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The Fundamental Theorem of Finite Fields:
A Proof from First Principles

Anastasia Chavez and Christopher O’Neill

Abstract. A mathematics student’s first introduction to the fundamental theorem of finite
fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of
Galois theory to prove it. Yet, the combinatorial and algebraic coding theory applications of
finite fields can show up early on for students in STEM. To make the FTFF more accessi-
ble to students lacking exposure to Galois theory, we provide a proof from algebraic “first
principles.”

1. INTRODUCTION. A student’s first introduction to finite fields and the magic
they invoke often occurs in an advanced undergraduate or graduate abstract algebra
course. In particular, the fundamental theorem of finite fields (FTFF) is most com-
monly proved via Galois theory. Finite fields have many exciting combinatorial appli-
cations, one of which is algebraic coding theory. Error-correcting codes, t-designs,
and Hamming codes are common topics for computer science majors with minimal
abstract algebra training. For curious undergraduates with just one year of abstract
algebra, such applied combinatorics is both enriching and inspiring. Yet, the Galois
theory approach to finite fields leaves these students at a disadvantage. To fill an appar-
ent gap in the accessibility of the FTFF, we provide a proof of this great theorem from
“first principles,” i.e., without appealing to Galois groups or splitting fields.

The Fundamental Theorem of Finite Fields.

1. There is a field with exactly q elements if and only if ¢ = p” for p prime, r > 1.
2. Any two finite fields of the same cardinality are isomorphic.
3. For any finite field F with |F| = p" for p prime,

(a) the additive group (F, +) = ((Z,)", +), and

(b) the multiplicative group (IF \ {0}, -) is cyclic.

The proof we provide here is built from several different sources, many of which
either briefly mention or wave their hands at Galois theory for one or more parts of the
argument [1-4]. This approach of introducing finite fields to those with little abstract
algebra exposure has been successfully implemented in several iterations of the applied
combinatorics course at our former home institution.

We provide this manuscript as a resource for those in need of a proof of the funda-
mental theorem that does not utilize the heavy machinery of Galois theory.

This article is organized as follows. In Section 2, we survey the assumed abstract
algebra background, and in Section 3, we review quotient rings and outline a gen-
eral method for explicitly constructing finite fields. Sections 4 and 5 together contain
the proof of the FTFF, with the former section providing a key lemma that has some
consequences of its own.

doi.org/10.1080/00029890.2022.2011567
MSC: Primary 11T06

268 (©) THE MATHEMATICAL ASSOCIATION OF AMERICA  [Monthly 129


http://orcid.org/0000-0001-7505-8184
http://dx.doi.org/10.1080/00029890.2022.2011567

2. PREREQUISITE BACKGROUND. In this section, we survey the minimal pre-
requisite definitions and results that are needed for this article. We assume the reader
is familiar with undergraduate-level linear algebra (including vector space dimension)
and ring theory (including cosets and quotient rings). Please see Dummit and Foote [2]
and Hungerford [3] for more details. Note that all rings are assumed to be commutative
and to have a multiplicative identity.

There are two main families of rings appearing in this article. The first is the ring Z,
of integers modulo n > 2. Note that Z, is a field whenever n is prime, and contains
zero-divisors whenever n is composite. The second is the polynomial ring F[x] whose
coefficient ring F is a field, as well as quotients F[x]/I by an ideal /. Several times
throughout this article, we will use the fact that the polynomial ring F[x] is:

1. a principal ideal domain (PID), meaning every ideal I C F[x] can be written
as I = (f(x)) for some f(x) € I, and the quotient ring F[x]/I is a field if and
only if f(x) is irreducible; and

2. a unique factorization domain (UFD), meaning that every monic, nonconstant
polynomial in F[x] can be written uniquely (up to reordering) as a product of
monic irreducible polynomials in F[x].

We close this section with the following theorems, all of which are usually covered
in an introductory course in rings, and which will be used in the proof of the Key
Lemma given in Section 4.

The Root Theorem. Fix a field F. For any f € F[x], we have f(a) = 0 if and only
if f(x)=(x —a)g(x) forsome g € F[x].

The Freshman’s Dream. Fix a prime p, and let R be a ring with characteristic p
(thatis, p-1=0in R). Ifa,b € R, then (a + b)? = a” + b".

The First Isomorphism Theorem. If R, S are rings and o : R — S is a ring
homomorphism, then Im(c) C S is a subring, ker(c) C R is an ideal, and
R/kero = Im(o).

3. CONSTRUCTING FINITE FIELDS. When constructing small finite fields from
first principles, a common approach is to use the addition and multiplication tables (or
“4-/- tables”) to help guide the behavior of the field’s elements. For example, suppose
we wish to discover all possible finite fields with 3 elements. We know there must be
two distinguished elements 0 and 1, so denoting the only remaining element a, we can
consider all possible ways of completing the +/- tables of 0, 1, a in such a way that
all of the field axioms are satisfied. It is a fun exercise (with a lot of similarities to
playing Sudoku) to show that the only possible configurations are those given in the
left-hand side of Figure 1. In fact, one can easily check that these tables match those
for the well-known field Zs. In general, this approach works for any prime value p to
produce the finite field Z,,.

When constructing finite fields of nonprime cardinality, such as 4 (a prime power),
we can use the same approach. Let us consider elements {0, 1, a, b}. After checking
all the ways to fill out the 4/- tables, we see there is again a unique solution, depicted
in Figure 1. As there is only one way to complete the tables, we once again obtain a
unique finite field of this size, which we denote by F,. Note that 4 has characteristic 2
(i.e., 1 + 1 =0), so F, is not simply Z, (which is, in particular, not a field).
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Figure 1. Unique operation tables for [F3 (left) and [F4 (right).

It would be nice to identify 4 as a more “familiar” ring, as we did with F3 = Z;.
One way to do this is to view the elements 0, 1, a, b € F, as the elements 0, 1, z, z + 1
in the quotient ring Z,[z]/(z> 4 z + 1). In particular, z2 + z + 1 = 0 in this quotient
ring, meaning 22 = —z — 1. As such, each element can be represented by a polynomial
in z with coefficients in Z,, and terms of degree 2 and higher can be eliminated via the
substitution z2 = z+1, e.g.,

GFDE+D=224+2724+1=GC+ D) +2z+1=37+2=72,

or equivalently using division by z2 + z + 1, e.g.,

G+DE+D)=224+2z+1=1(2+z+D+z=12z.

Using this collection of elements, the 4-/- tables are then obtained by performing poly-
nomial addition and multiplication, reducing coefficients modulo 2, and then perform-
ing polynomial long division by z> + z + 1; see Figure 2. Note that in order for this
quotient ring to be a field, it is imperative that z> + z + 1 is irreducible. (In fact, it
is the only degree-2 irreducible polynomial in Z,[z].) To verify z* + z + 1 is indeed
irreducible, note that any reducible degree 2 polynomial has a degree-1 factor, and
therefore has a root by the Root Theorem. However, neither element of Z, is a root of
722 + z + 1, so it must be irreducible.

+ 0 1 z z+1 0| 1 z z+1
0 0 1 z z+1 0 (0] O 0 0
1 1 0 Z+1 z 1 lol T z Z+1
z z | z+1 0 T z |0 Z | z+1 T
z+1 | z+1 z 1 0 z+1 |0 z+1 1 z

Figure 2. Operation tables for Z»(z]/(z% + z + 1).

As a final example, we construct the finite field of 8 elements, Fg (a similar illustra-
tion of the construction of g can be found in [1]).

Proceeding as above, we wish to use polynomial quotient rings to write Fg in the
form Z,[z]/(f(z)), where f is an irreducible polynomial of degree 3. By the Root
Theorem, any reducible degree-3 polynomial has a root, so by inspection of all 2° =
8 polynomials of degree 3 in Z,[z], we see that only two, namely z* + z + 1 and
73 + 72 + 1, are irreducible. Let

Fs = Z[z]/(* +2+1)  and  Fy = Z[w]/(w’ + w* +1).

Although the two quotient rings above are both fields with 8 elements, their multipli-
cation “rules” appear different, in that in Fg we reduce terms of degree 3 and higher
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using the equality z3 +z + 1 = 0, while in F; we reduce using w3 + w?+1 = 0.
For example, despite the visual similarity, the left-hand-side products

Fg: @+ DE+Dmod (@ +z+1) =27, (0
Fg: (w24 D(w + 1) mod (w3 + w2 + 1) =w ()

yield visually distinct results. That said, Fg and [ are isomorphic by the FTFF, and
we give an explicit isomorphism in Section 5.

4. THE KEY LEMMA: FACTORING OVER FINITE FIELDS. For a finite field
F, with ¢ = p”, the key to the FTFF turns out to be factoring the polynomial x — x,
both over I, itself and over Z,. The Key Lemma, stated below and followed imme-
diately by several examples, identifies precisely how x? — x factors as a product of
irreducible polynomials over both fields.

The Key Lemma. Suppose g = p” for p prime and r € Z,.

1. If K is any finite field with |K| = q, then the polynomial x4 — x factors over K
as a product of distinct linear factors.

2. The polynomial x9 — x factors over Z, as the product of all irreducible polyno-
mials over Z, with degree dividing r.

Let us work through a few examples. We start with ¢ = 4, which we constructed as

Fy = Zolz) /(2 +z+1) =1{0,1,z,z + 1}

in Section 3. Since 0, 1 € Z, are both roots of x* — x, the Root Theorem tells us x and
x — 1 are both factors. The Key Lemma implies all remaining factors are of degree 2.
Since polynomial long division by x — 1 yields

e x=x(x=DE*+x+ 1),

the Key Lemma implies x> + x + 1 is the only irreducible polynomial of degree 2
over Z,, a fact we also observed in Section 3. Now, since Z, C F,, the “extra” two
elements of 4 provide more coefficients at our disposal when factoring, so some irre-
ducible polynomials over Z,, like x? + x + 1 in this case, may be factored further over
4. Indeed, we obtain four distinct linear factors, one for each element of Fy, i.e.,

Hex=x(x=DE*+x+1)
=x(x—DEx—2)(x—z+1),

wherein z and z + 1 are the roots of x> 4+ x + 1 in IF,. Remember that the polynomials
in the above expression live in F4[x], so in the second line zand z + 1 are coefficients
that live in Fy.

For ¢ = 8, after factoring x and x + 1 out of x® — x, we obtain a degree-6 poly-
nomial that, by the Key Lemma, must factor into (exactly 2) distinct degree-3 irre-
ducible factors over Z;. As both irreducible polynomials were identified in Section 3,
this yields

Bex=x+ D+ 3+ 2+ x4+ D
=x(x+ D +x+ D+ x>+ 1)
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as the factorization over Zs. It is in this way that we can use the Key Lemma to locate
all possible choices of an irreducible polynomial when constructing a finite field of
a particular size. Next, to factor further over Fg, we will choose the representation
Fs = Z»[z]/(z® + z + 1) and obtain

x3+x+1=(x—z)(x—z_2)(x—z2+z),
PPt l= -+ D -2+ Dx =22 +z+1),

Had we instead chosen the representation Iy = Z,[w]/ (w? + w? + 1), we would have
obtained

PHx+l=@—-—w+Dx—w2+ Dx —w?+w),
Pt = - —w)x —witw+ 1),
as the remaining linear factors of x® — x.

We give one final example before proving the Key Lemma. Applying a similar
process as above for ¢ = 9, we obtain

X—x=xx+DE+2)E+ D>+ x +2)(x* +2x +2)

over Zj3, and factoring further over Fy = Z3[z]/(z> + 1) (this time there were 3 pos-
sible representations to choose from) yields

¥ 4+1=x—-2)x-22),
XHx+2=@x—z+Dx—=2z+1),
X2 +2=(x—z+2)(x —2z+2),

which we encourage the reader to verify as an exercise.

Proof of the Key Lemma. Suppose ¢ = p" for p prime and » > 1, and suppose K is a
field with |K| = ¢. Since K is a field, (K \ {0}, -) is a group of order ¢ — 1, meaning
that every element has order dividing g — 1. As such, a?~! — 1 = 0 for every nonzero
a € K, and thus each is aroot of x? — x. By the Root Theorem, this produces ¢ distinct
linear factors and x? — x has degree g, so this must be precisely the list of factors,
proving part 1.

Next, fix an irreducible polynomial f € Z,[x], and letd = deg f. We wish to show
f(x) | x? — x if and only if d | r, as this implies that the irreducible factors of f(x)
over Z, claimed in part (b) are precisely those that appear. Since f is irreducible, as
stated in Section 2, the quotient ring K = Z,[x]/(f(x)) is a field. To more clearly
distinguish K from the field I, constructed elsewhere in this article, we will denote
the elements of K using the “bracket” notation [4(x)] for h € Z,[x] rather than with
the “overline” notation. Since |K| = p?, we can list the elements of K as

K ={[h],....[ha)]1},

with /1 (x) = 0. If f is linear, then the claim follows from part 1, so assume d > 2.
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First, suppose d | r. Since K is a field, multiplication is cancellative, so multiplying
by [x] permutes the set of nonzero elements. In particular, the list

[(x1lh2(x)],  [x]lhs(0)], ooy [xX][A e (x)]

contains every nonzero element of K exactly once. As such, the product of all elements
in this list can be simplified in two ways to obtain

(X102 ()] - - DA o ()] = Tha )3 ()] -+ - [y ()]
= Py ()] - - Tha (0],

in K, where the expressions on either side of the first equality consist of the product of
the same p? — 1 elements of K (albeit in a different order). Subtracting and factoring
yields

[ = 1A ONA ] - [ ()] = 0] € K,

which implies [x"d‘l — 1] = [0] since K has no zero-divisors. This means we have
Pl 1 e (fx) Z,[x] and thus f(x) | x?"=1 — 1. Since d | r, say r = dk for
some k € Z,

pr —1= (pd _ 1)(pd(k—1) +pd(k—2) + . +pd + 1)’

meaning p¢ — 1 | p" — 1. Analogously, fixing t € Z-¢ so that p" — 1 = t(p? — 1), we
have

d d d d
x4V = @D = (x? -1 _ 1)(x(p “De=D 4 @ =De=2) g 1.

Putting all of this together, we conclude f(x) | X' | x4 —x.

Conversely, suppose f(x) | x4 —x. Writing r = ad + b for a,b € Z with
0 < b < d via the division algorithm, we wish to show b = 0. By way of contra-
diction, suppose that b is positive. Since |K| = p?, similar reasoning as in the first
paragraph of this proof implies [x]”d = [x] in K, and by assumption [x¢ — x] = [0]
in K, so

[x] = [x/] = [x*""

1= (G- (PP P = ],
—

a times

By the Freshman’s Dream, for any g(x) = go + g1x + g2x> +--- € Z,[x], we have

()1 = [(g0)"" + (en” (") + ()" (") + -]
= [go+g1X+g2x2+~-~]
= [g(0)],

meaning every element of K is a root of X — x. However, this is impossible by the
Root Theorem since K has p¢ > p” elements, so we conclude » = 0. This completes
the proof that f(x) | x? — x ifand only if d | r.

There remains one final claim to prove: that each irreducible polynomial f(x) in
the factorization of x¢ — x over Z, appears only once. Indeed, by part 1, the roots of
x? —x in K are all distinct, so x? — x cannot have repeated factors over Z, as this
would yield repeated roots in K. This completes the proof. ]
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5. THE FUNDAMENTAL THEOREM. In this section, we use the Key Lemma to
prove the FTFF in its entirety. Before diving into the proof, let’s briefly explore some
of its implications in the context of s and g from Section 3.

First, the set Fy \ {0} is ensured to be a cyclic group under multiplication, meaning
there is some element a € Fg such that the list a, a?, >, ... includes every nonzero
element of Fg. One such element is z + 1, and we can readily check that every nonzero
element of Fg can be written as (z + 1)" for some n. In fact, it turns out that any
nonzero element we choose for a will do the trick (except a = 1, of course). This
is not true in general: in 7 (which is isomorphic to Z;), only 2 nonzero elements
generate {1, 2, 3,4, 5, 6} as a group under multiplication modulo 7 (one such element
is 3 € Z;, and we encourage the reader to locate the other).

Second, the FTFF implies that g and [ are isomorphic, but it is not hard to show

that the map Fg — Iy given by az? + bz + ¢ — aw? 4+ bw + c is not an isomorphism
(compare, for instance, the right-hand sides of (1) and (2) in Section 3). One possible
isomorphism o : Fg — I turns out to be

o(0) =0, a(_E):w—l—l, 0(2+2) =w?+w,
o(l) =1, o@)=w+1, o@+z+h=wltw+l,
o(z+1)=w, o (2 + 1) = w?,

which happens to map a generator to another generator. In general, locating an explicit
isomorphism between finite fields of equal size need not be easy, as mapping a gener-
ator to a generator does not always yield an isomorphism. This map sends the element
z+ 1 € Fyg to the element w € Iy, and the remaining nonzero elements, necessarily of
the form (z 4 1) for some n > 2 by the previous paragraph, is sent to (w)". This guar-
antees multiplication is preserved by o. Verifying that addition is preserved can be
done manually, or by observing that every element a € Fg can be written uniquely as

a sum involving 1, z, and z2, and that for each such a, o (a) equals precisely the image
of this sum (for example, 0 (z2 + 1) = 0 (z2) + o (1) = w?).

Proof of the FTFF. Consider the subring R C [F, consisting of 0, 1,1 +1,... € I,
and let p = |R| (the characteristic of F;). We see that R = Z,, and so p must be
prime, as otherwise Z, (and thus F,) would contain zero-divisors. This makes [, a
vector space over the field Z,, necessarily finite-dimensional since F, is finite, so the
fundamental theorem of linear algebra tells us that (F,, +) = (Z,)" for some r > 1.
This proves part 3(a) and the forward direction of part 1.

For the backwards direction of part 1, we must prove Z,[x]/(f (x)) is a field with
exactly p” elements. Thus, it is enough to show there exists at least one irreducible
polynomial in Z,[x] of each degree r. The Key Lemma implies that the sum of the
degrees of all irreducible polynomials in Z,[x] whose degree divides r is p". If we
sum only those degrees strictly dividing r, we obtain

> P"SZP"=pr—1<p’-

dlr, d#r d<r P 1

As such, there is an irreducible polynomial f € Z,[x] with deg f = r, as desired.
Next, we prove part 3(b). Let N denote the maximum order of any element of the
group (F, \ {0}, -). We claim every element has order dividing N. Indeed, if |a| = N
and |b| = m t N, then there exists some prime power ¢ such that r | m and ¢t N.
However, |[ab™/!| = lcm(N, t) > N contradicts the maximality of N. This proves the
claim. Now, this means every nonzero element of IF, is a root of x¥ — 1, which is only
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possible if deg(xV — 1) > g — 1 = |F, \ {0}|. As such, N = g — 1, and any element
of order N generates (IF, \ {0}, ), thereby proving part 3(b).

Finally, we prove part 2. Fix any irreducible polynomial f € Z,[x] of degree r.
We claim F, = Z,[x]/{f (x)). Since f(x) divides x? — x by the Key Lemma, some
element a € I, is aroot of f. Consider the homomorphism

¢ ZLylx] — T,
g(x) —> g(a),

which has kernel

ker(p) = {g(x) : g(a) =0} = (f(x))

by the Root Theorem, since f is irreducible over Z, and has a as a root. As such, the
First Isomorphism Theorem implies Z,[x]/{f(x)) = Im(¢), and ¢ must be surjective
since [F, and Im(¢) both have ¢ elements, so the claimed isomorphism is shown. =
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