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Estimating humanmobility responses to the large-scale spreading of the COVID-19 pandemic is crucial, since

its significance guides policymakers to give Non-pharmaceutical Interventions, such as closure or reopening

of businesses. It is challenging to model due to complex social contexts and limited training data. Recently, we

proposed a conditional generative adversarial network (COVID-GAN) to estimate human mobility response

under a set of social and policy conditions integrated from multiple data sources. Although COVID-GAN

achieves a good average estimation accuracy under real-world conditions, it produces higher errors in certain

regions due to the presence of spatial heterogeneity and outliers. To address these issues, in this article,

we extend our prior work by introducing a new spatio-temporal deep generative model, namely, COVID-

GAN+. COVID-GAN+ deals with the spatial heterogeneity issue by introducing a new spatial feature layer

that utilizes the local Moran statistic to model the spatial heterogeneity strength in the data. In addition,

we redesign the training objective to learn the estimated mobility changes from historical average levels to

mitigate the effects of spatial outliers. We perform comprehensive evaluations using urban mobility data

derived from cell phone records and census data. Results show that COVID-GAN+ can better approximate

real-world human mobility responses than prior methods, including COVID-GAN.
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1 INTRODUCTION

The COVID-19 pandemic has spread to over 200 countries globally, with 50.4 million confirmed
cases and 1.26 million deaths as of November 8, 2020. The rapid spread of the infectious disease has
posed grand challenges to policymakers due to the rising social conflicts between (1) the need to re-
duce new infections and protect public health and (2) the demand of reopening to avoid breakdown
of economics and support essential needs in daily lives. As more policymakers start exploring mit-
igation of this dilemma with the staged reopening, a core mission is to avoid a major resurgence of
infections caused by eased social distancing policies (e.g., stay-at-home orders, the limit of group
gatherings, limit on restaurant capacity).
Currently, COVID-19-related policies are often informed by scientific projections of infection

risks obtained from COVID-19 transmission dynamics models. While many parameters in infec-
tion dynamics models can be set using domain knowledge of COVID-19, a key parameter—human

mobility responses1—is often challenging to estimate due to complex and sometimes unknown so-
cial contexts, as well as limited training data under escalating COVID-19 conditions.
Responding to the urgent need by policymakers and public health experts, we make the first

attempt to address the following human mobility response estimation problem: Given a set of in-
puts on contextual (e.g., population, point-of-interest (POI) counts), epidemic (e.g., COVID-19
cases), policy (e.g., stay-at-home orders) conditions. We aim at developing a machine learning
model to estimate maps of human mobility responses by learning from existing ground truth
data. Note, here the input conditions might not have been observed in the targeted area in the
historical data.

Challenges. The humanmobility response estimation problem problem has twomajor challenges.
First, human mobility responses depend on many complex social-physical factors. While some
factors are known and have related data available (e.g., population, POI distribution, policy), there
exist many others (e.g., people’s will or reaction over time, echo chamber effects, random events)
thatmay be unknown, uncertain, random, or have no data available. In addition, the contribution of
many known and unknown underlying factors to human mobility responses may vary from place
to place due to cultural differences, economic environments, and so on. Moreover, the COVID-19
pandemic is a very recent and still-fast-changing event. The amount of related data is relatively
small. This increases the difficulty of learning, especially when considering the random effects
brought by the complex social context.
Second, based on observation from our previous work, we noticed that humanmobility response

data shows a skewed distribution with a long right tail. Values along the right tail are tremendous
and account for a tiny share of the total number of training data. However, this small group of
samples greatly affects generating performance due to the huge variances between ground truth
and generated values. As a result, the relatively small data and randomness increase the difficulty
of finding and learning to predict for the outliers.

1In this work, human mobility responses are measured by the number of visits to point-of-interest (POI) such as grocery

and hardware stores, restaurants, gas stations, and so on.
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PriorWork.Due to the urgent need for effective control over the COVID-19 pandemic, there have
been many works studying the importance of human mobility responses in COVID-19 transmis-
sion dynamics models as well as the effectiveness of early-phase social distancing measures (e.g.,
isolation, stay-at-home order, lock-down) on containing the spread of the disease [5, 10, 21]. There
have also been studies evaluating the feasibility of scalable contact tracing methods in COVID-
19 monitoring [8]. While these studies have demonstrated the importance of human mobility re-
sponses, they do not address the main challenges in mobility estimation or simulation (e.g., effects
of unknown, uncertain, and random factors; limited training data). In terms of learning approaches,
most regression-based estimators (e.g., linear and non-linear regression, kernelized support-vector
regressor) rely on a fixed set of features and cannot consider unknown and uncertain factors. Fur-
thermore, deep learning-based regression approaches (e.g., CNN) typically require a huge number
of training samples, which are not available in the case of COVID-19.
In our recent work, we proposed COVID-GAN [4], a deep conditional Generative Adversar-

ial Network (GAN) [10, 12], to estimate mobility under various real-world conditions such as
COVID-19 severity and local policy interventions. COVID-GAN is effective in estimation human
mobility patterns with a lower average error compared with other baselines. However, it does not
consider the effects of spatial heterogeneity over the study area, therefore producing high error
in certain regions. Also, COVID-GAN suffer from low accuracy when handling outlier locations
with extremely highmobility values. These outliers indeed have high significance due to their high
population density and vulnerability to the spread of COVID-19.

Contributions. This article is a significant extension of our recent work [4]. In this article,
we address the above limitations of COVID-GAN by proposing an improved spatio-temporal
conditional Generative Adversarial Network model with enhanced spatial features to take
consideration of spatial heterogeneity when estimating human mobility response patterns to
COIVD-19. We call the new Conditional Generative Adversarial Network model COVID-GAN+.
The use of a conditional GAN [11] allows consideration of unknown and uncertain factors (i.e.,
modeled as latent factors). Moreover, we adopt a new training objective to learn the estimated
mobility changes from historical average levels to mitigate the effects of local spatial hotspots.

The new contributions of this article are as follows:

• Wemeasure the spatial heterogeneity of human mobility response by leveraging a new spatial
feature layer using local Moran statistics [3]. This feature can help to better capture the spatial
pattern and to improve the model capacity in generating fine-scale values.
• We reform the learning objective to learn the estimated mobility changes from historical aver-
age levels by introducing domain-knowledge forced conditions to mitigate the effects of spatial
outliers. This correction mechanism can reduce the difficulty of learning outliers and improve
solution quality.
• We perform comprehensive experiments on real-world COVID data to validate the solution
quality improvements achieved by the proposed approach under different scenarios, and study
the effects of related features on the quality of results.

Experiments using urban mobility data derived from cell phone records and census data show
that COVID-GAN+ can achieve high accuracy when being tested against historical ground truth
data, and can be used to estimate mobility trends under various conditions specified by users.
The rest of the article is organized as follows. Section 2 defines the problem. Section 3 details the

methodology and model structure. We present evaluation results in Section 5 and further discuss
and highlight the technical insights of the proposed solution framework in Section 6. Relatedworks
are summarized in Section 7, and the article is concluded in Section 8.
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2 OVERVIEW

Mobility estimation in the COVID-19 pandemic is a complex task requiring a variety types of
information such as population, COVID-19 situation, and so on. Fortunately, many organizations
have opened their data for research to help combat the pandemic. For example, SafeGraph [2],
a leading provider of place and POI data, has started a COVID-19 Data Consortium to provide
free access to their commercial data. Similarly, the Center for Disease Control and Prevention

(CDC) also provides dynamic updates of COVID-19-related public heath statistics [1].
In the following part, we first introduce a set of basic concepts about our data modeling and

then provide a formal problem definition.

2.1 Basic Concepts

Definition 2.1 (Spatial Grid Model GRIDS ). A grid-discretization of a spatial field S, where each
grid si represents a l × l square area. Given S, the location of any POI can be mapped into a grid
cell. For example, the geographic region of interest in an estimation task.

Definition 2.2 (Contextual ConditionsCc ). Relatively long-term attributes that are not necessarily
specific to COVID-19, including population, median income, timestamp, and number of POIs (e.g.,
grocery stores, schools, gas stations, restaurants).

Definition 2.3 (Epidemic Conditions Ce ). COVID-19 statistics from COVID-19 situation reports
published authoritative public health organizations (e.g., CDC), including number of confirmed
cases, COVID-19-related deaths, and so on.

Definition 2.4 (Policy Conditions Cp ). Social distancing orders declared by officials during
COVID-19 pandemic. Policies may play a key role in mobility changes. For example, strict stay-at-
home or shelter-in-place orders typically lead to a significant decrease in mobility.

Definition 2.5 (Human Mobility Responses M). In this work, M is measured by the number of
visits to POIs (e.g., grocery stores, hardware stores, restaurants, gas stations), which according to
our public health colleagues, is a major factor in COVID-19 transmission, since individuals tend
to have closer distances and interact with each other at POIs.2 Human mobility response is target
of the estimation task.

Definition 2.6 (Generator G). A learned process used to generate a map of human mobility re-
sponsesMG given a set of conditions.

Definition 2.7 (Discriminator D). Outputs a probability pr eal that a map of human mobility re-
sponses is from real-world rather than a generator G.

2.2 Problem Statement

In this problem, we aim to learn a model to estimate the human mobility responses in each grid S
during each timestamp. The timestamp could be an hour, a day, or a week. In this article, we select
a week as the length of t . Time-variant features such as epidemic and policy conditions of week
i are not visible for week i . So, we feed features from week i − 1 to estimate the human mobility
responses on week i .
Inputs:

—A spatial grid model GRIDS for study area S , where S = {s1, s2, . . . , sn } is a spatial grid;

2In comparison, overlapping trajectories of private vehicles or passengers on private vehicles may raise less concerns in

the spread process.
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—Contextual conditions Cc (e.g., population, median income, POI counts, timestamp);
—Epidemic conditions Ce (COVID-19 statistics);
—Policy conditions Cp (e.g., social distancing policies);
—Human mobility responsesM.

Output:

—Generated maps (on GRIDS ) of human mobility responsesMG under Cc , Ce , and Cp .

Objective:

—Minimizing estimation error onMG .

Constraints:

—Temporal resolution of estimation is aggregated at week-level;
—Mobility estimation at week i can only use COVID-19 statistics achieved before week i;
—Data is aggregated and does not contain private information.

In the scope of the present study, humanmobility responses are measured by number of visits to
POIs, and other related measures are currently out of scope and will be evaluated in future work.
In addition, the current temporal resolution of our analysis is set to week-level due to the very

high variance/noise of mobility from day to day within a week. Thus, to put more confidence on
estimation results, the scope in this article is to performmobility estimation at an aggregated week-
level as defined by the first constraint. The second constraint is added because changes in COVID-
19 statistics (e.g., cases, death) can be considered as a direct or indirect result of mobility changes.
Thus, in this problem, we make such post-information not accessible to mobility estimation for
the same timestamp. However, this does not limit the use of COVID-19 statistics from previous
timestamps, which may truly affect people’s mobility responses.

3 BASELINE: COVID-GAN

In this section, we present the COVID-GANmodel from our recent work [4] and use COVID-GAN
as the building block for the new method proposed in this article. The COVID-GAN approach is
inspired by the conditional Generative Adversarial Network (cGAN) [11]. cGAN is a natural
modeling structure for human mobility response estimation in this COVID-19 scenario, because
there exist a number of known and unknown/randomunderlying factors.With the cGAN structure,
the known factors can be fed in as learning conditions and unknown/random variables can be
represented by vectors of latent code. Our previous work makes the first attempt to formulate the
COVID-19 human mobility estimation problem as a deep learning-based data generation problem.

3.1 Data Integration and Preprocessing

To construct the list of conditions for our input, for each grid cell in each week, we preprocess data
collected from different sources with different geographic units.
Figure 1 shows a summary of the multi-view data we gathered from multiple sources based

on definitions in Section 2.1 (i.e., contextual, epidemic, and policy conditions; human mobility
responses). As we can see, most of the data is associated with different geographic units (e.g.,
census block groups, counties) due to different data sources or privacy protection concerns. Thus,
further spatio-temporal data processing are needed before training and estimation.
First, to integrate all the data of various types and geographic units into the same format, and

feed them into the conditional COVID-GAN, we adopt a commonly used space-partitioning ap-
proach [20, 40] to segment the input spatial domain into grid cells of size 1 km × 1 km, and all
input data in Figure 1 are then segmented based on these grid cells. Note that some features are
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Fig. 1. Multi-source data and preprocessing for COVID-GAN.

Fig. 2. COVID-GAN and COVID-GAN+.

re-scaled during this process. For example, population and median household income data are col-
lected at the census tract level, and we linearly re-scaled the data using the corresponding area
ratios between the area of the original census tract polygon and the proposed 10 × 10 grid cells.
Similarly, COVID-19 statistics and policy data are collected at the county level. We assign each
grid cell with the corresponding data on which county it belongs.
Since the temporal resolution of mobility estimation is week-level as discussed in problem defi-

nition (Section 2), we further merge all the daily information (e.g., mobility, number of cases and
death related to COVID-19) into weekly aggregations for all grid cells.
Finally, we select spatial unit windows consisting of s × s grid cells with their corresponding

features (i.e., conditions and constraints for COVID-GAN) to train our COVID-GAN.

3.2 COVID-GAN Architecture

This section presents our model structure to address the humanmobility response estimation prob-
lem. Figure 2 shows the adversarial structure of the proposed COVID-GAN. COVID-GAN is com-
posed of a conditional generatorG and a discriminator D. To help improve the estimation quality,
we propose a phase in the generator to constrain the estimated values using domain knowledge.
Next, we will discuss the three key components in our COVID-GAN, i.e., the conditional gener-
ator, discriminator and domain-knowledge constraint. Note, Figure 2 illustrates the structures of
COVID-GAN+, differences made by COVID-GAN+ based on COVID-GAN is highlighted in red.

3.2.1 Generator Phase-1: Conditions and Latent Factors. As shown in Figure 2, the input of
conditional generator (skipping the dimension of “batch” for simplicity of description) includes
a condition tensor C ∈ Rs×s×c0 , latent code tensor U ∈ Rs×s×u0 , and a domain knowledge tensor
K ∈ Rs×s×k , where s is the side length of each spatial unit window introduced in Section 3.1, c0 is
the number of conditions (including contextual features, COVID statistics, and policy conditions),
u0 is the dimension of the latent code vector used to model the randomness in human mobility
responses and k is the number of layers in domain constraint.
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In generator, the local-feature-projection (LFP) layer is used to map existing features in the
current layer Li to those of the next layer Li+1. The local-feature-projection layer is a special case
of a convolutional layer in which the kernel size is 1 × 1 × Fi × Fi+1, where Fi and Fi+1 are the
number of features/channels in layer Li and Li+1, respectively.

3 We use local feature projection
layers instead of convolutional layers with larger kernel size mainly to reduce the boundary effects
on grid cells of each spatial window. This is important in mobility estimations, since the final
mobility map is typically an integration of many overlapping spatial windows (Section 4.4), which
may lead to accumulated boundary effects and thus reduce generation quality.
The detailed architecture of the conditional generator is shown in Figure 6. Note, Figure 6 il-

lustrates the model architecture of COVID-GAN and COVID-GAN+, differences made by COVID-
GAN+ based on COVID-GAN is highlighted in red. In generator, the input tensors C and U are
concatenated together and pass four local-feature-projection layers. The first three local-feature-
projection layers are activated by Rectified Linear Unit (ReLU) and batch normalized. The last
local-feature-projection layer is activated by hyperbolic tangent function, and we get an s × s ma-
trixMG , where each entry represents the estimated human mobility of the corresponding grid cell.
Then, domain-knowledge tensor K are enforced onMG before the mobility values are fed into the
discriminator to correct generated values and improve mobility estimation quality.

3.2.2 Generator Phase-2: Domain Knowledge Constraint. Recently, domain knowledge assisted
learning has become an emerging trend, which can help reduce the difficulty of learning and over-
fitting with a small amount of training data and shows encouraging improvements in learning re-
sults. The domain knowledge ranges from observations (e.g., lake temperature versus water depth
[18]) to social and physical theories (e.g., routine activity theory [9], engine combustion models
[24]).
In COVID-GAN, we add a s × s × k tensor K to represent domain knowledge that can be po-

tentially used to correct or improve mobility estimations in phase-1. A domain constraint should
satisfy the following requirements: (1) it contains finite layers (e.g., in our study, the layers of
the domain constraint K corresponds to the last dimension of tensor K); (2) it is related to the
input conditions C so that the usability of COVID-GAN does not depend on the constraint; and
(3) for calculation simplicity, the constraint should be enforced or applied with a low-cost oper-
ation (e.g., a simple element-wise tensor calculation) using MG and K . The third constraint is
especially important in this context of deep learning, since the constraint enforcement operation
will repeat in every iteration. In this study, we construct a constraint K with k = 1 satisfying all
the three requirements mentioned above using a combination of time, POI, and policy (TPP)

constraint.
Denotemxy as mobility values at cell (x ,y) in MG . We havemxy ∈ (−1, 1) as it is an output of

tanh(·) in the output layer. Since in COVID-GAN, human mobility at a grid cell is represented by
the number of visits to POIs in a certain time slot (e.g., one week),mxy equals to −1 when there
is no visit in a cell,mxy > −1 if (1) there exists POIs in the grid cell during the current time slot
and (2) at least one of the POIs is allowed to open. To construct the corresponding TPP constraint
K with k = 1, we treat K as an s × s matrix where each entry value equals to 1 if conditions (1)
and (2) mentioned above are both satisfied; otherwise, the entry value is −1. Figure 3 shows an
illustrative example of our TPP constraint.
The constraint can be then enforced by

M′G = min(MG ,K). (1)

3This type of layer has also been used in other networks (e.g., YOLO [28, 34]) for feature construction.
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Fig. 3. An illustrative example of the TPP constraint.

By applying Equation (1), the mobility values in MG remain the same in if its corresponding
TTP value is 1, or the values inMG are corrected to −1. Thus, this constraint overall only requires
one data layer in K and can be easily enforced by a single min(·) function. This type of constraint
corrections can potentially help the generator focus on valid cells and improve the generation
quality.

3.2.3 Discriminator. Figure 6 shows the detailed architecture of the discriminator. Its input is a
tensor of size s × s × (c0 + 1), where c0 is the number of conditions (same as generator).

As shown in Figure 6, the input tensor can be created in three different ways:

—Conditions concatenated with generated mobilityM ′G ;
—Conditions concatenated with their corresponding real mobilityMreal;
—Conditions concatenated with mismatched real mobilityMshuffle.

Among the three kinds of inputs, only the second one is labeled with “real,” whereas the other
two are marked with “fake.” The input tensor is then fed into the discriminator, and the goal of the
discriminator is to learn to tell if the input is “real” or “fake.”
The discriminator also contains four local-feature-projection layers, the output of the last local-

feature-projection layer is reshaped into a vector and passes a fully connected layer as well as a
Sigmoid function and outputs a final scalar, which indicates the probability whether the input of
discriminator is “real” data.

3.3 COVID-GAN Training

The training of COVID-GAN is performed via adversarial confrontation between the generator
and discriminator. The objective function of COVID-GAN is then formulated as an antagonizing
bi-level min-max optimization problem with binary-cross-entropy:

min
G

max
D

f (G,D) =EM∼Pdata [logD (M,C)]

+ EU∼PU [log(1 − D (G (C,U,K),M))]. (2)

Algorithm 1 presents the training process of COVID-GAN. The training of the discriminator
uses the three types of (M,C) combinations as illustrated in Section 3.2.3: (M′G , C), (Mreal, C), and
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(Mshuffle,C). Denote ηD as the learning rate of discriminator, θD as the parameters of discriminator,
the loss function and the update rule of D are shown in Equations (3) and (4), respectively,

fD = − 1

m

m∑
i=1

(
log(1 − D ((M′G )

i ,Ci )) + log(D (Mi
real,C

i ))

+ log(1 − D (Mi
shuffle,C

i ))
)
,

(3)

θD = θD + ηD∇fD (θD ), (4)

wherem is the total number of samples in a batch, and index i refers to the ith sample.
Similarly, denote ηG as the learning rate of the generator G, and θG as the parameters inG, we

have the loss function and update rule of G as

fG =
1

m

m∑
i=1

(
log(1 − D ((M′G )

i ,Ci ))
)

=
1

m

m∑
i=1

(
log(1 − D (G (Ci ,Ui ,Ki ),C

i ))
)
,

(5)

θG = θG + ηG∇fG (θG ). (6)

ALGORITHM 1: COVID-GAN Training

Require:

• List of conditions C
• List of domain constraints K

• List of real mobilityMreal

• Number of epochs epoch
1: G = initG()

2: D = initD()

3: for e = 1 to epoch do

4: for batch in {C,K,Mreal} do
5: M′

G
= G(batch.C, rand(PU), batch.K)

6: {# for discriminator:}

7: batchmis = mismatchShuffle(batch)
8: Update D using Equations (3) and (4)

9: {# for generator:}

10: Update G using Equations (5) and (6)

11: end for

12: end for

4 MOBILITY ESTIMATION THROUGH COVID-GAN+

The baselinemethod COVID-GAN cannot well estimate themobility in some regions due to spatial
heterogeneity in the data (e.g., urban versus suburban) and outliers with extremely high mobility
counts (e.g., downtown areas with large numbers of POIs). To address these issues, we propose a
new model, namely, COVID-GAN+, to improve the estimation accuracy.

4.1 Quantifying Spatial Heterogeneity

We introduce spatial heterogeneity measures as a new condition to capture the inherent spatial
structure among grid cells. Each grid cell has a time series of human mobility response (POIs visit
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Fig. 4. An example of Local Moran’s I calculation for 2 × 2 grids.

counts) through the study time period. We calculate the Local Moran’s I [3] using human mobility
response before COVID-19 outbreak to quantify the level of spatial heterogeneity between grid
cell pairs in GRIDS . Local Moran’s I measures the similarity between variables xi and x j , where
xi and x j are human mobility responses value at grid cell i and j in our case. The Local Moran’s I
statistics Ii is calculated by the following formula, where x denotes the mean of x :

Ii =

∑n
j=1wi j (xi − x̄ ) (xj − x̄ )∑n

i=1(xi − x̄ )2
, (7)

wherewi j are the elements in spatial weightmatrix that determine the spatial relationship between
location i and j, and is defined aswi j = 1 if grid cell i and j are neighbors; otherwise,wi j = 0. Figure 4
illustrates the calculation of Local Moran’s I of a toy example with grid size 2 × 2.
By utilizing Equation (7), Ii gives a statistic value for the association between grid cell i and

all grid cells j. Unlike other similarity measurements, Local Moran’s I is slightly different due to
spatial calculation involvement. A negative value of Ii indicates that a grid cell has neighboring
cells with dissimilar values; this grid cell might be an outlier. A positive value indicates that a grid
cell has neighboring grid cells with similarly high or low human mobility responses; this grid cell
is highly within a clustering. The benefit from this property is that applying Local Moran’s I can
help the model find outliers and capture clustering patterns in the study area.
Note that the Local Moran’s I is a relative measure across neighborhood grid cells, instead of

directly use the value, it is necessary to determine the statistical significance.We compute a Z-score
using the following equation where Var [Ii ] is the variance of values:

zI i =
Ii − E[Ii ]√
Var [Ii ]

, (8)

where

E[Ii ] = −
∑n

j=1, j�i wi j

n − 1 , (9)

Var [Ii ] = E[Ii
2] − E[Ii ]2. (10)

The above process will generate the Local Moran’s I z-score for each grid cell, which is directly
assigned to each grid cell as a new spatial correlation condition. We finally constructed eight fea-
tures for COVID-GAN+, which are from four categories.
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Fig. 5. COVID-GAN and COVID-GAN+ Network Architecture.

4.2 COVID-GAN+ Architecture

Rare events such as the COVID-19 pandemic typically have limited availability of training data
but require timely policymaking and intervention. The “adversarial” setting in GANmitigates this
challenge by a self-improving discriminator. Using conditional GAN allows generating a variety
of human mobility responses under the same input conditions of known factors.
As discussed above, our previous model does not handle spatial heterogeneity explicitly, al-

though we incorporate a spatial correlation condition, model performance still greatly affected by
varying environmental conditions. One difficulty is detecting and estimating outliers. These spa-
tial outliers are very informative in our case, while they are also challenging to detect due to small
samples. To help improve the model capacity in dealing with outliers, we reform the learning
objective of the conditional generator G to learns the estimated mobility changes from histori-
cal average levels by forcing domain constraints to reduce the effects of outliers. Figure 2 shows
the overall structure of COVID-GAN+. Next, we will discuss the generator and discriminator in
COVID-GAN+.

4.2.1 COVID-GAN+ Generator. To tackle the challenge of spatial heterogeneity, we introduce
the spatial correlation condition in constructing the input of a conditional generator. As Figure 2
shows, C contains four conditions (including contextual, features, COVID statistics, policy, and
spatial heterogeneity conditions).
Figure 5 shows the overall architecture of COVID-GAN+. In generator, the input tensorsC andU

are concatenated together and pass four local-feature-projection layers. We get an s×s matrixMG ,
where each entry represents the estimated humanmobility of the corresponding grid cell. Between
the output MG and the domain-knowledge tensor K, we implement an additional environmental
constraintH to reduce the difficulty of generating mobility estimation in dense regions. This step
forces the model learn the mobility changes, which denote as ΔMG .
To accomplish this, we adapt the domain knowledge constraint structure from COVID-GAN

in conducting the environmental constraint. We construct a s × s × k tensor H, where k = 1
represents the environmental constraint that can be used to improve mobility estimation in the
generator, particularly the quality in estimating outliers.
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Fig. 6. An illustrative example of the environmental constraint.

Denotemxy as mobility values at cell (x ,y) in MG . We havemxy ∈ (−1, 1) as it is an output of
tanh(·) in the output layer. With the purpose of learning the ΔMG , we treat H as an s × s matrix
with a value equal to the conditional historical average mobility response controlled by policy
conditions.
We define the value of constraint H as follows:

H = M̄ ×Cp + |Cp − 1| × M̄, (11)

where Cp ∈ {0, 1}, indicating if there is policy implemented. M̄ represents the historical average
mobility responses. By applying Equation (11), the values of H are calculated by given policy
condition in each grid cell. Then constraint H can be enforced by

M′G = MG +H(H ∈ (0, 1)). (12)

By applying Equation (12), the mobility values in MG are squeezed to a smaller range and rep-
resent the mobility response changes ΔMG . The overall constraint only requires one data layer in
H and can be easily implement through a pixel-wise AND operation.
This constraint correction can potentially help the generator focus on learning the mobility

changes. Given conditional historical average values for grid cells under different policy conditions,
the variance between common and outlier cells is reduced, improving the model’s capacity to
detect and estimate outliers. In generator, environmental constraint layer is followed by the domain
knowledge constraint layer, then theM′G fed into a discriminator.

4.2.2 COVID-GAN+ Discriminator. Figure 5 shows the detailed architecture of the discrimina-
tor. Its input is a tensor of size s × s × (c0 + 1), where c0 is the number of conditions (same as
generator), and the one extra layer added to it contains mobility estimations.
We adapt the structure of COVID-GAN discriminator. The discriminator also contains four local-

feature-projection layers. Within the discriminator, the hidden layers first construct local features
to form signatures of “real” and “fake” distributions and then combine them into a single scalar
value ∈ (0, 1) representing the probability of an input being generated by a real distribution.

4.3 COVID-GAN+ Training

The training of COVID-GAN+ is carried out by rotated training of them. We adapt the objective
function of COVID-GAN and add the correction layer H in generator. The objective function is
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ALGORITHM 2: COVID-GAN+ Training

Require:

• List of conditions C
• List of domain constraints K

• List of environmental constraints H

• List of real mobilityMreal

• Number of epochs epoch
1: G = initG()

2: D = initD()

3: for e = 1 to epoch do

4: for batch in {C,H,K,Mreal} do
5: ΔMG = G(batch.C, rand(PU), batch.H, batch.K)

6: MG = ΔMG + H

7: M′
G
= min(MG ,K)

8: {# for discriminator:}

9: batchmis = mismatchShuffle(batch)
10: Update D using Equations (14) and (15)

11: {# for generator:}

12: Update G using Equations (16) and (17)

13: end for

14: end for

formulated as follows:

min
G

max
D

f (G,D) =EM∼Pdata [logD (M,C)]

+ EU∼PU [log(1 − D (G (C,U,H,K),M))]. (13)

Algorithm 2 presents the training process of COVID-GAN. The training of the discriminator
uses the three types of (M,C): (M′G , C), (Mreal, C), and (Mshuffle, C). Denote ηD as the learning rate
of discriminator, θD as the parameters of discriminator, the loss function and the update rule of D
are shown in Equations (14) and (15), respectively,

fD = − 1

m

m∑
i=1

(
log(1 − D ((M′G )

i ,Ci )) + log(D (Mi
real,C

i ))

+ log(1 − D (Mi
shuffle,C

i ))
)
,

(14)

θD = θD + ηD∇fD (θD ), (15)

wherem is the total number of samples in a batch, and index i refers to the ith sample.
Similarly, denote ηG as the learning rate of the generator G, and θG as the parameters inG, we

have the loss function and update rule of G as

fG =
1

m

m∑
i=1

(
log(1 − D ((M′G )

i ,Ci ))
)

=
1

m

m∑
i=1

(
log(1 − D (G (Ci ,Ui ,Hi ,Ki ),C

i ))
)
,

(16)

θG = θG + ηG∇fG (θG ). (17)
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Fig. 7. Overall evaluation framework.

4.4 COVID-GAN+ Estimation

The goal of this step is to generate the mobility map of the entire study area (e.g., a city or county)
from the estimations of s × s spatial unit windows. Since COVID-GAN+ would generate the mo-
bility maps of spatial unit windows in different time slots and areas, we present two schemes to
generate the final map of mobility estimation.
Single-draw-based sliding window: In this scheme, we move a s × s sliding window across the

whole target area to prepare all conditions and constraints for the generatorG. Then, using these
well-prepared data, we train the COVID-GAN+ and generate a single s × s mobility estimation
result for each unit window (i.e., a single draw from the distribution with latent factors), and we
build the whole map with all the generated results for unit sliding windows. Since each grid cell
in the target area may have multiple generated results due to overlaps among the sliding unit
windows, the final mobility value in a grid cell is the average of the generated results.

Multiple-draw-based sliding window: This scheme takes w draws of the same window from the
generator G instead of a single draw. The results of the multiple draws are averaged before being
integrated into the estimation of the original study area.
In our experiments, we use the multiple-draw version to reduce random effects in comparison.

The single-draw version is better suited for scenarios when a decision maker would like to explore
potential variations in human mobility responses.

5 EVALUATION

The overall evaluation framework is shown in Figure 7. Our experiments aim to answer the fol-
lowing questions:

—How does COVID-GAN+ performs compared to the COVID-GAN and other baseline models
in terms of solution quality?

—What are the effects of features and constraint layer in COVID-GAN+ on the performance?
—What is the effect of training on temporally seen versus temporally unseen samples?
—What is the effect of training on spatially seen versus spatially unseen samples?

The second question aims to assess the learning effectiveness of environmental constraint layer
in COVID-GAN+ on the performance. The third question aims to compare the quality of generated
mobility responses between spatial regions that are seen and unseen in the training data (either
temporally seen or not). Similarly, the fourth question aims to evaluate the same effect along the
spatial dimension.
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Fig. 8. Partitioning of Boston study area.

5.1 Boston Dataset

For human mobility responses estimation, we collect data from four data sources in 1 for Boston.
The study area of Boston used in the experiments is shown in Figure 8, where Figure 8(a) visualizes
the geographic context of the area around Boston, MA, and Figure 8(b) shows the grid partitioning
of the space. The dimension of the study area is 37 km × 48 km and each grid cell has a size of
1 km× 1 km. An example of a 10× 10 unit window is illustrated by the blue box in Figure 8(b). The
duration of data is from 03/02 to 05/24, covering 12 weeks in total.
The original POI dataset is aggregated daily and obtained by collecting the anonymous location

frommobile devices. Each location includes the latitude and longitude of the corresponding device
at a given point in time. Then, the location information is used to determine the visits to points
of interest [2]. The study area has over 2 million population in total and 26,054 POIs. We further
aggregate the daily mobility to weekly. During the 12 weeks, the total number of POI visits is over
6 million. For each grid cell in the study area, the value of mobility is the total number of POI visit
counts in a week. A “closure-of-public-venues” policy was implemented starting from 03/23 and
lasted till the end of the 12-week period.

5.2 Evaluation Metrics

We evaluate the performance of COVID-GAN+ by using the following measures:mean absolute

error (MAE) and rooted mean-square error (RMSE):

MAE =
1

n

n∑
i=0

��yi − ŷi �� , (18)

RMSE =

√√
1

n

n∑
i=1

(yi − ŷi )2, (19)

where yi is the ground truth and ŷi is the predicted values of mobility responses at each grid cell.
To evaluate the model’s performance more comprehensively, we use KL-divergence to indicate the
similarity between the learned distribution and ground truth distribution by giving different bin

sizes. For two distributions P and P̂, the KL divergence is defined as follows:

DKL (P | |P̂ ) =
N∑
i=1

P (yi )loд �
�
P (yi )

P̂ (ŷi )
�
�
, (20)

where we obtain the two distributions by calculatingM′G andMreal histogram and applying differ-
ent bin sizes in generating histograms to evaluate the matching between ground truth distribution
and learned distribution. Besides, we record the total mobility estimated in the full study area and
the sum of estimated mobility differences for all grid cells in the full study area.
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Table 1. Performance Comparison of Different Approaches

Model HA Smoothing Ridge MLP cGAN COVID-GAN COVID-GAN+ Ground Truth

With conditional
HA as feature

RMSE 267 368 203 549 394 351 147 —
MAE 61 169 139 256 157 167 65 —
Total 522,274 452,596 335,225 216,089 386,791 402,471 399,031 422,223

Difference 100,051 30,373 −86,998 −206,134 −35,432 −19,752 −23,192 —

5.3 Baseline Methods

We compare our model with the following six baselines:

• Historical Average (HA): The average value of humanmobility responses at the same time
interval. In this article, we calculate the historical average using mobility from temporally
seen weeks.
• Spatial smoothing with neighborhood regions [13]: For a given time slot, this method
uses the mobility response values of the nine closest regions to compute a mean value as
the resulting estimation. Note, we use available data in the training set to estimate for this
method.
• Regression [16]: Ridge regression is applied to estimate the mobility responses in each grid
cell given the condition list as predictors.
• cGAN [11]:A standard Conditional Generative Adversarial Network without any constraint
layers. The generator and discriminator both pass through three fully connected layers, and
output of the generator is activated by Tanh, and the output of the discriminator is fed to
Sigmoid function.
• MLP:Multiple Layer Perception. We use three-layer MLP and select ReLU as the activation
function.
• COVID-GAN [4]: COVID-GAN, a spatio-temporal Conditional Generative Adversarial Net-
work including a domain-constraint correction layer in the generator to reduce the difficulty
of learning proposed in our recent work.

5.4 Estimation Quality Evaluation

Here, we aim to answer the three questions summarized at the beginning of Section 5. Figures 11
and 12 show a comparison of results of different approaches in different scenarios. Specifically, the
first column (i.e., (a1) and (a2)) in both figures shows the ground truth, and the second and third
columns show the results of the proposed COVID-GAN+ as well as the baseline approach COVID-
GAN without environmental constraint-based correction). In Figures 11 and 12, we highlight the
results of the candidate methods for a sub-region in the study area (the same region is used for both
temporally seen and unseen data, and spatially seen and unseen data, respectively). The results for
the full Boston study area are shown in Table 1 and Figure 9. To comprehensively compare the
performances between COVID-GAN+ and baseline methods, we reform the conditional historical
average value used in the environmental constraint layer into a feature layer and fed into all the
methods as a predictor.
The colors used in map symbologies are classified using quantiles extracted from the ground

truth (i.e., 0th, 25th, 50th, 75th, and 100th), a typical approach for enhanced map visualization.
To reduce random effects in the comparison, all results are based on the multiple-draw-based ap-
proach (10 repetitive runs) described in Section 4.4.

The performance of proposed COVID-GAN+ and baseline methods: Table 1 shows the
statistical results of seven candidate approaches. Since COVID-GAN+ utilizes the environmental
constraint layer in training, we fed conditional historical average value to all the baselinemodels as
a predictor, and for COVID-GAN, we construct this information as a condition. The COVID-GAN+
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Fig. 9. Mobility estimation results of the full Boston study area (with conditional HA as a predictor in baseline

methods).

achieves the best performance with the lowest RMSE, and the performance is greatly improved
by comparing the RMSE and MAE with COVID-GAN. Historical average performs better than
other baseline methods but not as good as our proposed approach. These two observations reveal
that the historical average is a good method for mobility estimation with low error due to the
periodicity pattern in human mobility patterns.
Table 1 also shows the total estimated mobility (i.e., the total number of POI visits) and differ-

ences between the ground truth and the models for the full study area computed using the ground
truth, COVID-GAN+, and the baselines. The total mobility (number of visits) of the ground truth,
COVID-GAN+, and baseline are 422,223, 399,031, and 402,471, respectively. The differences be-
tween the ground truth and the methods are −23,192 and −19,752 for COVID-GAN+ and COVID-
GAN, respectively. We can see that the overall estimation of COVID-GAN and COVID-GAN+ are
very close to that of the ground truth. The COVID-GAN+ outperforms in the MSE and RMSE;
however, COVID-GAN+ loses in Total. The possible reason is that COVID-GAN generates mobil-
ity values with large variance compared to COVID-GAN+, increasing the total amount of mobility
estimation. Generally, compared to other baselines, both COVID-GAN and COVID-GAN+ have
much better performance. To evaluate the distribution-closeness between the mobility values esti-
mated by the ground truth and the methods, we further compute the Kullback-Leibler divergence
[22] and the results are shown in Figure 10. The x-axis is the number of equal-size bins used
to discretize the mobility estimations needed for the computation. As we can see, COVID-GAN+
achieves lower KL-divergence values compared to the baselines consistently for different numbers
of bins, and the historical average performs well in this measurement. From the statistical results,
we notice the strong benefit of using the historical average for human mobility estimation.

Visualization: Besides statistical results, we compare the solution quality of the seven candi-
date approaches through map visualization. Figures 9(a) to 9(e) show the results of baseline meth-
ods, and Figures 9(f) and 9(g) show the COVID-GAN, ground truth, and results of proposed COVID-
GAN+ for the full Boston study area for the final week in the data (not used in training). The yellow
circle highlights an example of the differences. Here COVID-GAN+ generates fine-scale mobility
values that are closer to the ground truth. As we can see, the mobility pattern generated by the
COVID-GAN+ can capture the details in the distribution of human mobility responses better than
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Fig. 10. Kullback-Leibler divergence (with conditional HA in baseline methods).

Fig. 11. Detailed mobility estimation results in a sub-region of the study area for both temporally seen and

unseen data (with conditional HA).

other baseline methods. The reasonmay be that COVID-19-related policy has a discouraging effect
on people’s will to get out. Forcing the model to learn based on the conditional historical average
value controlled by policy leads to stronger suppressing force on the value and an increase in the
estimation. Note that MLP and standard cGAN generate mobility response values in the sea re-
gion locates on the middle of the right side. This supports the usage of the domain-knowledge
constraint correction mechanism in COVID-GAN+ models.
COVID-GAN+ versus COVID-GAN: As we can see, in Table 1 and Figure 9, results of

COVID-GAN+ in Figure 9(h) can better approximate the mobility distributions in the ground truth
compared to the results of the COVID-GANmethod in Figure 9(f), where the pattern of a large num-
ber of cells around the downtown dense region are well depicted. Besides, the trend remains the
same for both temporally seen and unseen data in Figure 11 and spatially seen and unseen data in
Figure 12. From Table 1 we can see the RMSE of COVID-GAN+ improves 62%, and there is a 63%
improvement in MAE. As we discussed, outliers are composed of a small number of samples; how-
ever, they largely affect the estimate accuracy. By introducing the environmental constraint layer,
the difficulty of learning outliers is reduced and, at the same time, there is an improvement in the
overall estimation quality.
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Fig. 12. Mobility estimation results in spatially unseen (first row) and seen regions (second row) of the study

area (with conditional HA).

Temporally seen versus temporally unseen: In this comparison, “temporally seen” refers to
the time periods (i.e., weeks) in the training data and have been seen by COVID-GAN+. In contrast,
temporally unseen refers to data of weeks that are outside the training data.
We expect that our model can generalize reliable human mobility responses estimation given

different condition combinations. The purpose of temporally unseen versus temporally seen is to
examine the model estimation accuracy given new temporally unseen conditions. To make the
test more realistic, the timestamp of unseen data must also be strictly after all timestamps in the
training data so that the model does not try to estimate the past based on the future. We always
feed prior conditions to estimate the following week’s mobility. We use week 12 data as a testing
week to evaluate the model performance with unseen conditions temporally.

In this experiment, we use the first 11 weeks of data to train the candidate models and leave
the 12th week out as “temporally unseen” data. According to the results in Figure 11, we can
see that COVID-GAN can maintain a good description of the overall pattern. The grid cells on the
center of the sub-region in Figure 11 in COVID-GAN+ model have a higher solution quality while
COVID-GAN gives a blur description of this sub-region. This is especially important in assisting
policymaking during the ongoing pandemic when model being used to estimate human mobility
responses for the unseen week.
Spatially seen versus spatially unseen: To generate spatially unseen regions, we crop a

20 km × 20 km sub-region (i.e., a 20 × 20 sub-grid) off the total geographic space shown in
Figure 8, and condition combinations in this sub-region are not seen by COVID-GAN+ during
entire training phase. This eliminates about one-third of the total amount of training samples
(overlaps with the sub-grid are not allowed). Figure 12 shows the comparison of results by COVID-
GAN+ and the COVID-GAN. Comparing results in the two rows, COVID-GAN+ achieves a better
estimation for the first row when the data is spatially seen, and the results of the COVID-GAN
cannot well approximate the details in the mobility distribution.

6 DISCUSSION

In this section, we discuss a few data and technical aspects of COVID-GAN+ in a more holistic
manner.
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Generation versus prediction: As a conditional generative neural network, COVID-GAN+ is
more of a generator than predictor by definition, since the generation process involves randomly
sampled latent factors to model unknown or uncertain factors in human mobility responses. In
other words, the generated mobility results may not necessarily remain the same under the same
condition (results in our experiments are averaged from multiple simulations). This allows policy-
makers or epidemiologists to evaluate different possibilities of human mobility responses during
decision-making (e.g., change of policy). In contrast, a prediction model typically produces the
same result for the same data once trained, and it is better suited when all or most of factors of
human mobility responses are well-understood, stable and available in data.
Spatial variability:While our experiment results show that COVID-GAN+ performed reason-

ably well for a spatially unseen region, that region is relatively small and is still adjacent to the
spatially seen data. Thus, more research is needed to examine COVID-GAN+’s performance for
regions that are more distant to each other (e.g., different states, different countries). Given the typ-
ical social and physical differences in different geographic areas, new approaches may be needed
to explicitly handle the spatial variability at larger geographic scales [15].

Data quality: In this work, we did not investigate the effect of data quality (e.g., missing data,
inaccuracy, anomaly) of input conditions, which may have bigger impacts in rural areas where the
total volume of data tend to be smaller. This needs to be further investigated in future research to
improve the generality of COVID-GAN+.

7 RELATEDWORK

COVID-19. There have been many studies [5, 7, 10, 21] exploring the interplay between hu-
man mobility responses, social distancing policies, and transmission dynamics in response to the
COVID-19 pandemic. For example, it was shown by Reference [21] that strict implementation of
social distancing policies can reduce mobility and substantially mitigate the spread of COVID-19.
A U.S. mobility change map was created in Reference [10] to increase risk awareness of the public
and visualize dynamic changes in mobility as COVID-19 situation and policy evolves. Reference
[7] measures the effectiveness of non-pharmaceutical interventions introduced by governments
across Europe using the changes of mobility. Studies [8] have also explored the feasibility of uti-
lizing contact tracing to control the spread of the disease through simulated synthetic data and
real-world smartphone trajectories. These studies are timely in showing the important role played
by mobility in the spread of COVID-19, but they do not address the challenges in real-world mo-
bility estimation/simulation(e.g., effects of unknown, uncertain, and random factors), and they
analyze the mobility changes in city or country scale. Besides, these studies have not explored the
potential use of deep learning-based generative models to assist the estimation.

Deep Learning for Spatio-temporal Prediction. There have been many deep learning-based
techniques developed for spatio-temporal data. For example, LSTM were widely used in traffic
accident prediction [37], and flow prediction [26, 38], due to its capability in capturing spatio-
temporal correlation and thus provide good prediction results. Geospatial object mapping [34–36],
taxi driver behavior imitation [39], taxi demand [12], travel-time estimation [33], dispersal event
forecasting [31], and so on, all combine the deep learning model with spatio-temporal perspective
in their model design and obtain good performance. Most of these spatio-temporal deep learning
techniques typically are stationary predictors (i.e., same result from two runs on same data) rather
than generative models, and they do not consider the unknown factors in prediction, and their
performance relies on large data sets. Besides, they do not leverage domain knowledge-based con-
straints to assist learning (e.g., cGAN [11, 14, 40]). In addition, generative neural networks have
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not been explored to assist human mobility response estimation at fine-scale in this COVID-19
pandemic.

Generative Adversarial Networks (GANs). GANs were proposed by Reference [14] and have
achieved great performance in image generation domain, including image-to-image translation
[17], image super-resolution [23], and text-to-image synthesis [29]. Despite the success, a critical
issue for GANs is known to be the instability and sensitivity to the choices of hyper-parameters
in learning process. Several works have attempted to address the GANs training problem and
improved the stability by designing new network architectures [19], modifying the learning objec-
tives and dynamics [25], and adding regularization methods to obtain stable gradients [6]. Besides
image generation, recently, deep graph generative adversarial structure has been developed based
on the concept of unsupervised learning. Existing architectures build upon the generative model,
including GraphVAE [30] and GraphGAN [32], and they achieved good performance. However,
the generative model has not been applied to estimating the human mobility problem as well as
other human-related movement research.

8 CONCLUSIONS AND FUTURE WORK

We proposed a conditional COVID-GAN+ to estimate/generate real-world human mobility re-
sponses to assist policymaking during staged reopening in the face of the COVID-19 pandemic.
In our prior work, we proposed a COVID-GAN that integrated various features, including con-
textual features, COVID-19 statistics, and policies from multi-sources. In addition, the generator
incorporated a domain-constraint correction layer to reduce spurious results and the difficulty
of learning efficiently. Experimental results showed that COVID-GAN can well mimic real-world
human mobility responses with limitations in estimation outliers and does not consider spatial
heterogeneity. Addressing these issues, in this article, we propose a COVID-GAN+ that tackles
the above two limitations. We quantify the spatial heterogeneity and construct a spatial feature
condition; in addition, we introduce an environmental constraint layer to force the model to learn
the mobility changes to reduce the difficulty of estimating outliers. The experiment results show
that the proposed model significantly improves the solution quality information.
In future work, we plan to explore spatial variability aware formulations of COVID-GAN as

well as other measures of human mobility response and efficiently enforceable domain constraints
with epidemiologists. Furthermore, the current work was limited to a single city. We will include
more cities to improve the model capacity in transferring between different places. To achieve this
goal, we will explore the meta-learning approaches to learn a shared knowledge across different
cities and adapt to a new city with limited data. Also, we will consider distributed frameworks [27]
for better scalability during data integration and model training.
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