and not contained in any minimal prime of ID. By
definition τID′ (S, π

∗D + π∗∆ − Ramπ) is not contained in any minimal prime of ID′ , and
hence since π is étale over the generic points of D, neither is its trace. We have, for b ∈
τID′ (S, π

∗D+π∗∆−Ramπ) but b not in any minimal prime of ID′ (in other words a “divisorial
test element”), the following chain of containments. Here the sum in the first line above is
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taken over all φ ∈ HomR

(
(F e
∗R(d(pe − 1)(D + ∆)e)), R

)
.∑

φ φ
(

Tr
(
τID′ (S, π

∗D + π∗∆− Ramπ)
) )

= TrF e
(
F e
∗
(
R((1− pe)KR − d(pe − 1)(D + ∆)e) · Tr

(
τID′ (S, π

∗D + π∗∆− Ramπ)
) ))

= TrF e
(
F e
∗ Tr(S((1− pe)π∗KR − π∗d(pe − 1)(D + ∆)e) · τID′ (S, π

∗D + π∗∆− Ramπ))
)

= Tr
(∑

e′ TrF e(F
e
∗ (S((1− pe)π∗KR − π∗d(pe − 1)(D + ∆)e)

·TrF e′ (F
e′
∗ S(d(1− pe′)(KS + π∗D)− pe′(π∗∆− Ramπ)− divS(b)e))))

)
= Tr

(∑
e′ TrF e+e′ (F

e+e′
∗ S(pe

′
(1− pe)π∗KR − pe

′
π∗d(pe − 1)(D + ∆)e

+d(1− pe′)(KS + π∗D)− pe′(π∗∆− Ramπ)− divS(b)e))
)

= Tr
(∑

e′ TrF e+e′ (F
e+e′
∗ S(KS − pe+e

′
π∗KR + (1− pe+e′)π∗D − divS(b)

+pe
′
π∗b(1− pe)∆c − bpe′π∗∆c))

)
⊆ Tr

(∑
e′ TrF e+e′ (F

e+e′
∗ S(KS − pe+e

′
π∗KR + (1− pe+e′)π∗D − divS(b)− bpe+e′π∗∆c))

)
= Tr

(∑
e′ TrF e+e′ (F

e+e′
∗ S(d(1− pe+e′)(KS + π∗D)− pe+e′(π∗∆− Ramπ)− divS(b)e))

)
⊆ Tr

(
τID′ (S, π

∗D + π∗∆− Ramπ)
)
.

This completes the proof of the equality in (6.5.1). �

Theorem 6.6. Suppose that (R,m) is an F -finite complete local ring of positive characteris-
tic p > 0 and (R,D+ ∆) is a pair as in Definition 6.1. Additionally assume that D is prime
and that KR +D + ∆ is Q-Cartier. Then for any map B −→ C of big Cohen-Macaulay R+

and (R/R(−D))+ modules (for instance B = R+ and C = (R/R(−D))+), we have that

τID(R,D + ∆) = adjDB�C(R,D + ∆).

Proof. We begin by supposing that KR = −D + G where G has no components common
with D. Thus if div(f) = n(KR +D+ ∆), we see that f is a unit at the generic point of D.
Since we are in characteristic p > 0, by [BST15, Lemma 4.5], there exists a finite separable
extension R ⊆ S with π : SpecS −→ SpecR with π∗(KR + D + ∆) Cartier. If n is not
divisible by p, this is very easy, simply take the nth root of f . If n is divisible by p, then by
construction in that proof, π is ramified only where f vanishes, and f does not vanish at D.
Either way π is étale over the generic points of D. Choose the prime divisor D′ on S lying
over D with ID contained in our choice of I+

D .
In this case, we write π∗(KR +D+ ∆) = KS +D′ + (π∗D−D′ + π∗∆−Ramπ) = div(g).

Note that (π∗D−D′+ π∗∆−Ramπ) may not be effective, and so we implicitly use the idea
of Remark 2.6 to reduce to the case that it is. Consider the factorization

α : Hd
m(R(KR)) −→ Hd

m(S(π∗KR))
β−→ Hd

m(I+
D)

Since Hd
m(S(KS)) = Hd

m(S(π∗KR − Ram)) � Hd
m(S(π∗KR)) surjects for dimension reasons,

we see that the image of β is the Matlis dual of adjDB�C(S, π∗(D + ∆) − Ramπ), and the
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image of α is adjDB�C(R,D + ∆). Hence we have that

Tr
(

adjDB�C(S, π∗(D + ∆)− Ramπ)
)

= adjDB�C(R,D + ∆).

Therefore, in view of Proposition 6.5, it suffices to prove the result on S. Hence, we may
now assume that KR +D + ∆ = div(f) is Cartier.

Suppose z ∈ 0
∗D(D+∆)
E . This just means that there exists c ∈ R◦,D such that

c1/pe ⊗ z = 0 ∈ (R((pe − 1)(D + ∆)))1/pe ⊗ E.
But

(R((pe − 1)(D + ∆)))1/pe ⊗ E ∼= F e
∗H

d
m(R(KR + (pe − 1)(KR +D + ∆)) ∼= F e

∗E.

Define:

ID+∆,∞
D :=

⋃
e>0(R((pe − 1)(D + ∆)))1/pe ⊆ K(R)1/p∞ ⊆ K(R+).

Claim 6.7. We have f · ID+∆,∞
D ⊗R E maps into Hd

m(I+
D).

Proof of claim Claim 6.7. We work at a finite level.

f · (R((pe − 1)(D + ∆)))1/pe ⊗R E
= (R((pe − 1)(D + ∆)− pe(KR +D + ∆)))1/pe ⊗R Hd

m(KR)
= Hd

m(R(−D −∆)1/pe)

which certainly maps into Hd
m(I+

D) under the natural map. �

Since c1/pe⊗z = 0 in one term in the limit, we see that c1/pe annihilates 1⊗z in ID+∆,∞
D ⊗RE.

Hence by Claim 6.7, the image of z under the map

Hd
m(R)

·f−→ Hd
m(I+

D)

is also annihilated by c1/pe .

Claim 6.8. If z ∈ Hd
m(I+

D) is such that c1/pez = 0 for all e and some fixed c ∈ R◦,D, then
z = 0.

Proof of claim Claim 6.8. We have

0 −→ Hd−1
m (R+

D) −→ Hd
m(I+

D) −→ Hd
m(R+) −→ 0.

The image z′ of z in Hd
m(R+) also has c1/pez = 0. But now, z′ ∈ Hd

m(S) for some finite
extension S of R. By the valuative criterion of tight closure, [Hoc07, Theorem on page 194],
since c1/pe ⊗ z′ = 0 ∈ S+ ⊗S Hd

m(S), we see that z′ is in the tight closure of 0 in Hd
m(S). But

the tight closure of zero is just the kernel of Hd
m(S) −→ Hd

m(R+) by [Smi94]. Hence z′ = 0.
Thus there exists y ∈ Hd−1

m (R+
D) mapping to z and by the fact R+ is big Cohen-Macaulay,

c1/pey = 0 for all e. Repeating the above argument, we see that y = 0. Thus z = 0 as well,
proving Claim 6.8. �

We just showed that

0
∗D(D+∆)
E ⊆ ker

(
Hd

m(R(KR))
·f−→ Hd

m(I+
D)
)
,

and so by duality, τID(R,D + ∆) ⊇ adjB�C(R,D + ∆). �

Corollary 6.9. In the notation of Theorem 6.6, (R,D + ∆) is purely BCM-regular if and
only if it is purely F -regular.
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7. Application to surface and threefold log terminal singularities

Our goal in this section is to prove that a 2-dimensional KLT singularity is BCM-regular
if the residual characteristic p is bigger than 5, generalizing a result of [CRMP+19]. This
implies the inversion of adjunction for three-dimensional PLT pairs with p > 5 and normality
of divisorial centres for such pairs.

First we state a lemma that was essentially proven in [MS18b].

Lemma 7.1. Suppose (R,m) is a Q-Gorenstein complete normal local ring with residual
characteristic p > 0. Suppose that ∆ = 1/n divR(g) is a Q-Cartier divisor and B is a big-
Cohen-Macaulay R+-algebra (or at least containing a fixed g1/n). Then (R,∆) is BCMB-

regular if and only if the map R
·g1/n−−−→ B is pure.

Proof. The proof is essentially the same as [MS18b, Theorem 6.12] and [MS18b, Proposition
6.14]. Indeed, to modify those proofs write KR = 1

n
div(f) and ∆ = 1

n
div(g). Replace the

map µ in the diagrams of those proofs by multiplication by g1/n followed by the map µ. �

We now prove a crucial lemma which can be thought of as a special case of inversion of
adjunction in higher codimension.

Lemma 7.2. Suppose (R,m, k) is a complete normal Q-Gorenstein local domain of dimen-
sion ≥ 2 with residual characteristic p > 0 and R/m F -finite. Let X = SpecR and suppose
that π : Y −→ X is the blowup of some m-primary ideal I such that Y is normal. Further
suppose that I ·OY = OY (−mE) where E is a prime exceptional divisor.Let ∆ be a Q-divisor
such that KX + ∆ is Q-Cartier and let ∆E denote the different of KY +E + π−1

∗ ∆ along E.
Suppose that (E,∆E) is globally F -regular, then (R,∆) is BCM-regular and in particular, R
itself is BCM-regular.

Remark 7.3. In the statement of Lemma 7.2, suppose we write

π∗(KX + ∆) = KY + βE + π−1
∗ ∆.

Then KY +E + π−1
∗ ∆ = π∗(KX + ∆) + (1− β)E. Thus −(KE + ∆E) ∼Q (β − 1)E|E. Since

global F -regularity forces −(KE + ∆E) to be big and we have that −E is relatively ample,
we thus see that β < 1.

Proof. Let T =
⊕

n∈ZH
0(Y,OY (−nE))tn denote the generalized extended Rees algebra.

Notice that by replacing m by a multiple ml and I by I l, we can assume that if we take
the mth Veronese subring of T , then we obtain the usual extended Rees algebra R[Is, s−1]
(which we can assume is normal, see Appendix B). Also notice that [T ]i = Rti when i ≤ 0.

Notice that T has a prime ideal JE corresponding to the prime exceptional divisor E, in
fact it is easy to see by Section B.1 that JE = t−1T . This ideal agrees with T in negative
degrees, and agrees with m in degree zero since π(E) = V (m). On the other hand, T has a

maximal ideal n = t−1T + mT + T>0. Let T̂ denote the completion of T with respect to n.

Claim 7.4. For every integer c ≥ 0, the map R −→ T̂ sending 1 to t−c is pure.

Proof. Since the map factors as R −→ Tn −→ T̂ and Tn −→ T̂ is faithfully flat, it is enough
to show that R −→ Tn sending 1 to t−c is pure. Since R is a complete local domain, it is
approximately Gorenstein and thus it is enough to show that R/J −→ Tn/JTn sending 1 to
t−c is injective for every m-primary ideal J ⊆ R by [Hoc77]. Now we pick l � c such that
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[T ]l−c ⊆ Jtl−c. Consider the ideal J ′ := t−lT + T≥l + JT of T . Clearly J ′ is an n-primary
ideal of T that contains JT . Thus in order to show R/J −→ Tn/JTn sending 1 to t−c is
injective, it is enough to show that R/J −→ Tn/J

′Tn ∼= T/J ′ sending 1 to t−c is injective.
But since [T ]l−c ⊆ Jtl−c, it is easy to check that the degree −c piece of T/J ′ can be identified
with R/J . Thus the map R/J −→ T/J ′ sending 1 to t−c is split. �

We now fix g ∈ R such that n∆ = divX(g). We notice that π∗∆ = π−1
∗ ∆ + {λ}E + bλcE.

Let c = bλc.

Claim 7.5. Fix a map R+ −→ T̂+. If T̂
·g1/ntc−−−−→ C is pure for every perfectoid big Cohen–

Macaulay T̂+-algebra C (e.g., if (T̂ , 1
n

divT̂ (gtcn) + Γ) is BCM-regular for some Γ ≥ 0), then
(R,∆) is BCM-regular.

Proof of Claim 7.5. Let B be a perfectoid big Cohen–Macaulay R+-algebra. By Theo-

rem A.5 we see that there exists a perfectoid big Cohen–Macaulay T̂+-algebra C such that
the following diagram commutes:

B // C

R
·t−c

//

·g1/n

OO

T̂ .

·g1/ntc

OO

where the top row is a map of R+-algebras. Notice that the bottom row R −→ T −→ T̂ is

pure by Claim 7.4. Therefore since T̂
·g1/ntc−−−−→ C is pure, we also have that R

·g1/n−−−→ C is pure.

This implies that R
·g1/n−−−→ B is also pure. Therefore by Lemma 7.1 (R,∆) is BCMB-regular.

As this is true for every B, (R,∆) is BCM-regular. �

Continuing the proof of Lemma 7.2, it suffices to show that (T̂ , 1
n

divT̂ (gtcn)) satisfies the
condition of Claim 7.5. We let ET̂ and (π−1

∗ ∆)T̂ correspond to E and π−1
∗ ∆ respectively via

Section B.1. Notice also that

(π−1
∗ ∆)T̂ + {λ}ET̂ =

1

n
divT̂ (gtcn)

Let T ′ denote the mth Veronese subalgebra of T and let JT ′ denote the ideal of E in T ′.
We consider T ′ −→ T with induced map κ : SpecT −→ SpecT ′. We know by Lemma B.7
that there is a Ψ : T −→ T ′ which generates HomT ′(T, T

′) as a T -module and which sends
the homogeneous maximal ideal of T to the homogeneous maximal ideal of T ′. Following the
argument of [CRMP+19, Lemma 5.1], we see that the completion of (T ′,Θ) is BCM-regular
if and only if the completion of (T, κ∗(Θ)) is BCM-regular. In particular, by Lemma B.8, it
suffices to show that

(T̂ ′, (π−1
∗ ∆)

T̂ ′ + {λ}ET̂ ′)

is BCM-regular. Hence by Corollary 2.11 it suffices to show that (T̂ ′, (π−1
∗ ∆)

T̂ ′ + E
T̂ ′) is

purely BCM-regular.
Let J ′E denote the ideal defining ET ′ on T ′. The normalization SN of S = T ′/J ′E is the

section ring of E with respect to the very ample divisor −mE|E. By [SS10, Proposition 5.3],
the pair (SN, (∆E)SN) is strongly F -regular and hence the completion is BCM-regular by
[MS18b, Corollary 6.23].
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Claim 7.6. The divisor (∆E)SN agrees with the different of KT ′ + (π−1
∗ ∆)T ′ +ET ′ along the

normalization of ET ′.

Proof. We are essentially computing the different in two different ways. Note that ∆E can
be computed by considering the rational sheaf map

OY (n(KY + π−1
∗ ∆ + E)) 99K OE(nKE),

noting the left side is a line bundle for n sufficiently divisible. After tensoring this map by
OY (−n(KY +π−1

∗ ∆ +E)), we let −DE be the divisor corresponding to the image of 1. Then
the different of KY + π−1

∗ ∆ +E along E is simply 1
n
DE. But we can apply our Γ∗,T ′ functor

(with respect to −mE) to that map of sheaves, and so obtain the map:

T ′(n(KT ′ + (π−1
∗ ∆)T ′ + ET ′)) 99K S

N(nKSN).

Since the left side is (abstractly) isomorphic to T ′, it also selects an effective divisor DS

with 1
n
DS the different of KT ′ + (π−1

∗ ∆)T ′ + ET ′ along ET ′ . Note that (DE)SN = DS by
construction. The claim follows. �

But now by Corollary 3.5 we have that (T̂ ′, E
T̂ ′ + (π−1

∗ ∆)
T̂ ′) is purely BCM-regular. This

completes the proof of Lemma 7.2. �

Remark 7.7. The proof above shows that the map T̂ ′ −→ SN is surjective, since if (T̂ ′, ET ′ +
∆T ′) is purely BCM-regular, then ET ′ is normal by Corollary 3.3. Taking graded pieces, this
means that

H0(X,OY (−lmE)) −→ H0(E,OE ⊗ OY (−lmE))

surjects for all l. In particular, it surjects for l = 0.

Example 7.8. Consider the ring R = ZpJx2, . . . , xdK/(pn + xn2 + · · · + xnd) for n < d. We
blowup the origin and obtain Y −→ X = SpecR. The exceptional divisor E is isomorphic
to ProjFp[x1, . . . , xd]/(x

n
1 + xn2 + · · · + xnd). We also have KY = (d − 1 − n)E which since

KX = 0, we have π∗KX = KY + βE with β = (n − d + 1) < 1. Thus R is BCM-regular
whenever E is globally F -regular.

Note that in this case we can also argue directly as follows using only [MS18b]. Indeed,

consider the completion of the extended Rees algebra: T = ̂R[mt, t−1], where the completion

is at (t−1) + mt. If T/t−1T ∼= ĝrmR is Gorenstein and F -rational (which happens pre-
cisely when E is globally F -regular), then T is Gorenstein and BCM-rational by [MS18b,
Proposition 3.4 and 3.5], hence BCM-regular by [MS18b, Corollary 6.15]. This implies R is
BCM-regular since R −→ T is pure by Claim 7.4.

Example 7.9. Consider R = ZpJyK and let D = div(py(y − p)). Then one can define
the BCM-regular-threshold of (R, tD), denoted c(R, tD), to be the supremum of t such that
(R, tD) is BCM-regular. If we replace Zp by Fp[x] and D by div(xy(y−x)), then this is simply
the F -pure threshold, which is well known to be 2

3
if p ≡3 1 and 2

3
− 1

3p
if p ≡3 2. Therefore

by switching between a graded ring and the Proj as in [SS10], we see (P1, tP1 + tP2 + tP3) is
globally F -regular for t < 2

3
if p ≡3 1 and t < 2

3
− 1

3p
if p ≡3 2. But if we blowup the origin in

SpecR, we have the same P1 and same boundary divisors restricted to the boundary divisor.
Thus we also obtain that (R, tD) is BCM-regular for the same values of t. Since t = 2/3 is
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certainly an upper limit on the BCM-regular-threshold (since BCM-regular implies KLT),
we therefore obtain that

c(R, tD) =
2

3
if p ≡3 1

and that
2

3
− 1

3p
≤ c(R, tD) ≤ 2

3
if p ≡3 2.

Example 7.10. Consider the ring R = ZpJyK and let D = div(y2 − p3) (nothing essential
changes if let D = div(p2 − y3)). The log resolution of singularities of (R,D) is obtained
in the same way it is in equal characteristic. We again compute the BCM-regular-threshold
c(R,D). Let π : Y −→ X = SpecR denote the blowup of (y2, yp2, p3). It is not difficult
to check that this blowup has a single prime exceptional divisor E ∼= P1

k. There are two

singular points on this blowup, and the strict transform D̃ of D is a Cartier divisor that
meets E transversally. By understanding this blowup in view of a log resolution of (R,D), or

by doing direct computations on local charts, one can see that the different of KY +E + tD̃
along E is 1

2
P1 + 2

3
P2 + tP3. Straightforward computation then gives that if

c = c(R, tD)

is the BCM-regular-threshold of (R, tD), then we have by Lemma 7.2 that

1
2

≤ c ≤ 5/6 if p = 2.
2
3

≤ c ≤ 5/6 if p = 3.
5
6
− 1

6p
≤ c ≤ 5/6 if p ≡6 5.

5
6

= c if p ≡6 1.

We can generalize these examples and obtain the following generalization of a result of
[CRMP+19]. In particular, it follows from their work that if R is 2-dimensional KLT with
perfect residue field and that the index of KR is not divisible by p > 0, then R is BCM-
regular. We remove the index not divisible by p hypothesis. We also add a boundary divisor
with standard coefficients.

Theorem 7.11. Let (R,m, k) be a normal 2-dimensional excellent local ring with a dualizing
complex, and with F -finite residue field of characteristic p > 5. If (R,∆) is KLT and ∆ has

standard coefficients, then (R̂, ∆̂) is BCM-regular.

Proof. Note that R is Q-factorial by [Lip69] or [Tan18, Corollary 4.11] (note the latter’s
results hold when the regular base is replaced by a base that is excellent, finite-dimensional,
and has a dualizing complex). Set X = SpecR. By the same argument as in [CGS16,
Proposition 2.13] (cf. [ST18, Lemma 5.6]), we can construct a projective morphism π : Y −→
X such that π is an isomorphism over X \ {m}, the exceptional divisor E is irreducible,
−(KY +E + ∆Y ) is ample where ∆Y is the strict transform of ∆, and (Y,E + ∆Y ) is purely
log terminal. The proof uses log resolutions of singularities which are valid for quasi-excellent
Noetherian rings and the Minimal Model Program for quasi-projective surfaces over S (see
[Tan18]). By adjunction, write

KE + ∆E = (KY + E + ∆Y )|E.
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Then ∆E has standard coefficients and −(KE + ∆E) is ample. Thus, (E,∆E) is globally

F-regular by [ST18, Proposition 5.5]. Therefore (R̂, ∆̂) satisfies the hypotheses of Lemma 7.2

and hence (R̂, ∆̂) is BCM-regular. �

By taking canonical covers, we obtain the following generalization of [CRMP+19, Theorem
A], which handled the Gorenstein case.

Corollary 7.12. Let (R,m, k = k) be a local 2-dimensional KLT singularity of mixed char-
acteristic (0, p > 5) that is essentially of finite type over an excellent DVR S. Then there

exists a finite split extension R̂ ⊆ S to a regular ring.

Proof. By Theorem 7.11 we know that R̂ is BCM-regular. Since R̂ is KLT it is Q-Gorenstein

and we may take a finite canonical cover R̂ ⊆ R′. Now by [CRMP+19, Lemma 5.1], R′ is
BCM-regular and it is Gorenstein by construction. Now applying [CRMP+19, Theorem A]
to R′ completes the proof. �

Theorem 7.11 also implies that we have the KLT to PLT inversion of adjunction in di-
mension 3 if the residual characteristic is > 5.

Corollary 7.13. Suppose that (R,m, k) is a normal 3-dimensional excellent local ring with
a dualizing complex, and with F -finite residue field of characteristic p > 5. Set X = SpecR.
Suppose that D is a prime divisor on X and that ∆ ≥ 0 is a Q-divisor such that KX +D+∆
is Q-Cartier and ∆ has standard coefficients. Suppose that (DN, diffDN (∆ + D)) is KLT,

then (R̂, D̂+ ∆̂) is purely BCM-regular. In particular, (X,D+ ∆) is PLT and D is normal.

Proof. We see that (D̂N, d̂iffDN (∆ + D)) is BCM-regular by Theorem 7.11. Thus by Corol-

lary 3.4 we see that (R̂, D̂ + ∆̂) is purely BCM-regular. Finally, as being PLT is unaffected
by passing to completion, we see that (X,D + ∆) is PLT by Theorem 5.4. Notice that here
resolutions of singularities exist by [CP19]. �

Finally, we also observe that the main results of [CGS16] essentially holds in mixed char-
acteristic, replacing strongly F -regular with BCM-regular. In particular:

Theorem 7.14. Following the notation of [CGS16], suppose I ⊆ (0, 1) ∩ Q ia a finite set
and let Γ = D(I). Then there exists a positive constant p0, depending only on I, such that if

◦ (R,∆) is a KLT pair,
◦ R is a mixed characteristic 2-dimensional complete local ring,
◦ R has F -finite residue field of characteristic p > p0,
◦ and the coefficients of ∆ belong to Γ,

then (R,∆) is BCM-regular.

Proof. This is essentially the same as [CGS16]. The bounds p0 were constructed by analyzing
global F -regularity of (P1,∆) or equivalently the strong F -regularity of a line arrangement
on A2, see [CGS16, Corollary 3.13]. The corresponding arguments for the F -finite residue
field case were completed in [ST18, Proposition 5.5]. Thus, as in the proof of Theorem 7.11,
we may construct a projective morphism π : Y −→ X such that π is an isomorphism over
X \m, the exceptional divisor E is irreducible, −(KY + E + ∆Y ) is ample where ∆Y is the
strict transform of ∆, and (Y,E + ∆Y ) is purely log terminal then apply the arguments of
[CGS16, ST18]. �
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8. Application to F -singularities in families

In this section, we generalize the results of [MS18b, Section 7] from the BCM test ideal to
the adjoint-like ideal we have defined earlier in this paper.

Setting 8.1. Let A be a Dedekind domain which is a localization of a finite extension of
Z, with fraction field K. Let f : X −→ U := Spec(A) be a flat family essentially of finite
type and let ∆ be an effective Q-divisor with no vertical components. For p ∈ U , denote
the fiber over p by (Xp,∆p), that is to say ∆p = ∆|Xp . In some situations X will be affine:
X = Spec(R).

First we give a strengthening of [MS18b, Theorem 7.9] using our new adjunction. The
difference is that we no longer need to assume that the index is not divisible by the charac-
teristic. Note that if f : X −→ U is not proper, then we cannot expect strong F -regularity
of Xp for some p ∈ U to imply that X is BCM-regular over a neighborhood of p ∈ U (see
[MS18b, Remark 7.7]). What we show is that this is true at the closed points lying along a
horizontal point of X which intersects Xp.

Proposition 8.2. Suppose X = Spec(R) is affine and of finite type and flat over U , as
in Setting 8.1, and let ∆ ≥ 0 be a Q-divisor such that KR + ∆ is Q-Cartier. Choose a
prime ideal Q ⊆ R such that Q ∩ A = (0). For each t ∈ A let

√
tR +Q = ∩nti=1qt,i be a

decomposition into minimal primes. Let

W = {t ∈ m-SpecA | {qt,i}nti=1 is nonempty and (R/t,∆t)qt,i is strongly F -regular for all qt,i}

Then W is open in m-SpecA, and (R̂qt,i , ∆̂qt,i) is BCM-regular for all t ∈ W and all i.

Proof. Suppose that {qp,i}npi=1 is nonempty for some p ∈ m-Spec(A), and that (R/p,∆p) is
strongly F -regular at all qp,i. Note that this implies div(p) is a prime Cartier divisor after
localizing R at qp,i. In particular, we have diffdiv(p)(div(p) + ∆) = ∆p after localizing and
taking completion along qp,i.

By [And20, Theorem 4.1.1], for any given perfectoid big Cohen–Macaulay (R̂qp,i)
+-algebra

B there is a compatibly chosen perfectoid big Cohen–Macaulay (̂R/p)
+

qp,i
-algebra C. By

[MS18b, Corollary 6.23], ((R̂/p)qp,i , (∆̂p)qp,i) is BCMC-regular. Now we apply Theorem 3.1

to obtain that (R̂qp,i , div(p)+∆̂qp,i) is purely BCMB�C-regular. Accordingly this implies that

(R̂qp,i , ∆̂qp,i) is BCMB-regular by Proposition 2.10. In particular this implies that (R̂qp,i , ∆̂qp,i)
is KLT by Theorem 5.1, and thus (R,∆)qp,i is KLT since being KLT is unaffected up to
completion. But then (R,∆)Q is KLT since KLT is preserved under localization (even
without resolution of singularities). Finally, a KLT singularity is of strongly F -regular type
by [Tak04], so we obtain the required open subset. Now the above argument applies to all p
in this open subset and all given B, which proves the final statement. �

Proposition 8.3. Let φ : X −→ U be a proper flat family and ∆ ≥ 0 a Q-divisor such that
KX + ∆ is Q-Cartier. Suppose (Xp,∆p) is strongly F -regular for some point p ∈ U . Then
(XK ,∆K) is KLT, and there exists a non-empty open subset V of U such that the closed
fibers of (X,∆) over V are strongly F -regular. Furthermore, the completion of (X,∆)q is
BCM-regular at all points q ∈ X which are vertical over V .
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Proof. Fix a point Q ∈ X which is surjective to U . Then V (Q)∩Xp is non-empty, since φ is
proper. Therefore at every point q ∈ V (Q) ∩Xp, (Xp,∆p)q is strongly F -regular. It follows
from the same argument as in Proposition 8.2 that (X,∆)K is KLT at QK , and therefore by
varying Q we see that (X,∆)K is KLT everywhere. Hence it is of strongly F -regular type
by [Tak04]. The final claim follows from the same argument as in Proposition 8.2. �

We obtain analogous results for pure BCM-regularity.

Proposition 8.4. Suppose X = Spec(R) is affine and of finite type and flat over U , as
in Setting 8.1, and choose a prime ideal Q ⊆ R such that Q ∩ A = (0). For each t ∈ A
write

√
tR +Q = ∩nti=1qt,i a decomposition into minimal primes. Suppose D is an integral

Weil divisor which is horizontal over U , and ∆ ≥ 0 a Q-divisor such that KR + D + ∆ is
Q-Cartier, then the following set

W = {t ∈ m-SpecA | {qt,i}nti=1 is nonempty and (R/t,Dt+∆t)qt,i is purely F -regular for all qt,i}

is open in m-Spec(A). Furthermore, (R̂qt̃,i
, D̂qt̃,i

+ ∆̂qt̃,i
) is purely BCM-regular for all t ∈ W

and all i.

Proof. Suppose t ∈ m-Spec(A) is such that {qt,i}nti=1 is non-empty and (R/t,Dt + ∆t)qt,i is
purely F -regular for all i, which in particular implies that div(t) is a prime Cartier divisor
near all qt,i. For each qt,i /∈ Supp(D) the statement follows from Proposition 8.2. So we
may assume that qt,i ∈ Supp(D) for some i. Let B and C be a compatible choice of big

Cohen–Macaulay R̂qt,i

+
and (R̂D)+

qt,i
- algebras respectively.

By assumption, (R/t,Dt+∆t) is purely F -regular at qt,i, and so Xt = Spec(R/t) is a prime
Cartier divisor near qt,i, and so is Dt = Spec(RD/t) near qt,i. It follows that near qt,i, we have
diffXt(Xt+D+∆) = (D+∆)|Xt = Dt+∆t, and diffDt(diffD(D+∆)+Dt) = diffD(D+∆)|Dt .
So our assumption becomes that (R/t, diffXt(Xt +D + ∆)) is purely F -regular at qt,i.

Therefore at qt,i, we have

((R/t)D, diffDt(diffXt(Xt + ∆ +D))) = ((R/t)D, diffDt(diffD(Xt +D + ∆)))

= ((R/t)D, diffD(D + ∆)|Dt)
is strongly F -regular. Now Proposition 8.2 provides an open subset V of U such that for any
choice of qt̃,i which is vertical over a point t̃ ∈ V , the completion of (RD, diffD(D + ∆))qt̃,i
is BCM-regular, and its reduction mod t̃ is strongly F -regular. By inversion of adjunction

Theorem 3.1, we know that (R̂qt̃,i
, D̂qt̃,i

+ ∆̂qt̃,i
) is purely BCM-regular. Also by inversion

of F -adjunction (see [Das15, Theorem A], whose proof only uses that the ground field is
F -finite), we also know that (R/t̃,Dt̃ + ∆t̃)qt̃,i is purely F -regular. �

Proposition 8.5. Let φ : X −→ U be a proper flat family and let D be an integral Weil divisor
such that KX +D + ∆ is Q-Cartier, and D is horizontal over U . Suppose (Xp, Dp + ∆p) is
purely F -regular for some p ∈ U . Then (XK , DK +∆K) is PLT and there exists a non-empty
open subset V of U such that the closed fibers of (X,D + ∆) over V are purely F -regular.
Furthermore, the completion of (X,D+∆)q is purely BCM-regular at all points q ∈ X which
are vertical over V .

Proof. Fix a point Q ∈ X which is surjective to U . Then V (Q) ∩Xp is non-empty since φ
is proper. Therefore there is a point in this intersection at which (Xp, Dp + ∆p) is purely
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F -regular. It follows from Proposition 8.4 that there is a non-empty open V such that for
any q vertical over V , the completion of (X,D + ∆)q is purely BCM-regular. Therefore by
Theorem 5.4 and the fact that being PLT is unaffected up to completion, (X,D+ ∆) is PLT
at these points, and hence is PLT at Q. By varying Q we obtain that (XK , DK + ∆K) is
PLT everywhere. Hence this pair is of purely F -regular type by [Tak08, Corollary 5.4]. The
final claim follows from the same argument as in Proposition 8.4. �

Appendix A. Perfectoid big Cohen-Macaulay algebras

In this appendix, we use techniques of André [And20] together with the “perfections in
mixed characteristic” of Bhatt–Scholze [BS19, Sections 7 and 8] to prove:

(a) The existence of weakly functorial perfectoid big Cohen-Macaulay algebras of certain
diagrams: Theorem A.7.

(b) A domination result for certain maps of perfectoid big Cohen-Macaulay algebras:
Theorem A.11.

We believe these results can also be proved carefully using techniques from [And20] alone
(i.e., without referring to [BS19]). However, we think that the treatment using perfections in
mixed characteristic is the simplest in terms of presentation in many situations. Along the
way, we also obtain slight generalizations and somewhat neater proofs of results in [And20]
and [MS18b] which we believe are of independent interest.

Throughout this appendix, we freely use some language on perfectoid rings as in [BMS18,
BS19]. A ring S is perfectoid if and only if it is π-adically complete for some element π ∈ S
such that πp divides p, the Frobenius on S/pS is surjective, and the kernel of Fontaine’s map
θ: W (S[) −→ S is principal.4 We point out that if S is p-torsion free and π = p1/p, then
this is the same as [And20, 2.2] (or [MS18b, Definition 2.2]) by [BMS18, Lemma 3.10]. The
advantage of this definition is that if S has characteristic p > 0, then a perfectoid ring is
the same as a perfect ring, see [BMS18, Example 3.15]. Moreover, there is an equivalence of
categories between perfectoid rings and the category of perfect prisms, see [BS19, Theorem
3.10]. We will repeatedly use that perfectoid rings are reduced.

Further, note that if I is an ideal of a perfectoid ring R, then R/I need not be p-adically
separated. We define I− =

⋂
n(I+pn), which is the closure of I in the p-adic topology. Then

the p-adic completion of R/I is isomorphic to R/I−. If {fi}ni=1 is a sequence of elements in

R, each admits a compatible system of p-power roots {f 1/p∞

i }, and I = (f
1/p∞

1 , . . . , f
1/p∞
n ),

then R/I− is perfectoid.
We next recall a definition from [MS18b] which we will use throughout.

Definition A.1. Let (R,m) be a complete local domain such that R/m has characteristic
p > 0. An R-algebra S is called a perfectoid seed if S is perfectoid and it maps to a perfectoid
big Cohen-Macaulay R-algebra.

Now if R is a perfectoid ring and S is a derived p-adic complete R-algebra, then [BS19]
defined the perfectoidization Sperfd of S using (derived) prismatic cohomology. In general
Sperfd only lives in D≥0(R), but it is an honest perfectoid ring in all the cases that we
consider. We will not give the precise definition here but we point out the following facts:

4We refer to [BMS18, Section 3] for detailed definition of θ: essentially, this is the unique map lifting the
natural surjection S[ −→ S/p.
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(1) In characteristic p > 0, Sperfd is the usual perfection lim−→e
F e
∗S [BS19, Example 8.3].

(2) If S is a derived p-complete quotient of R (e.g., S = R/J for a finitely generated ideal
J ⊆ R), then Sperfd is a perfectoid ring and is a quotient of S [BS19, Theorem 7.4].

(3) If R −→ S is the p-adic completion of an integral map, then Sperfd is a perfectoid ring
[BS19, Theorem 10.11].

(4) Sperfd can be characterized as the derived limit of R′ over all maps from S to perfectoid
rings R′, and it does not depend on the choice of R [BS19, Proposition 8.5]. In particular,
if Sperfd is a perfectoid ring then S −→ Sperfd is the universal map to a perfectoid ring.

As a consequence of (2), for any finitely generated ideal J ⊆ R, we can define an ideal
Jperfd = ker(R −→ (R/J)perfd). It turns out that we have a well-behaved almost mathematics
theory with respect to Jperfd, see [BS19, Section 10] (the essential point that lurks behind
this is André’s flatness lemma, see [BS19, Theorem 7.12 and Theorem 7.4]).

Now suppose (A,m) is a Noetherian complete local domain of residue characteristic p > 0
and S is a perfectoid A-algebra. Let x1, . . . , xd be a system of parameters of A and 0 6= g ∈ A.
We say that S is (g)perfd-almost big Cohen-Macaulay with respect to x1, . . . , xd (note that
(g)perfd makes sense in S by the above discussion) if:

◦ x1, . . . , xd is a (g)perfd-almost regular sequence on S, i.e., the ideal (g)perfd annihilates
(x1,...,xi)S:Sxi+1

(x1,...,xi)S
for each i.

◦ S/(x1, . . . , xd)S is not (g)perfd-almost zero, i.e., (g)perfd * (x1, . . . , xd)S.

One fact that we will be using repeatedly is that if S is a perfectoid A-algebra that is (g)perfd-
almost big Cohen-Macaulay with respect to x1, x2, . . . , xd, and if A has mixed characteristic
we assume x1 = p,5 then S is a perfectoid seed. The proof of this fact follows the same line
as in [And20, Proof of Theorem 3.1.1 (1)]: the point is to first apply the flatness lemma (see
[BS19, Theorem 7.12]) to assume x1, . . . , xd and g all have compatible system of p-power
roots and then map S[ to a perfect algebra C such that x[1, . . . , x

[
d is a regular sequence on

C, then untilt to obtain S\ := (S[)] −→ C] such that x1, . . . , xd is a regular sequence on
C]. Since S is perfectoid, S = S\ and we can replace C] by its m-adic completion so that

Ĉm is perfectoid and (balanced) big Cohen-Macaulay [And20, Proposition 2.2.1] and [BH93,
Corollary 8.5.3].

We record the following lemma on perfectoidization which we will use throughout. We
would like to thank Bhargav Bhatt for providing us the argument.

Lemma A.2. Let S be a p-torsion free ring over a perfectoid ring R. Suppose Sperfd is a
(perfectoid) ring, then Sperfd is p-torsion free.

Proof. Let S ′perfd be the largest p-torsion free quotient of Sperfd. Then S ′perfd is a perfectoid ring
and we know that ker(Sperfd −→ S ′perfd) can be identified with ker((Sperfd/p)perf

∼= (S/p)perf −→
(S ′perfd/p)perf) by [CS19, 2.1.3] or [Bha19, Lecture IV, Proposition 3.2]. Thus it is enough to
prove that (S/p)perf −→ (S ′perfd/p)perf is injective.

Since (S/p)perf is perfect, it embeds into a product of perfect fields
∏
Ki (each Ki corre-

sponds to the quotient field of each minimal prime of (S/p)perf). Fix such a Ki, it is enough to

5This assumption is actually not necessary, one can first enlarge S to S′ using [BS19, Theorem 7.12] such
that g admits a compatible system of p-power roots so that (g)perfd = (g1/p

∞
)−, and then map S′ to a

perfectoid big Cohen-Macaulay algebra using Gabber’s method [GR04, 17.5]. We omit the details since in
our context, we can always arrange x1 = p in mixed characteristic.
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show that each map (S/p)perf −→ Ki factors over (S ′perfd/p)perf. Since S is p-torsion free, the
minimal prime P ∈ Spec(S/p) corresponding to Ki admits a generalization Q ∈ SpecS not
containing p. We can then choose a map S −→ W such that W is a valuation ring witnessing
this generalization (i.e., W is supported at Q and the maximal ideal m of W contracts to P ).
We can enlarge W to assume W is perfectoid without changing this property (e.g., we can
replace W by the p-adic completion of the absolute integral closure of W ). Since the map
S/P −→ W/m factors over Ki, we can further replace W by W ×W/m Ki to assume W is a
perfectoid valuation ring whose residue field is Ki. Since W is p-torsion free and perfectoid,
we have factorizations:

S −→ Sperfd −→ S ′perfd −→ W −→ Ki.

Since Ki is a perfect field, this induces

(S/p)perf −→ (S ′perfd/p)perf −→ Ki

as desired. �

We start by providing a shorter proof of the existence of perfectoid big Cohen-Macaulay
R+-algebras.

Theorem A.3. Let (R,m) be a Noetherian complete local domain of mixed characteristic
(0, p). Then there exist perfectoid big Cohen-Macaulay R+-algebras.

Proof. By enlarging R if necessary, we may assume k = R/m is algebraically closed. We
fix a complete unramified regular local ring A ∼= W (k)[[x2, . . . , xd]] such that A −→ R is a
module-finite extension. Then we fix

A∞,0 := p-adic completion of A[p1/p∞ , x
1/p∞

2 , . . . , x
1/p∞

d ] ⊆ R̂+,

which is a perfectoid algebra. Now for any module-finite domain extension S of R in R+,
consider SAperfd := (A∞,0 ⊗A S)perfd. By the almost purity theorem [BS19, Theorem 10.9],

A∞,0/p
n −→ SAperfd/p

n is (g)perfd-almost finite projective where g is the discriminant of A −→ S.

By Lemma A.2 and [And18a, Lemma 4.1.3 (b)], SAperfd is (g)perfd-almost big Cohen-Macaulay

with respect to p, x2, . . . , xd and hence SAperfd is a perfectoid seed. Thus by [MS18b, Lemma

4.8], l̂im−→S
SAperfd is a perfectoid seed. Since R̂+ = l̂im−→S −→ l̂im−→S

SAperfd
6, R̂+ is a perfectoid seed

and hence it maps to a perfectoid big Cohen-Macaulay algebra. �

The next theorem gives a simpler proof of the existence of weakly functorial perfectoid
big Cohen-Macaulay R+-algebras for surjective maps, recovering [And20, Theorem 1.2.1].
One advantage of this argument is that we do not need to induct on the height of P as in
[And20].

Theorem A.4. Let (R,m) be a Noetherian complete local domain of mixed characteristic
(0, p) and let S = R/P . Then given any perfectoid big Cohen-Macaulay R+-algebra B and a
map R+ −→ S+, there exists a perfectoid big Cohen-Macaulay S+-algebra C that fits in the

6In fact, as each SAperfd maps to R̂+ by the universal property of the perfection functor, we also have

l̂im−→S
SAperfd −→ R̂+ and hence R̂+ is a direct summand of l̂im−→S

SAperfd.
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following commutative diagram:

R //

��

S

��

R+ //

��

S+

��

B // C.

Proof. Given a map R+ −→ S+ is the same as choosing a prime P+ of R+ such that S+ =
R+/P+. We can write R+ as a direct limit of module-finite domain extensions of R, and P+

is a thus direct limit of certain primes Q lying over P of R. Thus B/P+B = lim−→Q
B/QB

and so B/P+B maps to l̂im−→Q
(B/QB)perfd. Therefore by [MS18b, Lemma 4.8], it is enough

to prove that each (B/QB)perfd is a perfectoid seed. But then it is enough to show that
(B/PB)perfd is a perfectoid seed (as Q lives on some finite domain extension of R so the
argument for such Q is the same as for P ).

Now we pick (f1, . . . , fc) ∈ P such that f1, . . . , fc is part of a system of parameters of R and

P is a minimal prime of (f1, . . . , fc). Thus there exists g /∈ P such that gP ∈
√

(f1, . . . , fc).
Moreover, if p ∈ P , we take f1 = p, and if p /∈ P , we can assume p, f1, . . . , fc is also part
of a system of parameters and that g = pg′ for g′ ∈ R. Extend f1, . . . , fc to a full system
of parameters f1, . . . , fc, y1, . . . , yt on R such that the image of y1, . . . , yt forms a system
of parameters on S = R/P (and if p /∈ P we take y1 = p). Since f1, . . . , fc is a regular
sequence on B and they all have a compatible system of p-power roots in B, we know

that (B/(f1, . . . , fc)B)perfd = B/(f
1/p∞

1 , . . . , f
1/p∞
c )−. In particular, since B is big Cohen-

Macaulay, by the way we choose f1, . . . , fc, y1, . . . , yt, we know that y1, . . . , yt is a regular
sequence on (B/(f1, . . . , fc)B)perfd.

Since gP ∈
√

(f1, . . . , fc), we know that gP = 0 in (B/(f1, . . . , fc)B)perfd and hence
g1/p∞P = 0 in (B/(f1, . . . , fc)B)perfd as the latter is reduced. Therefore

g−1/p∞(B/(f1, . . . , fc)B)perfd := Hom((g1/p∞), (B/(f1, . . . , fc)B)perfd)

is a g1/p∞-almost big Cohen-Macaulay S-algebra with respect to y1, . . . , yt: to check the non-
triviality condition, note that B is a big Cohen-Macaulay R-algebra and g /∈ P , applying
[And20, Proposition 2.5.1]) to π = g we see that B/(mB +

√
PB) is not g1/p∞-almost zero,

but since

(B/(f1, . . . , fc)B)perfd

(y1, . . . , yt)(B/(f1, . . . , fc)B)perfd

∼=
B

(y1, . . . , yt)B + (f
1/p∞

1 , . . . , f
1/p∞
c )−B

� B/(mB+
√
PB),

the former is not g1/p∞-almost zero. Now if p /∈ P , then by [And20, 2.3.1], we know that

B̃ := (g−1/p∞(B/(f1, . . . , fc)B)perfd)\ −→ g−1/p∞(B/(f1, . . . , fc)B)perfd

is a (pg)1/p∞-almost (and hence g1/p∞-almost) isomorphism. Here, we implicitly used that

g−1/p∞(B/(f1, . . . , fc)B)perfd

is spectral: indeed (B/(f1, . . . , fc)B)perfd is perfectoid and one can check that Hom((g1/p∞),−)
preserves spectrality (see [And18b, (2.16)] or [And20, 2.3.2]).
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If p ∈ P , then we set B̃ = g−1/p∞(B/(f1, . . . , fc)B)perfd. Hence in both cases, B̃ is a
perfectoid B/PB-algebra and is g1/p∞-almost big Cohen-Macaulay with respect to y1, . . . , yt.
Thus, it is a perfectoid seed. By the universal property of the perfection functor, there exists

a map (B/PB)perfd −→ B̃ which implies that the former ring is also a perfectoid seed. �

We can actually prove the following slight generalization of André’s result. This will be
used in the proof of Claim 7.5.

Theorem A.5. Let (R,m) −→ (S, n) be a local map of Noetherian complete local domains
such that R has mixed characteristic (0, p) and R, S have the same residue field. Then given
any perfectoid big Cohen-Macaulay R+-algebra B, there exists a commutative diagram:

R //

��

S

��

R+ //

��

S+

��

B // C

where C is a perfectoid big Cohen-Macaulay S+-algebra.

Proof. Since R, S have the same residue field, the image of any coefficient ring of R in
S is a coefficient ring of S. Hence by [AFH94, Proof of Theorem 1.1], the map R −→ S
can be factored as R −→ T −→ S where T = R[[x1, . . . , xn]] and T −→ S is surjective.
By Theorem A.4, it is enough to construct the diagram for (R,m) −→ (T, n) where n =
m + (x1, . . . , xn).

Let p, y2, . . . , yd be a system of parameters of R and let B̃ be the (p, y2, . . . , yd, x1, . . . , xn)-

adic completion of B[x
1/p∞

1 , . . . , x
1/p∞
n ]. Since p, y2, . . . , yd, x1, . . . , xn is a regular sequence

on B[x
1/p∞

1 , . . . , x
1/p∞
n ] (as B is big Cohen–Macaulay over R), applying [And20, Proposition

2.2.1] we know that B̃ is a perfectoid big Cohen–Macaulay T -algebra and the following
diagram commutes:

R+ //

��

R+ ⊗R T

��

B // B̃

For every module-finite domain extension R′ of R inside R+, we let T ′ := R′ ⊗R T ∼=
R′[[x1, . . . , xn]] be compatibly chosen inside T+. For every module-finite domain extension

T ′′ of T ′ inside T+, consider (B̃ ⊗T ′ T ′′)perfd. By [BS19, Theorem 10.9], (B̃ ⊗T ′ T ′′)perfd/p
n

is (g)perfd-almost finite projective over B̃/pn where g ∈ T ′ is such that T ′g −→ T ′′g is finite

étale. In particular, by Lemma A.2, (B̃ ⊗T ′ T ′′)perfd is a perfectoid seed and hence B′ :=

l̂im−→R′,T ′′
(B̃ ⊗T ′ T ′′)perfd is a perfectoid seed by [MS18b, Lemma 4.8]. As a consequence,

B̃ ⊗(R+⊗RT ) T
+ = lim−→R′,T ′′

B̃ ⊗T ′ T ′′ maps to a perfectoid seed B′, and hence to a perfectoid
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big Cohen–Macaulay T -algebra C, so we have the following commutative diagram:

R+ //

��

R+ ⊗R T

��

// T+

��

B // B̃ // B̃ ⊗(R+⊗RT ) T
+ // B′ // C

It is clear that C is the desired perfectoid big Cohen–Macaulay T+-algebra. �

The next result is a slightly different proof of [MS18b, Lemma 4.5].

Theorem A.6. Let (R,m) be a Noetherian complete local domain of mixed characteristic
(0, p) and let B1, B2 be two perfectoid big Cohen-Macaulay R+-algebras. Then B1⊗̂R+B2

maps R̂+-linearly to another perfectoid big Cohen-Macaulay R+-algebra B.

Proof. We fix a complete unramified regular local ring A inside R such that A −→ R is
module-finite. Let p, x2, . . . , xd be a regular system of parameters of A. Next, as in the
first paragraph of the proof of [MS18b, Lemma 4.5], we can replace B1, B2 by their m-adic
completions to assume that B1, B2 are algebras over A0 := W (k)[[x2, . . . , xd]] where k = R/m
(the reason we do this step is because k is not necessarily perfect). We next fix

A∞,0 := p-adic completion of A0[p1/p∞ , x
1/p∞

2 , . . . , x
1/p∞

d ] ⊆ A0⊗̂AR+,

which is a perfectoid algebra. Now for any module-finite domain extension S of R in R+,
consider SAperfd := (A∞,0 ⊗A S)perfd. Note that since B1, B2 are perfectoid, they are algebras

over SAperfd by the universal property of the perfection functor.

Since B1, B2 are faithfully flat over A∞,0 mod p, B1⊗̂A∞,0B2 is also faithfully flat over

A∞,0 mod p. Therefore B1⊗̂A∞,0B2 is perfectoid and is big Cohen-Macaulay with respect to
p, x2, . . . , xd. Consider the following map:

B1⊗A∞,0B2
∼= B1⊗SAperfd (SAperfd⊗A∞,0SAperfd)⊗SAperfdB2

µ−→ B1⊗SAperfdS
A
perfd⊗SAperfdB2

∼= B1⊗SAperfdB2.

By the almost purity theorem [BS19, Theorem 10.9], A∞,0/p
n −→ SAperfd/p

n is (g)perfd-almost
unramified where g is the discriminant of A −→ S. In particular, the multiplication map

(SAperfd ⊗A∞,0 SAperfd)/p
µ−→ SAperfd/p

is (g)perfd-almost projective, i.e., SAperfd/p is a (g)perfd-almost direct summand of (SAperfd⊗A∞,0
SAperfd)/p. Therefore B1⊗̂SAperfdB2 is a (g)perfd-almost direct summand of B1⊗̂A∞,0B2 mod p.

We next claim that B′ := B1⊗̂SAperfdB2 is (g)perfd-almost big Cohen-Macaulay with respect

to x1 := p, x2, . . . , xd and hence a perfectoid seed. To see this, first note that xi+1 is a
(g)perfd-almost nonzerodivisor on B′/(x1, . . . , xi)B

′ for each i, because this module almost
injects into (B1⊗̂A∞,0B2)/(x1, . . . , xi)(B1⊗̂A∞,0B2) (by the (g)perfd-almost direct summand
condition) and xi+1 is a nonzerodivisor on the latter. Second, if we use T to denote the
perfectoid (B1⊗̂A∞,0B2)-algebra obtained by adjoining compatible system of p-power roots
of g (see [BS19, Theorem 7.12]), then it is shown in [MS18b, diagram on page 2836] that the
natural map

S ⊗A S −→ B1⊗A∞,0B2 −→ (g−1/p∞T )\
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factors through the multiplication map S ⊗A S
µ−→ S. As a consequence we have an induced

map B1⊗A∞,0⊗ASB2 −→ (g−1/p∞T )\ and hence by the universal property of the perfectoidiza-
ton functor (see also [BS19, Proposition 8.12]) we have an induced map

B′ = B1⊗̂SAperfdB2 −→ (g−1/p∞T )\ −→ g−1/p∞T.

If B′/(x1, . . . , xd)B
′ is (g)perfd-almost zero, then so is (g−1/p∞T )/(x1, . . . , xd)(g

−1/p∞T ) which
contradicts [MS18b, Claim 4.6]. Therefore B′/(x1, . . . , xd)B

′ is not (g)perfd-almost zero.
It follows that B′ = B1⊗̂SAperfdB2 is (g)perfd-almost big Cohen-Macaulay with respect to

p, x2, . . . , xd as desired.
Finally, as each S maps to A∞,0 ⊗A S, we know that R+ maps to lim−→S

SAperfd. Since each

B1⊗̂SAperfdB2 is a perfectoid seed, by [MS18b, Lemma 4.8] we know that l̂im−→S
(B1⊗̂SAperfdB2) is

also a perfectoid seed. But then as B1⊗R+ B2 maps to B1⊗lim−→S
SAperfd

B2
∼= lim−→S

B1⊗SAperfd B2

and the latter maps to l̂im−→S
(B1⊗̂SAperfdB2), we know that B1 ⊗R+ B2 maps to a perfectoid

seed and so B1⊗̂R+B2 maps to another perfectoid big Cohen-Macaulay algebra B. �

We next prove the existence of weakly functorial perfectoid big Cohen-Macaulay algebras
for certain diagrams (with a certain map factorizing through R+). This will be a crucial
ingredient in our comparison result with the adjoint ideal from birational geometry. Note
that [Gab18, Theorem F on page 10] claims a version of functorial big Cohen-Macaulay
algebras, but to the best of our knowledge, that is not enough for our purpose.

Theorem A.7. Let (R,m) be a Noetherian complete local domain of mixed characteristic
(0, p). Let P1, P2 be two height one primes of R such that Q = P1 +P2 is a height two prime
with RQ regular. Then there exists a commutative diagram:

R //

��

R/P1

��

R/P2

!!

//

��

R/Q
##

��

B // B1

B2
//

""

C
##

where B, B1, B2 and C are perfectoid big Cohen-Macaulay algebras over R, R/P1, R/P2

and R/Q respectively. Moreover, we can take B, B1 and C to be algebras over R+, (R/P1)+,
and (R/Q)+ respectively for a given compatibly chosen R+ −→ (R/P1)+ −→ (R/Q)+, and B
can be given in advance.

Proof. We first prove the following claim:

Claim A.8. There exists x ∈ P2 and g /∈ Q such that gP2 ⊆ (x) and x /∈ P1.

Proof of Claim. Since RQ is regular and P2RQ is a principal ideal, we can pick x ∈ P2 and
h /∈ Q such that Rh is regular and such that (x)Rh = P2Rh. Note that x /∈ P1 since otherwise
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P2Rh ⊆ P1Rh and thus P2RQ ⊆ P1RQ contradicting P1 + P2 = Q has height two. Therefore
there exists g = hN such that gP2 ⊆ (x). �

Now we prove the theorem. We start with a perfectoid big Cohen-Macaulay R+-algebra
B. By Theorem A.4, we have a commutative diagram:

R //

��

R/P1

��

R+ //

��

(R/P1)+

��

B // B1

where B1 is a perfectoid big Cohen-Macaulay (R/P1)+-algebra. Since gP2 ⊆ (x), we know
that the image of P2 is g-torsion in B/(x1/p∞)− (respectively, the image of Q is g-torsion in
B1/(x

1/p∞)−). Since B/(x1/p∞)− and B1/(x
1/p∞)− are perfectoid algebras, they are reduced

so any g-torsion is g1/p∞-torsion (note that g1/p∞ exists in B and B1 since they are algebras
over R+ and (R/P1)+). Thus we have

R/P2
//

��

R/Q

��

g−1/p∞(B/(x1/p∞)−) // g−1/p∞(B1/(x
1/p∞)−).

The bottom row in the above diagram are g1/p∞-almost perfectoid and g1/p∞-almost big
Cohen-Macaulay algebras over R/P2 and R/Q respectively7. At this point, we apply Gab-
ber’s method to construct perfectoid big Cohen-Macaulay algebras from the g1/p∞-almost
ones8. More precisely, by [Gab18, second paragraph on page 3] (see also [GR04, 17.5] for
more details), we have

B2 := p-adic completion of S−1
g

(
g−1/p∞(B/(x1/p∞)−)

)�
is a perfectoid big Cohen-Macaulay R/P2-algebra where T � = (

∏N T )/(
⊕N T ) for any com-

mutative ring T and Sg denote the multiplicative system consisting of (gε0 , gε1 , . . . ) such that

εi ∈ N[1/p] and εi −→ 0. Similarly, C0 := p-adic completion of S−1
g

(
g−1/p∞(B1/(x

1/p∞)−)
)�

is a perfectoid big Cohen-Macaulay R/Q-algebra. Putting all these together, we have now

7See [And20, proof of 4.3.3], which can be also adapted to characteristic p > 0, or we can use the same
argument as in the proof of Theorem A.4 (the essential point is [And20, Proposition 2.5.1 (2)]).
8Alternatively, we can also proceed carefully using the strategy as in [And20, proof of Theorem 3.1] simul-
taneously to g−1/p

∞
(B/(x1/p

∞
)−) and g−1/p

∞
(B1/(x

1/p∞)−).
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constructed a commutative

(A.8.1) R //

��

R/P1

��

R/P2

!!

//

��

R/Q
##

��

B // B1

B2
//

""

C0

##

satisfying all the conclusions except that C0 is not necessarily an algebra over (R/Q)+. The
last step is to modify C0 to an (R/Q)+-algebra, the idea is very similar to the proof of
Theorem A.4.

We set R = R/P1 and we abuse notations a bit and still use Q to denote the image of Q

in R. Note that C0 is an algebra over R
+
/QR

+
by construction and the diagram:

R //

��

R //

��

R/Q

��

R+ //

��

R
+

//

��

R
+
/QR

+

��

B // B1
// C0

is commutative. Note that given the map (R/P1)+ = R
+ −→ (R/Q)+ is the same as given

a prime Q+ inside R
+

such that (R/Q)+ = R
+
/Q+, and Q+ contracts to a certain height

one prime Q′ lying over Q in each finite domain extensions S of R. Therefore we can write

(R/Q)+ = lim−→Q′
R

+
/Q′R

+
and thus we have a commutative diagram:

R
+
/QR

+
//

��

(R/Q)+

�� ))

C0
// lim−→Q′

C0/Q
′C0

// l̂im−→Q′
(C0/Q

′C0)perfd.

It is enough to show that l̂im−→Q′
(C0/Q

′C0)perfd is a perfectoid seed. By then by [MS18b,

Lemma 4.8], it is enough to prove that each (C0/Q
′C0)perfd is a perfectoid seed. Since

R/Q −→ S/Q′ is a finite domain extension, Q′ is a minimal prime of
√
QS. So there exists

g′ ∈ S, g′ /∈ Q′, such that g′Q′ ∈
√
QS. Since C0 is reduced,

√
QS maps to zero in C0. It

follows that the image of Q′ in C0 is g′-torsion and thus g′1/p
∞

-torsion in C0 (again because
C0 is reduced). By the universal property of the perfection functor, we have

C0 � (C0/Q
′C0)perfd −→ (g′−1/p∞C0)\,

39



where (g′−1/p∞C0)\ denotes g′−1/p∞C0 if it has characteristic p > 0. The composition map
is an almost isomorphism (where almost is measured with respect to (pg′)1/p∞ in mixed
characteristic, and is measured with respect to g′1/p

∞
in characteristic p > 0), thus as the

first map is surjective, (C0/Q
′C0)perfd −→ (g′−1/p∞C0)\ is also an almost isomorphism. Since

(g′−1/p∞C0)\ is almost big Cohen-Macaulay (for the non-triviality condition, again one makes
use of [And20, Proposition 2.5.1] as in the proof of Theorem A.4), so is (C0/Q

′C0)perfd and
hence (C0/Q

′C0)perfd is a perfectoid seed as desired.

We have showed that l̂im−→Q′
(C0/Q

′C0)perfd is a perfectoid seed, therefore it maps to a

perfectoid big Cohen-Macaulay algebra C. Moreover, by construction we have a commutative
diagram:

R //

��

R //

��

R/Q

�� %%

R+ //

��

R
+

//

��

R
+
/QR

+

��

// (R/Q)+

��

B // B1
// C0

// C

Putting this together with (A.8.1) we get all the desired conclusions. �

To establish our last result, we need the following definition.

Definition A.9. Let (R,m) −→ (S, n) be a local map of Noetherian complete local domains
such that R/m has characteristic p > 0. We say a map B′ −→ C ′ is a perfectoid seed mor-
phism if B′, C ′ are perfectoid R- and S-algebras respectively and there exists a commutative
diagram

R //

��

S

��

B′ //

��

C ′

��

B // C

where B, C are perfectoid big Cohen-Macaulay algebras over R and S respectively.

Lemma A.10. Let (R,m) be a Noetherian complete local domain such that R/m has charac-
teristic p > 0. Let S = R/P for a prime ideal P and suppose {Bλ −→ Cλ}λ is a direct system

of perfectoid seed morphisms for R −→ S. Then l̂im−→λ
Bλ −→ l̂im−→λ

Cλ is also a perfectoid seed
morphism.

Proof. The idea is basically to run the proofs of [MS18b, Lemma 4.8] and [Die07, Lemma
3.2] for maps. First we want to reduce to the case that R has characteristic p > 0. We fix a
system of parameters x1, . . . , xr, y1, . . . , ys of R such that y1, . . . , ys is a system of parameters
for S = R/P , and such that if S has mixed characteristic, then we set y1 = p and if S has
characteristic p > 0 and R has mixed characteristic, then we set x1 = p. Note that by the
refinement of André’s flatness lemma [BS19, Theorem 7.12], we can enlarge each Bλ to B′λ
such that x1, . . . , xr, y1, . . . , ys have compatible system of p-power roots in B′λ and that B′λ/p
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is faithfully flat over Bλ/p. Thus replacing Bλ −→ Cλ by B′λ −→ C ′λ := Cλ⊗̂BλB′λ,9 we may
assume that each Bλ admits a compatible system of p-power roots of x1, . . . , xr, y1, . . . , ys.

Now if If B′ −→ C ′ is any perfectoid seed morphism such that B′ admits a compatible
system of p-power roots of x1, . . . , xr, y1, . . . , ys, then we have

B′[ //

��

C ′[

��

B̂[ // Ĉ[

where the completion is taken with respect to the ideal (x[1, . . . , x
[
r, y

[
1, . . . , y

[
s), where x[i :=

(xi, x
1/p
i , x

1/p2

i , . . . ) ∈ B′[ exists by our assumption. By [BH93, Corollary 8.5.3], B̂[ −→ Ĉ[ is
a map of (balanced) perfectoid big Cohen-Macaulay algebras for the map

Fp[[x[1, . . . , x[r, y[1, . . . , y[s]] −→ Fp[[y[1, . . . , y[s]].

Thus B′[ −→ C ′[ is a perfectoid seed morphism for the above map.
By the above discussion, {B[

λ −→ C[
λ}λ is a direct system of perfectoid seed morphisms in

characteristic p > 0. If we can show l̂im−→
p[

λ
B[
λ −→ l̂im−→

p[

λ
C[
λ is a perfectoid seed morphism in

characteristic p > 0, i.e., we have a commutative diagram

l̂im−→
p[

λ
B[
λ

//

��

l̂im−→
p[

λ
C[
λ

��

B // C,

then we can untilt to get a commutative diagram

l̂im−→λ
Bλ

//

��

l̂im−→λ
Cλ

��

B] //

��

C]

��

B̂]
m

// Ĉ]
n

where B̂]
m

and Ĉ]
n

are perfectoid big Cohen-Macaulay algebras over R and S respectively
(see [MS18b, proof of Lemma 4.8]). Therefore, without loss of generality we can assume that
R has characteristic p > 0.

Now in characteristic p > 0, it is clear that if we can map B′ −→ C ′ to a map B −→ C of big
Cohen-Macaulay algebras, then we can always replace B and C by their usual perfections
(i.e., lim−→e

F e
∗B) to assume B and C are perfect (equivalently, perfectoid). But then by the

proof of [Hoc02, Theorem 4.2] (see also [HM18, section 1.2]), we know that B′ −→ C ′ is
a perfectoid seed morphism in characteristic p > 0 if and only if there is no bad double

9It is easy to check that B′λ −→ C ′λ is still a perfectoid seed morphism: if Bλ −→ Cλ maps to B −→ C, then

B′λ −→ C ′λ maps to B′ := B⊗̂BλB′λ −→ C ′ := C⊗̂BλB′λ with B′/p (resp. C ′/p) faithfully flat over B/p (resp.

C/p), and so B̂′
m
−→ Ĉ ′

m
is a map of balanced big Cohen-Macaulay algebras by [BH93, Corollary 8.5.3].
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sequence of partial algebra modifications of B′ over B′ −→ C ′. Now if there exists a bad
double sequence of partial algebra modification of lim−→λ

Bλ over lim−→λ
Bλ −→ lim−→λ

Cλ, then

by the finiteness nature of (partial) algebra modifications, there exists λ such that the bad
double sequence is defined over Bλ −→ Cλ, contradicting that Bλ −→ Cλ is a perfectoid seed.
Therefore lim−→λ

Bλ −→ lim−→λ
Cλ is a perfectoid seed morphism and so passing to completions,

we know that l̂im−→
p[

λ
Bλ −→ l̂im−→

p[

λ
Cλ is also a perfectoid seed morphism. �

We next prove a crucial result for our adjoint ideal, the idea is similar to the proof of
Theorem A.6 and [MS18b, Theorem 4.9].

Theorem A.11. With notation as in Definition 2.3, let {Bγ −→ Cγ}γ∈Γ be a set of compatible
choices of perfectoid big Cohen-Macaulay R+- and (R/ID)+-algebras. Then we can find
another B −→ C such that

adjB�C(R,D + ∆) ⊆ adjBγ�Cγ (R,D + ∆)

for all γ ∈ Γ.

Proof. We assume R has mixed characteristic (0, p) in the proof.10 We first fix S a finite
normal domain extension of R that contains f 1/n and a height one prime ideal P ⊆ S
lying over ID. By enlarging S and P , we may assume that S is module-finite over A =
V [[x2, . . . , xd]] where (V, π) is a complete DVR such that the discriminant of the map A −→ S
is not contained in P : if S/P has characteristic p > 0, this follows from [Org14, Theorem
4.2.2] and in this case P contracts to (π) in A; if S/P has mixed characteristic, then this
essentially follows from [Hei21, Theorem 0.14]: more precisely, the proof of [Hei21, Theorem
0.14] shows that we can find x ∈ P such that S/xS is reduced and p, x is part of a system
of parameters on S, thus we can use Cohen’s structure theorem to find A inside S with
p, x2 := x part of a regular system of parameters, and it follows that P contracts to (x2)
and the discriminant of A −→ S is not contained in (x2) because A(x2) −→ SQ is étale for
each Q lying over (x2) (since S/x2S is reduced and the residue fields of A(x2) and SQ have
characteristic 0). It follows that in both cases, we can construct a diagram:

A //

��

A = A/zA

��

S // S = S/P

where z = x2 if p /∈ P , and z = π if p ∈ P . By the way we choose S and A, we know that
there exists g ∈ A− zA, such that A −→ S and A −→ S are both finite étale.

We next consider an integral extension V −→ V ′ where (V ′, π) has the same uniformizer
as V but the residue field V ′/π is perfect. Then as in the first paragraph of the proof of
[MS18b, Lemma 4.5], we can replace each Bγ by its m-adic completion to assume that each

10We believe a similar and simpler argument also works when R has characteristic p > 0: one needs to
replace the citation to Theorem A.6 by [Die07, Theorem 8.4], and for choosing S and A we use [Hei21,
Theorem 0.14]. We omit the details since, at least when R is F -finite of characteristic p > 0, the conclusion
of Theorem A.11 follows from our more general Theorem 6.6.
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Bγ is an algebra over A0 := V ′[[x2, . . . , xd]] (the reason we do this step is because the residue
field of S and A may not be perfect). We next fix

A∞,0 := p-adic completion of V ′[π1/p∞ , x
1/p∞

2 , . . . , x
1/p∞

d ] ⊆ A0⊗̂AR+,

which is a perfectoid algebra. Similarly we replace each Cγ by its m-adic completion and fix
A∞,0 (note that if z = π, then A∞,0 is just Aperf). Now we consider SAperfd := (A∞,0⊗A S)perfd

and S
A

perfd := (A∞,0⊗AS)perfd = (A∞,0⊗AS)perfd. Note that since the Bγ’s (respectively, Cγ’s)

are perfectoid, they are algebras over SAperfd (respectively, S
A

perfd) by the universal property
of the perfection functor. Now, for any finite subset Λ = {γ1, . . . , γn} ⊆ Γ, we consider the
map

BΛ := Bγ1⊗̂SAperfdBγ2⊗̂SAperfd · · · ⊗̂SAperfdBγn −→ CΛ := Cγ1⊗̂SAperfd
Cγ2⊗̂SAperfd

· · · ⊗̂
S
A
perfd

Cγn

of perfectoid algebras. By the same argument as in Theorem A.6 (applied repeatedly), we
know that BΛ is (g)perfd-almost big Cohen-Macaulay with respect to π, x2, . . . , xd and CΛ is
(g)perfd-almost big Cohen-Macaulay with respect to x, x3, . . . , xd where x = π if p /∈ P and
x = x2 if p ∈ P . Hence using the same strategy as in [And20, Theorem 3.1] simultaneously
to BΛ and CΛ (or use Gabber’s method [GR04, 17.5] as in the proof of Theorem A.7), we
have a commutative diagram:

BΛ
//

��

CΛ

��

B // C

where B −→ C is a map of perfectoid big Cohen-Macaulay algebras. In other words, BΛ −→
CΛ is a perfectoid seed morphism. Now clearly,

{BΛ −→ CΛ}Λ⊆Γ,|Λ|<∞

is a direct system of perfectoid seed morphisms (where the transition maps are the obvious

ones). Therefore by Lemma A.10, l̂im−→Λ
BΛ −→ l̂im−→Λ

CΛ is also a perfectoid seed morphism.
So there exists a commutative diagram of perfectoid big Cohen-Macaulay algebras

BΛ
//

��

CΛ

��

B // C

where B −→ C is a map of perfectoid big Cohen-Macaulay algebras. In particular, B −→ C

dominates all Bγ −→ Cγ for γ ∈ Γ via SAperfd-linear maps. Finally, note that B and C are
certainly algebras over R+ and (R/ID)+ respectively, but there are potentially multiple R+-
and (R/ID)+-algebra structures on B and C, coming from different Bγ and Cγ. Nonetheless,
the inclusion

adjB�C(R,D + ∆) ⊆ adjBγ�Cγ (R,D + ∆)

holds regardless of the different R+- and (R/ID)+-algebra structures. This is because f 1/n ∈
S ⊆ SAperfd and f 1/n is all we need to define adjB�C(R,D + ∆). �
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Remark A.12. In connection with Theorem A.6, it is natural to ask that, suppose (R,m) is
a complete normal local domain of mixed characteristic (0, p) and P is a height one prime
of R. Then whether given any two perfectoid seed morphisms of R+- and (R/P )+-algebras
B1 −→ C1 and B2 −→ C2, the map

B1⊗̂R+B2 −→ C1⊗̂(R/P )+C2

is also a perfectoid seed morphism? We expect this should be true but we do not have a
precise argument at this moment. The subtlety is that, while we know that B1⊗̂SAperfdB2 −→
C1⊗̂

S
A
perfd

C2 is a perfectoid seed morphism for certain domain extension S of R inside R+

as in the proof of Theorem A.13, it is not clear that these SAperfd form a direct system (the
choice of A depends on S) and thus Lemma A.10 does not immediately apply.

Finally, we prove the result on the uniform choice of B −→ C in our definition of adjoint
ideal. This can be viewed as an analog of [MS18b, Proposition 6.10].

Theorem A.13. With notations as in Definition 2.3, there exists a single compatible choice
of perfectoid big Cohen-Macaulay R+- and (R/ID)+-algebras B −→ C, such that

adjB�C(R,D + ∆) ⊆ adjB�C(R,D + ∆)

for all other compatible choices of perfectoid big Cohen-Macaulay R+- and (R/ID)+-algebras
B −→ C.

Proof. Let I be the largest ideal contained in adjB�C(R,D+ ∆) for every compatible choice
of B −→ C. By the axiom of choice and the collection principle, for every element λ ∈
R − I, there exists a choice of Bλ −→ Cλ such that λ /∈ adjBλ�Cλ(R,D + ∆). Now apply
Theorem A.11 to the set {Bλ −→ Cλ}λ∈R−I , we know that there exists B −→ C, such that

adjB�C(R,D + ∆) ⊆ adjBλ�Cλ(R,D + ∆)

for all λ. In particular, adjB�C(R,D + ∆) ⊆ I and hence

adjB�C(R,D + ∆) ⊆ adjB�C(R,D + ∆)

for all B −→ C. �

Appendix B. Extended Rees algebras of Kollár component extractions

Suppose π : Y −→ X = SpecR is a projective birational map with (R,m, k) normal and
local of dimension ≥ 2 and Y normal. Further suppose that π is obtained by blowing up
an m-primary ideal I and so π is an isomorphism away from V (m). Suppose further that
I · OY = OY (−mE) where E is a prime Weil divisor. Note that this last assumption can be
substantially weakened throughout, but it simplifies many arguments.

We can form the following rings:

S =
⊕

n≥0 H
0(Y,OY (−nE))tn

T =
⊕

n∈ZH
0(Y,OY (−nE))tn

Note that S is a N-graded ring and T is a Z-graded ring and we have a canonical inclusion
S ⊆ T . Also note that the mth Veronese subring of S is just the normalization of Rees
algebra R[Is] and the mth Veronese subring of T is the normalization of the extended Rees

algebra R[Is, s−1]. Hence, replacing m by a multiple, and I by I l, we may assume that mth
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Veronese of S is exactly the Rees algebra, and the mth Veronese of T , T ′ is exactly the
extended Rees algebra R[Is, s−1]. It is also clear that T≤0 = R[t−1] and ProjS = Y .

We let
nS = mS + S>0

nT = mT + T>0 + T<0

denote the homogeneous maximal ideals of S and T respectively. Note in the case when
m = 1, nS is simply m + It and nT is m + It+ t−1.

Lemma B.1. If ftj ∈ S>0 is homogeneous of degree j > 0, then S[(ftj)−1] −→ T [(ftj)−1] is
an isomorphism.

Proof. Note that S[(ftj)−1] contains t−j = f · (ftj)−1. Since S is normal, so is S[(ftj)−1].
Therefore since t−1 is in the fraction field, we have that

t−1 ∈ S[(ftj)−1].

But this proves the lemma. �

Lemma B.2. Suppose that 0 6= f ∈ m ⊆ [S]0 ⊆ S. Then S[f−1] = R[f−1][t] and in
particular, S[f−1] −→ T [f−1] is étale.

Proof. Since we are blowing up an m-primary ideal, we have that ftj ∈ [S]j for some j > 0
and so tj ∈ S[f−1]. Thus since S[f−1] is normal, it contains t as well. Hence S[f−1] =
R[f−1][t]. �

Putting these two elements together we have that S −→ T is étale outside of nS. Now,
notice that T/nST = k[t−1] hence nST is of codimension ≥ 2 in T . Therefore S −→ T is étale
outside a set of codimension 2 on both S and T . In conclusion:

Lemma B.3. If ρ : SpecT −→ SpecS is the canonical map, then ρ∗KS = KT .

We next prove a consequence of graded local duality.

Proposition B.4. With notation as above, for any divisor D on Y let MD denote the
T -module

⊕
n∈ZH

0(Y,OY (−nE +D)). We have:⊕
n∈Z

HomR(H0(Y,OY (KY + nE −D)), ER) ∼= Hd+1
nT

(MD).

Here ER is the injective hull of the residue field of R.

Proof. By looking at the spectral sequence of low degree terms and then using Grothendieck
duality, we have

Γ(Y,OY (KY + nE −D))
∼= h−dRΓ

(
Y,R H om(OY (−nE +D), ω

q
Y )
)

∼= h−dR HomR(RΓ(Y,OY (−nE +D)), ω
q
R).

By Grothendieck local duality we know that

HomR(H0(Y,OY (KY + nE −D)), ER)
= HomR(h−dR HomR(RΓ(Y,OY (−nE +D)), ω

q
R), ER)

∼= hdRΓm

(
RΓ(Y,OY (−nE +D))

)
∼= hdRΓE(Y,OY (−nE +D)).
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Thus it is enough to show that⊕
n∈Z

Hd
E(Y,OY (−nE +D)) ∼= Hd+1

nT
(MD).

Fix a generating set {g1, . . . , gs} of S>0 = T>0, so each gi = fit
j for some j. Since Tfitj = Sfitj ,

and by our choice {Spec[Sfitj ]0} forms an affine cover of Y , we know from the Čech complex
of T on g1, . . . , gs that we have a triangle (see [Lip94, page 150])⊕

n∈Z

RΓ(Y,OY (−nE +D))[−1] −→ RΓT>0(MD) −→MD
+1−→ .

Applying RΓmT+(t−1)(−) to the triangle, we obtain

RΓmT+(t−1)

(⊕
n∈Z

RΓ(Y,OY (−nE +D))

)
[−1] −→ RΓmT+(t−1)RΓT>0(MD) −→ RΓmT+(t−1)(MD)

+1−→ .

Next we note that in each Tfitj , t
−j = fi/(fit

j) and hence t−1 ∈
√
mTfitj . Therefore

RΓmT+(t−1)

(⊕
n∈Z RΓ(Y,OY (−nE +D))

)
= RΓmT

(⊕
n∈Z RΓ(Y,OY (−nE +D))

)
=

⊕
n∈Z RΓE(Y,OY (−nE +D)).

On the other hand, we have mT ⊆
√

(t−1) and thus RΓmT+(t−1)(T ) = RΓ(t−1)(T ). So the
above triangle simplifies to⊕

n∈Z

RΓE(Y,OY (−nE +D))[−1] −→ RΓnT (MD) −→ RΓ(t−1)(MD)
+1−→ .

Taking cohomology and noting that since d ≥ 2, hd(RΓ(t−1)(MD)) = hd+1(RΓ(t−1)(MD)) = 0,
we obtain

hd+1(
⊕
n∈Z

RΓE(Y,OY (−nE +D))[−1]) ∼= hd+1(RΓnT (MD)),

which is precisely saying that⊕
n∈Z

Hd
E(Y,OY (−nE +D)) ∼= Hd+1

nT
(MD)

as desired. �

Corollary B.5. The module MD =
⊕

n∈ZH
0(Y,OY (D−nE)) defined in Proposition B.4 is

S2, or equivalently reflexive.

Proof. First note that
⊕

n∈Z HomR(H0(Y,OY (KY +nE−D)), ER) is the graded Matlis dual
of
⊕

n∈ZH
0(Y,OY (−nE + KY − D)) = MKY −D. Since D is arbitrary, it suffices to show

that MKY −D is S2, or in other words, that the graded Matlis dual of Hd+1
nT

(MD) is S2. But
the graded Matlis dual of top local cohomology is always S2. Let MKY −D −→M ′ denote the
S2-ification with respect to T . The cokernel has codimension ≥ 2 by definition, so their top
local cohomologies are isomorphic. This completes the proof. �

Proposition B.6. With notation as above,

ωT ∼=
⊕
n∈Z

H0(Y, ωY (−nE)).
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We provide multiple proofs.

Proof #1 of Proposition B.6. We know by definition that

ωT =
⊕
n∈Z

HomR(Hd+1
nT

(T )n, ER).

Thus by Matlis duality, it is enough to show that
⊕

n∈Z HomR(H0(Y, ωY (nE)), ER) ∼=
Hd+1

nT
(T ) where ER denotes the injective hull of the residue field of R. But this is just

Proposition B.4 taking D = 0. �

Proof #2 of Proposition B.6. We know that the reflexification of ωS ·T is ωT by Lemma B.3.
In positive degrees, ωS·T already agrees with our desired module. We see that

⊕
n∈ZH

0(Y, ωY (−nE))
is a S2 and hence reflexive T -module by Corollary B.5.

Thus we need to show that

ωS · T −→
⊕
n∈Z

H0(Y, ωY (−nE))

is an isomorphism in codimension 1. It is already an isomorphism in degree > 0 since
ωS =

⊕
n>0 H

0(Y, ωY (−nE)) by [HS03, 2.6.2]. To this end, observe that for all n � 0,
we have that H0(ωY (−nE)) = ωR since π : Y −→ SpecR is an isomorphism outside of E.
On the other hand, ωS · T is simply H0(Y, ωY (−E)) in all negative degrees since we can
multiply by t−1. Since ωR/H

0(Y, ωY (−E)) is supported in dimension 0, it is easy to see
that ωS · T −→

⊕
n∈ZH

0(Y, ωY (−nE)) is an isomorphism outside of codimension 1. This
completes the proof. �

B.1. Discrepancy computations and extended Rees algebras. Suppose π : Y −→ X =
SpecR is a projective birational map between normal integral schemes with (R,m, k) local.
For any (prime) Weil divisor DY on Y , we can form the associated coherent OY -module
OY (DY ) and then construct the T -module

Γ∗,T (OY (DY )) =
⊕
n∈Z

H0(Y,OY (DY − nE)).

This is an S2 T -module by Corollary B.5. It corresponds to a (prime) divisor on Spec T ,
DT . In other words T (DT ) = Γ∗,T (OY (D)). Note our previous work guarantees that
Γ∗,T (OY (KY )) = T (KT ). Let ν : SpecT −→ SpecR be the canonical map. Suppose we have
that ∆ is a Q-divisor on X such that KX + ∆ is Q-Cartier, say that divX(f) = n(KX + ∆).
We can write the following two formulae:

π∗(KX + ∆) = KY + ∆Y

ν∗(KX + ∆) = KT + ∆T

for some Q-divisors ∆Y and ∆T . Since OY (nπ∗(KX + ∆)) = 1
f
OY , T (nν∗(KX + ∆)) = 1

f
T

and Γ∗(
1
f
OY ) = 1

f
T , we see that ∆T and ∆Y also correspond to each other. Note this requires

our choice of KT from Proposition B.6. Explicitly, if

∆Y =
∑

aiDY ,

then
∆T =

∑
aiDT

where DT is the prime divisor corresponding to DY as above.
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B.2. Veronese covers. Consider T as above and consider the mth Veronese subalgebra T ′.
Note T ′ = R[Itm, t−m] is isomorphic to the standard extended Rees algebra.

Lemma B.7. The T -module HomT ′(T, T
′) is generated by the map Ψ : T −→ T ′ which

projects onto the m-divisible summands. Furthermore, we have that Ψ(nT ) = nT ′.

Proof. The projection onto the m-divisible summands certainly sends nT to nT ′ so we only
need to show that Ψ generates the Hom-set. Note that since ET and ET ′ corresponds to E on
Y (more precisely, ET = divT (t−1) andmET ′ = divT ′(t

−m)), T ′(iET ′) = ⊕nH0(Y,OY (−nmE+
iE)) and thus T ∼= ⊕m−1

i=0 T
′(iET ′) by construction. In other words, T is precisely the mth

cyclic cover of T ′ associated to the divisor ET ′ . Since the index of ET ′ is m (because this is
the index of E on Y , alternatively, one can also check that T ′(iET ′) is not isomorphic to T ′

for every 1 < i ≤ m − 1), by [CR17, proof of Proposition 4.21], we know that Ψ generates
the HomT ′(T, T

′) as a T -module. �

Lemma B.8. Suppose that T ′ −→ T is the inclusion of the mth Veronese subalgebra as above
with κ : SpecT −→ SpecT ′ the induced map. Let D be a Weil divisor on Y and let DT and
DT ′ denote associated divisors on T and T ′ respectively. Then κ∗DT ′ = DT .

Proof. It suffices to consider the case when D is a prime divisor. In the case that D = E,
this follows immediately from the observation that T is an index-1 cover of the Q-Cartier
Weil divisor DT ′ as in Lemma B.7. Otherwise we may assume that D is the strict transform
of a divisor on SpecR. In particular, t−m is not in Q′ = Γ∗,T ′(OY (−D)) ⊆ T ′. But now
notice that

R[t−m, tm] ∼= T ′[tm] ⊆ T [tm] ∼= R[t, t−1]

In particular, we then see that the extension of Q′R[t−m, tm] is still prime in R[t, t−1]. This
completes the proof. �
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[And18a] Y. André: La conjecture du facteur direct, Publ. Math. Inst. Hautes Études Sci. 127 (2018),
71–93. 3814651
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