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The Catalan numbers form a sequence that counts over 200 combinatorial objects.
A remarkable property of the Catalan numbers, which extends to these objects, is
its recursive definition; that is, we can determine the n-th object from previous
ones. A matroid is a combinatorial object that generalizes the notion of linear
independence with connections to many fields of mathematics. A family of
matroids, called unit interval positroids (UIP), are Catalan objects induced by the
antiadjacency matrices of unit interval orders. Associated to each UIP is the set
of externally ordered bases, which due to Las Vergnas, produces a lattice after
adjoining a bottom element. We study the poset of externally ordered UIP bases
and the implied Catalan-induced recursion. Explicitly, we describe an algorithm
for constructing the lattice of a rank-n UIP from the lattice of lower ranks. Using
their inherent combinatorial structure, we define a simple formula to enumerate
the bases for a given UIP.

1. Introduction

The Catalan numbers form an infinite sequence that is ubiquitous in mathematics.
Its rich history and connection to the enumeration of over 200 combinatorial objects
is captured in [Stanley 2015]. Some of these combinatorial objects are triangulations
of convex polygons with n + 2 vertices (Figure 1), binary trees with n 4 2 vertices,
plane trees with n 4 1 vertices, ballot sequences of length 2n, parenthetizations,
and Dyck paths of length 2n.

The modern description of the Catalan numbers stems from Eugene Catalan’s
interest in the triangulation of polygons problem [Stanley 2015]. Catalan numbers

are defined as 5
1 n
Cn = n+1 ( n >
MSC2020: 05B35.

Keywords: matroid, positroid, Catalan number, Catalan recursion, poset.
Chavez was partially supported by NSF grant DMS-1802986.

893


http://msp.org
http://msp.org/involve/
https://doi.org/10.2140/involve.2021.14-5
https://doi.org/10.2140/involve.2021.14.893

894 JAN TRACY CAMACHO AND ANASTASIA CHAVEZ

/\
ACANAPAN

VIR AVAASAY,
VANV PAL,

Figure 1. Triangulations of convex polygons with 3, 4, 5, and 6 vertices.

While studying these triangulations, Euler and Goldbach derived [Stanley 2015]
the recursive definition

n
Cat1= _ CaCot. Co=1.
k=0

Remarkably, objects enumerated by the Catalan numbers exhibit a similar recur-
sive property. That is, given a Catalan object, there is a rule that describes how to
produce an object from the objects that came before it.

We introduce a new Catalan object called the externally ordered poset of a unit
interval positroid and explore its potential recursion. The elements of this poset are
bases of a special matroid called a unit interval positroid (UIP), a Catalan object
introduced in [Chavez and Gotti 2018]. The elements are partially ordered by the
external order of matroid bases, <gx, as defined in [Las Vergnas 2001]. We denote
such a poset as Ex(P,), where P, is a rank-n positroid.

Our main results are:

o We introduce an algorithm that generates a partially ordered set of elements from
Ex(P,), where P, is a certain rank-n UIP we call the trivial UIP (see Section 3).

» We prove that the algorithm produces exactly the bases of the rank-(n-+1) trivial
UIP (see Theorem 4.4).

o We prove the algorithm induces the desired external ordering on the rank-(n-+1)
trivial UIP bases (see Theorem 4.5).

That is, we show Ex(P,+1) can be recursively described in terms of Ex(7,) for the
rank-(n+1) and rank-rn trivial UIPs. This is the first step towards describing the
complete recursion for externally ordered posets of every UIP.

This paper is organized as follows. In Section 2 we provide the background
material necessary for this paper. In Section 3 we introduce our algorithm. In
Section 4 we present our main theorems. In Section 5 we discuss future work.
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2. Background

Matroids. Matroids capture the essence of dependence as we know it in linear
algebra and graph theory. Though several definitions of a matroid exist, we utilize the
basis definition in our work. We refer to [Oxley 1992] for a deeper study of matroids.

Definition 2.1. A matroid M is a pair (E, B) consisting of a finite set £ and a
nonempty collection of subsets B = B(M) of E that satisfy the following properties:

(B1) B+ o.

(B2) (basis exchange axiom) If By, B, € B and b; € B; — By, then there exists an
element b, € B, — Bj such that B; — {1} U {b,} € B.

An element B € B is called a basis and | B]| is the rank of M. A set I C E such
that / C B, for a basis B, is called independent. A minimally dependent set C,
that is, C — {e} is independent for any e € C, is called a circuit. The finite set E is
called the ground set.

For a subset B = {b; < by < --- < by} of the ordered set E, we call b; the
smallest element of B and denote it as min B. Similarly, we call by the largest
element of B and denote it as max B.

Example 2.2. Let £ = {1, 2, 3, 4} be the set of labels of the columns of the matrix

10 -1-1
A= <0 11 1) ‘
Then the set of bases B of the matroid over E is the collection of all maximally
independent sets of E. That is, B = {12, 13, 14, 23, 24}. Considering all the sets of

minimally dependent sets of the columns of A, we get that the set of circuits of M
is C = {123, 124, 34}. The reader can check that B satisfies the bases axioms above.

A matroid M is called realizable and denoted by M(A) if its bases are in
bijection with the set of maximally independent columns of some matrix A over
some field F. The matroid described in Example 2.2 is realizable.

A matrix A is called totally nonnegative if all of its maximal minors are nonneg-
ative. Postnikov [2006] defined a family of realizable matroids whose associated
matrices are totally nonnegative.

Definition 2.3. A positroid of rank r over [n] is a realizable matroid such that the
associated full rank r x n R-matrix A is totally nonnegative.

The matroid M (A) given in Example 2.2 is a positroid of rank 2. In fact, M(A)
is a unit interval positroid, which we discuss in the next section.
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Figure 2. Hasse diagram of a unit interval order with six elements
and its unit interval representation.

Unit interval positroids. Recall that a partially ordered set (P, <), or poset, is
a set P with a relation < that satisfies reflexivity, antisymmetry, and transitivity
[Stanley 2012]. We can represent the poset (P, <) as a Hasse diagram that shows
the elements of P with the cover relations. See Figure 2.

Definition 2.4. A poset P is a unit interval order if there exists a bijective map
i~ [gi,qi + 1] from Ptoaset S ={[g;,qi+1]|1<i<n, q; €R} of closed
unit intervals of the real line such that, for i, j € P, we have i <p j if and only if
g; +1 < g;. We then say that S is an interval representation of P.

Associated to every unit interval order is an antiadjacency matrix, the key to
describing unit interval positroids.

Definition 2.5. For an n-labeled poset P, the antiadjacency matrix of P is the
n x n binary matrix A = (a; ;) with ¢; ; =0 if and only if i <p j.

Skandera and Reed [2003] proved that by labeling the unit interval order appro-
priately, every minor of the corresponding antiadjacency matrix A is nonnegative.
That is, the determinant of every submatrix of A is O or a positive number. This
fact, combined with the following result, leads us to our positroid of interest.

Lemma 2.6 [Postnikov 2006, Lemma 3.9]. For an n x n real matrix A = (a; ;),
consider the n x 2n matrix B = (A) where

1 1
ayl v dig 100 (=D"'a,y -+ (=D"a,,
ap—1,1 *** Qu—1n 0---10 —as, N —ax
ap,1 - Qpn 0--- 01 ai i an

For each pair (1, J) with I, J C [n] and |I| = |J|, define the set
K=K{U,J)={n+1—k|ke[n\}U{n+j|jelJ}
Then we have Ay j(A) = A,k (B).

Lemma 2.6 allows the information from the n x n antiadjacency matrix to be
encoded as the corresponding n x 2n matrix. Explicitly, Lemma 2.6 associates the
determinants of the submatrices of the antiadjacency matrix to the maximal minors
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of the n x 2n matrix. The antiadjacency matrix of a properly labeled unit interval
order generates a totally nonnegative matrix, that is, a positroid. A positroid on
[2n] induced by a unit interval order is a unit interval positroid or UIP.

Let P be a unit interval positroid and C a circuit of P. Assume e € C is the
smallest element of C. Then C — {e} is called a broken circuit. Bases that do
not contain broken circuits are called atoms. However, if B is a broken circuit,
then there is an element e such that B U {e} is a circuit and e = min{B U {e}} (i.e.,
the smallest element of B U {e}).This notion of broken circuits is captured by the
ordering discussed in the next section.

External activities. Las Vergnas [2001] introduced the notion of active orders, a
collection of related orders on bases of a matroid using broken circuits. We use
only the external order to define our poset of interest, though one can derive the
results for other orders from this one.

Definition 2.7. Let M be a matroid on a linearly ordered set E, and let A C E. We
say an element e € E is M-active with respect to A if there is a circuit C of M
such that e € C € A U {e} and e is the smallest element of C. We denote the set of
M-active elements with respect to A by Acty(A).

To determine the active elements for our positroids we look at those subsets
A C E where A is a basis. Then those elements e are exactly the elements which
make or break a circuit.

Definition 2.8. The external set of an element A is obtained by setting Exty;(A) =
Acty (A)\A.

Las Vergnas defines the external ordering of bases A and B, denoted by A <gx B,
of a matroid M over an ordered ground set by considering how bases are formed
from broken circuits (see [Las Vergnas 2001] for details). We instead use the
equivalent statement (2) in the following proposition as the definition of A <gy B.
That is, A <gx B if and only if A € B UExty,(B).

Proposition 2.9 [Las Vergnas 2001, Proposition 3.1]. Let A, B be two bases of an
ordered matroid M. The following properties are equivalent:

(1) A <gxt B.
(2) A C BUExty(B).
(3) AUExty(A) € BUExty (B).

(4) B is the greatest, for the lexicographic ordering, of all bases of M contained
in AUB.

Let P be the unit interval positroid generated by the poset where all elements
are incomparable, which we call trivial. We utilize the second equivalence of
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I3 111 100 1 1 1
)5 — 1,3 111]p — |010 -1 -1 -1
I, 111 001 1 1 1

Figure 3. Generating the matrix representation of a trivial UIP of
rank 3 from a unit interval order of three elements.

Proposition 2.9 on the trivial UIP in order to determine the externally ordered poset
of its bases. For an example of generating the matrix representing the trivial UIP of
rank 3, see Figure 3.

Example 2.10. Consider P3, the trivial UIP of rank 3. We will determine the

external ordering on its bases. Using Proposition 2.9, we first determine the active

elements for every basis B € B, that is, Actp,(B). The circuits and bases of P5 are

given by

Cpy=1{(1,2,3,4),(1,2,3,5),(1,2,3,6), 4,5), (4,6), (5, 0)},

Bp, =1{(1,2,3),(1,2,4),(1,2,5),(1,2,6), (1,3,4), (1, 3,5), (1, 3, 6),
(2,3,4),(2,3,5),(2,3,0)}.

Table 1 shows necessary calculations.

e celp AU {e} A Acty(A) | Exty (A)
11(1,2,3,4) | (2,3,49)U{l} (1,2,3) none o]
(1,2,3,5 | (2,3,5 U{1} (1,2,4) none 7]
(1,2,3,6) | (2,3,6)U{l1} (1,2,5) 4 4
2 none (1,2,6) 4,5 4,5
3 none (1,3,4) none 1%
4 4,5) (1,2,5) U {4} (1,3,5) 4 4
(1,3,5) U {4} (1,3,6) 4,5 4,5
(2,3,5 U {4} 2,3,4) 1 1
4,6) (1,2,6)U {4} 2,3,5) 1,4 1,4
(1,3,6)U {4} 2,3,6) 1,4,5 1,4,5
(2,3,6)U {4}
5 (5,6) (1,2,6) U {5}
(1,3,6)U {5}
(2,3,6)U{5}
6 none

Table 1. Left: calculating M-active elements. Right: calculating
the external set.
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Ex(P>) 24
A | Extp,(A)
(1,2) %)
23 14
(1,3) %)
(1,4) 3
2,3) ! 012 13
2,4 1,3

Figure 4. Ex(P,) and the Hasse diagram.

To form the externally ordered poset, we use Proposition 2.9(2) in order to obtain
the relations described by Proposition 2.9(1). For example, for bases A = (1, 2, 3)
and B = (2, 3, 4), we check if the containment A C BUEXty;(B) is satisfied. We can
observe that (1, 2, 3) C (2, 3, 4) U{1}, and thus A <gx B. Continue this calculation
for all pairs of bases until all bases are ordered. The resulting object, which is a set of
bases ordered by the relation <gy, is the externally ordered poset of the bases of Ps.

Recall the poset of the trivial UIP bases with the external order is denoted as
Ex(P,). Continuing with Example 2.10, we now show how to compute Ex(P,).
We compare the bases of P, pairwise using Proposition 2.9(2). That is, for every
A, B € Bp,, check if A € BUEXxty(B) is satisfied. Given the information from the
table of Ex(P,), we can draw the Hasse diagram for Ex(P;) as seen in Figure 4.

3. Algorithm

To prove Ex(P,) can be described recursively we first describe an algorithm that
generates a set of elements S from the set of bases of P, and defines an order
induced by Ex(P,). Let Bp, be the bases of the trivial UIP P,. The algorithmic
steps are named for future reference:

(1) Reinforce: for B € Bp,, the set s € S is achieved by adding 1 to all elements
of B and adjoining min B. The original order is kept.

(2) Build up: fors € S,if2n+1€s,thens’ =s\{2n+1}U{2(n+ 1)} isin S
and s covers s'.

(3) Grow spine: for s € S such that 2 = mins, we have s’ =s\{2} U{l1}isin S
and s covers s'.

In the next section we prove the set of elements S is precisely the set of bases of
Pn+1 and the induced order preserves the external order of the bases of P, .

Figure 5 illustrates each step of the algorithm applied to the external poset of the
trivial UIP of rank 2.
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Figure 5. The algorithm applied to the trivial UIP PP, which produces
the final ordered set.

4. Main theorem

Denote the algorithm above by y; that is, y (Bp,) is the ordered set of elements
produced by y. To prove our main result, we show y (Bp, ) is precisely the externally
ordered poset of the bases of the rank-(n+1) trivial UIP. That is, we show y produces
the set of bases expected and the bases are externally ordered. We first give a simple
description of the bases and circuits of the trivial UIP.

Lemma 4.1. Let P be the trivial unit interval positroid of rank n and B € B a basis
of P. Then B satisfies one of the following:

(1) B=(1,...,n).

2) B = (1,...,},...,n)U{j}f0rj € [n+1,...,Zn],wherefindicatesj is
not included in the basis B.

Moreover, |B| = n? + 1.

Proof. By Lemma 2.6, we know that P is represented by the n x 2n matrix

1 0 -+ 0 (=D .. (=Dl
01 ---0 : . :
P10 (=D - (=D |
0 0 1 1 e 1
where the first n columns form the n x n identity matrix and the last [n+1, .. ., 2n]
columns are equal.
Since the [n + 1, ..., 2r] columns are all the same, any nonsingular maximal

submatrix can include at most one of these columns.
The first basis description corresponds to the n x n identity matrix, which contains
no column from [+ 1, ..., 2n].
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The second basis description corresponds to replacing one column of the n x n
identity matrix with one column from [n + 1, ..., 2n].

We use our description to enumerate the bases. To form a basis of the second kind,
we remove an element from {1, 2, ..., n} and replace it with any of the n elements
from [n+1, ..., 2n]. This is done in (’})n ways. Including the basis {1, 2, ..., n},
we get

(7)11 +1=n%>+1
bases, as desired. O

Lemma 4.2. Let P, be the trivial UIP and Cp, its set of circuits. Then any C € Cp,
must either be [ Ui, wherei € [n+1,2n]ori, j fori, je[n+1,2n]andi # j.

Proof. Notice that a circuit corresponds precisely to a minimally singular submatrix
of

1 0 - 0 (=D .. (=D!
o1 ---0 f :
c .10 (=) - (=D
0--- 0 1 1 1

Thus, any circuit corresponds to the n x n identity matrix adjoin a column from
[n+1,...,2n] or a pair of columns from [n+1, ..., 2n]. Note these are minimally
singular since the removal of one column produces either a basis as described in
Lemma 4.1 or a single nonzero column which is independent. U

We state the following observation about bases of trivial UIPs, though it is not
used in any subsequent theorem.

Lemma 4.3. Let B € B(P,), where Py, is a trivial unit interval positroid. Then
€(B) =0 ifand only if B is a minimally ordered basis.

Proof. Assume €(B) =0 (i.e., Ext(B) = &) and there exists A € B such that A < B.
Then A C BUEXxt(B) = B, which implies A = B.

Assume B is minimal and Ext(B) # &. First, note B minimal implies 1 € B.
If not, let B = B\2 U 1. Then Ext(B") = Ext(B)\{l}, so that B’ C BUExt(B),
implying B’ < B, a contradiction. Since Ext(B) # &, there exists ¢ = min C for
some circuit C of P, such that C C B U {e}. By Lemma 4.2, C = {e, j} for some
j€ln+1,2n]and j #e. Then Ext(B) ={n+1,..., e}, and j € B necessarily.
Let A= B\{j}U{e}. Then A < B, a contradiction. ([l

Next we prove y produces the set of desired bases.

Theorem 4.4. Let B be the set of bases of the trivial unit interval positroid P, of
rank n over ground set [2n]. Then, after applying algorithm y to B, we have y (B)
is the set of bases for the trivial unit interval positroid P, of rank n 4+ 1 over
ground set [2(n + 1)].
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Proof. Let B=B(P,,). We will show that y (B) produces a B eB (P2(n+1)) for every
BeB.Let B={l,...,n}. Then y(B) = {1, ...,n+ 1}, which by Lemma 4.1(1)
is a basis of Py,41). Let B = {1,2,...,},...,11}, where f en+1,...,2n].
Applying step 1 of y we have that y(B) = B+ 1U {min B} € y (B). Explicitly, this
means
(1,2,3,...,j+1,....n+ 1} e y(B),
where
j+leln+22n+1].

Since [n+2,...,2n+1]C[(n+1)+1,...,2(n+1)], by Lemma 4.1 we have
that y (B) is a basis of Py(,41). Moreover, there are n® bases created at this step.
For the second step of y, let Byax be the set of bases such that

max(y(B)) =2n+ 1.

Then for all B € Bz, we have B\{2n + 1} U{2(n+ 1)}. All sets generated prior to
this step have maximum value 2n + 1. Thus, all sets generated at this step of y are
new elements of y (55). Every new set generated is formed by choosing a value of
[#] and replacing it with 2(n 4 1). Thus each set is a basis and we have n new bases.

For the final step of y, let Bni, be the set of bases such that min(y (B)) = 2.
Then, for every B € Bpin, we have B\{2} U {1} € y (). Note Lemma 4.1 implies
3 € B for every B € Bpnin. Then for every set generated at this step, it must contain
1, 3 and not 2. By construction, all sets generated by y prior to the third step of y
have that their first two entries are consecutive. Thus, all sets generated in this third
step are new and, by Lemma 4.1, a basis. Thus all sets are bases of P,,1.

To enumerate the bases generated in this final step of y, let us analyze the number
of bases it applies to. By the first step of the algorithm, every basis B € B such
that min B = 2 produces a basis in B(P(,41)) with minimum element 2. Thus, the
number of bases produced equals the number of B € B such that min B =2, which
is n. By the second step of the algorithm, the only basis produced with minimum
element 2 is the one that also has maximum element 2n. Thus in total, there are
n + 1 bases with minimum element 2 produced by y. Accounting for the all the
bases produced at every step of y, we have that

Yy BPrwsy)) | =n*+n+n+1+1=m+1D>+1,
as desired. O

Using the above results, we may now prove our main theorem.

Theorem 4.5. Let B(P,) be the bases of the rank-n trivial UIP on [2n]. Assume
y is defined to be the algorithm described in Section 3. Then y (B(P,)) is equal to
Ex(P,+1), the externally ordered poset of bases of the rank n + 1 trivial UIP on
2(n+1)].
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Proof. By Theorem 4.4, we know y (B(P,)) produces the set of bases of P,4;. It
is left to show that y also induces the external order on B(P, 1), thus producing
Ex(P,+1). Let A, B € B(P,). We prove this by cases for each step of the algorithm,
confirming that the condition A € B UExt(B) in Proposition 2.9 is satisfied. Let
A= y (A) for any A € B(P,). For the following cases, A denotes the basis produced
by y after performing only the first step of the algorithm. Since every basis in
B(P,) contains either 1 or 2, we need consider only the following three cases.

Casel: 1€ Aand 1 € B. Since 1 € A, the only circuits contained in A U {i}
for i € [2n] are those of the form (i, j) fori, j e [n+1,...,2n]. Thus Ext(A) =
{n+1,..., max A—1}. Similarly, Ext(B) ={n+1, ..., max B—1}. After applying
step 1 of y, we have 1 € A and 1 € B. Thus Ext(A) = {n+2,...,maxf§ — 1}
and Ext(B) = {n +2,...,maxB — 1}. Leta € A\{l}. Thena = a; + 1 for
a; € A. Since A <gy B, it follows that a; € BU{n + 1, ..., max B — 1}. Thus,
a+1eB+1U{n+2,...,max B}. Note that max B — | = max B. Therefore,
a € BUExt(B).

Case2: 1 € Aand 1 ¢ B. By definition, if 1 ¢ B then 1 € Ext(B) for every
B of a trivial UIP. Let a € A\{l}. Then a = a; + 1 for aq; € A. We know qa; €
Bu{l,n+1,...,max B—1}. Thus,a;+1e€ B+1U{l,n+2, ..., max B}. Note
that max B — 1 = max B. Therefore, a € BU Ext(ﬁ).

Case 3: 1 ¢ A or B. By assumption we know that 1 € Ext(A) and 1 € Ext(B).
Then for a € A\{Z} we have that a = a; + 1 for a; € A. Since a; € BU
{I,n+1,. max(B)—l} it follows a; + 1 eB+1U{1 n+2,..., max B}.
Note that max B — 1 = max B. Therefore, a € B U Ext(B)

For the second step of the algorithm, notice that the only change to a basis B
is that the element 2n + 1 is replaced with 2(n 4 1). This means that Ext(ﬁ) =
Ext(B) U {2n 4 1}. Then the cases to check are exactly those done for step 1 of
the algorithm, and they proceed in the same way. Similarly, for the third step,
Ext(§) = Ext(B)\{1} since this step replaces the element 2 with 1. And then the
cases proceed as above.

In all cases, the external order of 5(P,41) is shown to be induced by the external
order of B(P,). Thus, y (B(P,)) = Ex(P,+1) as desired. U

5. Conclusion and future work

The recursive algorithm for the external poset on the bases of trivial UIPs provides a
stepping stone to explore and develop either general or specific recursive algorithms
for the other UIPs. In Figure 6 we see the trivial UIP and the remaining UIPs of
rank r = 3. There appears to be some symmetry in the Hasse diagrams, but it is
unclear how these five UIPs give rise to the nontrivial UIPs of rank » = 4. See
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N PN
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~ I T S > > ]
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N T~
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I i | T |
[0, 1,3] [0,1,2] [0,2,3] [0,2,4] [0,2,4] [0, 1,2] [0,2,3] [0,1,3]

Figure 6. All UIPs with rank r = 3.
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[0,1,2,4] 10, 2A‘3,4] [0,1,2,3] [0,2,3,7] [0,1,3,4] [0,1,3,7]
[1.3,5.7]
[1.3.4,7] [0.3.5.7] [1.2,5.7] [1.3.5.6]
/
[1.2,3,7] [0‘3.4,741.2.4,71 [0,2,5,7] [1.3,4,6] [0,3,5,6] [1.2,5,6] [1.2,3,5]
.2, 4, .3, 4, [1.2.4,6] [0.2,5.6] [0.2,3.5 [l.2,3.4>0.],2.5j [0.1,3,5]
>/<

Figure 7. Two of the 14 UIPs with rank r = 4.

Figure 7 for examples of externally ordered posets for nontrivial UIPs of rank r = 4.
As was done for the recursion for the externally ordered poset for trivial UIPs,
a potential first step is to find nice descriptions for the bases and circuits of the
remaining UIPs.

Another approach to recursively describe the remaining externally ordered posets
is to consider matroid minors. One can check if minors of rank-(n+1) UIPs are
isomorphic to rank-n UIPs.
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