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The Fundamental Theorem of Finite Fields:
A Proof from First Principles

Anastasia Chavez and Christopher O’Neill

Abstract. A mathematics student’s first introduction to the fundamental theorem of finite
fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of
Galois theory to prove it. Yet, the combinatorial and algebraic coding theory applications of
finite fields can show up early on for students in STEM. To make the FTFF more accessi-
ble to students lacking exposure to Galois theory, we provide a proof from algebraic “first
principles.”

1. INTRODUCTION. A student’s first introduction to finite fields and the magic
they invoke often occurs in an advanced undergraduate or graduate abstract algebra
course. In particular, the fundamental theorem of finite fields (FTFF) is most com-
monly proved via Galois theory. Finite fields have many exciting combinatorial appli-
cations, one of which is algebraic coding theory. Error-correcting codes, t-designs,
and Hamming codes are common topics for computer science majors with minimal
abstract algebra training. For curious undergraduates with just one year of abstract
algebra, such applied combinatorics is both enriching and inspiring. Yet, the Galois
theory approach to finite fields leaves these students at a disadvantage. To fill an appar-
ent gap in the accessibility of the FTFF, we provide a proof of this great theorem from
“first principles,” i.e., without appealing to Galois groups or splitting fields.

The Fundamental Theorem of Finite Fields.

1. There is a field with exactly q elements if and only if q = pr for p prime, r ≥ 1.
2. Any two finite fields of the same cardinality are isomorphic.
3. For any finite field F with |F| = pr for p prime,

(a) the additive group (F, +) ∼= ((Zp)r , +), and
(b) the multiplicative group (F \ {0}, ·) is cyclic.

The proof we provide here is built from several different sources, many of which
either briefly mention or wave their hands at Galois theory for one or more parts of the
argument [1–4]. This approach of introducing finite fields to those with little abstract
algebra exposure has been successfully implemented in several iterations of the applied
combinatorics course at our former home institution.

We provide this manuscript as a resource for those in need of a proof of the funda-
mental theorem that does not utilize the heavy machinery of Galois theory.

This article is organized as follows. In Section 2, we survey the assumed abstract
algebra background, and in Section 3, we review quotient rings and outline a gen-
eral method for explicitly constructing finite fields. Sections 4 and 5 together contain
the proof of the FTFF, with the former section providing a key lemma that has some
consequences of its own.
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2. PREREQUISITE BACKGROUND. In this section, we survey the minimal pre-
requisite definitions and results that are needed for this article. We assume the reader
is familiar with undergraduate-level linear algebra (including vector space dimension)
and ring theory (including cosets and quotient rings). Please see Dummit and Foote [2]
and Hungerford [3] for more details. Note that all rings are assumed to be commutative
and to have a multiplicative identity.

There are two main families of rings appearing in this article. The first is the ring Zn

of integers modulo n ≥ 2. Note that Zn is a field whenever n is prime, and contains
zero-divisors whenever n is composite. The second is the polynomial ring F [x] whose
coefficient ring F is a field, as well as quotients F [x]/I by an ideal I . Several times
throughout this article, we will use the fact that the polynomial ring F [x] is:

1. a principal ideal domain (PID), meaning every ideal I ⊂ F [x] can be written
as I = 〈f (x)〉 for some f (x) ∈ I , and the quotient ring F [x]/I is a field if and
only if f (x) is irreducible; and

2. a unique factorization domain (UFD), meaning that every monic, nonconstant
polynomial in F [x] can be written uniquely (up to reordering) as a product of
monic irreducible polynomials in F [x].

We close this section with the following theorems, all of which are usually covered
in an introductory course in rings, and which will be used in the proof of the Key
Lemma given in Section 4.

The Root Theorem. Fix a field F . For any f ∈ F [x], we have f (a) = 0 if and only
if f (x) = (x − a)g(x) for some g ∈ F [x].

The Freshman’s Dream. Fix a prime p, and let R be a ring with characteristic p
(that is, p · 1 = 0 in R). If a, b ∈ R, then (a + b)p = ap + bp.

The First Isomorphism Theorem. If R, S are rings and σ : R → S is a ring
homomorphism, then Im(σ ) ⊂ S is a subring, ker(σ ) ⊂ R is an ideal, and
R/ ker σ ∼= Im(σ ).

3. CONSTRUCTING FINITE FIELDS. When constructing small finite fields from
first principles, a common approach is to use the addition and multiplication tables (or
“+/· tables”) to help guide the behavior of the field’s elements. For example, suppose
we wish to discover all possible finite fields with 3 elements. We know there must be
two distinguished elements 0 and 1, so denoting the only remaining element a, we can
consider all possible ways of completing the +/· tables of 0, 1, a in such a way that
all of the field axioms are satisfied. It is a fun exercise (with a lot of similarities to
playing Sudoku) to show that the only possible configurations are those given in the
left-hand side of Figure 1. In fact, one can easily check that these tables match those
for the well-known field Z3. In general, this approach works for any prime value p to
produce the finite field Zp.

When constructing finite fields of nonprime cardinality, such as 4 (a prime power),
we can use the same approach. Let us consider elements {0, 1, a, b}. After checking
all the ways to fill out the +/· tables, we see there is again a unique solution, depicted
in Figure 1. As there is only one way to complete the tables, we once again obtain a
unique finite field of this size, which we denote by F4. Note that F4 has characteristic 2
(i.e., 1 + 1 = 0), so F4 is not simply Z4 (which is, in particular, not a field).
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Figure 1. Unique operation tables for F3 (left) and F4 (right).

It would be nice to identify F4 as a more “familiar” ring, as we did with F3
∼= Z3.

One way to do this is to view the elements 0, 1, a, b ∈ F4 as the elements 0, 1, z, z + 1
in the quotient ring Z2[z]/〈z2 + z + 1〉. In particular, z2 + z + 1 = 0 in this quotient
ring, meaning z2 = −z − 1. As such, each element can be represented by a polynomial
in z with coefficients in Z2, and terms of degree 2 and higher can be eliminated via the
substitution z2 = z + 1, e.g.,

(z + 1)(z + 1) = z2 + 2z + 1 = (z + 1) + 2z + 1 = 3z + 2 = z,

or equivalently using division by z2 + z + 1, e.g.,

(z + 1)(z + 1) = z2 + 2z + 1 = 1(z2 + z + 1) + z = z.

Using this collection of elements, the +/· tables are then obtained by performing poly-
nomial addition and multiplication, reducing coefficients modulo 2, and then perform-
ing polynomial long division by z2 + z + 1; see Figure 2. Note that in order for this
quotient ring to be a field, it is imperative that z2 + z + 1 is irreducible. (In fact, it
is the only degree-2 irreducible polynomial in Z2[z].) To verify z2 + z + 1 is indeed
irreducible, note that any reducible degree 2 polynomial has a degree-1 factor, and
therefore has a root by the Root Theorem. However, neither element of Z2 is a root of
z2 + z + 1, so it must be irreducible.

Figure 2. Operation tables for Z2[z]/〈z2 + z + 1〉.

As a final example, we construct the finite field of 8 elements, F8 (a similar illustra-
tion of the construction of F9 can be found in [1]).

Proceeding as above, we wish to use polynomial quotient rings to write F8 in the
form Z2[z]/〈f (z)〉, where f is an irreducible polynomial of degree 3. By the Root
Theorem, any reducible degree-3 polynomial has a root, so by inspection of all 23 =
8 polynomials of degree 3 in Z2[z], we see that only two, namely z3 + z + 1 and
z3 + z2 + 1, are irreducible. Let

F8 = Z2[z]/〈z3 + z + 1〉 and F′
8 = Z2[w]/〈w3 + w2 + 1〉.

Although the two quotient rings above are both fields with 8 elements, their multipli-
cation “rules” appear different, in that in F8 we reduce terms of degree 3 and higher
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using the equality z3 + z + 1 = 0, while in F′
8 we reduce using w3 + w2 + 1 = 0.

For example, despite the visual similarity, the left-hand-side products

F8 : (z2 + 1)(z + 1) mod (z3 + z + 1) = z2, (1)

F′
8 : (w2 + 1)(w + 1) mod (w3 + w2 + 1) = w (2)

yield visually distinct results. That said, F8 and F′
8 are isomorphic by the FTFF, and

we give an explicit isomorphism in Section 5.

4. THE KEY LEMMA: FACTORING OVER FINITE FIELDS. For a finite field
Fq with q = pr , the key to the FTFF turns out to be factoring the polynomial xq − x,
both over Fq itself and over Zp. The Key Lemma, stated below and followed imme-
diately by several examples, identifies precisely how xq − x factors as a product of
irreducible polynomials over both fields.

The Key Lemma. Suppose q = pr for p prime and r ∈ Z≥1.

1. If K is any finite field with |K| = q, then the polynomial xq − x factors over K
as a product of distinct linear factors.

2. The polynomial xq − x factors over Zp as the product of all irreducible polyno-
mials over Zp with degree dividing r .

Let us work through a few examples. We start with q = 4, which we constructed as

F4 = Z2[z]/〈z2 + z + 1〉 = {0, 1, z, z + 1}
in Section 3. Since 0, 1 ∈ Z2 are both roots of x4 − x, the Root Theorem tells us x and
x − 1 are both factors. The Key Lemma implies all remaining factors are of degree 2.
Since polynomial long division by x − 1 yields

x4 − x = x(x − 1)(x2 + x + 1),

the Key Lemma implies x2 + x + 1 is the only irreducible polynomial of degree 2
over Z2, a fact we also observed in Section 3. Now, since Z2 ! F4, the “extra” two
elements of F4 provide more coefficients at our disposal when factoring, so some irre-
ducible polynomials over Z2, like x2 + x + 1 in this case, may be factored further over
F4. Indeed, we obtain four distinct linear factors, one for each element of F4, i.e.,

x4 − x = x(x − 1)(x2 + x + 1)

= x(x − 1)(x − z)(x − z + 1),

wherein z and z + 1 are the roots of x2 + x + 1 in F4. Remember that the polynomials
in the above expression live in F4[x], so in the second line z and z + 1 are coefficients
that live in F4.

For q = 8, after factoring x and x + 1 out of x8 − x, we obtain a degree-6 poly-
nomial that, by the Key Lemma, must factor into (exactly 2) distinct degree-3 irre-
ducible factors over Z3. As both irreducible polynomials were identified in Section 3,
this yields

x8 − x = x(x + 1)(x6 + x5 + x4 + x3 + x2 + x + 1)

= x(x + 1)(x3 + x + 1)(x3 + x2 + 1)
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as the factorization over Z3. It is in this way that we can use the Key Lemma to locate
all possible choices of an irreducible polynomial when constructing a finite field of
a particular size. Next, to factor further over F8, we will choose the representation
F8 = Z2[z]/〈z3 + z + 1〉 and obtain

x3 + x + 1 = (x − z)(x − z2)(x − z2 + z),

x3 + x2 + 1 = (x − z + 1)(x − z2 + 1)(x − z2 + z + 1),

Had we instead chosen the representation F′
8 = Z2[w]/〈w3 + w2 + 1〉, we would have

obtained

x3 + x + 1 = (x − w + 1)(x − w2 + 1)(x − w2 + w),

x3 + x2 + 1 = (x − w)(x − w2)(x − w2 + w + 1),

as the remaining linear factors of x8 − x.
We give one final example before proving the Key Lemma. Applying a similar

process as above for q = 9, we obtain

x9 − x = x(x + 1)(x + 2)(x2 + 1)(x2 + x + 2)(x2 + 2x + 2)

over Z3, and factoring further over F9 = Z3[z]/〈z2 + 1〉 (this time there were 3 pos-
sible representations to choose from) yields

x2 + 1 = (x − z)(x − 2z),

x2 + x + 2 = (x − z + 1)(x − 2z + 1),

x2 + 2x + 2 = (x − z + 2)(x − 2z + 2),

which we encourage the reader to verify as an exercise.

Proof of the Key Lemma. Suppose q = pr for p prime and r ≥ 1, and suppose K is a
field with |K| = q. Since K is a field, (K \ {0}, ·) is a group of order q − 1, meaning
that every element has order dividing q − 1. As such, aq−1 − 1 = 0 for every nonzero
a ∈ K, and thus each is a root of xq − x. By the Root Theorem, this produces q distinct
linear factors and xq − x has degree q, so this must be precisely the list of factors,
proving part 1.

Next, fix an irreducible polynomial f ∈ Zp[x], and let d = deg f . We wish to show
f (x) | xq − x if and only if d | r , as this implies that the irreducible factors of f (x)
over Zp claimed in part (b) are precisely those that appear. Since f is irreducible, as
stated in Section 2, the quotient ring K = Zp[x]/〈f (x)〉 is a field. To more clearly
distinguish K from the field Fq constructed elsewhere in this article, we will denote
the elements of K using the “bracket” notation [h(x)] for h ∈ Zp[x] rather than with
the “overline” notation. Since |K| = pd , we can list the elements of K as

K =
{
[h1(x)], . . . , [hpd (x)]

}
,

with h1(x) = 0. If f is linear, then the claim follows from part 1, so assume d ≥ 2.
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First, suppose d | r . Since K is a field, multiplication is cancellative, so multiplying
by [x] permutes the set of nonzero elements. In particular, the list

[x][h2(x)], [x][h3(x)], . . . , [x][hpd (x)]

contains every nonzero element of K exactly once. As such, the product of all elements
in this list can be simplified in two ways to obtain

[x][h2(x)] · · · [x][hpd (x)] = [h2(x)][h3(x)] · · · [hpd (x)]

= [xpd−1][h2(x)] · · · [hpd (x)],

in K , where the expressions on either side of the first equality consist of the product of
the same pd − 1 elements of K (albeit in a different order). Subtracting and factoring
yields

[xpd−1 − 1][h2(x)][h3(x)] · · · [hpd (x)] = [0] ∈ K,

which implies [xpd−1 − 1] = [0] since K has no zero-divisors. This means we have
xpd−1 − 1 ∈ 〈f (x)〉 ⊆ Zp[x] and thus f (x) | xpd−1 − 1. Since d | r , say r = dk for
some k ∈ Z,

pr − 1 = (pd − 1)(pd(k−1) + pd(k−2) + · · · + pd + 1),

meaning pd − 1 | pr − 1. Analogously, fixing t ∈ Z≥0 so that pr − 1 = t (pd − 1), we
have

xq−1 − 1 = xt(pd−1) − 1 = (xpd−1 − 1)(x(pd−1)(t−1) + x(pd−1)(t−2) + · · · + 1).

Putting all of this together, we conclude f (x) | xpd−1 − 1 | xq − x.
Conversely, suppose f (x) | xq − x. Writing r = ad + b for a, b ∈ Z with

0 ≤ b < d via the division algorithm, we wish to show b = 0. By way of contra-
diction, suppose that b is positive. Since |K| = pd , similar reasoning as in the first
paragraph of this proof implies [x]p

d = [x] in K , and by assumption [xq − x] = [0]
in K , so

[x] = [xq] = [xpad+b
] = [((· · · ((xpd

)pd
) · · · )pd

︸ ︷︷ ︸
a times

)pb
] = [xpb

].

By the Freshman’s Dream, for any g(x) = g0 + g1x + g2x
2 + · · · ∈ Zp[x], we have

[g(x)]p
b = [(g0)

pb + (g1)
pb

(xpb
) + (g2)

pb
(xpb

)2 + · · · ]

= [g0 + g1x + g2x
2 + · · · ]

= [g(x)],

meaning every element of K is a root of xpb − x. However, this is impossible by the
Root Theorem since K has pd > pb elements, so we conclude b = 0. This completes
the proof that f (x) | xq − x if and only if d | r .

There remains one final claim to prove: that each irreducible polynomial f (x) in
the factorization of xq − x over Zp appears only once. Indeed, by part 1, the roots of
xq − x in K are all distinct, so xq − x cannot have repeated factors over Zp as this
would yield repeated roots in K . This completes the proof.
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5. THE FUNDAMENTAL THEOREM. In this section, we use the Key Lemma to
prove the FTFF in its entirety. Before diving into the proof, let’s briefly explore some
of its implications in the context of F8 and F′

8 from Section 3.
First, the set F8 \ {0} is ensured to be a cyclic group under multiplication, meaning

there is some element a ∈ F8 such that the list a, a2, a3, . . . includes every nonzero
element of F8. One such element is z + 1, and we can readily check that every nonzero
element of F8 can be written as (z + 1)n for some n. In fact, it turns out that any
nonzero element we choose for a will do the trick (except a = 1, of course). This
is not true in general: in F7 (which is isomorphic to Z7), only 2 nonzero elements
generate {1, 2, 3, 4, 5, 6} as a group under multiplication modulo 7 (one such element
is 3 ∈ Z7, and we encourage the reader to locate the other).

Second, the FTFF implies that F8 and F′
8 are isomorphic, but it is not hard to show

that the map F8 → F′
8 given by az2 + bz + c -→ aw2 + bw + c is not an isomorphism

(compare, for instance, the right-hand sides of (1) and (2) in Section 3). One possible
isomorphism σ : F8 → F′

8 turns out to be

σ (0) = 0, σ (z) = w + 1, σ (z2 + z) = w2 + w,

σ (1) = 1, σ (z2) = w2 + 1, σ (z2 + z + 1) = w2 + w + 1,

σ (z + 1) = w, σ (z2 + 1) = w2,

which happens to map a generator to another generator. In general, locating an explicit
isomorphism between finite fields of equal size need not be easy, as mapping a gener-
ator to a generator does not always yield an isomorphism. This map sends the element
z + 1 ∈ F8 to the element w ∈ F′

8, and the remaining nonzero elements, necessarily of
the form (z + 1)n for some n ≥ 2 by the previous paragraph, is sent to (w)n. This guar-
antees multiplication is preserved by σ . Verifying that addition is preserved can be
done manually, or by observing that every element a ∈ F8 can be written uniquely as
a sum involving 1, z, and z2, and that for each such a, σ (a) equals precisely the image
of this sum (for example, σ (z2 + 1) = σ (z2) + σ (1) = w2).

Proof of the FTFF. Consider the subring R ⊂ Fq consisting of 0, 1, 1 + 1, . . . ∈ Fq ,
and let p = |R| (the characteristic of Fq). We see that R ∼= Zp, and so p must be
prime, as otherwise Zp (and thus Fq) would contain zero-divisors. This makes Fq a
vector space over the field Zp, necessarily finite-dimensional since Fq is finite, so the
fundamental theorem of linear algebra tells us that (Fq, +) ∼= (Zp)r for some r ≥ 1.
This proves part 3(a) and the forward direction of part 1.

For the backwards direction of part 1, we must prove Zp[x]/〈f (x)〉 is a field with
exactly pr elements. Thus, it is enough to show there exists at least one irreducible
polynomial in Zp[x] of each degree r . The Key Lemma implies that the sum of the
degrees of all irreducible polynomials in Zp[x] whose degree divides r is pr . If we
sum only those degrees strictly dividing r , we obtain

∑

d|r, d .=r

pd ≤
∑

d<r

pd = pr − 1
p − 1

< pr.

As such, there is an irreducible polynomial f ∈ Zp[x] with deg f = r , as desired.
Next, we prove part 3(b). Let N denote the maximum order of any element of the

group (Fq \ {0}, ·). We claim every element has order dividing N . Indeed, if |a| = N
and |b| = m " N , then there exists some prime power t such that t | m and t " N .
However, |abm/t | = lcm(N, t) > N contradicts the maximality of N . This proves the
claim. Now, this means every nonzero element of Fq is a root of xN − 1, which is only
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possible if deg(xN − 1) ≥ q − 1 = |Fq \ {0}|. As such, N = q − 1, and any element
of order N generates (Fq \ {0}, ·), thereby proving part 3(b).

Finally, we prove part 2. Fix any irreducible polynomial f ∈ Zp[x] of degree r .
We claim Fq

∼= Zp[x]/〈f (x)〉. Since f (x) divides xq − x by the Key Lemma, some
element a ∈ Fq is a root of f . Consider the homomorphism

ϕ : Zp[x] −→ Fq

g(x) -−→ g(a),

which has kernel

ker(ϕ) = {g(x) : g(a) = 0} = 〈f (x)〉

by the Root Theorem, since f is irreducible over Zp and has a as a root. As such, the
First Isomorphism Theorem implies Zp[x]/〈f (x)〉 ∼= Im(ϕ), and ϕ must be surjective
since Fq and Im(ϕ) both have q elements, so the claimed isomorphism is shown.
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