
MTrajRec: Map-Constrained Trajectory Recovery via Seq2Seq
Multi-task Learning

Huimin Ren1,4, Sijie Ruan2,4, Yanhua Li1,∗, Jie Bao4,
Chuishi Meng4, Ruiyuan Li3,4, Yu Zheng2,4

1Worcester Polytechnic Institute, MA, USA 2Xidian University, Shaanxi, China
3Chongqing University, Chongqing, China 4JD Intelligent Cities Research

hren@wpi.edu;sjruan@stu.xidian.edu.cn;yli15@wpi.edu;
{baojie,meng.chuishi}@jd.com;liruiyuan@whu.edu.cn;msyuzheng@outlook.com

ABSTRACT
With the increasing adoption of GPS modules, there are a wide
range of urban applications based on trajectory data analysis, such
as vehicle navigation, travel time estimation, and driver behavior
analysis. The effectiveness of urban applications relies greatly on
the high sampling rates of trajectories precisely matched to the map.
However, a large number of trajectories are collected under a low
sampling rate in real-world practice, due to certain communication
loss and energy constraints. To enhance the trajectory data and
support the urban applications more effectively, many trajectory re-
covery methods are proposed to infer the trajectories in free space.
In addition, the recovered trajectory still needs to be mapped to the
road network, before it can be used in the applications. However,
the two-stage pipeline, which first infers high-sampling-rate tra-
jectories and then performs the map matching, is inaccurate and
inefficient. In this paper, we propose a Map-constrained Trajectory
Recovery framework, MTrajRec, to recover the fine-grained points
in trajectories and map match them on the road network in an
end-to-end manner. MTrajRec implements a multi-task sequence-
to-sequence learning architecture to predict road segment and mov-
ing ratio simultaneously. Constraint mask, attention mechanism,
and attribute module are proposed to overcome the limits of coarse
grid representation and improve the performance. Extensive exper-
iments based on large-scale real-world trajectory data confirm the
effectiveness and efficiency of our approach.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems.

KEYWORDS
Trajectory recovery; Road network; Multi-task learning; Sequence-
to-sequence model

*Yanhua Li is corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467238

ACM Reference Format:
Huimin Ren, Sijie Ruan, Yanhua Li, Jie Bao, Chuishi Meng, Ruiyuan Li, Yu
Zheng. 2021. MTrajRec: Map-Constrained Trajectory Recovery via Seq2Seq
Multi-task Learning. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’21), August 14–18, 2021,
Virtual Event, Singapore. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3447548.3467238

Figure 1: Intuition of Trajectory Recovery Problem

1 INTRODUCTION
Nowadays, GPS modules have been widely used throughout all
kinds of mobile devices, and the generated trajectory data have em-
powered many applications, such as vehicle navigation [11], travel
time estimation [6], driver behavior analysis [5]. The effectiveness
of these applications relies on the sampling rate of trajectories, since
low-sampling-rate trajectories lose detailed information for mov-
ing objects and increase the uncertainty between two consecutive
sampled locations. However, in reality, there is a large quantity of
low-sampling-rate GPS trajectory data. For instance, taxis usually
report GPS locations every 2 ∼ 6 minutes to reduce the energy
consumption of communication [31].

In order to utilize these low-sampling-rate trajectories more ef-
fectively, many inference methods have been proposed to recover
low-sampling-rate trajectories. One straight forward solution is to
assume that vehicles are movingwith the uniform speeds [10]. How-
ever, the dynamic behavior mobility pattern cannot be captured
in this way. To tackle this challenge, many deep learning based
models have been proposed [28–30]. For example, Wang et al. [28]
recovered a high-sampling-rate trajectory from a low-sampling-
rate one with DHTR, which predicts the coarse-grained grid of
high-sampling-rate point by integrating a sequence-to-sequence
model with a calibration component of Kalman Filter. However,

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1410

https://doi.org/10.1145/3447548.3467238
https://doi.org/10.1145/3447548.3467238
https://doi.org/10.1145/3447548.3467238

after the trajectory recovery process, there is still a map match-
ing [20] task to be done, before the trajectory data can be used by
the applications. The map matching task aligns GPS points in trajec-
tories with the road network, and is a fundamental pre-processing
step. It not only empowers the road-based applications, e.g., vehi-
cle navigation [11], travel time estimation [6], but also enriches
trajectories with more semantic meanings to benefit driver-based
applications, e.g., behavior analysis [5].

Traditional methods solve the map-constrained trajectory re-
covery problem through a two-stage pipeline, which first recovers
low-sampling-rate trajectories and then implements a map match-
ing algorithm to project trajectories onto the road network. Al-
though we can perform map matching based on the recovered
trajectory as shown in Fig. 1, the inference error can be accumu-
lated. In addition, the two-stage pipeline is also inefficient because
map matching algorithms are time-consuming [18, 20, 31]. Based
on these observations, a natural question arises: can we recover a
high-sampling-rate trajectory based on a low-sampling-rate one
and perform map matching on it simultaneously? The end-to-end
solution is expected to reduce the inference error as shown in the
bottom part of Fig. 1, and improve the efficiency.

Luckily, with the renaissance of neural networks, the deep learn-
ing technique provides a promising computational framework to
solve complicated tasks, which gives us an opportunity to tackle
the challenges in an end-to-end fashion. To our best knowledge,
this work is the first attempt to recover low-sampling-rate trajecto-
ries and map match them onto the road network simultaneously.
Specifically, the map-constrained trajectory recovery problem is
challenging due to the following reasons:

(1) Map constraints. Previous work [28–30] focus on trajectory
recovery in the free space. It is difficult for a deep learning
model to generate road network constrained coordinates.

(2) Coarse grid representations. Converting the numerical coordi-
nates to discrete units is a common preprocessing strategy for
deep-learning-based trajectorymodeling [7, 21, 23, 28, 30], since
it can reduce the computational complexity of unconstrained
numerical coordinates. However, using discrete units is likely
to introduce noises or inaccurate information into the model,
which incurs challenges in the fine-grained trajectory recovery
problem.

(3) Diverse complex factors. The recovery accuracy is influenced by
traffic conditions, as vehicles are not moving at constant speeds
in the real world. The traffic conditions are determined by many
complex factors, such as the spatial context, temporal depen-
dencies, and weather conditions [27]. In such scenario, only
using the low-sampling-rate trajectory data is not be sufficient
to recover the missing points accurately.

To tackle these challenges, in this paper, we propose a novel
Map-constrained Trajectory Recovery model, i.e., MTrajRec, which
is based on the sequence-to-sequence (Seq2Seq) multi-task learning.
MTrajRec recoveries the trajectories by interpolating the missing
points on the road network. First, to guarantee the recovered trajec-
tories constrained on the road network, we introduce a multi-task
learning into the classic Seq2Seq generation framework by predict-
ing road segment IDs and moving ratios simultaneously. In order to
deal with coarse grid representation, we design a constraint mask

layer to extract the fine-grained information. Finally, since the traf-
fic is affected by complex factors, we employ an attribute module
to capture the external influences. Overall, our main contributions
can be summarized as follows:
• We present the first attempt to solve the map-constrained trajec-
tory recovery problem via Seq2Seq multi-task learning.
• We devise a novel MTrajRec model, which can recover the trajec-
tory and map match it onto the road network simultaneously. We
utilize constraint mask, attention mechanism and attribute module
to improve the performance.
• We conduct substantial experiments using a real-world taxi tra-
jectory dataset to evaluate the effectiveness and efficiency of our
proposed MTrajRec.

2 OVERVIEW
2.1 Preliminaries
Definition 1. Trajectory. A trajectory 𝜏 can be defined as a se-
quence of GPS positions with timestamps, i.e, 𝜏 = ⟨𝑝1, 𝑝2, · · · , 𝑝𝑛⟩,
where 𝑝𝑖 = ⟨𝑙𝑎𝑡, 𝑙𝑛𝑔, 𝑡⟩,∀𝑖, 1 ≤ 𝑖 ≤ 𝑛, which captures the latitude
and longitude of the GPS position at timestamp 𝑡 .

Definition 2. Road Network. A road network is a directed graph
G = (V, E), whereV = {𝑣1, 𝑣2, · · · , 𝑣𝐾 } is a set of nodes represent-
ing intersections of road segments, and E = {𝑒1, 𝑒2, · · · , 𝑒𝐿} refers
a set of edges representing the road segments which connect nodes
𝑣 inV . For each 𝑒 ∈ E, it contains three properties: 1) start and end
nodes, indicating the start and end GPS position of a road segment;
2) length, which refers to the distance of a road segment in meter;
3) level, which indicates the type of road, such as highway, street,
etc., with different colors shown in Fig. 2(a).

(a) Road Segments Properties (b) Moving Ratio 𝑟

Figure 2: Examples of Preliminary Concepts

Definition 3. Map Matching. Due to GPS device measurement
errors, the GPS data is not precise. Map matching is a procedure to
convert a sequence of raw latitude/longitude coordinates, so that
the raw GPS points will be projected onto the road network.

Definition 4. Map-matched Trajectory Point. Amap-matched
trajectory point is denoted as 𝑎 = ⟨𝑒, 𝑟, 𝑡⟩, where 𝑒 is the road
segment ID, 𝑟 is the moving ratio, which represents the ratio of
moving distance over the length of the road segment, and 𝑡 is the
timestamp. Fig.2(b) gives a detailed explanation of 𝑟 . With the road
segment ID 𝑒 and the moving ratio 𝑟 , we can uniquely represent a
location on the road network. The convert function is formulated
as follows:

𝑝.𝑙𝑎𝑡 = 𝑎.𝑒.𝑠𝑡𝑎𝑟𝑡 .𝑙𝑎𝑡 + 𝑎.𝑟 ∗ (𝑎.𝑒.𝑒𝑛𝑑.𝑙𝑎𝑡 − 𝑎.𝑒.𝑠𝑡𝑎𝑟𝑡 .𝑙𝑎𝑡)
𝑝.𝑙𝑛𝑔 = 𝑎.𝑒.𝑠𝑡𝑎𝑟𝑡 .𝑙𝑛𝑔 + 𝑎.𝑟 ∗ (𝑎.𝑒.𝑒𝑛𝑑.𝑙𝑛𝑔 − 𝑎.𝑒.𝑠𝑡𝑎𝑟𝑡 .𝑙𝑛𝑔)

𝑝.𝑡 = 𝑎.𝑡

(1)

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1411

Definition 5. Sampling Rate. A sampling rate 𝜖 is the time dif-
ference between two consecutive sampled points for a trajectory,
which usually depends on device settings.

Definition 6. Map-matched 𝜖-Sampling Rate Trajectory. A
map-matched trajectory 𝜏 with 𝜖-sampling rate is a sequence of
map-matched trajectory points, i.e, 𝜏 = ⟨𝑎1, 𝑎2, · · · , 𝑎𝑚⟩, where
𝑎 𝑗 = ⟨𝑒, 𝑟, 𝑡⟩,∀𝑗, 1 ≤ 𝑗 ≤ 𝑚 and 𝑎 𝑗+1 .𝑡 − 𝑎 𝑗 .𝑡 = 𝜖 . For simplicity, we
name 𝜏 as 𝜖-MM trajectory.

Note that although an 𝜖-MM trajectory 𝜏 is uniformly sampled,
points in a trajectory 𝜏 may not be uniformly distributed in times-
tamps, which is more challenging than uniformly distributed. Be-
sides, the 𝜖-MM trajectory 𝜏 is map matched on the road network,
while the trajectory 𝜏 is not perfectly constrained on the road net-
work due to GPS noises. Usually, points in trajectory 𝜏 are collected
with a low sampling rate.

2.2 Problem Definition
Given a low-sampling-rate trajectory 𝜏 = ⟨𝑝1, 𝑝2, · · · , 𝑝𝑛⟩ and a
target sampling rate 𝜖 , we aim to recover the real map-matched 𝜖-
sampling-rate trajectory 𝜏 = ⟨𝑎1, 𝑎2, · · · , 𝑎𝑚⟩. This is to say, for each
low-sampling-rate trajectory, we will infer its missing points and
map match it onto the road network simultaneously.

3 METHODOLOGY
To solve the trajectory recovery problem, we are inspired by the
classic Seq2Seq model [25], since our trajectory recovery problem
is similar to the machine translation problem, where low-sampling-
rate trajectories can be treated as English sentences and 𝜖-MM
trajectories can be treated as the same sentences in French. Thus,
Seq2Seq structure could be potentially used to solve the trajectory
recovery problem. However, the challenges of our problem men-
tioned in Sec. 1 prevent the Seq2Seq model from solving it, since
the Seq2Seq model can generate locations step by step but cannot
guarantee the generated trajectories are constrained on the road
network in an end-to-endmanner. Hence, we propose a novel model
– MTrajRec, which can recover missing points and map match them
onto the road network simultaneously.

In this section, we first introduce the basic structure of a multi-
task Seq2Seq model to tackle challenge (1) map constraint (see
Sec. 3.1), and then present three enhancement components of our
MTrajRec: a constraint mask layer, which deals with challenge (2)
coarse point representation (see Sec. 3.2), an attention mechanism,
which learns global correlations (see Sec. 3.3), and an attribute
module to solve challenge (3) diverse complex factors (see Sec. 3.4).
In the following, we elaborate them in details.

3.1 Multi-task Seq2Seq Structure
As illustrated in Fig. 3, MTrajRec is composed of an encoder and
a decoder. The encoder learns sequential dependencies for low-
sampling-rate trajectories, while the decoder predicts road segment
ID 𝑒 and moving ratio 𝑟 iteratively, using the previous output as
the input vector.
Encoder. The low-sampling-rate trajectory 𝜏 = ⟨𝑝1, 𝑝2, ..., 𝑝𝑛⟩ is
encoded into a single vector to capture the spatial and temporal
dependencies of 𝜏 . We refer the single vector as a context vector.
Instead of directly using coordinates, we convert the GPS locations

Figure 3: Structure of Basic MTrajRec

into discrete units. As [32] mentioned, it is more reliable and easy
to model ID sequence than the original numerical sequence. Each
numerical coordinate 𝑝𝑖 can be converted to a unit, which is de-
scribed as 𝑔𝑖 = ⟨𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖𝑑𝑖 ⟩,∀𝑖, 1 ≤ 𝑖 ≤ 𝑛, where 𝑥𝑖 and 𝑦𝑖 represent
𝑖-th grid cell and 𝑡𝑖𝑑𝑖 = ⌊ 𝑡𝑖−𝑡0𝜖 ⌋ is the index of the points in the
target 𝜖-MM trajectory. Here, 𝜖 is the target sampling rate and 𝑡𝑖 is
the timestamp of 𝑖-th point in the low-sampling-rate trajectory 𝜏 .
The reason that we extract 𝑡𝑖𝑑 is to help the model learn how many
points should be interpolated between two consecutive points. The
low-sampling-rate trajectory 𝜏 is updated to 𝜏 ′ = ⟨𝑔1, 𝑔2, ..., 𝑔𝑛⟩. As
can be seen in Fig. 4(a), trajectory 𝜏 = ⟨𝑝1, 𝑝2, 𝑝3⟩ is updated to
𝜏 ′ = ⟨𝑔1, 𝑔2, 𝑔3⟩ with 𝑡𝑖𝑑 = ⟨1, 3, 7⟩. Note that 𝑡𝑖𝑑 is not continuous
because the low-sampling-rate trajectory is not uniformly sampled.

Since the trajectory data have sequential dependencies, we adopt
the Gated Recurrent Unit (GRU) [3] as the encoder to obtain the
context vector of low-sampling-rate trajectory. Such context vector
will be used as the initial hidden state for the decoder. GRU is a
variant of Long Short-term Memory networks (LSTM), which is
capable of learning long-term dependencies for sequential data
without performance decay. GRU sequentially updates a hidden-
state by introducing an update gate z and a reset gate r to control
the flow of information through the time steps. At each time step
𝑖 ∈ {1, 2, · · · , 𝑛}, the hidden-state vector s𝑖 is:

z𝑖 = 𝜎 (Wz · [s𝑖−1, g𝑖] + bz)
r𝑖 = 𝜎 (Wr · [s𝑖−1, g𝑖] + br)
s̃𝑖 = tanh(Ws · [r𝑖 ∗ s𝑖−1, g𝑖] + bs)
s𝑖 = (1 − z𝑖) ∗ s𝑖−1 + z𝑖 ∗ s̃𝑖 ,

(2)

whereWx represents the weights for the respective gate(𝑥) neurons
and bx is the bias for the respective gate(𝑥). To simplify, for getting
the context vector of low-sampling-rate trajectory, the encoder
derives the hidden state s𝑖 as:

s𝑖 = 𝐺𝑅𝑈 (s𝑖−1, g𝑖−1), (3)
where the last state s𝑛 will be considered as the context vector as
well as the initial hidden state for the decoder.

(a) Computation of 𝑡𝑖𝑑 (b) Constraint Distance

Figure 4: Illustration of concepts

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1412

Decoder. The decoder is used to recover the low-sampling-rate
trajectory to the 𝜖-MM trajectory 𝜏 = ⟨𝑎1, 𝑎2, · · · , 𝑎𝑚⟩. As we men-
tioned before, the standard Seq2Seq model can predict the numer-
ical coordinates but cannot guarantee the trajectories being map
matched onto the road network. To tackle this challenge, instead of
directly predicting the coordinate, we propose to predict road seg-
ments ID 𝑒 and moving ratio 𝑟 to make sure the predicted location
must be constrained on the road network. We leverage multi-task
learning [2], which solves those two tasks at the same time by
sharing parameters across different tasks, since those two tasks
are correlated.The input of the decoder is the concatenation of the
embedding of the road segment ID 𝑒 vector and moving ratio 𝑟 .
This is because road segment ID 𝑒 is a categorical value which
cannot directly be fed into the neural network. Comparing with
the one-hot encoding [8], the embedding method can effectively
reduce the input dimension and learn the semantic meanings for
road segment ID 𝑒 .

The top left in Fig. 3 demonstrates detailed information of the
multi-task block, which predicts road segment ID 𝑒 𝑗 and moving
ratio 𝑟 𝑗 simultaneously. After applying the GRU layer to get the
output vector, we first use a dense layer with soft-max function to
predict the road segment ID 𝑒 𝑗 . Then, the embedding of predicted
𝑒 𝑗 and the output vector from GRU layer are concatenated to go
through the fully connected layers with a sigmoid function to pre-
dict moving ratio 𝑟 𝑗 . Since the moving ratio 𝑟 𝑗 highly depends on
the related road segment ID 𝑒 𝑗 , we design a “series connection”
mechanism to predict 𝑟 𝑗 . Note that although 𝑟 𝑗 depends on 𝑒 𝑗 , 𝑒 𝑗
and 𝑟 𝑗 have an influence on 𝑒 𝑗+1 and 𝑟 𝑗+1. Thus, both road segment
ID 𝑒 𝑗 and moving ratio 𝑟 𝑗 will be used as the input of the decoder.

To this end, for generating a missing point, our decoder derives
the hidden state h𝑗 as:

h𝑗 = 𝐺𝑅𝑈 (h𝑗−1, 𝑒 𝑗−1, 𝑟 𝑗−1). (4)

Once we obtain the the hidden state h𝑗 from the decoder, we further
apply multi-task block to predict road segment ID 𝑒 𝑗 with a softmax
function and to infer moving ratio 𝑟 𝑗 with a sigmoid function.

Figure 5: Structure of MTrajRec

The structure mentioned above can guarantee the recovered
trajectories constraint on the road network. However, challenges
of inaccurate discrete units and diverse complex factors affect the

effectiveness of the trajectory recovery. In the following sections,
we introduce three components to improve the performance: con-
straint mask layer, attention mechanism and attribute module. The
overall structure of MTrajRec is illustrated in Fig. 5.

3.2 Constraint Mask Layer
As we mentioned in challenge (2), most of the previous studies [7,
24] convert the numerical coordinates into discrete units to min-
ing trajectories since it can reduce training complexity. However,
mapping the GPS coordinates into grid cells makes the precise in-
formation lost, which brings difficulties to the fine-grained MM
trajectory recovery. Thus, there is a trade-off between complexity
and accuracy by using discrete units or not. To tackle this challenge,
we devise a constraint mask layer [20, 31]. With the discrete units in
the encoder and the constraint mask layer in the multi-task block,
we can benefit both from less complexity and higher accuracy.

In our model, we first define a distance weight function 𝑓 [31],
which represents the influence of point 𝑝𝑖 to candidatemapmatched
point 𝑎′

ℓ
based on the Euclidean distance between them, where 𝑝𝑖

is the 𝑖-th sample from low-sampling-rate trajectory 𝜏 and 𝑎′
ℓ
is

the map-matched point on road segment ID 𝑒ℓ . Note that such
distance is caused by the sensing errors of GPS and theoretically
𝑝𝑖 can be projected onto any road segment in the road network.
As shown in Fig. 4(b), the blue points indicate the original GPS
points in low-sampling-rate trajectory 𝜏 , while the red points are
generated by projecting the original points to road segments. Let
𝑑𝑖,ℓ be the Euclidean distance of raw GPS point 𝑝𝑖 and candidate
point 𝑎′

ℓ
, then 𝑓 (𝑑𝑖,ℓ) denotes the impact of distance 𝑑𝑖,ℓ on the

original point 𝑝𝑖 . Following [31], we use an exponential function

to capture the influence of distance, i.e., 𝑓 (𝑑) = 𝑒
−𝑑2

𝛽2 , where 𝛽 is a
parameter with respect to the road network (𝛽 = 15 in our work). In
practice, we only consider matching the blue points that are not far
away from road segments [20]. We set 0 probability of any distance
from a road segment that is more than 50 meters away from 𝑝𝑖 .
Note that we only calculate the distance weight for points existing
in the low-sampling-rate trajectories, so that we set 1 probability
of all road segments for missing values. Finally we combine such
function with softmax in multi-task block as the constraint mask
layer which is formally defined as:

c𝑗,ℓ =


𝑓 (𝑑 𝑗,ℓ), if 𝑗 ∈ {𝑔𝑖 .𝑡𝑖𝑑 |𝑖 ∈ [1, 𝑛]} and 𝑑 𝑗,ℓ < 50
0, if 𝑗 ∈ {𝑔𝑖 .𝑡𝑖𝑑 |𝑖 ∈ [1, 𝑛]} and 𝑑𝑖,ℓ ≥ 50
1, otherwise

,

𝑃 (𝑒 𝑗 |h𝑗) =
exp(h⊤

𝑗
·w𝑐) ⊙ c𝑗∑

𝑐 ′∈𝐶 exp(h⊤
𝑗
·w𝑐′) ⊙ c𝑗

,

(5)

where w𝑐 is the 𝑐-th column vector from a trainable parameter
matrix WC. Note that we use 𝑎𝑟𝑔𝑚𝑎𝑥 to get the final prediction
of road segment ID 𝑒 𝑗 . With the constraint mask layer, points in
low-sampling-rate trajectory 𝜏 would be projected onto limited
road segments instead of the whole road segments space.

3.3 Attention Mechanism
As abovementioned, we only consider local region constraint, while
global correlations of low-sampling-rate trajectories are not mod-
eled. Inspired by the attention mechanism that is widely used in

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1413

natural language translation [1, 26], we introduce the attention
mechanism [1] into the decoder.

The goal of attention mechanism is to compute the similarity
between query vector (i.e., current hidden state in the decoder) and
key vectors (i.e., outputs from the encoder) to generate a context
vector a. Thus, the hidden state h𝑗 in the decoder is updated to:

h𝑗 = 𝐺𝑅𝑈 (h𝑗−1, 𝑒 𝑗−1, 𝑟 𝑗−1, a𝑗), (6)

where the context vector a𝑗 is computed by a weighted sum of all
the output vectors s from the encoder, where a𝑗 is formulated as:

a𝑗 =
𝑛∑
𝑖=1

𝛼 𝑗,𝑖s𝑖 ,

𝛼 𝑗,𝑖 =
exp(𝑢 𝑗,𝑖)∑𝑛
𝑖′=1 exp(𝑢 𝑗,𝑖′)

,

𝑢 𝑗,𝑖 = v⊤ · tanh(Whh𝑗 +Wss𝑖),

(7)

where v, Wh and Ws are the learnable parameters, and h𝑗 denotes
the current mobility status from the decoder.

3.4 Attribute Module
The recovery accuracy is also influenced by traffic conditions since
vehicles are not moving at a constant speed in the real world. The
traffic speed is affected by spatial context, temporal dependencies
and external factors, such as weather conditions, time, POI distri-
bution and etc [15]. To tackle our challenge (3), diverse complex
factors, we incorporate such information to devise an attribute
module in our model. The attribute module includes two types of
factors:
• The environmental context features fe. As shown in Fig. 5, we
incorporate the attributes of weather conditions (sunny, rainy,
cloudy, etc), holiday (whether today is a holiday or not), and
time (hour of the day) to extract the effect of the environmental
context features. We attempt to implement the environmental
context features as an independent block. Note that these factors
are categorical values which cannot be directly fed into the neural
network. We use one-hot encoding to represent them since the
dimension of each factor is not large. After concatenating the
one-hot encoding results, a fully connected network (FCN) is
implemented to learn the embedding of all the features, which
is fused with the last hidden state of the encoder as the initial
hidden layer of the decoder, i.e. h0 = 𝐹𝐶𝑁 (s𝑛, 𝐸𝑚𝑏 (fe)). The
intuition is that the environmental context features do not change
significantly with trajectories mobility. Therefore, we combine
the embedding vector with the context vector of the encoder and
input them at the beginning of the decoder.
• The spatial context features fs. Different from the stable envi-
ronmental context features, the spatial context features, such as
POI and road network, change rapidly as vehicles move. Thus,
we input such features for each time step in the encoder and
the decoder respectively. We use the POIs density of different
categories as POIs features, and extract the properties of road
network as network features, i.e., number of intersections and
level of road segments. Thus, the hidden state s𝑖 of the encoder
and the hidden state h𝑗 are renewed as,

s𝑖 = 𝐺𝑅𝑈 (s𝑖−1, g𝑖−1, fs 𝑗−1),
h𝑗 = 𝐺𝑅𝑈 (h𝑗−1, 𝑒 𝑗−1, 𝑟 𝑗−1, a𝑗 , fs 𝑗−1) .

(8)

3.5 Algorithm Training
We finally elaborate the training procedure of our model which
is trained end to end. Recall that during the training phrase, we
predict road segment ID and moving ratio simultaneously. For the
road segment ID prediction, we adopt the cross entropy as the loss
function:

L1 (𝜃) = −
∑

(𝜏,𝜏) ∈D𝑠𝑢𝑏

|𝜏 |∑
𝑗=1

𝐿∑
ℓ=1

1{𝑎 𝑗 .𝑒 = 𝑒ℓ } log(𝑃𝜃 (𝑎 𝑗 .𝑒 = 𝑒ℓ |d1:𝑗−1)),

s.t. d𝑗−1 = (𝜏, 𝜏1:𝑗−1, fs 𝑗−1, fe),
(9)

where 𝜏 is the low-sampling-rate trajectory, 𝜏 is the target 𝜖-MM
trajectory, |𝜏 | is the length of the 𝜖-MM trajectory, 𝐿 is the size
of road segments, 𝑎 𝑗 .𝑒 is the ground truth of road segment ID, 𝑎 𝑗
is the prediction, 𝑃𝜃 represents the neural network for predicting
road segments, fs and fe are external factors vectors. D𝑠𝑢𝑏 means
the dataset consisting of low-sampling-rate trajectories and 𝜖-MM
trajectories, which is the subset of the training set D.

We also implement the mean squared error as the loss function
for the moving ratio prediction:

L2 (𝜃) = −
∑

(𝜏′,𝜏) ∈D𝑠𝑢𝑏

|𝜏 |∑
𝑗=1
(𝑎 𝑗 .𝑟 − 𝑅𝜃 (d𝑗−1))2,

s.t. d𝑗−1 = (𝜏 ′, 𝜏1:𝑗−1, fs 𝑗−1, fe),

(10)

where 𝑎 𝑗 .𝑟 is the ground truth of real moving ration and 𝑅𝜃 rep-
resents the neural network for predicting moving ratio and other
parameters are the same as above.

Overall, the final model optimization function is weighted com-
bined with these two loss functions and formulated as:

L𝑡 = L1 (𝜃) + 𝜆L2 (𝜃) (11)

where 𝜆 is a tunable parameter that linearly balances the trade-off
between two tasks in our work.

Algorithm 1 illustrates the training process of the MTrajRec
model. During the training process, we apply the gradient descent
approach to update parameters 𝜽 , with learning rate 𝜂 and a pre-
defined 𝑒𝑝𝑜𝑐ℎ𝑠𝑚𝑎𝑥 . We first extract attributes including external
factors fe and spatial context features fc. Then, we select one pair
of trajectories 𝜏 and 𝜏 . Lastly, we update MTrajRec parameters 𝜃
by using Eq 11, with 𝜂 as the step size (Line 5).

Algorithm 1 MTrajRec Training

Require: Trajectories T , 𝜖-MM Trajectories T̃ , features fe, fc, ini-
tialized parameters 𝜽 , learning rate 𝑙𝑟 , max iteration 𝑒𝑝𝑜𝑐ℎ𝑠𝑚𝑎𝑥 .

Ensure: A well trained MTrajRec with parameters 𝜽 .
1: Extract attributes.
2: Sample a pair of trajectories 𝜏 and 𝜏 .
3: while epoch < 𝑒𝑝𝑜𝑐ℎ𝑠𝑚𝑎𝑥 do
4: Calculate gradient ∇L(𝜽) using Eq 11.
5: Update 𝜽 ← 𝜽 − 𝜂∇L(𝜽).
6: end while

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1414

4 EXPERIMENTAL EVALUATION
4.1 Experimental Settings
4.1.1 Data Description. We validate the effectiveness of our model
on a real-world taxi trajectory dataset and a road network from
OpenStreetMap 1. The dataset contains trajectories of 122, 390 dri-
vers and 6.20 million GPS records in Jinan, Shandong over a period
of 1 month, in September 2017. All the trajectories are completed
sampled every 15 seconds. It covers a rectangular area from (36.6456,
116.9854) to (36.6858, 117.0692) which is around 7.47 km long and
4.47 km wide. There are 2, 571 road segments in the area.

We split the dataset into training set, validation set and test
set with a splitting ratio of 7: 2: 1. Since the dataset is completely
sampled, we generate low-sampling-rate trajectories by randomly
sampling points from high-sampling-rate trajectories with a keep
ratio 𝑘𝑟%. According to [31], taxis usually report their GPS positions
with a low sampling rate to save communication and energy cost.
More than 60% trajectory data is sampled every 2 ∼ 6 mins. Thus,
we further vary the keep ratio of 𝑘𝑟% in the set {6.25%, 12.5%, 25%}
to evaluate the robustness of our proposed model. Since the origi-
nal trajectories are sampled every 15 seconds, the generated low-
sampling-rate trajectories with 𝑘𝑟% = 6.25%, 12.5%, 25% can be
considered as the average time interval of such trajectories is 4
mins, 2 mins and 1 min respectively. A smaller keep ratio indi-
cates to a larger number of missing points in the low sampling
rate trajectories. For the high-sampling-rate trajectories, we utilize
HMM algorithm on the original trajectories [20] to get ground truth,
since the map matching accuracy can reach as high as 99% with a
sampling interval around 10 ∼ 15 seconds [20].

4.1.2 Evaluation Metrics. The purpose of our defined problem is
to recover low-sampling-rate trajectories from free space to high-
sampling-rate trajectories constrained onto the road network. Thus,
we adopt both accuracy of road segments recovery and distance
error of location inference to show the performance of our model
and baseline methods as follows:
MAE & RMSE.We adopt two distance measurements to evaluate
the location recovery performance.𝑀𝐴𝐸 is the mean absolute error
and 𝑅𝑀𝑆𝐸 is the root mean squared error between ground truth
values and predicted values. However, as shown in Fig. 6, if we
directly use earth distance to compute the error, the prediction of
𝑝𝑟𝑒2 is better than 𝑝𝑟𝑒1, while 𝑝𝑟𝑒2 cannot reach the ground truth
through the dash line in the real world. Thus, we should calculate
the distance error based on road network. We update earth distance
to road network constrained distance to evaluate the distance error.
The smaller values of 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 are, the better performance
the model represents.𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 are formulated as:

𝑀𝐴𝐸 =
1
𝑚

𝑚∑
𝑗=1
|𝑑𝑖𝑠 (𝑎 𝑗 , 𝑎 𝑗) |,

𝑅𝑀𝑆𝐸 =

√√√
1
𝑚

𝑚∑
𝑗=1
(𝑑𝑖𝑠 (𝑎 𝑗 , 𝑎 𝑗))2,

s.t. 𝑑𝑖𝑠 (𝑎 𝑗 , 𝑎 𝑗) =𝑚𝑖𝑛(𝑟𝑛_𝑑𝑖𝑠 (𝑎 𝑗 , 𝑎 𝑗), 𝑟𝑛_𝑑𝑖𝑠 (𝑎 𝑗 , 𝑎 𝑗)),

(12)

1http://www.openstreetmap.org/

where 𝑎 𝑗 is the ground truth location, 𝑎 𝑗 is the predicted map
matched trajectory point and 𝑟𝑛_𝑑𝑖𝑠 (𝑎 𝑗 , 𝑎 𝑗) is the distance of short-
est path between prediction and ground truth. Since the road net-
work is a directed graph, the road network based distance from 𝑎 𝑗
to 𝑎 𝑗 is not equal to the distance from 𝑎 𝑗 to 𝑎 𝑗 , thus we use the
minimal distance as the final error.
Recall & Precision. We use recall and precision to evaluate the
performance of route recovery by comparing the recovered road
segments E𝑅 to the ground truth E𝐺 . Following previous work [4,
12], 𝑅𝑒𝑐𝑎𝑙𝑙 is defined as 𝑟𝑒𝑐𝑎𝑙𝑙 = |E𝑅∩E𝐺 ||E𝐺 | , and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is denoted

as 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|E𝑅∩E𝐺 |
|E𝑅 | . The larger values of 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

indicate that the methods predict road segments more accurately.

Figure 6: Examples of Distance Error
4.1.3 Baseline Algorithms. We compare our MTrajRec with sev-
eral representative baselines. To our best knowledge, there is no
existing solution that can recover low-sampling-rate trajectories to
high-sampling-rate trajectories and map match onto the road net-
work simultaneously. Therefore, we design the following two-stage
pipelines for comparison:
• Linear [10] + HMM [20]: It recovers the locations by assum-
ing trajectories are moving straightly and uniformly and then
matches trajectories onto the road network. Here we implement
HMM as the map matching algorithm due to its high accuracy in
high-sampling-rate trajectories map matching [20].
• DHTR [28] + HMM [20]: It devises a subseq2seq model with
Kalman Filter to recover trajectories in free space, which is the
state-of-the-art method in the field of trajectory recovery. After
getting the recovered high-sampling-rate trajectories, we intro-
duce HMM to match them onto the road network.
• DeepMove [7] + Rule: It incorporates multiple factors with
recurrent neural network to predict humanmobility for next-step
trajectory prediction. We adapt it to this task by consecutively
predicting each missing road segment and then use the centric
location as the final prediction.

4.1.4 Variants. To evaluate each component of our proposedmodel,
we also compare it with different variants of MTrajRec:
• MTrajRec-noCons: We remove constraint mask layer in multi-
task block to evaluate the relevance of this part.
• MTrajRec-noAttn: We remove the attention mechanism to de-
tect the importance of attention mechanism.
• MTrajRec-noAtts: We remove the attribute module from our
model to reveal the significance of this component.

4.1.5 Implementations. We train the deep neural network with
machine learning library Pytorch, version 1.7.1. Our experiments
run on a GPU server with 64 GB memory and Tesla V100 GPU.
Detailed information is provided to support the reproducibility of
the results in Appendix A.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1415

http://www.openstreetmap.org/

Table 1: Overall performance comparison. The best result for each evaluation metric is in bold. A smaller keep ratio indicates
a larger number of missing points in low-sampling-rate trajectories. Note that 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 are in 𝑘𝑚.

Methods 6.25% 12.5% 25%
Recall Precision MAE RMSE Recall Precision MAE RMSE Recall Precision MAE RMSE

Linear+HMM 0.4019 0.3388 0.662 1.107 0.5122 0.4592 0.535 1.030 0.6291 0.6065 0.398 0.820
DHTR+HMM 0.5110 0.3601 0.637 1.099 0.5984 0.4379 0.485 0.958 0.6581 0.4916 0.368 0.844

DeepMove+Rule 0.6409 0.7754 0.339 0.696 0.6572 0.7924 0.311 0.666 0.6762 0.8085 0.279 0.628
MTrajRec-NoCons 0.6472 0.7835 0.303 0.648 0.6748 0.7998 0.260 0.596 0.7001 0.8066 0.227 0.575
MTrajRec-NoAttn 0.6837 0.7938 0.290 0.631 0.7105 0.8066 0.245 0.594 0.7308 0.8144 0.209 0.566
MTrajRec-NoAtts 0.6925 0.7981 0.278 0.628 0.7121 0.8073 0.238 0.603 0.7437 0.8116 0.199 0.567

MTrajRec 0.6972 0.8018 0.270 0.610 0.7235 0.8137 0.229 0.590 0.7498 0.8198 0.194 0.564

4.2 Results
4.2.1 Overall Performance. We compare our MTrajRec with the
baseline models in terms of 𝑅𝑒𝑐𝑎𝑙𝑙 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸. The
performance of different approaches with different keep ratios for
trajectory recovery is presented in Table 1. We have the following
observations:
(1) The first two pipelines interpolatemissing values for low-sampling-

rate trajectories in free space and then map them onto the road
network. Comparing these two models, we can see that DHTR
+ HMM is better than Linear + HMM, especially when the keep
ratio is small. This is because DHTR is designed with advanced
sequential neural networks, which is able to utilize the spatio-
temporal information in low-sampling-rate trajectories, while
linear interpolation cannot model complex mobility regularity.

(2) DHTR + HMM and DeepMove + Rule are deep learning based
method, but the performance of DeepMove + Rule is better than
the former one. As the keep ratio decreases, i.e., the number of
missing points increases as well as the uncertainty between two
consecutive points grows, the performance of DHTR + HMM
is worse than DeepMove + Rule. This is because DeepMove is
directly trained to predict road segments, which can better cap-
ture the constraint of the road network compared with DHTR.

(3) It is clear that our approach attains the best performance across
all of the evaluation metrics with different keep ratios. Com-
pared with other baselines, the improvement of ratio is the
most significant at the lowest keep ratio. Specifically, 𝑅𝑒𝑐𝑎𝑙𝑙
and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of MTrajRec outperform the best baseline by
8.7% and 3.4% when the keep ratio is 6.25%. 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸

are reduced by 20.4% and 14.1% respectively. This proves the
effectiveness of our MTrajRec in trajectory recovery. The funda-
mental reasons for such improvement lie in two aspects. First,
we devise a multi-task Seq2Seq model to predict road segments
and moving ratio simultaneously which is able to reduce er-
ror compared with two-stage pipelines. Second, we introduce
several components such as the constraint mask layer, the at-
tention mechanism and the attributes module to extract more
information, which will be elaborated in next section.

4.2.2 Running Efficiency. To evaluate the efficiency of MTrajRec,
we compare the running time of our algorithm with other baseline
models. As can be seen in Fig. 7, MTrajRec and DeepMove+Linear
run much faster than other baseline models. This is because both
of MTrajRec and DeepMove+Linear only need to make a forward
computation of neural network to recover trajectories, which only
requires 𝑂 (𝑛) computation complexity. On the contrary, other two

approaches rely on heavy computations of dynamic programming
to do map matching task, with a computation complexity of 𝑂 (𝑛2).
With the keep ratio increases, the running time of MTrajRec and
DeepMove+Linear decreases, since less missing points need to be
predicted. However, the running time of other two baselinemethods
increases since more and more points need to be matched by HMM.
Although MTrajRec is slightly slower than DeepMove+Linear, the
accuracy is much higher. Thus, such difference can be ignored.

Figure 7: Running Efficiency

4.2.3 Importance of the ConstraintMask. We introduce a constraint
mask layer into MTrajRec to overcome the limits of converting co-
ordinates to grid cells. To evaluate the importance of constraint
mask layer, we compare MTrajRec-noCons to MTrajRec. As can
be seen from Table. 1, both MTrajRec and MTrajRec-noCons get
a better performance as the keep ratio increases. But when the
constraint mask layer is removed, the performance declines signifi-
cantly. Especially, it causes 𝑀𝐴𝐸 to grow 25% and 𝑅𝑒𝑐𝑎𝑙𝑙 to shrink
8% with 6.25% keep ratio. This is because the constraint masks
introduce prior knowledge for the existing points, which enhances
the missing information by utilizing grid cells.

4.2.4 Importance of the Attention Mechanism. In this section, we
remove the attention mechanism from MTrajRec to test its contri-
bution. Similar as above, the performance of both MTrajRec and
MTrajRec-noAttn increase as the keep ratio increases because the
missing points are reduced, making the recovery task easier. As
illustrated in Table. 1, the results of MTrajRec-noAttn falls obvi-
ously comparing with MTrajRec. Particularly, 𝑀𝐴𝐸 increases 7%
and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 decreases 2% after removing the attention mecha-
nism at the keep ratio 6.25%. A possible reason is that attention
mechanism can effectively strengthen the spatial constraints for
the missing locations.

4.2.5 Importance of the Attribute Module. We also evaluate the
relevance of the attribute module by removing all the external
factors. Table. 1 shows that the results of MTrajRec-noAtts drops

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1416

(a) MTrajRec (b) DHTR+HMM (c) DeepMove+Rule

Figure 8: Screenshots of Trajectory Recovery. Black points represent the low-sampling-rate trajectory, points in red are ground
truth coordinates of 15𝑠-MM trajectory and the blue points stand for predicted locations of 15𝑠-MM trajectory.
slightly when taking out the attribute module. The contribution of
attribute module is not as significant as the constraint mask and the
attention mechanism, i.e., the𝑀𝐴𝐸 of MTrajRec only drops 3% and
the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of MTrajRec only increases 0.7% when adding this
component. Probably because the previous two provide enough
constraints in the model.

(a) Varying of 𝜆 (b) Varying of cell length

Figure 9: Parameters Tuning
4.2.6 Parameter Tuning. Apart from evaluating the components of
our proposed model MTrajRec, there are two important parameters
to tune in our model.
Weight of multi-task 𝜆. To show the effectiveness of the multi-
task learning component, we first evaluate our model under dif-
ferent combinations 𝜆 in range of 1, 10, 50 and 100. As shown in
Fig. 9(a), the gray and yellow bars show results of𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸

and the red and blue lines present 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 respectively.
We get the best performance when 𝜆 = 10, while the performance
gets worse as the 𝜆 increases more or decreases. It indicates that
our MTrajRec benefits from a good balance of this two tasks.
Cell length. As mentioned in Section 3, we map numerical coordi-
nates into discrete units to extract spatial dependencies and reduce
the computation complexity. When a smaller cell length is used, we
can obtain more accurate spatial information but the number of grid
cells increases leading to complex modeling problem and vice versa.
Thus, there is a trade-off between accuracy and complexity with the
setting of cell length. We vary the cell length to 20, 50, 100 and 200
meters to tune the parameter. Fig. 9(b) shows the varying results of
different cell lengths. As can be seen, the performance achieves the
best when the cell length is 50 meters. As the cell length increases
to 100 and 200 meters, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 increase and 𝑀𝐴𝐸

and 𝑅𝑀𝑆𝐸 decrease, probably some of the spatial information is
lost when mapping to grid cells. However, the performance also
gets worse when the cell length decreases to 20 meters since the
large number of grid cells increase the complexity of training.

4.3 Qualitative Analysis
Fig. 8 presents screenshots of the visualized recovery results of
our MTrajRec compared with two baseline models (DHTR + HMM,
DeepMove + Rule) on the same low-sampling-rate trajectory data
at a keep ratio 6.25%. Black points represent the low-sampling-rate
trajectory. Points in red are ground truth coordinates of 15𝑠-MM
trajectory and the blue points stand for predicted locations of 15𝑠-
MM trajectory. It is clear that our MTrajRec finds the right route
and the recovered positions are more reliable and adaptive than
the other two baselines. Fig. 8(b) shows the recovery results of
DHTR+HMM, which recovers the low-sampling-rate trajectory in
free space and then implements a mapmatching algorithm to match
the trajectory onto the road network. Although it predicts the right
path, the locations are not correctly recovered especially no correct
points are predicted in the top right area. A possible reason is that
there are a large number of missing values to be predicted, while
DHTR cannot recover locations with such low sampling rate. The
keep ratio is only 6.25% which is about 4 times lower than the
smallest keep ratio in DHTR [28]. Fig. 8(c) illustrates the recovery
results of DeepMove + Rule, which employs a deep learning model
to match the low-sampling-rate trajectory onto the road network
and then uses the centric location as the final prediction. With
the constraint of road network, DeepMove + Rule finds the right
path as the left two methods. However, the recovered points move
discontinuously and several blue points in the middle area fail to
move forward. This is because DeepMove + Rule can only predict
the possible road segments but it does not have the ability to infer
moving speed of the vehicle.

5 RELATEDWORK
Trajectory Data Mining. Trajectory data mining [33] discovers
various knowledge from massive trajectory data, namely a few,
traffic condition prediction [16], travel time estimation [9, 22] and
driver behavior learning [5, 23]. In particular, Hong et al. [9] lever-
aged heterogeneous information graph to solve estimated time of

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1417

arrival task based on road network and high sampling rate vehicle
trajectories. Dong et al. [5] proposed a deep-learning framework
to analyze driving behavior based on trajectory data. Their em-
pirical studies revealed that the performance of any approaches
can become poor when the sampling rate is lower than 10 seconds.
Such work relies on high-sampling-rate road network constrained
trajectories, which can benefit from our work.
Trajectory Recovery. Recovering low-sampling-rate trajectory
is an important problem to get more information and reduce un-
certainty [28–30]. In particular, Wang et al. [28] recovered a high-
sampling-rate trajectory from a irregular low-sampling-rate trajec-
tory by integrating the subseq2seq with a calibration component of
Kalman Filter. Xia et al. [30] proposed an attentional neural network
model to densify individual trajectory by recovering unobserved
locations based on historical trajectories. Xi et al. [29] proposed a Bi-
directional Spatial and Temporal Dependence and users’ Dynamic
Preferences model to identify missing POI check-in. Apart from
these recovery methods, some works related to next-step or short-
term location prediction can also be adopted for recovery [7, 14, 19].
However, such frameworks are implemented on free space, as op-
posed to our problem which aims to recover trajectories onto road
network. Besides, most of the existing works model the sequence
of location IDs rather than the numerical coordinate information.
Sequence-to-sequenceModels.The sequence-to-sequencemodel
(Seq2Seq) [25] is an architecture for domain translation, which has
been widely used in trajectory data mining, namely but a few, trajec-
tory generation, trajectory similarity learning, anomaly detection,
etc [13, 17, 21, 28]. Park et al. [21] generated the future trajectory
sequence of surrounding vehicles via Seq2Seq model. Li et al. [13]
proposed a Seq2Seq framework to learn representations of trajecto-
ries to support trajectory similarity computation. However, to our
best knowledge, we are the first one to employ multi-task learning
into Seq2Seq model to recover map constrained trajectories.

6 CONCLUSION
In this paper, we propose a novel end-to-end deep learning model
MTrajRec for recovering low-sampling-rate trajectories to high-
sampling-rate map-matched trajectories. We introduce multi-task
learning into Seq2Seqmodel to ensure the generated trajectories are
map matched onto the road network. The constraint mask, attention
mechanism and attribute module are implemented to improve the
performance. The experimental results illustrate that MTrajRec out-
performs state-of-the-art works by reducing recover error around
20.4% with the keep ratio at 6.25% on a real world dataset. As future
work, we plan to extend the proposed model by incorporating more
user preference, e.g., user identification information.

7 ACKNOWLEDGEMENTS
This work was supported by the National Key R&D Program of
China (2019YFB2101801). The research of Huimin Ren and Yanhua
Li was supported in part by NSF grants IIS-1942680 (CAREER),
CNS-1952085, CMMI1831140, and DGE-2021871.

REFERENCES
[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. arXiv:1409.0473, 2014.
[2] R. Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[3] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv:1406.1078, 2014.

[4] G. Cui, J. Luo, and X. Wang. Personalized travel route recommendation using
collaborative filtering based on gps trajectories. International journal of digital
earth, 11(3):284–307, 2018.

[5] W. Dong, J. Li, R. Yao, C. Li, T. Yuan, and L. Wang. Characterizing driving styles
with deep learning. arXiv:1607.03611, 2016.

[6] X. Fang, J. Huang, F. Wang, L. Zeng, H. Liang, and H. Wang. Constgat: Contextual
spatial-temporal graph attention network for travel time estimation at baidu
maps. In Proc. of the 26th ACM SIGKDD, pages 2697–2705, 2020.

[7] J. Feng, Y. Li, C. Zhang, F. Sun, F. Meng, A. Guo, and D. Jin. Deepmove: Predicting
human mobility with attentional recurrent networks. In Proc. of the 2018 WWW
conference, pages 1459–1468, 2018.

[8] Y. Gal and Z. Ghahramani. A theoretically grounded application of dropout in
recurrent neural networks. arXiv:1512.05287, 2015.

[9] H. Hong, Y. Lin, X. Yang, Z. Li, K. Fu, Z. Wang, X. Qie, and J. Ye. Heteta: Hetero-
geneous information network embedding for estimating time of arrival. In Proc.
of the 26th ACM SIGKDD, pages 2444–2454, 2020.

[10] S. Hoteit, S. Secci, S. Sobolevsky, C. Ratti, and G. Pujolle. Estimating human
trajectories and hotspots through mobile phone data. Computer Networks, 64:296–
307, 2014.

[11] R. R. Joshi. A new approach to map matching for in-vehicle navigation systems:
the rotational variation metric. In Proc. of ITSC 2001, pages 33–38. IEEE, 2001.

[12] T. Kurashima, T. Iwata, G. Irie, and K. Fujimura. Travel route recommendation
using geotags in photo sharing sites. In Proc. of the 19th ACM CIKM, pages
579–588, 2010.

[13] X. Li, K. Zhao, G. Cong, C. S. Jensen, and W. Wei. Deep representation learning
for trajectory similarity computation. In Proc. of IEEE 34th ICDE, pages 617–628.
IEEE, 2018.

[14] D. Lian, Y. Wu, Y. Ge, X. Xie, and E. Chen. Geography-aware sequential location
recommendation. In Proc. of the 26th ACM SIGKDD, pages 2009–2019, 2020.

[15] Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng. Geoman: Multi-level attention
networks for geo-sensory time series prediction. In IJCAI, pages 3428–3434, 2018.

[16] B. Liao, J. Zhang, C. Wu, D. McIlwraith, T. Chen, S. Yang, Y. Guo, and F. Wu.
Deep sequence learning with auxiliary information for traffic prediction. In Proc.
of the 24th ACM SIGKDD, pages 537–546, 2018.

[17] Y. Liu, K. Zhao, G. Cong, and Z. Bao. Online anomalous trajectory detection with
deep generative sequence modeling. In 36th ICDE, pages 949–960. IEEE, 2020.

[18] Y. Lou, C. Zhang, X. Xie, Y. Zheng, W. Wang, and Y. Huang. Map-matching for
low-sampling-rate gps trajectories. In Proc. of 18th ACM SIGSPATIAL, 2009.

[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed rep-
resentations of words and phrases and their compositionality. In Advances in
NeurIPS, pages 3111–3119, 2013.

[20] P. Newson and J. Krumm. Hidden markov map matching through noise and
sparseness. In Proc. of the 17th ACM SIGSPATIAL, pages 336–343, 2009.

[21] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi. Sequence-to-sequence
prediction of vehicle trajectory via lstm encoder-decoder architecture. In 2018
IEEE IV, pages 1672–1678. IEEE, 2018.

[22] M. Rahmani, E. Jenelius, and H. N. Koutsopoulos. Route travel time estimation
using low-frequency floating car data. In 16th International IEEE ITSC, pages
2292–2297. IEEE, 2013.

[23] H. Ren, M. Pan, Y. Li, X. Zhou, and J. Luo. St-siamesenet: Spatio-temporal siamese
networks for human mobility signature identification. In Proc. of the 26th ACM
SIGKDD, pages 1306–1315, 2020.

[24] H. Su, K. Zheng, J. Huang, H. Wang, and X. Zhou. Calibrating trajectory data for
spatio-temporal similarity analysis. The VLDB Journal, 24(1):93–116, 2015.

[25] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. Advances in NeurIPS, 27:3104–3112, 2014.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. arXiv:1706.03762, 2017.

[27] D. Wang, J. Zhang, W. Cao, J. Li, and Y. Zheng. When will you arrive? estimating
travel time based on deep neural networks. In Proc. of the AAAI, volume 18,
pages 1–8, 2018.

[28] J. Wang, N. Wu, X. Lu, X. Zhao, and K. Feng. Deep trajectory recovery with
fine-grained calibration using kalman filter. IEEE TKDE, 2019.

[29] D. Xi, F. Zhuang, Y. Liu, J. Gu, H. Xiong, and Q. He. Modelling of bi-directional
spatio-temporal dependence and users’ dynamic preferences for missing poi
check-in identification. In Proc. of the AAAI, volume 33, pages 5458–5465, 2019.

[30] T. Xia, Y. Qi, J. Feng, F. Xu, F. Sun, D. Guo, and Y. Li. Attnmove: History enhanced
trajectory recovery via attentional network. arXiv:2101.00646, 2021.

[31] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun. An interactive-voting based
map matching algorithm. In Proc. of 11th MDM, pages 43–52. IEEE, 2010.

[32] S. Zheng, Y. Yue, and J. Hobbs. Generating long-term trajectories using deep
hierarchical networks. Advances in NeurIPS, 29:1543–1551, 2016.

[33] Y. Zheng. Trajectory data mining: an overview. ACM TIST, 6(3):1–41, 2015.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1418

A APPENDIX FOR REPRODUCIBILITY
In this section, we provide detailed information to support the
reproducibility of the results in this paper. To support the repro-
ducibility of the results in this paper, we have released our code at
Github: https://github.com/huiminren/MTrajRec.

A.1 Details of Data Preprocessing
In this stage, we employ the road network to clean up trajectories,
down sample trajectories and map match trajectories to get the
training, validation and test dataset for the model.

Due to sensor noises and other factors, the trajectories gen-
erated by GPS device usually contain noise points. We removed
noise points by implementing a heuristics-based outlier detection
method [33]. They first calculate the travel speed of each point
in a trajectory based on its precursor and itself. The current esti-
mated point will be filtered out from the trajectory if the speed is
larger than a threshold. In this work, we set the speed threshold
to 120 𝑘𝑚/ℎ and replace the noise with the average location of its
precursor and successor.

Table 2: Description of Dataset

Training Validation Test
of Trajectories 160, 617 45, 916 22, 825

To keep enough information, we filter out the trajectory which
duration is less than 5 mins. Table. 2 gives the overview about our
dataset. Based on the cleaned trajectories, we randomly generate
low sampling rate trajectories using a keep ratio 𝑘𝑟% as trajectories
T . In other words, for each cleaned trajectory, we only keep 𝑘𝑟%
points from it randomly. To get ground truth, we utilize HMM map
matching algorithm [20] to map the cleaned trajectories onto the
road network. This algorithm shows that with a sampling interval
of 15 seconds, the map matching accuracy can reach as high as
99% [20], indicating that the matched results are enough to be the
ground truth.

A.2 Detailed Settings of MTrajRec
Parameters of training MTrajRec.We train our model on Jinan
taxi dataset as a multi-task learning problem. To minimize the loss

function Eq.(11), we implement the back-propagation on feed-
forward networks by the adaptive moment optimizer (Adam) with
𝛽1 = 0.9 and 𝛽2 = 0.999. The mini-batch size is 128 and the learning
rate is 0.001. We trained network for 20 epochs to get the converged
results.
Settings of MTrajRec. Since we design a multi-task learning
model, the best 𝜆 in Eq.(11) is 10 in this work. The number of
hidden states in the encoder and the decoder is 512. To prevent
overfitting, we set dropout ratio as 0.5 in GRUs. In the multi-task
block, we implement a dense layer with 2571 units to predict road
segment ID via the constraint mask layer. The moving ratio is pre-
dicted by a fully-connected network with hidden units in [640,
512, 1]. We use ReLU activation function for all hidden layers and
sigmoid activation function at the output layer. In the attention
mechanism, we use two dense layers with units in [1024, 514] to
learn the context vector 𝛼 . In the attribute module, features are em-
bedded by a dense layer with 30 hidden units and a Tanh activation
function.

A.3 Detailed Settings of Baselines
• Linear + HMM There is no parameters to learn in linear inter-
polation. And three parameters in the HMM algorithm should be
defined. First, it sets a search distance 𝐷 to query candidate road
segments. Second one is a transition probability 𝑓𝑡 (𝛽) to indicate
the probability of a vehicle moving between the candidate road
matches at these two times. And the last one is the emission prob-
ability 𝑓𝑒 (𝜎) to show the likelihood that a measurement resulted
from a give state. In this paper, we set 𝐷 = 50, 𝛽 = 2 and 𝜎 = 5.
• DHTR + HMM We follow the same hyperparameters setting of
DHTR [28]. The DHTR is trained using Adam optimizer with
𝛽1 = 0.9 and 𝛽2 = 0.999, and a learning rate of 0.001 for 20 epochs
with a batch size 128. The setting of HMM is the same as above
mentioned.
• DeepMove + Rule Instead of predicting grid cells, we predict
road segments and then use the centric location as final prediction
to compare with our method. DeepMove is trained with two one-
layer LSTMs as well as an attention mechanism. The number
of hidden states in the encoder and the decoder is 256. And the
setting of hyperparameters of the attention mechanism is the
same as our MTrajRec. The other training paraemters are the
same as DHTR.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1419

https://github.com/huiminren/MTrajRec

	Abstract
	1 Introduction
	2 Overview
	2.1 Preliminaries
	2.2 Problem Definition

	3 Methodology
	3.1 Multi-task Seq2Seq Structure
	3.2 Constraint Mask Layer
	3.3 Attention Mechanism
	3.4 Attribute Module
	3.5 Algorithm Training

	4 Experimental Evaluation
	4.1 Experimental Settings
	4.2 Results
	4.3 Qualitative Analysis

	5 Related Work
	6 Conclusion
	7 Acknowledgements
	References
	A Appendix for reproducibility
	A.1 Details of Data Preprocessing
	A.2 Detailed Settings of MTrajRec
	A.3 Detailed Settings of Baselines

