DILSA+: Predicting Urban Dispersal Events through Deep
Survival Analysis with Enhanced Urban Features

AMIN VAHEDIAN KHEZERLOU, University of Wisconsin-Whitewater, USA
XUN ZHOU, XINYI LI, and W. NICK STREET, The University of Towa, USA
YANHUA LI, Worcester Polytechnic Institute, USA

Urban dispersal events occur when an unexpectedly large number of people leave an area in a relatively short
period of time. It is beneficial for the city authorities, such as law enforcement and city management, to have
an advance knowledge of such events, as it can help them mitigate the safety risks and handle important
challenges such as managing traffic, and so forth. Predicting dispersal events is also beneficial to Taxi drivers
and/or ride-sharing services, as it will help them respond to an unexpected demand and gain competitive
advantage. Large urban datasets such as detailed trip records and point of interest (POI) data make such
predictions achievable. The related literature mainly focused on taxi demand prediction. The pattern of the
demand was assumed to be repetitive and proposed methods aimed at capturing those patterns. However,
dispersal events are, by definition, violations of those patterns and are, understandably, missed by the methods
in the literature. We proposed a different approach in our prior work [32]. We showed that dispersal events
can be predicted by learning the complex patterns of arrival and other features that precede them in time.
We proposed a survival analysis formulation of this problem and proposed a two-stage framework (DILSA),
where a deep learning model predicted the survival function at each point in time in the future. We used that
prediction to determine the time of the dispersal event in the future, or its non-occurrence. However, DILSA is
subject to a few limitations. First, based on evidence from the data, mobility patterns can vary through time
at a given location. DILSA does not distinguish between different mobility patterns through time. Second,
mobility patterns are also different for different locations. DILSA does not have the capability to directly
distinguish between different locations based on their mobility patterns. In this article, we address these
limitations by proposing a method to capture the interaction between POIs and mobility patterns and we
create vector representations of locations based on their mobility patterns. We call our new method DILSA+.
We conduct extensive case studies and experiments on the NYC Yellow taxi dataset from 2014 to 2016. Results
show that DILSA+ can predict events in the next 5 hours with an F1-score of 0.66. It is significantly better
than DILSA and the state-of-the-art deep learning approaches for taxi demand prediction.

CCS Concepts: « Computing methodologies — Neural networks; « Information systems — Geographic
information systems;

This work is partially supported by the NSF under Grant No. IIS-1566386. We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Titan Xp GPU used in this research. X. Z. was funded partially by Safety Research
using Simulation University Transportation Center (SAFER-SIM). SAFER-SIM is funded by a grant from the U.S. Depart-
ment of Transportation’s University Transportation Centers Program (69A3551747131). However, the U.S. Government
assumes no liability for the contents or use thereof. Y. L. was supported in part by NSF grants no. IIS-1942680 (CAREER),
no. CNS-1952085, no. CMMI1831140, and no. DGE-2021871.

Authors’ addresses: A. V. Khezerlou, University of Wisconsin-Whitewater, 809 West Starin Road, Whitewater, WI 53190,
USA; email: vahediaa@uww.edu; X. Zhou, X. Li, and W. N. Street, The University of lowa, 21 East Market Street, lowa City,
IA 52242, USA; emails: {xun-zhou, xinyi-li, nick-street}@uiowa.edu; Y. Li, Worcester Polytechnic Institute, 100 Institute
Road Worcester, MA 01609, USA; email: ylil5@wpi.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

2157-6904/2021/08-ART49 $15.00

https://doi.org/10.1145/3469085

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3469085

49:2 A. V. Khezerlou et al.

Additional Key Words and Phrases: Data mining, deep learning, survival analysis, dispersal events

ACM Reference format:

Amin Vahedian Khezerlou, Xun Zhou, Xinyi Li, W. Nick Street, and Yanhua Li. 2021. DILSA+: Predicting
Urban Dispersal Events through Deep Survival Analysis with Enhanced Urban Features. ACM Trans. Intell.
Syst. Technol. 12, 4, Article 49 (August 2021), 25 pages.

https://doi.org/10.1145/3469085

1 INTRODUCTION

Dispersal events occur when an abnormally large number of people depart an area during a rel-
atively short period. Such events can happen after large gatherings such as concerts, protests, or
any other unexpected gatherings. Dispersal events, given their unexpected nature, can potentially
cause public safety risks, congestion, and unanswered demands of public transportation (e.g., taxis).
Therefore, predicting dispersal events as well as the volume of the events in terms of demand size
can be greatly beneficial to city authorities and businesses. The safety and the flow of the traffic
in the urban area can benefit from such a technique since resources can be allocated to mitigate
potential risks or congestion. Transportation businesses, such as ride-sharing platforms and tradi-
tional taxi drivers are enabled to gain competitive advantage by covering such events with larger
fleets if they can be predicted in advance.

Dispersal event prediction is not a task that can be automated in a trivial way. While most events
are scheduled, it is often uncertain when the dispersion will occur. Moreover, there are occasions
when events are unplanned or people attend in larger numbers than intended, such as protests or
celebrations. In addition, when events are organized privately, the schedule is only known for the
attendees and it is not possible obtain advance knowledge of the event if one is outside the group
of attendees. For instance, the players of the Pokemon Go game gather for events organized inside
the game. In any case, searching, screening, and verifying event schedules is a task that is either
labor-intensive or equally challenging to automate.

One potential solution to predict dispersal events, would be to use taxi demand prediction ap-
proaches [8, 21, 34, 37, 39] and identify high-demand locations as dispersal events. However, such
approaches are designed to learn the regular demand and cannot predict the unexpectedly high
demand at the time of dispersal events. Another approach to predict dispersal events could be
to observe abnormal gatherings and use them as a signal to predict future dispersals. Figure 1(a)
shows an example of such an incident. The dashed and solid lines represent the anomaly scores
[23] of the drops and the pick-ups, respectively. However, the evidence of a dispersal event in
the future is not always that clear. Figure 1(b) shows such a case, where there are no abnormal
drops preceding the dispersal event. Our prior work [32] addressed such challenges and the limi-
tations of the related work, by proposing an approach called DILSA. We formulated the dispersal
event prediction as a “Survival Analysis” problem [20], where we treated the dispersal event as
the “death” event in survival analysis. By learning the complex patterns of arrival and departures
using deep learning models, we predicted the probability of “death” at given points in time in the
future. Specifically, given the historical taxi trip records and other relevant features (e.g., weather,
point of interest (POI)), we predicted (1) when and where abnormally high taxi demand will
occur, and (2) the volume of demand during the dispersal event.

This article is a significant extension to our prior work [32]. DILSA uses global models for all
locations to predict dispersal events and predict abnormal taxi demand in the case of such events.
Different locations are likely to have different patterns and one model might not be able to dis-
tinguish between them. In our prior work, we added POI features to help the model distinguish

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

https://doi.org/10.1145/3469085

DILSA+: Predicting Urban Dispersal Events 49:3

fffff Drops ~ —— Pick-ups
fffff Drops —— Pick-ups

g g

g 5 30

a 220

> 2>

© ©

E £ 10

: 2

z 2 | WY
20 40 60

Time

(a) An anomalously high pick- (b) An anomalously high pick-

up, preceded by an anoma- up, not preceded by a drop

lously high number of arrivals. event.

Fig. 1. Examples of abnormally large number of pick-ups.

between different “types” of locations. However, POI features are constant through time and they
will fail to distinguish between mobility patterns through time. Moreover, our prior work did not
include any features to directly represent and differentiate locations based on their mobility pat-
terns, such as pick-up time series.

In this article, we address these limitations, by making two major contributions. (1) We propose
to address the first limitation by capturing the interaction between POIs and mobility patterns, i.e.,
pick-ups and drop-offs. (2) We propose a method to create a vector representation of a location
solely based on its mobility patterns. We call our new method DILSA+.

We evaluate our methods using real-world data from New York City. Our evaluations show our
method identifies dispersal events with an F1-score of 0.71. Also, our method predicts the pick-up
demand in the case of anomaly with superior accuracy compared to the baselines.

The rest of the article is organized as follows: In the next section, we discuss the related work,
followed by problem formulation. Then we present Gathering-based Dispersal (GbD) event
prediction as a baseline solution. In the following section, we present our survival analysis formu-
lation and prior work, DILSA, as a second baseline. Next, we present our proposed computational
solution. Finally, we present the evaluations and conclude the article.

2 RELATED WORK

Prior related works include (1) event detection and forecasting, (2) taxi demand prediction, and
(3) survival analysis.

Event Detection and Forecasting: Event detection has been widely studied in various
domains, including public health, urban computing, and social network analysis. The works
[16, 17, 23] and other recent works on event detection [12, 18] use already-observed counts. An
event is defined as a region with significantly higher counts, such as disease reports or number of
taxi drops. Social media posts and geo-tagged tweets have been used as well to detect and forecast
events such as social unrests and protests [6, 19, 27, 36, 40, 41]. Regions and time windows where
the frequency of certain keywords exhibit abnormal changes are identified as events. These works
do not use mobility data. The dynamic patterns of the events such as gathering or dispersing
are not captured.

Works [10, 13, 42] use traffic flow data to detect gathering events. Vahedian et al. use destination
prediction to predict gathering events [14, 31]. However, such methods are not applicable to
dispersal events, as trajectories and traffic flow are observed only after such events.

Taxi demand prediction has been studied closely in recent years, due to access to public taxi
datasets [39]. To the best of our knowledge, none of the proposed methods directly address the
prediction problem in the case of anomaly. State-of-the-art methods for predicting taxi demand

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

49:4 A. V. Khezerlou et al.

use historical data and time series analysis. Yao et al. [35] propose a deep learning framework
that captures the spatial and temporal dependencies to predict taxi demand. Xu et al. [34] formu-
late an LSTM Network to learn the regular pattern of taxi demand. Zhao et al. [39] show that
regular taxi demand is highly predictable and test different algorithms to approach the maximum
accuracy. Zhang et al. [37] used spatial clustering to predict demand hotspots. They predict areas
with high density of demand using DBSCAN. Such areas, despite having high demand, are part
of the regular pattern. Moreira-Matias et al. [21] used streams of taxi data as time series to pre-
dict taxi demand in the next 30-minute period. Davis et al. [8] used time series analysis to solve
the demand prediction problem, giving recommendations to drivers. Mukai and Yoden [22] used
a simple multi-output Artificial Neural Network (ANN) to predict demand, using features cre-
ated from recent demand, time and weather information. Okawa et al. [25] use a deep learning
method to predict taxi pick-ups, while they treat each pick-up as an event. While their work is
a direct address of the event prediction, the fact that they treat each pick-up as an event makes
their prediction about the regular pick-up patterns, as they do not distinguish between normal and
abnormal pick-ups. Ding et al. [9] propose a Memory-Network approach to predict extreme time
series events, that can potentially be used to predict dispersal events. However, their technique uses
simple thresholding to identify events. Such method results in predictions that have no statistical
significance.

The above-mentioned research aims at learning the regular pattern of taxi demand in ab-
sence of anomaly. Considering the regular demand is highly predictable, in this article, we take
on the harder challenge of predicting anomalous taxi demand, which we believe is of greater
importance.

Survival analysis is the analysis of duration of time until an event. It has been applied in en-
gineering as well as health practices [29], for which it was originally developed [20]. To the best
of our knowledge, this is the first time survival analysis is used in the context of urban event
prediction. In this article, we propose to use a deep ANN to predict the probabilities of survival.
Predicting the probabilities of survival at different time points using a common internal represen-
tation (the hidden nodes of a deep ANN) allows the learned model to share information across the
time points, resulting in better predictive results.

In our prior work [32], we proposed DILSA to predict the occurrence of dispersal events and
predict unusually high taxi demand in the case of a dispersal event. DILSA took advantage of a
variety of features, most notably including mobility features. However, mobility patterns vary by
space and time. To account for this variation, DILSA used a set of features that represented the
types of POIs in the area. POI features are time-invariant and failed to capture the variation of hu-
man mobility through time. Moreover, POI features are not a direct representation of differences in
human mobility patterns, which is the focus of attention in predicting dispersal events. Therefore,
in this article, we propose to address these limitations by (1) formulating the interaction between
human mobility and POIs through time (MobPOI features) and (2) representing each location with
a vector that is directly obtained from the pairwise similarities of mobility patterns among all
locations.

3 PROBLEM FORMULATION
3.1 Concepts and Definitions

We define a spatio-temporal field Z = (S, T) as a two-dimensional geographical region S paired
with a period of time T. § is partitioned by a grid. Each grid cell 1,5, . . ., [|s| represents a distinct
location in the geographical region. T is partitioned into fixed-length timesteps. Given Z, the lo-
cation of any moving object can be mapped into a grid cell in S and a timestep in T. For example,

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

DILSA+: Predicting Urban Dispersal Events 49:5

160 80{ — Pick-up Counts
== Drop Counts

[10 20 30 40
Time (half-hour intervals)

(a) A spatial grid over (b) Heatmap of pick-up base-(c) Heatmap of drop baselines (d) Pick-up and drop counts of a
New York City. lines (2014). (2014). location in Lower Manhattan on
Jan. 2nd, 2014.

Fig. 2. Example of grid, counts, and baselines (best viewed in color).

pick-up and drop locations from a taxi trip record can be represented by a tuple of length four,
using the following definition.

Definition 1. A trip is a tuple (I°,t°, 4, td), where the elements represent trip source location,
source time, destination location, and destination time, respectively.

Figure 2(a) shows an example of a grid overlaid on New York City. Based on the definition of
trips in the spatio-temporal field, we define the following statistics for each location and time.

Definition 2. The pick-up count of grid cell [at time ¢, denoted by C s the number of trips

that have [and t as their source location and time. Similarly, drop count, denoted by cd o is the
number of trips that have [and t as their destination location and time.

Figure 2(d) shows an example of a pick-up count time series and drop count time series for a
grid cell in Lower Manhattan on January 2nd, 2014. Pick-up and drop counts show the arrivals
and departures at every location and time in Z. If T encompasses countable periods of time, we
can assume that defined counts will demonstrate a repetitive pattern at each location throughout
those periods. For instance, if T encompasses a year, the countable periods can be represented as
seasons, months, weeks, or days. Therefore, the same timesteps within different periods can be
expected to have similar values. Thus, we define the baseline counts for arrivals and departures at
every location for a timestep in a period, considering the days as the countable periods.

Definition 3. The pick-up baseline of grid cell / at time ¢, denoted by B‘z "

up counts at [at the same time of day. Similarly, drop baseline, denoted by B‘{ " is the average of

is the average of pick-

drop counts at [at the same time of day.

Figure 2(b) and (c) show heatmaps of baseline pick-up and drop counts for the grid in Figure 2(a)
for 2014.

The counts and baselines are defined for a grid cell at a given timestep. However, they can be
obtained for a spatial region too. We define spatial region [* to be the surrounding region of a grid
cell.

Definition 4. Surrounding area of grid cell [= (a, b), where a and b are the grid coordinates of
1, is the rectangular area bounded between grid cells (a— A, b —A) and (a+ A, b + 1), and is denoted
by I*.

I* is the spatial region containing (24 + 1)? grid cells, consisting of [and a set of its nearby lo-
cations. Similarly, the counts and baselines can be obtained for a time interval longer than one
timestep. In other words, they can be obtained for spatio-temporal regions. We define spatio-
temporal regions as follows.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

49:6 A. V. Khezerlou et al.

Definition 5. A spatio-temporal region R = (Sg, T) is a pair of rectangular sub-fields of S and
a continuous subset of T.

To study the unexpectedly high taxi demands, in this article, we are interested in the spatio-
temporal regions at which we observe significantly higher counts than expected, i.e., when C‘; is
significantly higher than B‘g. To this end, we assume Cf; follows a Poisson distribution and test
the following hypotheses: Hy: Cﬁ, is from a Poisson distribution of parameter B‘IZ, Hi: Cﬁ, is from a

Poisson distribution of a parameter larger than B‘z. We use the Expectation-based Likelihood Ratio
Test of Neill et al. [23]:

CP
CPlog =% + (B2 —) ifc? > B
LLR(R) = | R 108 5, T Pr = G i G = By (1)
0 otherwise.

Zhou et al. [42] showed that LLR(R) is at a-level significance if 1 — Pr(X < C‘Z) < a, where
X ~ Poisson(BfQ). Based on this test, we define dispersal events.

Definition 6. There is a dispersal event at spatio-temporal region R, if LLR(R) is significant at
a-level.

In an urban area, every location has specific attributes other than the pick-up and drop counts.
In this article, we consider two of these attributes: weather and POI vector. Every location has
a daily maximum and minimum temperature, average wind speed, and total precipitation, which
impact the traffic and people’s movement. In addition, every location consists of several places that
can be categorized into different functions. For instance, one grid cell in S might be home to many
hotels and few shopping centers, while another grid cell might contain many shopping centers.
The distribution of categories of places over the space has an impact on people’s movement in
spatial field. To account for this impact, we define the POI vector as follows.

Ll

Definition 7. POI vector of location [is a vector V! = (v, 0L, ..., v]), where 0! is the number

of places in category i at [.

3.2 Survival Analysis

Survival analysis is used to analyze the expected duration of time until an event happens [20]. The
event could be death or failure, or in this article, a dispersal event. The analysis is primarily done
using the survival function defined as follows:

S(t) = Pr(E > t). @)

In Equation (2), S(¢) is the probability of the event not happening until ¢ (subject has survived at
t). Another commonly used function in survival analysis is the hazard function h(t). The hazard
function is the rate of event at time ¢, given that it has not occurred by then. Hazard function is
defined as follows:

—S'(1)

hmzsm.

®3)
—S’(t) is the rate with which S(.) decreases at t. It is divided by S(t), the remaining mass of survival
probability, because it is conditional to the survival of the subject at t. We use this analysis to

calculate the expected time duration until dispersal events occur.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

DILSA+: Predicting Urban Dispersal Events 49:7

3.3 Problem Statement

Given a time and location, we are interested in predicting future dispersal events. Assuming we will
encounter an event in the future, it is important to predict the volume of the anomalous demand.
It is also important to know when the event is. Once we know the starting time of the event, we
can start predicting the demand volume from that point in time onward. In other words, the most
important thing about the dispersal event is its starting time, after which, we can directly start
predicting the pick-up count. Therefore, we formally state the problem as follows.

Input:

— Spatio-temporal field Z = (S, T).

— Historical and real-time trip records in Z.

— Weather information of Z.

— POI vectors of S.

— Significance threshold «.

— Input time and location (I,) and future target time z,.

Output:

— Earliest time t, < t4 at which a dispersal event will happen at [.

P : : _
_ Cl, 1, in the case of a dispersal event at t,, where T, = [t., t,].

We state this problem for a specific time and location. However, when the method is used in
practice, it can be applied to every location or a list of desired locations at current time.

3.4 Datasets

We use the trip records data of Yellow Taxis in New York City from years 2014, 2015, and 2016.
This dataset contains the pick-up and drop locations and times for the passengers the taxis serve.
This data is released by New York City Mayor’s Office of Data Analytics as part of the city’s open
information initiative [1]. Yellow taxis of New York City operate in all five boroughs of the city.

The weather data is obtained from the National Centers for Environmental Information [3].
This data is recorded using two weather stations in the City area, Central Park station and the La
Guardia Airport.

The POI data is obtained from Google Maps Places API [2]. This API categorizes places into 129
categories and it can be queried for a list of places within a spatial region. Each place is assigned
to a number of categories by the APL

4 BASELINE: GATHERING-BASED DISPERSAL EVENT PREDICTION

In this section, we present a baseline solution that is based on the assumption that, for people to
disperse in unexpectedly large numbers, they must first gather in numbers that are unexpectedly
large. We use an observation of an abnormal gathering as a signal to predict a dispersal event in
the future. First, we need to define gathering events.

Definition 8. There is a gathering event at spatio-temporal region R, if LLR(Cg, Bﬁ) is signifi-
cant at a-level.

The definition of gathering events is similar to dispersal events. However, for gathering events,
we consider the drop counts and baselines, instead of pick-ups.

Our goal is to predict dispersal events at location I, upon observing a gathering event there. To
calculate this probability, we define a Gathering-Dispersal Pair for I.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

49:8 A. V. Khezerlou et al.

ALGORITHM 1: Gathering-Based Dispersal (GbD) Prediction

Input: Baselines and counts in Z.

Output: Conditional dispersal probabilities for all times of day.
1 Misixrajxira) = 10}
2 Gisixira) = 10}

3 for [in|S| do

4 fort. inT do

5 tg = get_time_of_day(t¢)

6 if gathig then

7 G114 = G[L,td] + 1

8 for t4 in (td,t¢ + 7] do

9 if disp] then

10 L L M[Ltd,tg] = M[Ltd, 1] +1

1 return M, G

1 .
tty if tp > ty,

t, —t; < 7, there is a gathering event at t; in [and there is a dispersal event at , in I. We define Al
to be the set of all gathering-dispersal pairs at location /.

Definition 9. Time periods t; and ¢, constitute a gathering-dispersal Pair at [, §

Then we define Altc’tg and Ftlc as follows.

Definition 10. Al , isthe set of all 8! , € Al where t;,t, € T and t, is the same time of day as
crtg 1,42

tc and t; is the same time of day as . I“tlc is the set of all #; € T where t; is the same time of day
as t, and there is a gathering event at ¢; in [.

Using the above definitions, we calculate the conditional probability of a dispersal event in the
future timestep ¢4, given a gathering event at current time ¢, at location [:

1 1 |Af‘c’ lg |
Pdisp gark]) = =5 @
te

where gath! means there is a gathering event at t in location [and disp! means there is a dispersal
event at ¢ in location [. Equation (4) calculates the probability of dispersal events at ¢, by dividing
the number of Gathering-Dispersal Pairs at the same time of day as ¢, and t4, by the number
of gathering events at the same time of day as ., in the historical data. This equation produces
an empirical conditional probability of a dispersal event in the future, given a gathering event is
observed now.

Algorithm 1 calculates all the conditional probabilities of dispersal events for all timesteps of
the day. The algorithm counts the number of gathering-dispersal pairs for all the locations and
timesteps during a day. It also counts the number of all gathering events for all the locations and
timesteps of a day. It stores these counts in the output matrices M and G. Given a location [, time of
an observed gathering event ., and time of a potential dispersal event t,, M[l, tf s tg] contains the
number of all gathering-dispersal pairs that have happened during that time of day. And G[I, t¢]
contains the number of all gathering events at [at timestep t¢, which is the same time of day as ..
Therefore, using M and G, we can calculate the probability of a dispersal event at ¢, given there is
a gathering event at t.. We call this baseline GbD.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

DILSA+: Predicting Urban Dispersal Events 49:9

fffff Drops —— Pick-ups
g30 1111/0000000
o
@
_>‘20
@©
N
s |,
< o N AL

20 40 6
Time (10-min steps)

Fig. 3. An example of the values of the survival function S(.) in the case of a dispersal event.

5 SURVIVAL ANALYSIS FORMULATION AND DEMAND PREDICTION

In this section, we present our survival analysis formulation by showing how the survival func-
tion values are obtained for training. Then, we present how we obtain training instances for the
dispersal event demand predictor. Finally, we present our prior work, DILSA [32], as a second
baseline.

5.1 Calculating the Survival Function

As mentioned earlier, we treat the dispersal event prediction problem as a survival problem. We
would like to train f; to estimate the survival function. Therefore, the output vector for f; is the
survival probabilities. In this case, the dispersal event is the death event in the survival problem.
To this end, the survival function is defined as follows:

S(t) = Pr(EP > 1), (5)

where EP is the time of dispersal event. In our proposed framework, we train a model to predict
S(t).
At location [and time ¢., we use the following output vector:

¥s = (S(te +1).....5(t)). ©)

Ideally, we would like to have a labeled event list for training f;. However, such lists are not
available. Therefore, we use an algorithm to obtain S(.) for a given time and location (I,t.) by
determining if any dispersal event has occurred, or is underway, or will happen in the future of [
from time ¢.. This procedure is presented in Algorithm 2. We put a limit on the length of a dispersal
event, assuming the events that are shorter than e,;, or longer than e, ., are not interesting. Then,
we test every sub-period between t. — e,;4x and t, that are longer than e, using Definition 6.
The survival value will be set to one before a dispersal event and to zero after the start of the
dispersal event in the future. For example, consider Figure 3, which shows the dispersal event of
Figure 1(b). The first vertical line is the current time, and the second vertical line is the starting
time of the dispersal event. The survival function is set to 1 before the start of the event and is set
to zero afterwards. Algorithm 2 calculates the survival function. (. — emax, tc +1t4) has exponential
number of sub-periods. However, we are only interested in the earliest dispersal event, because
the survival function will be zero afterwards. Algorithm 2 takes advantage of this fact and runs in
O(nm), where n is the length of time being searched (end — start) and m is the number of different
lengths the sub-periods can have (e;0x — €min)-

y, is obtained for every spatio-temporal grid cell in Z. They constitute the training labels for f;
that estimates the survival function.

Once we use fs to estimate the survival function, we need to determine whether the predicted
survival curve shows a dispersal event in the future or not. Assuming S(0) = 1, we calculate the

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

49:10 A. V. Khezerlou et al.

ALGORITHM 2: Calculate survival function (get_St)

Input: Baselines and counts, current location /, current time ¢, target time tg
Output: Survival function S(t) where t € (tc, t4]

1 S(.) « {1}; start « tc — emax; end < tg

2 for k from emqax to emin do

3 for ty € [start,end — k] do

4 o ty+k

5 if LLR(I, [to, t1]) is significant and t; > t. then
6 for t € [max(to, tc), tq] do

7 | S@) <o

8 return S(.)

9 return S(.)

probability of event at future time using the hazard function:
_S(t-1) = S(t)
0!
Equation (7) calculates the cumulative hazard of event happening between t — 1 and ¢ given that
it has not happened as of t — 1. This value is calculated by dividing the amount of drop in the
survival function from time ¢ — 1 to ¢, by the total remaining amount, which is S(t), given that
S(.) is monotonically non-increasing. The function in Equation (7) considers two aspects of the
predicted survival function at the same time. The numerator is higher if the recent drop in risk is
big, thus resulting in higher hazard. Similarly, the denominator is bigger if the current risk is low.
We predict an event, when value of H(.) exceeds a threshold y, which is tuned using a tuning set.

H(t) (7)

5.2 Demand Prediction

We use model f, to predict the pick-up counts in the case of dispersal events. The output vector
of f, is as follows:

Ve ={(Cl, oo {tg) (8)
The difference between the training sets of f; and f, is not just their output vector. f; is trained on
instances of all locations and timesteps, while f is trained on instances of locations and timesteps
that are involved in a dispersal event. This is a key point in our approach. The reason is, we will
only use f. to predict the pick-up counts in the case of abnormally high pick-up counts. Thus,
we train it with just those instances. Algorithm 3 determines which instances should be included
in the training set for f,. By instance, we mean a pair of time and location (I, t), for which we
will build features and labels and corresponds to one training point. To make sure f, learns a full
cycle of a dispersal event in its internal state, for each event, we include all the instances starting
from the time when the event is first observed in the target period (line 5). For example, let t. be
current time and the target period be 4 time-steps long. If the survival function is (1, 1, 1, 0), then
the instances of timesteps [t., t. + 4) will be included in the training set (line 7).

5.3 DILSA: Dispersal Event Prediction Using Survival Analysis

We theorize that every dispersal event follows other violations in repetitive patterns. For instance, a
dispersal event can be preceded by a gathering event hours before, as shown in Figure 1(a), because
the unexpectedly large number of people leaving now, arrived hours earlier. We take advantage of
this phenomenon in developing the baseline in Section 4. However, the preceding pattern is not

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

DILSA+: Predicting Urban Dispersal Events 49:11

fffff Drops ~ —— Pick-ups

£ 30

@

_>‘20

@©

€10

o

c

< o] Pan AL iV
20 40 60

Time

(a) Ananomalously high pick-up, not (b) Location of the pick-ups.
preceded by a drop event.

Fig. 4. An example of an abnormally large number of pick-ups.

necessarily as simple as a gathering event. For instance, consider the pattern in Figure 4, which
shows a dispersal event around McKittrick Hotel in Manhattan, with no preceding drop event.
Both Figures 1(a) and 4(a) use Equation (1) as the anomaly score. DILSA proposes to learn such
complex patterns using a two-step framework. First, it predicts the time of earliest dispersal event,
then it predicts the volume of the pick-up demand for the predicted event.

ALGORITHM 3: Training instances for f, (get_Xe)

Input: Spatio-temporal field Z = (S, T), Survival Function calculator (get_St).
Output: Training instances for f,

1 . ED = An empty list

2 forl e Sdo

3 fort € T do

4 S(t) = get_St(l,t)

5 if S(tg) = 0 AND S(ty — 1) = 1 then
6 for t. € [t,t4] do

7 | ED.push_back((l, t))

8 L=ty

9 return ED

In the first step, we are interested in the start time of the event. As mentioned earlier, we for-
mulate this problem as a survival analysis problem [20]. The occurrence of the dispersal event is
a clear analogy for the death event in this formulation of survival analysis. We propose a frame-
work based on deep learning to train f; that estimates the survival probabilities. To estimate the
multiple values of the survival function in the future, we propose to use a multi-output deep ANN
with the capability of maintaining an internal state through time, shown in Figure 5, as a learning
method that natively supports multiple outputs while being capable of learning the relationships
among current outputs as well as the relationship of previous states to them. Figure 5 shows that
our deep learning structure uses convolutional layers in its input to learn the spatial dependencies,
while LSTM [11] layers learn the dependencies in time.

We adopted the convolutional layers [38] of the network to create the capability of learning
spatial relationships. Such networks have proven immensely successful in image processing [7],
where objects are identified based on spatial patterns in the image. We model the geographical
region as a grid and treat each individual cell as a pixel of an image. This way, the convolutional

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

49:12 A. V. Khezerlou et al.

Learning Phase
g N Dispersal Event
S wn LST™ \/ Predictor
& wemory |«
3 - il B - Historical {!
5 < < z \ @
NN B D]
= lTime \ g g E : . : : v predictor
2 . = b4 - @
w : g g Memory -
= o Predictor
g L = Real-time H
-
Fig. 5. Deep Learning structure used to learn spa- Fig. 6. Dispersal event prediction framework.

tial and temporal dependencies.

layers can learn the spatial relationships among nearby cells. The LSTM layers are used because
of their capability in learning temporal relationships. This type of network maintains an internal
state, known as memory, to be able to connect signals that are distant in time. Since the problem-
at-hand includes features as time series, this type of layer makes it possible to learn the patterns
through time that can signal the prediction of future dispersal events.

In the second step, we use f, to predict the volume of the pick-up demand for the predicted
dispersal events, also in a supervised learning framework. Since we have multiple time periods in
the future, we propose to use a model with similar capabilities for the reasons mentioned above.

Figure 6 shows both phases of the proposed framework. In the learning phase, we first extract
features from historical data, creating training sets for the dispersal event predictor and pick-up
demand volume predictor. In stage one of the prediction phase, we extract features from real-time
data and predict dispersal events. In stage two, we predict the demand volume for the predicted
dispersal events. Stage one only marks the beginning of a dispersal event. This is due to the nature
of the survival analysis formulation. Although SA is very powerful in determining an occurrence
of an event in the future, it cannot tell us how long the event will last. However, the second stage is
designed to predict the abnormally high demand, which is concerned with the size of the dispersal
event. Even though stage two does not directly give a duration for the event, it addresses it by
offering a prediction of the abnormal demand of the event. This prediction informs the user of the
size of the abnormal demand and when the demand is predicted to go back to normal.

We discussed the training labels for f; and f, (survival probabilities and abnormal demand)
earlier in this article. Next, we discuss how we extract the features.

5.3.1 Mobility Features. To do supervised learning, we need to have a training set with in-
stances of inputs and outputs. In this section, we define the input variables, or the building blocks
of the feature vector of the supervised learning framework. Let (I, ¢.) be the current location and
time. We build the variables through the following definitions.

Definition 11. Daily profile of (I, t.) is defined as

Mgc:< Z C)Zt’ Z Bf,t’ Z Cft’ Z B;i,t>' ©)

Le(tg,te) tety,te) tety.te) telta,te)

The daily profile is a vector containing the sum of pick-up and drop counts and baselines since
the start of current day. It is important, because a gradual gathering during the day can result in
an accumulation of people in [at t., which might not be obvious in individual timesteps. Next, we
define the recent profile of (I, t.).

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

DILSA+: Predicting Urban Dispersal Events 49:13

Definition 12. Recent profile of (I, t.) is defined as
I _ [P d P ~d
Ntc - <Cl, tc—r’cl,tc—r’ A A tC’Cl,tc >’ (10)

where 7 is a parameter.

The recent profile contains all the pick-up and drop counts of the recent 7 timesteps at the
current location. We define the target profile as follows.
Definition 13. Target profile of (I, t.) is defined as
I _[gP P
Gfg - <Bl,t¢+1""’Bl,tg>’ (11)

where (1, 1,] is the target period, i.e., the time period for which we are going to make predictions.

The target profile is the expected pick-up counts of the prediction target time period in the
future.

5.3.2 Auxiliary Features. In addition to mobility features, we include features that can poten-
tially influence the dispersal events probability. First, we define the Time Profile as follows.

Definition 14. Time profile of (I, ¢.) is ch = (dy, dy, tc — tq), where d, and d,, are the day of
the year and day of week for f., and ¢4 is the first timestep of the current day.

Next, we include weather-related features. We argue that mobility patterns in an urban area are
afffected by changes in the weather. We define Weather Profile as follows.

Definition 15. Weather profile of (I, t.) is thc = (0,1, {, Omax> Omin), Wwhere w is average daily
wind speed, 7 is total rainfall of the day, { is total snowfall of the day, and 0,,,, and 0,,;,, are the
maximum and minimum temperatures of [at ..

Finally, for location and time (I, t.), DILSA uses the following input vector for f; and f:
x = (0}, WL M, .G} ,V!NL,S(t))i € I, (12)

where [* is the surrounding area of [= (a, b) defined in Section 3. Input vector x consists of time,
weather, daily, target profile, and the POI vector (Vl) of (I, t.) and the recent profile of (I*, t.), plus
the current value of the survival function (S! (¢.)) in I*.

5.3.3 The Prediction Procedure. The training sets built in the previous section contain temporal
and spatial dependencies. Thus, we use a Deep Artificial Neural Network that uses Convolutional
layers to capture spatial dependencies and LSTM layers to capture temporal dependencies. Figure 5
shows the employed structure.

The first step in our framework is to estimate the cumulative probabilities of event, i.e., the
survival curve. Then we use Equation (7) to determine whether an event is predicted.

Once a dispersal event is predicted, we predict the pick-up count for the event using f,. Since
our estimators maintain an internal state, we must make predictions in the same order as training.
This is not a problem for estimator f;, because it was trained using all the instances, which is
the same order of real-time data. To train f,, Algorithm 3 establishes a specific order that must
also be followed in the prediction phase. In the training phase, we included instances when the
start of the event first appears in the target period, i.e., the survival function turns to 0 in the last
timestep of the target period (S(¢y) = 0 and S(t; — 1) = 1). Therefore, we must start predicting the
pick-ups using f. once Equation (7) predicts the last timestep of the target period to be 0. However,
Equation (7) might not predict the occurrence of the event until the start time gets closer. In such
a case, f, will not have its correct internal state. Therefore, to bring f, to its correct internal state,

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

49:14 A. V. Khezerlou et al.

we feed the input vectors of previous timesteps to f, before the input vector of current time. For
example, suppose we are at time ¢, and the target time period is 4 timesteps long. Then we predict
a dispersal event at time ¢, + 2. For f, to make predictions for ¢, + 2 and t. + 3, we feed the input
vectors of time . — 2, then ¢, — 1 to f.. Now f; has the correct internal state to make predictions.

Algorithm 4 shows the proposed dispersal event demand predictor. First, H(.) is calculated for
future periods and compared with threshold y to predict the dispersal events (lines 4-9). A value
of 1in y [t] = 1 means a dispersal event is predicted for ¢ timesteps after current time. In the
case of a predicted event, the internal state of f, is corrected and pick-up counts are predicted
(lines 10-13).

ALGORITHM 4: Dispersal event predictor (DILSA)

Input: Estimators f;(.) and fe(.), current time ¢, target time ¢4, threshold y
Output: Predicted dispersal events y, predicted counts of the predicted events y,

1 forl € Sdo

2 Vsl = {0}yl = {-1}

3 x = construct_x(l,t.)

4 St = fs(x)

5 is_event=False

6 forie[1,t5—t;) do

7 H=(S(i—1)-5())/S(i)

8 if H > y then

9 for j € [i,t4) do

10 L }Alj M=1

11 is_event = True; event_time = i; break
12 if is event then

13 Correct the internal state of fe
1 L Velll = fe(x)

15 Return (¥°,y°)

6 DILSA+: PROPOSED SOLUTION BASED ON ENHANCED URBAN FEATURES
6.1 Limitations of DILSA

Our prior work, DILSA [32], employed a variety of different groups of features to capture the
hidden patterns that lead to a dispersal event and abnormally high pick-up demands. We used
one global model for each of the tasks of predicting the dispersal events and predicting pick-up
demand. We acknowledged that different locations are likely to have different patterns and one
model might not be able to distinguish between them. We added POI features to help the model
distinguish between different “types” of locations based on the number of POIs of each category
at each location. This way we argued that different POIs result in different mobility patterns and
the model learns such differences.

However, there are two major limitations with this approach: (1) POI features are constant
through time, as they consist of already existing establishments in the location. This static nature
of POI features will fail to distinguish between mobility patterns at different periods of time. For
instance, if two locations with similar POI features demonstrate different mobility patterns during
different periods of a day, the model will not be able to capture those differences by only relying

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

DILSA+: Predicting Urban Dispersal Events 49:15

400
350

o

S 300

§ 250 —4- Jan. 10th

2200 —&— Jan. 9th

5 3.0
2.5
2.0
15
1.0
0.5

0.0

—— Hist. Average
I~
150

& 100

4
3
2
1
Time 0

(a) Location of the exam- (b) Pickup counts for the five- (c) Origin locations to the (d) Origin locations to the ex-
ple in Lower Manhattan. hour period after 11:30 PM on example location on Jan. ample location on Jan. 9th.
Jan 10th and Jan. 9th. 10th.

Fig. 7. An example of varying pickup patterns and origin locations for an area in Lower Manhattan.

on POI features (refer to the example in Section 6.2). (2) There is no guarantee that POI features are
directly related to mobility patterns. For instance, locations A and B with similar number of hotels
will have similar POI features. However, if the hotels in A primarily serve business customers and
hotels in B primarily serve tourists, the two locations will have very different patterns of pick-up
and drop-offs.

To address these limitations, in this section, we present DILSA+ as a significant extension to
DILSA. In the following sections, we first address the first limitation by creating features as a result
of recent interaction of mobility and POIs. Then, we address the second limitation by creating
features directly from the mobility patterns that capture the characteristics of the location directly
from its mobility patterns.

6.2 POI-Mobility Interaction Over Time

When learning pick-up and drop-off patterns, it is important to take into account what “type” of
places exist in an area. The reasoning is that the type of POIs in an area affects the volume and
timing of arrivals and departures. However, the people arriving in an area with certain POI features
do not appear out of nowhere. They travel to their destination from other areas and their origin
might determine the nature of their interest in the destination. Moreover, the origin locations to a
particular area change over time. Incorporating information of origin locations to a location can
help learn patterns that are not detectable by only considering the POI features of that location.
For instance, consider the example in Figure 7. This example shows different pickup patterns for
a location at the same time of day. Figure 7(a) shows the example location on the map. Figure 7(b)
shows the pickup counts for the 5-hour period after 11:30 PM at the same location on January
10th and 9th (both weekdays). The figure shows two very different pickup patterns for the same
location and same time of day. Figure 7(c) shows the heatmap of the origin locations that ended up
at the example location at 11:30 PM on January 10th, 2014. Figure 7(d) shows the heatmap of the
same data on January 9th, 2014. These two heatmaps show very different patterns, despite the fact
that they show the same information for the same location at the same time of day. Our theory is
that considering the origin locations to a location can help capture variations such as the one in
Figure 7(b).

To make it possible to capture those variations, we propose a new group of features that formu-
late the interaction between mobility and POIs. We call this group of features POI-Mob. POI-Mob
features are obtained from the POI features of all recent origin locations to a particular location.
To obtain these features, we first define source the POI vector.

Definition 16. Vs is a source POI of location [at time ¢, if there is a trip (I°, t°, 14, td) where [= |
and t — t¢ < 7. {! is the set of all source POI vectors to location I at time ¢.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

49:16 A. V. Khezerlou et al.

POI-Mob features are obtained using the following equation:

g=> v (13)

vel!

In other words, the Mob-POI feature vector &/ is the sum of all POI vectors of origins from which
a traveler arrived at [in the past 7 timesteps from ¢.

6.3 Mobility Characteristics of Locations

As mentioned before, the models need to be able to distinguish between locations so that they
can learn different patterns associated with them. We proposed both POI and POI-Mob features
to differentiate between locations. However, these features are both based on the types of POIs in
the area. Although the POIs affect the mobility patterns such as the patterns of pick-up count time
series, this effect is indirect. In this section, we would like to develop features directly from these
time series to be able to explicitly differentiate between locations based on their pick-up patterns.
We call these features Mobility Characteristics features.

Locations with similar time series of pick-up counts must have similar Mobility Characteristics
features. Moreover, since the models operate in real-time, there is no explicit “time zero,” thus
perfectly aligned time series similarity measures, such as correlation coefficient and Euclidean dis-
tance, will potentially miss important similarities. Therefore, we use Dynamic Time Wrapping
(DTW) [5] to capture similarities in the fluctuations of pick-up counts time series among different
locations. It is important to note that DTW will not work effectively in the case of data sparsity
(many zeros in the time series). However, that is not the case in our dataset, as we use a large
dataset with at least tens of pickups for a location during each time period.

DTW belongs to a group of measures called elastic dissimilarity measures [33]. It works by opti-
mally aligning the two time series to minimize a cost function, which is usually a local dissimilarity
(or distance) measure. It has been used in many applications such as building decision trees [26],
detecting similar shapes [4], time series matching in medical applications [30], and so on. DTW
employs a dynamic programming paradigm that can be shown by the following equation [28]:

i 1; .
Dy, = f(C,C2) + min{Dy, 1,1, Dt,—1,45, Dty —1,1,-1}- (14)

Dy, 4, is the DTW distance at times t; and ¢, for the corresponding time series. f() is the local
dissimilarity measure (usually Euclidean distance). If the study period is from time 0 to T, D T is
the DTW distance between two given time series. Next, we define a similarity measure based on
DTW, called Normalized Wrapping Similarity:.

Definition 17. If D™%* is the maximum DTW distance among all pairs of time series, Normalized
Wrapping Similarity of two time series is defined as

D1
. (15)

NWS=1-

NWS gives us a normalized similarity score for every pair of locations, based on their pick-up
time series. Matrix W represents the pairwise similarities among locations. Element Wj; is the
NWS of locations i and j.

Next, we need to transform these pairwise similarities into feature vectors. In the space of these
feature vectors, similar locations should be “closer” to each other than non-similar locations. In
other words, similar locations should cluster together in the space of Mobility Characteristics fea-
tures.

To create these features, we use ideas from Spectral Clustering [24]. This technique first creates
a lower dimension representation of the instances using their similarity matrix. Then it performs

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

DILSA+: Predicting Urban Dispersal Events 49:17

clustering on the low-dimension representation. We apply this technique to the similarity matrix
obtained using NWS and use the low-dimension representation as the Mobility Characteristics
feature vector. Algorithm 5 shows the detailed steps of how these features are obtained. First,
the algorithm constructs the similarity matrix (lines 2-6). Then, it builds the Laplacian matrix L
(lines 7-9). Last, the top n eigenvectors of L are calculated and row-normalized to form K, which
contains the n-dimensional representation of every location based on their pick-up count time
series.

ALGORITHM 5: Obtain Mobility Characteristics Features

Input: Pick-up time series of all locations (C). Feature length (n).
Output: Mobility Characteristics featurs for all locations (K).

1 Wisixis| < {05 Kisjxn < {0} Y|six|s| < {0}
2 forl € Sdo
3 forjeS—-1do

L | WILj] « DTW(C. &)

5 DX max(W)

6 W« 1—W/Dmaex

7 forl e Sdo

8 L Y[,1] «sum(W[l,0 — |S[])
o LeI-Y1/2xwxy 12

10 K « get_top_eigenvectors(L, n)
11 K «row_normalize(K)

12 return K

7 EVALUATIONS
7.1 Settings and Baseline Solutions

We use the trip records of Yellow Taxis in New York City from years 2014, 2015, and 2016. This
dataset contains the pick-up and drop locations and is released by New York City Mayor’s Office.!
It is important to note that DILSA+ is not limited to taxi-related applications. It is designed to
take any trip records (arrival and departure records) of any mode of transportation and predict
the events and the transportation demands resulting from all transportation modes. Moreover,
focusing on a particular mode or all the modes can be valuable to a specific class of users. For
instance, a focus on taxi records can be of interest to ride-sharing companies and a focus on bike
rental records can be of interest to bike-sharing businesses. On the other hand, focusing on all
the transportation modes can be of interest to the city administration. As mentioned, DILSA+ is
equipped to be applied to all those scenarios.

The weather data is obtained from the National Centers for Environmental Information® from
two weather stations, Central Park and the La Guardia Airport. The POI data is obtained from
Google Maps Places APL> which assigns POIs into one or more of 129 categories. We partition the
New York City area into a grid of 32 X 32 with cell size of 400 X 400 meters. We use 30-minute
timesteps. Every record is mapped into the grid to obtain counts and baselines. The values of
weather profile for each spatio-temporal grid cell is an average of the measurements reported by

Thttps://opendata.cityofnewyork.us/overview/.
Zhttps://www.ncei.noaa.gov/.
3https://developers.google.com/places/.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

https://opendata.cityofnewyork.us/overview/
https://www.ncei.noaa.gov/
https://developers.google.com/places/

49:18 A. V. Khezerlou et al.

Table 1. Parameter Settings

A o tg —te T €min €max
4 0.001 5hrs 5hrs 30min 5 hrs

Table 2. Choice of Network Parameters

Convolutional Layers LSTM Layers
Number of Nodes/Filter Size 7X7,8X8,9x%9 32,64,128,256
Number of Layers 2,4,6 1,2,3

the two stations, weighted inversely by their distance. We train the models using data in year 2014
and evaluate using data in 2015 and 2016. All datasets are standardized by subtracting the min-
imum and dividing by the maximum value of each feature. The test sets are standardized using
parameters from the training set. Obtaining the ground truth for all dispersal events is challeng-
ing and requires labor-intensive search of public records. Moreover, not all events are publicly
announced. To overcome this challenge in a meaningful way, we obtain the ground truth of the
dispersal events by applying Definition 6 to true pickup counts in our dataset. This is consistent
with our formulation and the goal of this research in predicting events resulting from abnormal
patterns of demand. Table 1 shows our parameter settings.

In Table 1, t; — t. is the duration of the target period. Given the half-hour timesteps and the size
of the grid, we have 32 x 32 X 48 (timesteps per day) X6 (weeks) X7 (days per week) ~ 2 million
training and testing instances. One week of the training data is used for validation throughout the
training epochs. We perform the training for 3,000 epochs for all models and pick the model from
the epoch that performs best on the validation set. One week of the testing set is used for tuning
the threshold for Equation (7). The class ratio is 92% negative (no event). We use 20 features to
capture the mobility characteristics of our 1,024 locations in the grid. Our Deep Learning Network
uses two convolutional layers with window size of 9 X 9, 1 LSTM layer of 69 memory cells, and
10 output nodes. These parameters were chosen based on a grid search of parameters. Table 2
shows the searched values. We compare DILSA+ to our prior work as a baseline (DILSA [32]).
We use three additional baselines for comparison. First, we compare with the GbD we presented
in Section 4. Second, we use the state-of-the-art taxi demand prediction DMVST-Net [34]. We
apply our definition of the dispersal event to the predicted count by DMVST-Net. If it satisfies the
definition, we mark it as a predicted dispersal event. In addition, to show the impact of features, we
define the baseline +Spectral. This baseline is DILSA with Mobility Characteristic features added.
The training and testing sets and the tuning process for all the deep networks are equal.

The models were trained using the stochastic gradient descent method proposed by [15]. The
training and prediction times for both of the models used in DILSA+ are presented in Table 3.
For the first model, the time to predict for whole region is the time the model takes to estimate
a survival curve for every grid cell and calculate Equation (7). For the second model, the time to
predict for whole region is the time the model takes to predict demand, if all grid cells in the region
were predicted to have a dispersal event. The times for DILSA are not significantly different, as
the majority of the time is spent on training the convolutional layers and DILSA+ is not different
from DILSA in that aspect.

7.2 Case Studies

Here, we present two of the predicted events from year 2016. On March 19th, 2016, we predicted a
dispersal event at 1:00 PM around an exhibition center in Pier 92/94 in Manhattan. We predict the

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

DILSA+: Predicting Urban Dispersal Events 49:19

Table 3. Training and Predictions Times

Training Time Time to Predict for Whole Region
Event Predictor 742 (s) X 500 0.22 (s)
Event Demand Predictor 36 (s) X 500 <0.1(s)

80

60 —— True Counts
-@- DILsA+

-@- DMVST-Net
¢ Historical Average

40

\ 20
0

5 0

0 4

1 2 3
Time in the future (hours)

1 2 3 4
Time in the future (hours)

(a) Event location. (b) Case 1 survival curve. (c) Predicted pick-up counts vs. true
counts.

Fig. 8. First case study (best viewed in color).

event 2.5 hours before (at 11:30 AM). Public records show a home design exhibition at the time.*
Figure 8(b) shows the predicted survival curve at 11:30 AM. The red vertical line is the predicted
time of the dispersal event, which is inferred by Algorithm 4. Figure 8(c) shows the predicted
counts by the baseline and the proposed method. The proposed method successfully predicts the
increase, while the baseline DMVST-Net [34] stays with the historical average, missing the spike
in demand.

We also predicted a dispersal event around 12:30 PM on June 26th, 2016, at Jacob K. Javits Con-
vention Center, 2.5 hours before. Public records show there was a food show at the convention
center.” Figure 9(b) shows the predicted survival curve and the event prediction time, indicated by
the vertical red line. It is worth noting that “elbow” in the curve has become visible because the
y-axis is zoomed-in in values close to 1. In fact, the curve never drops below 0.95, but DILSA+ is
able to predict the event because the threshold on the hazard function (Equation (7)) is properly
tuned. Figure 9(c) shows the proposed method predicts an increasing trend following the trend
of the true pick-up counts and counter to the historical average. The baseline DMVST-Net [34]
predicts high counts; however, it predicts a slight drop, which is the opposite of the trend of the
true counts and the prediction offered by DILSA+. Figures 8(a) and 9(a) show heatmaps of LLR
scores (Equation (1)) based on the true counts in the predicted periods. The black arrows show
the verified locations. The figures show a clear hotspot of pick-ups. Overall, these two case studies
demonstrate examples of DILSA+ successfully predicting dispersal events and their corresponding
demand.

These cases are presented to show examples of success for DILSA+ in real-world situations
and are not an evidence of the method’s overall performance. The experiments presented in the
following sections are the quantitative analysis of the method’s performance where we document
the rate of success and failure for the model.

7.3 Experiments

In this section, we first evaluate the prediction performance of DILSA+, i.e., the performance of Al-
gorithm 4, to predict events. We compare our results with the baselines mentioned above. Baseline

4https://architecturaldigest.com/story/architectural-digest-design-show-video.
Shttps://specialtyfood.com/news/article/2016-summer-fancy-food-show-largest-ever/.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

https://architecturaldigest.com/story/architectural-digest-design-show-video
https://specialtyfood.com/news/article/2016-summer-fancy-food-show-largest-ever/

49:20 A. V. Khezerlou et al.

—— True Counts
0.99 -@- DILSA+

601 @ DMVST-Net

- Historical Average

40

0.96 \ 20

0 1 2 3 4 5 0

Time in the future (hours) 0 1 2 3 4
Time in the future (hours)
(a) Event location. (b) Case 2 survival curve. (c) Predicted pick-up counts vs. true
counts.

Fig. 9. Second case study (best viewed in color).

Table 4. Impact of Features on DILSA+ and Comparison With Baselines

DILSA+ +Spectral DILSA [32] DMVST-Net [34] GbD

Precision 0.88 0.38 0.37 0.32 0.26
Recall 0.53 0.73 0.69 0.35 0.75
F1-score 0.66 0.50 0.49 0.34 0.38

DMVST-Net predicts taxi demand. We apply Definition 6 to the predicted counts to determine if
there is a dispersal event. Table 4 shows that DILSA+ outperforms all the baselines in terms of F1-
score (0.66). A prediction is considered a true positive if the predicted event period overlaps with
the true event period. The results show the proposed survival analysis method predicts dispersal
events with high accuracy. This means that POI-Mob and Mobility Characteristics features have
improved the event prediction performance. This is better demonstrated by comparing DILSA to
+Spectral and finally DILSA+. It is clear how each contribution improved the accuracy. Although
the results show a better recall for DILSA, it does not mean that DILSA outperforms DILSA+ in
terms of recall. The measures, precision and recall are not fixed and change based on the thresh-
old that is tuned for Equation (7). For the purpose of this experiment, the threshold is tuned to
maximize the F1-score. The fact that DILSA+ has a higher F1-score means it has a superior ability
to discriminate, given that it gives equal importance to precision and recall. However, in the case
of an application of this method where a high recall is more valuable (for instance, emergency re-
sponse), the threshold can be tuned to increase the recall at the expense of precision. For instance,
consider the best achievable precision for DILSA+, which is 0.88 as opposed to 0.64 for DILSA.
The best achievable recall is 1 for both methods. This means that DILSA+ provides much wider
range for precision and recall for the user that can be achieved by adjusting the threshold based
on Equation (7).

Second, we evaluate the impact of new contributions, POI-Mob and Mobility Characteristics
features, on the performance of survival function estimator and the demand predictor. We use
Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) as the measures
on a test set. The results in Figure 10 show that the new contributions have significantly improved
the test error of both models. Moreover, the results in Figure 10(a) show that the reason DILSA+
performed better in the previous experiment is that the survival function estimator performs con-
siderably better than the baselines.

Third, we examine the model’s performance in the case of no gathering events in the past. As
we discussed earlier, one potential way to predict dispersal events is to monitor the occurrence of
gathering events. The theory is that for a dispersal event to happen, we need a gathering event
ahead of the time. However, we argue that the signal to predict dispersal events is not that clear
and simple. To test this theory, we developed the Gathering-based Dispersal event predictor in

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

DILSA+: Predicting Urban Dispersal Events 49:21

—-»— DILSA
—@- +Spectral

@ DILSA+

N
o

N
v

N
i

Percentage Error

Mean Squared Error
e o
o o
w B
Mean Absolute

0.02 +— DILSA
-@— +Spectral 23
-9~ DILSA+
0.01
1 2 3 4 5 1 2 3 4 5
Time in the Future (hours) Time in the Future (hours)
(a) Survival function estimator. (b) Abnormal demand predictor.

Fig. 10. Impact of choice of features on performance.

‘—V All Cases :V All Cases
0.8 —@- In Case of No Gathering 0.90 ~@-In Case of No Gathering 140
o N —&— DILSA
s 0 0.85 a9 &~ DILSA+
& 2 250
007 0.80 2
<
0.75 5 @100
o2
i 2 3 4 s i 2 3 a s =5
Time in the Future (hours) Time in the Future (hours) a
8T 35 3 1 5
(a) F1-Score. (b) AUC. Time in the Future (hours)
Fig. 11. Performance of DILSA+ in the case of no gathering events, Fig. 12. Performance of the pro-
where the F1-score and AUC for GbD would be zero due to not posed pick-up counts predictor vs.
observing a gathering event. baselines, on predicted events.

Section 4. This method predicts the dispersal events given that there is a gathering event. GbD
predicts no dispersal events, in the case of no gathering events. In other words, GbD relies on
the observation of a gathering event for its predictions. To demonstrate that DILSA+ does not
rely on such observations, we evaluate its accuracy in cases where there were no gathering events
observed ahead of time. To set up this experiment, we excluded all the instances of dispersal events
where there was a gathering event within 5 hours before the dispersal event. This way, we are
making sure that DILSA+ will not use a gathering event to predict the dispersal event. Figure 11(a)
shows that the F1-score is slightly lower in such cases. Figure 11(b) shows a similar story. This
experiment shows that DILSA+ is robust in the challenging case of no gathering events.

Lastly, we compare our demand predictor to the demand predictor in DILSA in the case of pre-
dicted dispersal events. In prior work [32], we showed that DILSA outperforms state-of-the-art
demand prediction methods in the case of dispersal events (see the Appendix). In this experiment,
we show that DILSA+ outperforms DILSA in the case of predicted events. Figure 12 shows the
mean absolute percentage error of both DILSA+ and DILSA. We can see DILSA+ stays lower,
longer in the future. It is important to note that the performance of DILSA in Figure 12 differs
from the performance reported in [32]. This difference is because the experiments in the prior
work were performed on true events. In this article, we have evaluated the performance on event
instances predicted by DILSA+. Since the set of predicted events contains false positives, the ac-
curacy is lower. Moreover, this experiment evaluates the demand predictor in the context of the
whole DILSA+ framework, as it applies the demand predictor to the events that are predicted by
stage one of DILSA+ and show its considerable improvement. These results, along with the results
of the previous experiments, tell a full and consistent story to demonstrate the superior capabilities
of DILSA+ as a whole framework over its baselines.

7.4 Summary and Discussion of Results

The results for predicting dispersal events using the proposed survival analysis framework shows
a high F1-score. We have obtained this F1-score by tuning a threshold on Equation (7). This score

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

49:22 A. V. Khezerlou et al.

puts equal importance on both precision and recall. However, based on what application our
method will be used for, either precision or recall might end up being more important than the
other. DILSA+ is designed in a way that can be tuned to put more importance on either of these
measures. For instance, a ride-sharing company would be more interested in high precision than
recall, because those businesses are already making a profit by following the regular patterns and
would only be interested in disrupting their usual routine if the occurrence of the dispersal event
is predicted with very high precision. On the other hand, if our method is used for public safety
applications, the users would be interested in very high recall, because the consequences of safety
risks are potentially so high that the public safety officials cannot afford missing a single incident.
Therefore, they would put higher importance on recall.

We argued that observing a gathering event at a location can potentially signal a dispersal event
in the future. We developed a GbD to test this hypothesis. Our experiments show that this method
has very low accuracy, because we also showed that not all preceding patterns to a dispersal event
are that simple and there is no guarantee that a dispersal event will follow a gathering event.
In the third experiment, we showed that our method’s accuracy is still high when there is no
observation of a gathering event, i.e., cases where GbD will have no prediction capability.

The experiments for demand prediction accuracy show that DILSA+ has a better accuracy
than DILSA in the case of a predicted event. In our prior work [32], we showed that DILSA outper-
forms state-of-the-art demand prediction algorithms in the case of dispersal events. Those results
are included in the Appendix of this article as well. Therefore, DILSA+ will also outperform those
algorithms, because the first, second, and last experiments show that the new contributions (Mob-
POI and Mobility Characteristics) have considerably improved the accuracy of the method in both
event prediction and demand prediction.

DILSA+ is designed to be deployed in a real-time setup. At every timestep, the deployed sys-
tem needs to gather all the time-variant features and run the prediction procedure in Algorithm 4.
For this deployment to be successful, DILSA+ needs to have a reasonable running time. In other
words, all these tasks should complete within the timestep. Given our current timestep of 30 min-
utes and the time to run the prediction procedure for one timestep is below 1 second, the deploy-
ment of DILSA+ in real-time is comfortably feasible.

8 CONCLUSIONS

This article solved the problem of predicting dispersal events. Such events are defined as situa-
tions where a large number of people leave an area in a short period. The solution for this problem
has value to businesses and city administration and management. In our prior work [32], we pro-
posed a framework to learn spatial and temporal patterns to predict such events. We formulated
the dispersal event prediction as a survival analysis problem and proposed a two-stage framework
(DILSA), where a supervised model predicted the probability of a dispersal event. In the in which
case such an event was predicted, DILSA used another supervised model to predict the volume of
the event, in terms of number of taxi pick-ups. However, different locations have different patterns
and our existing features were constant through time and failed to distinguish between mobility
patterns through time. Moreover, no features were included to directly represent the locations
based on their mobility patterns. In this article, we proposed a method to capture the interaction
between POI information and mobility patterns and we created vector representations of locations
based on their mobility patterns. We evaluated our proposed framework, called DILSA+, by con-
ducting extensive case studies and experiments on a real dataset from 2014 to 2016. Our method
outperformed our prior work and the baselines in terms of dispersal event prediction as well as
abnormal demand prediction.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

DILSA+: Predicting Urban Dispersal Events 49:23

80
1

w0 H\\h\‘\‘\‘*—‘——‘ 00 d—a—t—t—a—a—aa
u —&— DMVST-Net & s —— DMVST-Net

40 <
s —#— DILSA R —9— DILSA

* HM

H‘O—FH‘._H_‘ 25
0 50 100 150 200 250 300 50 100 150 200 250 300
Time in the Future (minute) Time in the Future (minute)
(a) MAE. (b) MAPE.

Fig. 13. Performance of the proposed pick-up counts predictor vs. baselines, on events.

APPENDIX

In this Appendix, we present an experiment from prior work [32]. The demand predictor is com-
pared to DMVST-Net in the case of dispersal events. Both models were trained on the same dataset
from 2014 (all events) and tested on data from 2015, both with 30 epochs. Figure 13 shows MAE
and MAPE in future timesteps. Figure 13 shows DILSA outperformed the baseline in the case of
a dispersal event. This experiment shows methods proposed to capture the regular pattern of taxi
demand are not reliable in the case of dispersal events.

REFERENCES

[1] 2017. NYC Open Data—Overview. Retrieved January 26, 2018 from https://opendata.cityofnewyork.us/overview/.

[2] 2018. Google Places API. Retrieved February 11, 2018 from https://developers.google.com/places/.

[3] 2018. National Centers for Environmental Information. Retrieved February 11, 2018 from https://www.ncei.noaa.gov/.

[4] Taria Bartolini, Paolo Ciaccia, and Marco Patella. 2005. Warp: Accurate retrieval of shapes using phase of Fourier

descriptors and time warping distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1 (2005),
142-147.

[5] Donald J. Berndt and James Clifford. 1994. Using dynamic time warping to find patterns in time series. In KDD
Workshop, Vol. 10. Seattle, WA, 359-370.

[6] Feng Chen and Daniel B. Neill. 2014. Non-parametric scan statistics for event detection and forecasting in heteroge-
neous social media graphs. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 1166-1175.

[7] Dan Ciresan, Ueli Meier, and Jurgen Schmidhuber. 2012. Multi-column deep neural networks for image classification.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12). IEEE, 3642-3649.

[8] Neema Davis, Gaurav Raina, and Krishna Jagannathan. 2016. A multi-level clustering approach for forecasting
taxi travel demand. In 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC’16). IEEE,
223-228.

[9] Daizong Ding, Mi Zhang, Xudong Pan, Min Yang, and Xiangnan He. 2019. Modeling extreme events in time series
prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

[10] Minh X. Hoang, Yu Zheng, and Ambuj K. Singh. 2016. FCCF: Forecasting citywide crowd flows based on big data.
In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.
ACM, 6.

[11] Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735-1780.

[12] Liang Hong, Yu Zheng, Duncan Yung, Jingbo Shang, and Lei Zou. 2015. Detecting urban black holes based on human
mobility data. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information
Systems. ACM, 35.

[13] Amin Vahedian Khezerlou, Xun Zhou, Lufan Li, Zubair Shafiq, Alex X. Liu, and Fan Zhang. 2017. A traffic flow
approach to early detection of gathering events: Comprehensive results. ACM Transactions on Intelligent Systems and
Technology (TIST) 8, 6 (2017), 74.

[14] Amin Vahedian Khezerlou, Xun Zhou, Ling Tong, Yanhua Li, and Jun Luo. 2019. Forecasting gathering events through

trajectory destination prediction: A dynamic hybrid model. IEEE Transactions on Knowledge and Data Engineering 33

(2019), 991-1004.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv:1412.6980.

Martin Kulldorff. 1997. A spatial scan statistic. Communications in Statistics-Theory and Methods 26, 6 (1997),

1481-1496.

— —
R,
[N
]

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

https://opendata.cityofnewyork.us/overview/
https://developers.google.com/places/
https://www.ncei.noaa.gov/

49:24 A. V. Khezerlou et al.

[17] Martin Kulldorff, Richard Heffernan, Jessica Hartman, Renato Assuncao, and Farzad Mostashari. 2005. A space-time
permutation scan statistic for disease outbreak detection. PLoS Medicine 2, 3 (2005), 216.

[18] Zhongmou Li, Hui Xiong, and Yanchi Liu. 2012. Mining blackhole and volcano patterns in directed graphs: A general
approach. Data Mining and Knowledge Discovery 25, 3 (2012), 577-602.

[19] YuLiu, Baojian Zhou, Feng Chen, and David W. Cheung. 2016. Graph topic scan statistic for spatial event detection. In
Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. ACM, 489-498.

[20] Rupert G. Miller, Jr. 2011. Survival Analysis. Vol. 66. John Wiley & Sons.

[21] Luis Moreira-Matias, Joao Gama, Michel Ferreira, Joao Mendes-Moreira, and Luis Damas. 2013. Predicting taxi-
passenger demand using streaming data. IEEE Transactions on Intelligent Transportation Systems 14, 3 (2013),
1393-1402.

[22] Naoto Mukai and Naoto Yoden. 2012. Taxi demand forecasting based on taxi probe data by neural network. Intelligent
Interactive Multimedia: Systems and Services. Springer, 589-597.

[23] Daniel B. Neill. 2009. Expectation-based scan statistics for monitoring spatial time series data. International Journal
of Forecasting 25, 3 (2009), 498-517.

[24] Andrew Y. Ng, Michael I Jordan, and Yair Weiss. 2002. On spectral clustering: Analysis and an algorithm. Advances
in Neural Information Processing Systems. 849-856.

[25] Maya Okawa, Tomoharu Iwata, Takeshi Kurashima, Yusuke Tanaka, Hiroyuki Toda, and Naonori Ueda. 2019. Deep
mixture point processes: Spatio-temporal event prediction with rich contextual information. arXiv:1906.08952.

[26] Juan J. Rodriguez and Carlos J. Alonso. 2004. Interval and dynamic time warping-based decision trees. In Proceedings
of the 2004 ACM Symposium on Applied Computing. ACM, 548-552.

[27] Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. 2010. Earthquake shakes Twitter users: Real-time event detec-
tion by social sensors. In Proceedings of the 19th International Conference on World Wide Web. ACM, 851-860.

[28] Joan Serra and Josep Ll Arcos. 2014. An empirical evaluation of similarity measures for time series classification.
Knowledge-Based Systems 67 (2014), 305-314.

[29] W.Nick Street. 1998. A neural network model for prognostic prediction. In 1990 IJCNN International Joint Conference
on Neural Networks. 540-546.

[30] Paolo Tormene, Toni Giorgino, Silvana Quaglini, and Mario Stefanelli. 2009. Matching incomplete time series with
dynamic time warping: An algorithm and an application to post-stroke rehabilitation. Artificial Intelligence in Medicine
45,1 (2009), 11-34.

[31] Amin Vahedian, Xun Zhou, Ling Tong, Yanhua Li, and Jun Luo. 2017. Forecasting gathering events through con-
tinuous destination prediction on big trajectory data. In Proceedings of the 25th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems (SIGSPATIAL’17). ACM, New York, NY, Article 34, 10 pages.
https://doi.org/10.1145/3139958.3140008

[32] Amin Vahedian, Xun Zhou, Ling Tong, W. Nick Street, and Ynahua Li. 2019. Predicting urban dispersal events: A
two-stage framework through deep survival analysis on mobility data. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence. AAAL

[33] Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn Keogh. 2013. Experi-
mental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge
Discovery 26, 2 (2013), 275-309.

[34] Jun Xu, Rouhollah Rahmatizadeh, Ladislau B6l6ni, and Damla Turgut. 2017. Real-time prediction of taxi demand
using recurrent neural networks. IEEE Transactions on Intelligent Transportation Systems 19, 8 (2017), 2572-2581.

[35] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, and Jieping Ye. 2018. Deep multi-
view spatial-temporal network for taxi demand prediction. arXiv:1802.08714.

[36] Chao Zhang, Liyuan Liu, Dongming Lei, Quan Yuan, Honglei Zhuang, Tim Hanratty, and Jiawei Han. 2017. Triove-
cevent: Embedding-based online local event detection in geo-tagged tweet streams. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 595-604.

[37] Kai Zhang, Zhiyong Feng, Shizhan Chen, Keman Huang, and Guiling Wang. 2016. A framework for passengers
demand prediction and recommendation. In 2016 IEEE International Conference on Services Computing (SCC’16). IEEE,
340-347.

[38] Wei Zhang, Kazuyoshi Itoh, Jun Tanida, and Yoshiki Ichioka. 1990. Parallel distributed processing model with local
space-invariant interconnections and its optical architecture. Applied Optics 29, 32 (1990), 4790-4797.

[39] Kai Zhao, Denis Khryashchev, Juliana Freire, Claudio Silva, and Huy Vo. 2016. Predicting taxi demand at high spatial
resolution: Approaching the limit of predictability. In 2016 IEEE International Conference on Big Data (Big Data’16).
IEEE, 833-842.

[40] Liang Zhao, Qian Sun, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ramakrishnan. 2015. Multi-task learning
for spatio-temporal event forecasting. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 1503-1512.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

https://doi.org/10.1145/3139958.3140008

DILSA+: Predicting Urban Dispersal Events 49:25

[41] Xiangmin Zhou and Lei Chen. 2014. Event detection over Twitter social media streams. The VLDB Journal 23, 3 (2014),
381-400.

[42] Xun Zhou, Amin Vahedian Khezerlou, Alex Liu, Zubair Shafiq, and Fan Zhang. 2016. A traffic flow approach to early
detection of gathering events. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 4.

Received December 2019; revised July 2020; accepted May 2021

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 4, Article 49. Publication date: August 2021.

