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Abstract—Emotion detection using machine learning and 
data gathered from an electroencephalogram (EEG) holds 
the potential for architecture and creating smart adaptive 
spaces which can respond to the user’s current emotional 
state detected from the Neurophysiological data in real-time. 
This technology can help people with mental and physical 
disabilities to have a greater role in shaping their 
environment and live more independent lives. 

In this paper, two different machine learning 
approaches, the Long Short Term memory network, 
(LSTM) and Convolutional Neural Network (CNN) are 
compared in order to assess their potential to satisfy this 
goal of emotion detection. The LSTM network was trained 
on eight-channel time-series data which had undergone a 
Fast Fourier Transform, and the CNN was trained on the 
un-transformed data in the form of a unique plot-image 
based approach.  
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I.  INTRODUCTION (USE CASE) 
Emotion detection with the use of EEG devices holds 

great potential for the improvement of the lives of people 
unable to clearly communicate their emotions, such as 
people who have certain forms of Autism or PTSD. 
Environments equipped with emotion detecting 
capabilities and adaptive systems could offer a better 
experience and adapt to the emotional state of the user. 
Here, the space plays an informative role to communicate 
the person’s emotions with the caregivers or parents and 
help them to prevent aggressive behaviors before they 
happen. 

A. EEG Classification tasks (Similar approaches) 
The use of EEG signals to detect emotions has been 

accomplished with relative success in the past through the 
use of Recurrent Neural Networks [2]. These networks 
have been shown to be able to achieve good performance 
when classifying emotions once the input data have been 
thoroughly pre-processed with techniques such as Short-
time Fourier Transforms (STFT) and Zero-time 
Windowing. 

An interesting approach towards time-series 
classification tasks involves the use of images rather than 
time-series data as the training medium. G. Zu et al. [1] 
were able to accomplish a 74% accuracy by implementing 

an image-based approach to the problem of EEG-fed 
motor-imagery recognition. Instead of feeding the raw 
EEG data into the network the researchers used STFT and 
built time-frequency spectrum images to use as inputs. 
This practice of using images as features for EEG 
classification tasks is not common and only around 20% of 
recent studies have employed methods similar to this [3]. 
In 2018 spectrogram inputs were used to train a CNN to 
detect motor impairment neural disorders with promising 
results [4], however the researchers made se of FFT and 
other data filtering techniques when constructing their 
input spectrograms. In this paper we observe a lightweight 
plot-based approach to EEG classification of raw data in a 
spectrogram input format and compare it to a LSTM 
network in terms of classification accuracy. 

II. METHODS (NEUROLOGICAL DATA COLLECTION: 
OPEN BCI EEG) 

The data for both networks was collected by showing 
participants videos and prompting them to self-assess their 
emotional state art random intervals by pressing a 
computer key. The eight-channel OpenBCI EEG headset 
provides open-source software, allowing customization 
and measurement off the brain’s electrical activity. At their 
discretion participants in the lab were fitted with EEG 
headwear. They were also given a wristband. They then 
watched a video of their choosing until a particular 
emotion was evoked. Since people vary in their 
preferences and a same video might not evoke a particular 
emotion in different people the choice of the video was left 
up to the user. Data were collected over two years.  

The EEG recorded eight channels of constant time-
domain data sampling at 256 times per second, and paired 
time intervals with the self-reported 3motioanal labels. 
This dataset was then put through a Fast Fourier 
Transform for the LSTM which achieved an accuracy of 
about 93%.  

A. Data Processing 
We processed the dataset differently when we fed it 

into the CNN. Instead of feeding the raw or transformed 
numerical data into the network, plot images were 
constructed in order to make the task a “visual” image-
recognition task. To construct an image, each of the eight 
channels was split by a sampling size of 128 
measurements, or one half-second of real-world voltage 
reading data capture. By choosing a sampling size of one 
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half-second, ignoring samples which had overlapping 
emotional labels, time-domain plot images (Fig. 1) were 
built for each channel and layered as the channels of one 
input spectrogram (Fig. 2). All of these spectrograms were 
then fed into the Convolutional Neural Network. By far 
the most commonly occurring class in the dataset, 
“NOEMOTION” posed a challenge when first beginning 
to train the network on the spectrograms (Fig. 3). The 
model started out with an accuracy nearly at 60%, but 
when the NOEMOTION class was removed, accuracy 
dropped to less than 12%. In order to train the model to 
diversify its predictions, the final output weights were 
balanced proportionally to the underrepresentation of each 
class. This instantly boosted the accuracy on the dataset 

without the NOEMOTION class to 41% but lowered the 
training and test accuracies of the network on the full 
dataset to around 31%. 

In these early stages of development and after 
hyperparameter tuning via grid search, the plot-fed CNN 
method has achieved a 56% accuracy when classifying 8 
emotions as opposed to the LSTM’s 93% accuracy (Table 
I). 

III. RESULTS AND DISCUSSION 
The most current accuracy of the trained CNN is 

~56%. The LSTM trained on the same data currently 
outperforms the CNN. There are still improvements to be 
made to the data transformation pipeline and changing the 
way that these input spectrograms are generated in order to 
improve the model’s efficiency. With a quickly reachable 
56% test accuracy, this method may indeed prove useful in 
the future, considering the lack of signal filtering.  

IV. FUTURE WORK 
In the future, this method will be refined in order to 

increase the accuracy of the networks’ predictions, 
potentially enabling its use in the field of emotionally 
responsive architecture. There are a number of ways to 
work towards improving the accuracy for this network in 

 
Fig. 1: 128-length channel plot 

 

 
 

Fig. 2: All 8 channels making up a spectrogram 

 
Fig. 3: Class distributions 

TABLE I.  ACCURACY SCORES 

 Original 
Dataset 

Balanced 
Weights 

Grid 
Search 

LSTM 

Train 
Accuracy 

~0.57 0.3115 0.5479 0.9256 

Test Accuracy ~0.57 0.3115 0.5633 0.934 

Cross Val 
Accuracy 

N/A N/A 0.5597 0.938 

NOEMOTION 
Removed Acc. 

0.1037 0.4079 0.3495 N/A 

 



the near future One such improvement could be the 
changing of the sample size for building images. This 
number could be treated as a hyperparameter and assessed 
to find the optimal value for consistent emotion detection. 
Another tweak may be to use more information-dense 
input images for the CNN training. The images currently 
consist of numpy ndarrays composed of numpy uiny8 data 
types (Fig. 4) in order to save drive space. This results in 
pixel values which are either 0 or 1. These spectrogram 
pixels could be converted into another data type which can 
hold more information (Fig. 5) in order to preserve visual 
spectrogram properties that have been sacrificed for the 
sake of speed and efficiency during dataset generation.  
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Fig. 4: Binary pixel values may lose information 

 

 
Fig. 5: More detail possible in input channels at the cost of greater storage 

requirements for dataset 
 


