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Abstract: Uncertainties surrounding tree carbon allocation to growth are a major limitation to
projections of forest carbon sequestration and response to climate change. The prevalence and
extent to which carbon assimilation (source) or cambial activity (sink) mediate wood production
is fundamentally important and remains elusive. Here we quantify source-sink relations across
biomes by combining eddy-covariance gross primary production with extensive on-site and
regional tree-ring observations. We find widespread temporal decoupling between carbon
assimilation and tree growth, underpinned by contrasting climatic sensitivities of these two
processes. We elucidate substantial differences in assimilation-growth decoupling between
angiosperms and gymnosperms and stronger decoupling with canopy closure, aridity, and
decreasing temperatures. Our results reveal pervasive sink control over tree growth that is likely

to be increasingly prominent under global change.
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54  One-Sentence Summary: Cross-biome correlation analysis shows pervasive decoupling

55  between carbon assimilation and tree growth.
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Main Text:

Forest ecosystems currently constitute a net carbon (C) sink that offsets around 25% of
yearly anthropogenic C emissions, thus actively mitigating climate change (/). C allocation to
aboveground wood biomass is the largest contributor to vegetation C storage over climate-
relevant time scales. However, wood C allocation is poorly understood and is a major uncertainty
for projections of future forests’ C storage potential (2). The common representation of wood
growth as a linear function of C assimilation has been identified as a major structural limitation
of current vegetation models (3, 4). The development of improved C allocation schemes
currently lacks a solid empirical and mechanistic basis (5).Thus, there is an urgent need to

illuminate the relationship between C assimilation and tree growth.

A fundamental debate revolves around the degree to which C assimilation via
photosynthesis (source limitation) versus direct environmental limitations to cambial cell
development (sink limitation) controls wood growth (6). As reflected by C allocation schemes in
the vast majority of vegetation models, source limitation has been the dominant paradigm for
decades (4). Yet, a growing body of literature indicates that cambial activity is typically more
sensitive than photosynthesis to a range of environmental conditions, including low water
availability, temperature, and nutrient availability (7—/7). The prevalence of source vs sink
limitations to tree growth has far-reaching implications for forest dynamics under climate
change, because these processes will likely respond differently to global change (6-9),
potentially shifting C allocation away from the stem. Substantial indirect evidence supports the
hypothesis that C sink limitations may be particularly important in cold, dry, and late-
successional forests. For example, elevated non-structural C (e.g., starch and sugars)
concentrations are frequently observed in colder environments or during drought (8, 72).
Additionally, Free Air CO, Enrichment (FACE) experiments tends to show that increasing [CO:]
improves tree growth in early-stage forests but often not in mature forests, perhaps because of
stronger nutrient limitations (/3—175). But the relatively small scale and replication of FACE
experiments, especially in mature forests, prevents general conclusions regarding the linkage

between C source and sink dynamics in trees.

Co-located assessments of gross primary productivity (GPP) and tree growth theoretically
enable the evaluation of the coupling between tree C assimilation and growth increment. Past

studies adopting such an approach were nevertheless limited by dataset size (site number <5) and
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yielded contrasting findings, with no clear explanation of observed differences (/6—217). The
advent of large-scale, long-term networks of flux towers measuring C exchange across a diverse
assemblage of biomes, in combination with a growing number of both on-site and global tree-
ring datasets, opens new opportunities to characterize C source—sink relationships at larger
temporal and spatial scales. Here, we compile a new dataset comprising GPP records at 78 forest
flux sites (Table S1), together with on-site tree ring width chronologies at a subset of 31 sites
(RWonssite), as well as 1800 nearby regional ring width chronologies (RWiegion). GPP and RW
records were detrended, in order to remove low frequency signals (e.g., stand structure, tree age
and size), and aggregated such that records were representative of year-to year variations of
stand C assimilation and aboveground woody growth, respectively (22). This C assimilation and
tree growth dataset extends across most of Europe and North America, encompassing a variety
of forested biomes from semi-arid to boreal, and representing both angiosperm and gymnosperm
tree species (Fig. 1, Fig. S1, Table S2). Leveraging this dataset, we (i) quantify the strength, (ii)
identify the seasonality, and (iii) explore environmental drivers of tree C source—sink

relationships across biomes.

We first characterized C source and sink relationships at the regional scale by statistically
accounting for the decrease of the correlation between GPP and RWiegion (Tregion) With increasing
geographic and climatic distances, as well as with an index of species dissimilarity between sites
(22) (Fig. S2). As expected from reported tree growth synchrony over large distances (23) we
observed sustained correlations up to ~500 km. We thus built on this widespread ecological
feature to derive robust regional estimates of tree C assimilation and growth correlation, rp-o, for
theoretical co-located sites of identical climate and species composition (i.e., spatial distance,
climatic distance and species dissimilarity of 0), integrating over multiple timescales. We then
complemented regional-scale analyses with paired GPP and on-site tree-ring correlations (Ton-site,
see annual GPP and RW series in Fig. S3). The latter dataset has a lower sample size compared
to the regional network but is model-free and therefore reduces the risk of methodological

artifacts.

Both on-site and regional correlations showed an overall weak association between tree C
assimilation and growth, ronsite and rp—o reaching maxima of 0.26 and 0.38, respectively (Fig 2A—
B). The observed difference between on-site and regional estimates could be offset by setting

species dissimilarity to the average encountered for RWon.site, resulting in a maximum regional
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correlation of 0.27 (22). RWiegion Observations partially build on the international tree ring data
bank, where sampling is often biased towards dominant and climate sensitive trees (24).
However, we find that this is unlikely an issue here, as dominant trees account for most of stand
GPP and we statistically corrected for differences in climate (22). Overall, similar regional and
on-site results show the suitability of regional RW data to quantify local GPP-RW correlations
and broad agreement between the two approaches, which both suggest a substantial decoupling

between C assimilation and tree growth across multiple biomes.

On-site and regional GPP-RW correlations exhibited a similar temporal structure (22),
with correlation magnitude increasing with the length of the GPP integration period and
maximum correlations being found at the 10- and 12-months scales for ron-site and rregion,
respectively (Fig. 2). This supports the often-implicit assumption that annual tree-ring
increments are most strongly related to annual carbon assimilation (27). Overall, RW was best
correlated to GPP integrated over the period spanning previous Sep or Nov to current Aug,
consistent with a previous study (20), indicating a short temporal lag between C assimilation and
tree growth. This result suggests that, despite estimated low C source limitation of tree growth
overall, excess photosynthates are stored over winter following radial growth cessation and
allocated to the next year’s growth. This phenomenon is often cited as a potential explanation for
delayed climatic effects on tree growth and growth auto-correlation (23, 26). Analysis of multi-
year trends (Table S4) nevertheless indicates weak association of RW and GPP at this scale,
contrary to the hypothesis that C storage might lead to the convergence of tree growth and C

assimilation over the long term (27).

We found large spatial variations in the strength of GPP-RW coupling (Fig. 3).
Weighted deciles of maximum on-site 7 ranged from —0.08 to 0.60, consistent with previously
reported values (/6—21). These spatial variations imply a range of source vs. sink limitations. We
estimate that because of approximations and measurement errors, RW—GPP correlations between
0.7 and 0.9 would be expected under strong source control of tree growth (22). The high end of
the observed correlation range (0.6 < ronsite < 0.9: 10% of observations) thus appears reflective of
substantial source limitation of tree growth at the corresponding sites, whereas the majority of
sites display evidence consistent with sink limitations. We did not observe a biome effect on on-
site correlations but regional-scale » was significantly related to several environmental factors

(Fig. 3B). Specifically, gymnosperm proportion had a positive effect on current year rregion but a
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negative one on previous year Iregion, Suggesting that gymnosperm growth relies more directly on
current and less on previous year C assimilation than angiosperms, reflecting fundamental
physiological differences between these two clades. A small but positive effect of species
richness on rregion SUggests a link between species diversity and C use efficiency (i.e., the ratio
between net and gross primary production), which may arise as a result of increased
complementarity with structural and functional heterogeneity (28). Decreasing rregion With
increasing leaf area index indicates that closed canopy forests, which under a given climate tend
to be older and more nutrient-limited than open canopy forests, are prone to stronger decoupling
between C source and sink activity. This result agrees with the observations that CO> growth
fertilization tends to fade in older, nutrient-limited forests (/5). Last, rregion Was found to be
positively related to site temperature and water availability, consistent with known biophysical
controls of cambial activity and the ensuing prediction that sink limitations are stronger under
colder and drier conditions (6—9). These combined results draw a clear picture that increasing
resource limitation, aridity, and low temperatures promote C source-sink decoupling across a

broad range of biomes.

Finally, decoupled C assimilation and tree growth was further revealed by diverging
climate sensitivities of these two processes (22) (Fig. 4). As anticipated from C assimilation and
wood formation literature, GPP and RW both responded positively to temperature and water
availability but were weakly correlated with photosynthetically active radiation (hereafter
radiation) (29, 30). However, their seasonal variability differed markedly, indicating that
fundamentally different physiological processes may limit C assimilation and tree growth. GPP
responded mostly to spring and fall temperatures, as well as to summer water availability,
suggesting an important role of temperature-triggered leaf phenology controlling annual GPP
(31). In contrast, RW appeared to be most strongly related to year-round water availability, with
a weak positive temperature effect peaking in summer. This agrees with previous observations
that tree growth is primarily and increasingly water-limited in the study regions (29) and is
consistent with the central role of cell turgor in controlling cambial cell division and expansion
(7, 11). Overall, this analysis shows the large but contrasting climate sensitivity of the tree
growth and photosynthesis proxies used here. This is contrary to the expectation that RW and
GPP would have weaker but similar climate sensitivity if low RW—GPP were due primarily to

large measurement errors. These results instead strongly suggest that weak control of C
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assimilation over tree growth is underpinned by fundamentally contrasting source and sink

processes with diverging environmental sensitivities (6).

Taken together, our results provide consistent evidence for the pervasive influence of
non-photosynthetic processes on tree radial growth. This conclusion has major implications in
terms of projections of forest dynamics and feedbacks with the global C cycle and climate
change, as most global vegetation models essentially simulate forest productivity and C
sequestration as a linear function of C assimilation (3, 4). Because sink processes are relatively
more sensitive to water availability than temperature constrains compared to C assimilation (Fig.
4) and are not directly dependent on atmospheric [COz], unaccounted for and widespread sink
limitations could lead to overestimating the positive effect of warming and CO- fertilization
while underestimating the negative effect of increasing water stress on forest productivity.
Overall, accounting for sink limitations of tree growth may lower projections of future forest C
sequestration in many regions and could thus potentially compromise forests’ potential for
climate change mitigation. Based on these considerations, our results underscore that
incorporation of sink-limited carbon allocation schemes in global vegetation models is urgently

needed (3, 4).

Our results nevertheless indicate a certain degree of interaction between C source and
sink activities, as suggested by the weak but significantly positive correlations observed between
GPP and RW, as well as their temporal and spatial variations. Such dynamic coupling between C
assimilation and tree growth potentially reconciles contrasting observations of the prevalence of
source vs sink limitations (/5) and provides a bridge between current source-centered
representations of tree growth and sink-driven schemes. Variations in the prevalence of source vs
sink limitations to tree growth further highlights the importance of understanding their drivers
(5). Here we show that across biomes, the occurrence of sink limitations is highly consistent with
known biophysical controls of cambial cell division, notably turgor-driven growth. Because
turgor is a central mechanism of growth across scales and has a large potential for both
integration of several relevant processes and parameter-parsimonious upscaling (32), the turgor-
driven growth framework appears to be a promising way forward to developing mechanistic

sink-limited schemes in vegetation models.

Key remaining uncertainties include whether our results can be generalized to other

biomes such as tropical forests, which are central to the global C cycle, and quantifying the

8
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dynamic nature of source and sink interactions. Likewise, characterizing the degree of C source
and sink decoupling at decadal to centennial scales is relevant regarding climate change but
currently remains elusive due to the temporal depth of C assimilation measurements. Source—
sink decoupling over both short and longer timescales implies less C limitation of tree growth.
Weak C limitation of tree growth under certain conditions nonetheless raises the question of the
fate of excess C. Closing trees’ C budget and elucidating drivers of C allocation to different
sinks, specifically stem vs underground growth and C storage thus emerges as a critical way

forward (/4).
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Figure legends:

Fig 1. Spatial distribution of gross primary production (GPP) and regional ring width

(RW:egion) sites used in this study. RWegion sites are indicated by crosses and GPP sites by
circle. The number of RW.egion Site-year observations associated with each flux tower is denoted
by circle size. GPP sites that further include on-site RW are colored in yellow, and in red

otherwise.

Fig 2. Temporal structure of gross primary productivity (GPP) vs. ring width (RW)

correlations. (A) Seasonal on-site correlations (ron-site). Each cell corresponds to the average
correlation calculated between on-site RW and GPP summed over a time-period defined by a
window onset (from previous year Jan to current Dec) and length (from 1 to 12 months). (B)
Regional-based estimates of null distance correlations (rp-o) modelled by Eq. S1 (see Fig. S2
for an illustration of the 12-months case from current year Jan). Significant correlation values

are displayed on top of corresponding cells (lightface: p-value < 0.05; bold: p-value < 0.01).

Fig 3. Spatial variations and environmental drivers of gross primary productivity (GPP) vs.

ring width (RW) correlations. (A) Effect of biome on on-site correlations (ron-sitc) Observed on
the period with highest correlation average (previous Nov—current Oct; non-significant). Boxes
represent the median, the 1% and the 3 quartiles. Whiskers represent 1.5 times the inter-quartile
range. Dots represent individual » values and dot size is proportional to the underlying number
of observations. (B) Effect of stand structure and climatic variables on current and previous year
regional-based estimates of null distance correlations (rp=o). Error bars represent SE. All effects
are highly significant (p < 0.001: gymnosperm proportion, species richness, mean annual

10
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climatic water deficit — MACWD, mean annual temperature — MAT) except for that of leaf area

index (LAI) on current year correlations (ns).

Fig 4. Gross primary production (GPP) and regional ring width (RW) climatic sensitivity.
Climate-corrected partial correlations between GPP and regional RW and three climate
variables (from the top to the bottom: mean temperature — Tmean, Palmer’s drought severity index
— PDSI, and radiation — Rad) at the three-monthly scale, over the period 1990-2015 (to the
extent of series span). Error bars correspond to SE. Statistical significance of estimated

coefficients is denoted as: * — p<0.05; ** — p<0.01; *** — p<0.001.
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