LSTM vs Plot-based CNN for EEG Emotion Detection Tasks
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Abstract—Emotion detection using machine learning and
data gathered from an electroencephalogram (EEG) holds
the potential for architecture and creating smart adaptive
spaces which can respond to the user’s current emotional
state detected from the Neurophysiological data in real-time.
This technology can help people with mental and physical
disabilities to have a greater role in shaping their
environment and live more independent lives.

In this paper, two different machine learning
approaches, the Long Short Term memory network,
(LSTM) and Convolutional Neural Network (CNN) are
compared in order to assess their potential to satisfy this
goal of emotion detection. The LSTM network was trained
on eight-channel time-series data which had undergone a
Fast Fourier Transform, and the CNN was trained on the
un-transformed data in the form of a unique plot-image
based approach.
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L. INTRODUCTION (USE CASE)

Emotion detection with the use of EEG devices holds
great potential for the improvement of the lives of people
unable to clearly communicate their emotions, such as
people who have certain forms of Autism or PTSD.
Environments  equipped with  emotion detecting
capabilities and adaptive systems could offer a better
experience and adapt to the emotional state of the user.
Here, the space plays an informative role to communicate
the person’s emotions with the caregivers or parents and
help them to prevent aggressive behaviors before they
happen.

A. EEG Classification tasks (Similar approaches)

The use of EEG signals to detect emotions has been
accomplished with relative success in the past through the
use of Recurrent Neural Networks [2]. These networks
have been shown to be able to achieve good performance
when classifying emotions once the input data have been
thoroughly pre-processed with techniques such as Short-
time Fourier Transforms (STFT) and Zero-time
Windowing.

An interesting approach towards time-series
classification tasks involves the use of images rather than
time-series data as the training medium. G. Zu et al. [1]
were able to accomplish a 74% accuracy by implementing

an image-based approach to the problem of EEG-fed
motor-imagery recognition. Instead of feeding the raw
EEG data into the network the researchers used STFT and
built time-frequency spectrum images to use as inputs.
This practice of using images as features for EEG
classification tasks is not common and only around 20% of
recent studies have employed methods similar to this [3].
In 2018 spectrogram inputs were used to train a CNN to
detect motor impairment neural disorders with promising
results [4], however the researchers made se of FFT and
other data filtering techniques when constructing their
input spectrograms. In this paper we observe a lightweight
plot-based approach to EEG classification of raw data in a
spectrogram input format and compare it to a LSTM
network in terms of classification accuracy.

II.  METHODS (NEUROLOGICAL DATA COLLECTION:
OPEN BCI EEG)

The data for both networks was collected by showing
participants videos and prompting them to self-assess their
emotional state art random intervals by pressing a
computer key. The eight-channel OpenBCI EEG headset
provides open-source software, allowing customization
and measurement off the brain’s electrical activity. At their
discretion participants in the lab were fitted with EEG
headwear. They were also given a wristband. They then
watched a video of their choosing until a particular
emotion was evoked. Since people vary in their
preferences and a same video might not evoke a particular
emotion in different people the choice of the video was left
up to the user. Data were collected over two years.

The EEG recorded eight channels of constant time-
domain data sampling at 256 times per second, and paired
time intervals with the self-reported 3motioanal labels.
This dataset was then put through a Fast Fourier
Transform for the LSTM which achieved an accuracy of
about 93%.

A. Data Processing

We processed the dataset differently when we fed it
into the CNN. Instead of feeding the raw or transformed
numerical data into the network, plot images were
constructed in order to make the task a “visual” image-
recognition task. To construct an image, each of the eight
channels was split by a sampling size of 128
measurements, or one half-second of real-world voltage
reading data capture. By choosing a sampling size of one
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Fig. 1: 128-length channel plot
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Fig. 2: All 8 channels making up a spectrogram

half-second, ignoring samples which had overlapping
emotional labels, time-domain plot images (Fig. 1) were
built for each channel and layered as the channels of one
input spectrogram (Fig. 2). All of these spectrograms were
then fed into the Convolutional Neural Network. By far
the most commonly occurring class in the dataset,
“NOEMOTION” posed a challenge when first beginning
to train the network on the spectrograms (Fig. 3). The
model started out with an accuracy nearly at 60%, but
when the NOEMOTION class was removed, accuracy
dropped to less than 12%. In order to train the model to
diversify its predictions, the final output weights were
balanced proportionally to the underrepresentation of each
class. This instantly boosted the accuracy on the dataset
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Fig. 3: Class distributions

without the NOEMOTION class to 41% but lowered the
training and test accuracies of the network on the full
dataset to around 31%.

In these early stages of development and after
hyperparameter tuning via grid search, the plot-fed CNN
method has achieved a 56% accuracy when classifying 8
emotions as opposed to the LSTM’s 93% accuracy (Table

D).
III. RESULTS AND DISCUSSION

The most current accuracy of the trained CNN is
~56%. The LSTM trained on the same data currently
outperforms the CNN. There are still improvements to be
made to the data transformation pipeline and changing the
way that these input spectrograms are generated in order to
improve the model’s efficiency. With a quickly reachable
56% test accuracy, this method may indeed prove useful in
the future, considering the lack of signal filtering.

IV. FUTURE WORK

In the future, this method will be refined in order to
increase the accuracy of the networks’ predictions,
potentially enabling its use in the field of emotionally
responsive architecture. There are a number of ways to
work towards improving the accuracy for this network in

TABLE L. ACCURACY SCORES

Original | Balanced | Grid | LSTM
Dataset | Weights | Search

Train ~0.57 0.3115 | 0.5479 | 0.9256
Accuracy

Test Accuracy ~0.57 0.3115 0.5633 | 0.934

Cross Val N/A N/A 0.5597 | 0.938
Accuracy

NOEMOTION | 0.1037 0.4079 0.3495 | N/A
Removed Acc.




the near future One such improvement could be the
changing of the sample size for building images. This
number could be treated as a hyperparameter and assessed
to find the optimal value for consistent emotion detection.
Another tweak may be to use more information-dense
input images for the CNN training. The images currently
consist of numpy ndarrays composed of numpy uiny8 data
types (Fig. 4) in order to save drive space. This results in
pixel values which are either 0 or 1. These spectrogram
pixels could be converted into another data type which can
hold more information (Fig. 5) in order to preserve visual
spectrogram properties that have been sacrificed for the
sake of speed and efficiency during dataset generation.
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Fig. 4: Binary pixel values may lose information
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Fig. 5: More detail possible in input channels at the cost of greater storage
requirements for dataset
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