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ABSTRACT:

Misuse of agrochemicals has a long-lasting negative impact on aquatic systems.
Mismanagement of herbicides in agri-food sectors is often linked to simultaneous decline in the
health of downstream waterways. However, monitoring of herbicide levels in these areas is a
laborious task, and modern analytical approaches, such as solid phase extraction liquid
chromatography mass spectrometry (SPE-LC-MS) and enzyme-linked immunosorbent assay
(ELISA), are low throughput and require significant sample preparation. We report here the use of
microchip technology in combination with matrix-assisted laser desorption ionization mass
spectrometry (MALDI-MS) for assessment of the ecotoxicological effect of agrochemicals on
aquatic species at the single cell level. This approach quantifies the fluctuations in lipid content in
sentinel organisms and targets a microalga, Chlamydomonas reinhardtii (C. reinhardtii) as the
model system. Specifically, we investigated the cytotoxicity of three herbicides (atrazine,
clomazone, and norflurazon) on C. reinhardtii by analyzing lipid component variation upon
assorted herbicide exposure. Lipidomic profiling reveals significantly altered lipid content at
>ECso in atrazine exposed cells. The response for norflurazon showed similar trends, but
diminished in magnitude, while the result for clomazone was near muted. At lower herbicide
concentrations digalactosyldiacylglycerols (DGDGs) showed a rapid decrease in abundance, while
several other lipids displayed a moderate increase. The microchip-based MALDI technique
demonstrates the ability to achieve lipidomic profiling of aquatic species exposed to different
stressors, proving effective for high-throughput screening and single cell analysis in ecotoxicity

studies.

Synopsis:
A platform for whole cell lipidomics analysis using microchip enhanced MALDI mass
spectrometry that investigates cytotoxic effects of herbicides on lipid systems with algae

Chlamydomonas reinhardtii.
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INTRODUCTION:

Despite advances in agri-administration practice and industrial safeguards, contamination
of waterways and watersheds has resulted in a significant loss of species richness in aquatic
systems.! 2 For example, misuse of herbicides in agri-food sectors is frequently associated with
precipitous decline of health in downstream waterways, closure of public areas, and reputational
damage to negligent growers and chemical manufactures.”* Strategies are needed to monitor the
effects of spray drift or runoff of herbicides into non-crop areas adjacent to agricultural zones, and
preserve diversity of species in aquatic systems.*® Analysis of chemical risk has traditionally relied
on analytical techniques such as SPE-LC-MS and ELISA for quantitative measurement of
herbicides, while microcosm studies have been used for the characterization of mortality or
inhibition of chlorophyll production in sensitive non-target aquatic species. However, these
techniques are low throughput and require a significant amount of sample preparation and long
instrument run-times, and little information is provided on the physiological mechanisms that
cause chronic or acute toxicity.” Surrogate species assays’ have also been used to monitor
bioactivity and bio-inhibition, but they typically require auxiliary measurements, extractions, and
chemical standards to understand the biophysical processes responsible for inhibition.

A large number of herbicides are designed to target lipid-based photosystems contained
within invasive plant species, which play key roles in terrestrial and aquatic ecology.? Lipids are
abundant in whole cells, making them an ideal target for cell-based analysis. For chemical and
toxicity characterization, lipidomic profiling of sensitive species such as algae that are key
members of both terrestrial and aquatic systems has been studied'’. In conventional approaches,
sample is processed by extraction, derivatization, and separation, followed by analysis with multi-
capable analytical instrumentations, such as GC-FID, LC-MS, and GC-MS.>% 1114 The data is then
searched against a database (i.e., LipidBlast,'> Lipid Maps,'® etc) to identify the subspecies. These
techniques, however, are rather laborious, requiring extensive sample preparation, sophisticated
separation and/or enrichment procedure, and tedious processing of mass spectral data.

In recent years, MALDI-MS has been used to collect lipid profiles and monitor lipid

response to stress,> !> 12 14

which yields simple mass spectral fingerprints for selective (i.e.
targeted) lipid sample analysis. The most common algae lipid classes identified with MALDI-MS
are monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), diacylglycerol

(DAGQG), triacylglycerol (TAG), and diacylglyceryltrimethylhomo-Ser (DGTS). Less prominent
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lipid classes such as sulfoquinovosyl-diacylglycerol, phosphatidylglycerol, phosphatidylcholine,
and phosphatidylethanolamine are also typically identified.!” Compared to conventional
approaches, MALDI-MS has many added benefits: reduced time for sample preparation, less
variation from sample handling, and reduced chance of sample degradation, which are common
limitations of sample processing. The design of novel substrates and surface functionalities for
MALDI-MS has further improved enrichment of cellular targets and enhanced signals.” 1% 1418 19

In chemical and toxicological studies of aquatic environments, specific “omics” processes
such as transcriptomics, metabolomics, proteomics, and lipidomics have attracted considerable
attention, and work on algae species has shown their sensitivity to environmental toxicants.> The
extraction of fluorescent photoactive lipids (chlorophylls) and the monitoring of fluorescence has
been employed to quantify the effect of herbicides on photosystems in algae.? Given that lipids are
considered biomarkers for toxicity exposure as alterations in the lipidome can be identified at
below cytotoxic levels, these changes are also utilized to trace back biochemical pathways and
identify sources of the toxicity effects.?’ An effective approach was developed by Zenobi et al.
where micro-array for mass spectrometry (MAMS)?! was used to investigate metabolomic
biomarkers in populations of yeast cells.?? This technique is attractive as later developments based
on similar concepts allow for microbial identification in hospitals settings.*> * Furthermore, it
enables straightforward toxicity study where an in-depth understanding of the ecotoxicological
impact of herbicides on aqua species can be obtained by monitoring the lipid markers and their
response to stimulated exposure. The same group has shown that MAMS is capable of
simultaneously enriching, desorbing, and ionizing the most abundant lipids in a single algae cell, >
26 and providing phenotypic variations in a limited nitrogen environment.”’” We have recently
demonstrated a gold microchip method based on plasmonic enhancement of ionization of low
abundance lipid species, allowing for a large lipidome to be identified without extraction.?® The
combination of plasmonic characteristics of gold microarray with MALDI leads to new technical
advantages in ionization efficiency and sample localization, making it an ideal platform to study
toxicity and cellular response of organisms to photochemical inhibiting molecules at the single cell
level.

In this work, we report quantitative monitoring and evaluation of toxicity response in single
cell algae to photo-inhibiting herbicides with Chlamydomonas reinhardtii (C. reinhardtii). C.

reinhardtii is a well-characterized green alga found in freshwater and damp soils, which is
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common in the cultivated fields of North America and Japan, forming a key component of the soil
microbiome.?’ Monitoring the toxic effects of chemicals on this ubiquitous, ecologically relevant,
and sensitive organism will identify broader implications on the overall health of the ecosystem.
Probing the effect of photo-inhibiting herbicides on algae also provides insights into mechanisms
by which primary producers are affected and their contribution to ecosystem-wide alterations. The
work utilizes a combination of fluorescence and MALDI-MS on a gold micro-chip array for
identification of stressed cells by performing lipid profiling. Figure 1 shows the framework for
monitoring toxicity in aquatic environments, where C. reinhardtii were exposed to varied levels
of herbicides. The toxicity of three herbicides (atrazine, clomazone, and norflurazon) was
characterized, and statistical analysis was performed to determine indicators of significant toxicity.
In addition, we used algae as a surrogate species for lipidomic phenotype cluster analysis
(covariant analysis), which led to a cluster-based identification of herbicides. The applicability of
the platform for assessing a xenobiotic’s general risk to other species with similar ecotoxicological

responses is discussed.

EXPERIMENTAL:

Materials:

Super dihydrobenzoic acid, biotechnology certified dimethyl sulfoxide (DMSO), and analytical
grade solvents were purchased from Sigma Aldrich. POPC (1-palmitoyl-2-oleoyl-glycero-3-
phosphocholine) was purchased from Avanti Polar Lipids, Inc (Alabaster, AL). Atrazine,
clomazone, and norflurazon were purchased from AccuStandard Inc. (New Haven, CT). BK7 glass
microscope slides came from Fisher Scientific. High purity water (>18 MQ cm-1) was obtained
from a Barnstead E-Pure water purification system. C. reinhardtii (+) bacteria-free (#152040), and

sterile Algae-Gro® medium were purchased from Carolina Inc (Burlington, NC).

Algae Culture Conditions and 96-Hour Acute Herbicide Toxicity:

Freshwater wild-type algae strain, C. reinhardtii, was maintained in a medium at 25°C with a “cool
white” fluorescent illumination on a 12-hour cycle. For analysis of toxicity, the stationary culture
was seeded and cultured until exponential to stationary phase (~1-2 weeks). The analysis of growth

was spectrophotometrically determined from logarithmic growth at 600 nm. The relationship
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between the cell count and absorbance intensity is shown in Figure S1. At the exponential-to-
stationary growth phase, the cells were spiked with static concentrations of 3 herbicides, atrazine
(5, 10, 50, 100 uM), clomazone (25, 75, 100 uM), or norflurazon (5, 10, 50, 100 uM). Cells were
collected at 96-hours post herbicide exposure and washed 3 times using ultrapure water after 5
minutes of centrifugation at 2500 g. Cells were promptly spotted via micro syringe onto gold
microchips using an x-y stage on a nanoliter electrodeposition system (Nanoliter Cool Wave
Liquid Systems). To quench cell metabolism, the microchips with drying cells were immediately

placed into a vacuum desiccator.

Fabrication of the Gold Microchips:

The gold microchip array was fabricated in the Cleanroom Facility at UCR following our
previously published procedure.’® The physical parameters of finished gold pchips are as follows:
each well on a gold microchip has a diameter of 800 pm, with the well bottom covered with 50
nm thick gold and the edges of wells covered with 200 nm gold. In brief, glass slides (1 x 3 inches)
were cleaned with Piranha solution (H2SO4:H202, 3:1, Caution!), rinsed with ultrapure water and
ethanol, and dried under nitrogen. The photoresist was then spun-coated onto glass slides and
baked at 110 °C. A mask aligner and UV-light were used to pattern the photoresist, followed by
development for 45 seconds in a developing solution. Next, e-beam deposition was used to deposit
2/200 nm of Cr/Au onto the arrays. A spray gun filled with acetone was used to remove the
photoresist to reveal the array pattern, followed by e-beam deposition of 2/50 nm of Cr/Au onto
the surface to produce a pristine gold well array. Freshly made microchips were placed in a vacuum

desiccator for storage.

Overview of Workflow: Metal Enhanced Fluorescence and MALDI-MS Lipidomic Analysis
A conventional 96-hour ECso bioassay of ecotoxicity was coupled with gold microarrays for
metabolic analysis of toxicity in C. reinhardtii. The flow-chart of the method is shown in Figure
1. All tests were conducted after a 96-hour exposure to targeted chemicals. The procedures for
gold microchip profiling of algal lipid mass fingerprints were recently published®®. The method
can be broken into four parts: i) sample preparation ii) metal enhanced fluorescence (MEF)
facilitated localization, iii) acquisition of lipidomic data by MALDI-MS (MS/MS), and iv) data

processing. The gold microarray is an integral part of the substrate design and demonstrated three
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major merits: (i) enhanced fluorescence signal®!~3? due to the coupling of surface plasmon with the
fluorophore’s emission, (ii) enhanced MS/MS due to rapid thermalization of excited electrons (i.e.
hot-electron transfer)** and generation of laser-induced plasma at near gold ablation thresholds®’
and (ii1) robustness of the surface to oxidation, sample processing, and sample archiving.
Fluorescence images and bright-field images of cells were obtained using an
epifluorescence microscope equipped with a TRITC filter cube for fluorescence detection of
chlorophyll and a QImaging Retiga 1300. FIJI software package (Imagel) was used to assemble
individual fluorescence images into their respective locations on the array. This grid of
fluorescence images (320/chip) was interfaced with a template-design using MALDI-MS software
(Series Explorer Software). The interface facilitated unambiguous localization of cells within
wells, which is necessary for laser targeting with MALDI-MS. This step also eliminated unwanted
data acquisitions from wells that did not contain lysed cells for analysis. The microchip was placed
on a holder that was modified to accommodate standard 1"x3" glass slides and loaded into the
mass spectrometer. A reflectron AB-Sciex 5800 MALDI-TOF instrument operating in positive
mode with a laser fluence of 4500 a.u. was used to collect lipid mass profiles. One spectrum
contains m/z values versus intensity (a.u.) that were averaged from 200 shots collected in a
continuous linear or v-shaped laser-pattern over a single cell or packet of few cells. The tandem
MS spectra were obtained from a scan of global lipid profiles and precursor ion selection of peaks
with high resolution and s/n values. A tentative lipid library was compiled from experimental m/z
peaks values, MS/MS data, and references. All mean values were calculated from >37

spectra/samples to generate charts, heatmaps, and statistical analysis of the results.

Data Processing and Statistical Analysis
Metaboanalyst software package® was utilized to perform the statistical analysis of controls (n >
40) versus herbicide exposures (n > 25), and Prism7 was used to generate volcano plots. Additional

information of processing and data analysis is described below in Results and Discussion.

RESULTS AND DISCUSSION:

Assessment of Herbicide Morbidity in an Aquatic System
The herbicides tested here target the photosystems of algae in different ways, with Atrazine

targeting photosystem Il while clomazone and norflurazon on synthesis of pigments (carotenoids
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and chlorophyll). Spectrophotometric based bioassays provide a binary analysis on lethality, which
has been extrapolated to determine risk in other organisms that harbor the photosynthetic system
in practice’’. However, they are less effective to trace the cause of changes and cannot directly
link the observed change to a particular mode of action that may also affect other organisms in the
system. We set to correlate the changes in the lipid profile to the toxicity of the herbicide and
identify the herbicide’s downstream lipid targets with statistical tools, which is important for
pollutant studies in environmental toxicity assessment.

It is reported that atrazine and clomazone concentrations greater than 0.4 nM are common
in U.S. streams and groundwater, and a total molecular concentration of atrazine at greater than 10
uM is often observed in consecutive months.*® The atrazine and norflurazon concentrations in
agricultural streams and shallow groundwater can shift even more dramatically based on time of
year and region.*® 3 Spatiotemporal monitoring of downstream rivers associated with tributary
agricultural streams revealed atrazine levels frequently exceed the 12.5 pg/mL (58 M) benchmark
set by the US Environmental Protection Agency.*® While monitoring of surficial-aquifer wells has
identified median norflurazon concentrations of 25.0 pg/L and 22.0 pg/L for its degradate dimethyl
norflurazon, with the highest concentration reported at 105 pg/L, far exceeding Florida’s health-
guidance benchmark .

We first characterized the herbicide morbidity for algae C. reinhardtii with the three
compounds. As shown in Figure 2C, ECso values, ascertained from the dose-response curves of
96-hours post exposure, are 1.2 uM for atrazine, 6.6 uM for norflurazon, and >150 uM for
clomazone, respectively. These empirically derived EC values agree relatively well with those in
recently published literature*! > for atrazine and norflurazon, while the proherbicide clomazone
requires bioactivation to inhibit the isoprenoid pathway, a potentially null bioactivation pathway
in Chlamydomonas.* These differences were further investigated by the lipid profiling experiment

that offers a new angle to understand the mechanisms.

Gold Microchip with MEF for MALDI-MS Analysis of Algae Lipidome

Utilizing the plasmonic micro arrays, we conducted surface enhanced MS analysis of C.
reinhardtii by first locating the cells using MEF, followed by MALDI-MS and MALDI-MS/MS
to acquire detailed mass spectra for identifying lipids. For whole cell lipid profiling, the laser beam

must be precisely directed to the microorganisms confined to a specific region to enhance the
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effectiveness. An alternative method would be MALDI imaging, which turns out to be less ideal
for this study as scanning the surface with single- or few-cells would prove daunting in both data
analysis and time required for scanning.** Furthermore, the resolution of a stand-alone MALDI-
MS imaging system has yet to reach a resolution needed for single cell analysis,!” %> and the
location of cells can only be determined after the scan from MS data. Only a few pixels within the
region of a single cell are produced, but recent advances show promise in improving spatial
resolution*®. A straightforward approach that allows convenient localization of the cells prior to
MS data collection would be highly useful.

The gold microarray substrate proves to be an ideal surface for that purpose due to marked
fluorescence enhancement. It has been reported that a thin gold film of 50 nm in thickness can
generate a strong evanescent wave under proper optical configuration.*”- * The coupling between
the wave and nearby fluorophores located within 20-200 nm from the surface causes a fluorescence
enhancing effect. This phenomenon, known as MEF,* is broadly observed and used for signal
enhancement in fluorescence-based sensing™. Algae shows an autofluorescence property due to
the presence of chlorophyll a in the membrane, but the signal is usually very weak. MEF
substantially improves the fluorescence images (supporting information), makes it simple and
clear to pinpoint cells inside the substrate wells. The images were stitched together into a series of
images for synchronization with a homebuilt template within the MALDI-MS software, which

enabled single cell or multiple cells to be quickly localized for laser ionization in MALDI.

Lipid Profiling and Population Averaging of C. reinhardtii

The dysregulation of lipids in microalgae are associated with stress induced genomic
regulation® or oxidative damage>! caused by changes in the environment, including nutrient level
perturbations, or the presence of harmful exogenous molecules.>? Lipidome characterization of an
indicator species has been used to investigate the impact of exogenous herbicide on microalgae.
The most widely used techniques for detailed analysis of the sample’s total lipidome involve lipid
extraction, chromatographic separation, and ESI-MS ionization.®® Another method is the shotgun
approach that combines lipid extraction with direct-infusion ESIL.'"» ! Single cell MALDI-MS
method has multiple advantages over the ESI-MS approaches, with straightforward sample
preparation being the most attractive one. Our MALDI-MS results show that data from multiple-

cell spectra had smaller variation in signal intensity than the single-cell spectra. Nevertheless,
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normal population heterogeneity in C. reinhardtii is < 5%,%"*. As such we present averaged data
obtained from multiple samples that are representative of the entire population (n > 25), which fits
the purpose of the current study that is focused on characterization, identification, and quantitation
of toxicity in an algae population. Heterogeneity is incorporated into the statistical variance that is
accounted for in later studies. Our results also revealed that the level of variation within a typical
population is minimal compared to the C. reinhardtii’s response to herbicide. All spectra were
obtained from cells that were taken from biological replicates and non-herbicide containing
controls. From this point forward, single cell data spectra (n > 25) were analyzed for clustering
linkages and significance of lipid class change.

Table 1 summarizes the lipid species of C. reinhardtii identified by microarray MALDI-
MS. The parenthesis represents R1 and Rz groups acyl chain residues of varying lengths. The

25,53-57

assignments of the lipids are in agreement with those made by others, , iIncluding those using

33-3%  From the results, the

lipophilic extraction to characterize C. reinhardtii’s lipid profiles.
ionization of chlorophylls [M-Mg"+3H]" is clearly suppressed. Chlorophylls is commonly a major
peak that obscures low abundance lipid species, whereas its suppression allows identification of
many other low abundance lipids. In addition, a substantial increase in ionization efficiency of
other lipids is observed, likely through a combination of ion suppression, sample confinement, and
metal enhancement effects.?® This facilitated the assignment of many peaks not previously
detectable under similar conditions in a single mass spectrum. While the general consensus has
been that efficient ionizers such as chlorophyll>® should be separated ex-situ from samples before
ionization experiments, this process is no longer necessary using the gold microarrays.

Data Explorer software was used to mass calibrate the spectrum and export text files. An
open source software known as mMass®® was used to obtain m/z, baseline, peak values (S/N > 5),
and conduct a preliminary lipid search to identify lipids from the Lipidmaps®'® library. Precursor
ions were selected from the profile and CID-MS was used to confirm lipid classes. For CID-MS
analysis, the precursor ion window was set to = 0.2-1.5 m/z units, with the window size being
contingent on the presence and abundance of nearby peaks. We found that DGDGs, MGDGs,
DGTS, and TAGs were efficiently desorbed from the gold surface, while DAGs were ionized to a
lesser extent (Figure 3). Previous work has found MALDI-MS is a useful technique to identify and
compare TAG and DGDG levels from 500 mL culture of cells using separation, which is not

possible with GC-MS due to low abundance and instability of derivatized compounds.’’
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For spectra analysis, weak signals at 871.57 m/z and 885.55 m/z are assigned to light
capturing molecules chlorophyll a [M-Mg*+3H]" and chlorophyll b [M-Mg"+3H]", respectively.
The most abundant DGDG and TAG species are assigned to Na" and K™ adducts of DGDG (34:3),
TAG 54:3, and TAG 54:2. MS/MS fragmentation was conducted for analysis of the most abundant
lipid subspecies, from DGDG, TAG, DGTS, and MGDG. The microchips are highly selective to
the ionization of DGDG and TAG compounds, because polar and neutral compounds easily adduct
with cationic sodium to form stabile positive ions. Both Na” and K" adducts of DGDG and TAG
were identified in the lipid mass profile, and fragmentation of precursor ions confirmed
identification and elemental analysis of acyl side chains. DGTS lipids were identified as only
protonated adducts; this may likely be due to DGTS’s zwitterionic nature and the acidic matrix
environment.

Figure 4 shows a quantitative analysis to evaluate lipid concentrations and determine
percent concentration of lipid subspecies. In this work, the relative percent concentration
measurements (n > 25 and peaks = 60) of each lipid were performed. The data obtained by the
MEF/MALDI-MS pchip method has been compared to previously published research using LC-
ESI-MS and they agree well with this work. In Figure 4A and 4B abundance of various DGDG
lipid species can be seen compared across increasing herbicide concentrations, indicating species
that are most affected by associated herbicide treatment. There is limited change in lipid abundance
across lipid species for clomazone affected algae except at the highest concentration of 150 uM
where a decrease in DGDG (36:3), DGDG (36:4), and DGDG (36:5) is seen. While for norflurazon
abundant lipid species DGDG (34:3) and DGDG (34:6) have considerable decreases in lipid
abundance upon even low (10 uM) treatment. Also, significant changes in low abundance lipid
species such as DGDG (36:2) through DGDG (36:7) can be identified. Significant changes in
DGDG lipid species are also seen in atrazine affected algae as shown in previous publication.?®
Volcano plot in (Figure 4D) displays lipid species with significant changes (P<=0.05) of two-fold
or greater indicated in green for those of decreasing abundance and red for those increasing in

abundance.

Evaluation of the Impact of Herbicides on Algae Lipidome: Statistical Analysis
As summarized in Table 1, norflurazon at below benchmark concentrations and near

ECso values (1 uM and 10 uM) produced a striking decrease in the overall abundance of all
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DGDG compounds in algae after 96 hours (Figure 4). Atrazine demonstrates the same decrease
in DGDG compounds®® while also displaying increases in DGTS and TAG lipid species at and
below ECso values followed by a significant decrease for concentrations above the ECso value
(Figure S3). Galactolipids (MGDG and DGDG) are major components of photosynthetic
membranes that are responsible for cell signaling and membrane structure.>® In higher plants, di-
galactolipids are non-bilayer forming lipids that support protein aggregation in Photosystem I1.5!
A similar function of DGDG in green-algae plastids®? explains the apparent decreasing signal of
DGDG lipids in response to norflurazon’s inhibition of phytoene desaturase and the subsequent
breakdown of the lipid supported photosystem complex (Figure 4). The observed decrease in
DGDG was accompanied by an increase in MGDG intensity, which suggests that norflurazon
induced stress resulted in a breakdown of DGDG, into lyso-DGDG forms (i.e. MGDG). TAG
signals showed an overall increase in number of TAG molecules, by either de novo or
scavenging synthesis of TAGs, which was a compensatory effect of DGDG signal decreases in
C. reinhardtii (Table 1). TAG accumulation during stress conditions is a common phenotypic
response in many types of algae, which has been reviewed extensively in the literature.

DGTS are nitrogen containing and extraplastidic lipid molecules that have been
characterized as a substitute for phosphatidylcholines, and function as a proxy for structural
integrity in membranes. Furthermore, studies focused on nitrogen deprivation® and heat stress

55, 64

for biofuel production have suggested a varied response, and either a causal decrease or

increase?’ >

effect on the concentration of DGTS lipids. This discrepancy is attributed primarily
to temporal analysis of stress, i.e. the length of the experiment?”-3* (hours to weeks). This is further
nuanced by effects from differential lipid remodeling>, algae in various growth stages®* and
genetic diversity?’. Our results show that atrazine, a nitrogen-abundant environmental pollutant,
resulted in a dramatic increase in the abundance of short-chain DGTS lipids. The increase in DGTS
signals agrees with the temporal model in that our examinations were conducted with cultures in
the late-stationary growth phase and herbicide stress increased abundance of DGTS. It appears
there is a threshold concentration of atrazine, wherein 50 pM and greater, induced a spectrum-
wide decrease in lipid signal, and with a post-96-hour exposure, it ultimately leads to a 100%
mortality.

For norflurazon treated algae similar changes were identified for DGDG, TAG, and DGTS

lipid species. These changes likely follow similar mechanisms to those for atrazine affected algae,
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as both herbicides are photosystem II inhibitors. The end result is the same for both herbicides, but
the mode of action is different. Norflurazon’s effect is propagated through the reduction of
carotenoid biosynthesis via inhibition of phytoene desaturase.®® This distinction can be clearly seen
in the difference in ECso values and the extent to which lipid species are up or down regulated. As
the ECso for norflurazon is higher this indicates that the bleaching effects caused by norflurazon’s
phytoene desaturase inhibition either take longer to affect algae lipid systems or are not as directly
related to lipid pathways as the electron transport processes affected by atrazine. This is further
supported by the regulation of lipid species coinciding with that for atrazine treated algae but to
lower extents, thus indicating that the same lipid accumulation and breakdown pathways were
activated but with less severity.

Clomazone also targets pigment synthesis but it did not have a significant effect on
lipidomic clustering. It has been speculated to require plant-bioactivation to become an active
inhibitor in photosynthetic organisms,®® and thus is possibly a null pathway in C. reinhardtii.®®
From the data presented here we can see that clomazone does not get activated within algae and
therefore had little effect on algae lipid systems. This is especially clear when compared with
norflurazon which significantly altered lipid profiles and targets the same synthesis pathways as
clomazone.

To illustrate how each of the lipid variables were affected by herbicides, volcano plots are
provided for visualization of the most significant changes in large data sets.'* '* As shown in
Figure 4, the effect of 10 uM norflurazon (log2(FC(norflurazon /control)) is characterized by a
significant excess of TAG molecules and a decrease in DGDG molecules. A significant change
threshold of P = 0.05 and FC > 2 was used to compartmentalize lipids into the upper left and right
corners of the volcano plot. This strategy proved to be highly effective for cell based lipidomic
toxicity screening.

We have demonstrated that this microarray technique can characterize differences in
lipidomic responses to two different herbicides with similar modes of action. Norflurazon and
clomazone are both inhibitors of pigment synthesis, yet their effects on C. reinhardtii are strikingly
different. Clomazone at very high concentrations had little effect on inhibition of cell growth
(Figure 2), and the volcano plot in Figure 4C showed a relatively high concentration (75uM) of
clomazone also had little effect on lipid abundance. In comparison, norflurazon saw a significant

amount of TAG accumulation and effects on cell growth at a much lower concentration (10 pM).
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Hierarchical clustering in Figure 6B shows strong linkage of lipidome composition and
physiological response of individual cells exposed to different types of herbicides. Some overlap
exists between toxicological response of lipidome to atrazine and norflurazon, which is likely due
to the similarities in the two herbicide’s modes-of-action (target photosystem II). Unsupervised
multivariate principal component analysis (PCA) was used to explain the variance in the data set
and distinguish single cell lipid profiles under different herbicide induced stress conditions. There
was no separation between clomazone and its control as all of the control values fell within the
95% confidence region of the clomazone data set, which is understandable based on the lack of
bioactivation within algae systems. PCA score plots of atrazine and norflurazon versus control
showed good separation, and partial least squares discriminate analysis (PLS-DA) was performed
to further separate the herbicide groups into distinguishable phenotypic clusters (Figure 6). PLS-
DA addresses questions on how well the lipid response profile of C. reinhardtii predicts which
herbicide is responsible for toxicity. Differentiation of lipid clusters can, therefore, be used to
facilitate herbicide classification and may be useful in the prediction or identification of herbicide
contamination in polluted waterways and watersheds. Hence, statistical analysis of exposure data
obtained from sensitive indicator species can be combined with higher trophic organisms to
determine and/or measure environmental health.

In this work, we have reported a new method that combines microarray analysis, sample
archiving, fluorescence microscopy, and single cell mass spectrometry to study toxicity of three
herbicides. MEF and enhanced MALDI-MS/MS were combined to analyze lipids from whole cells
in a high-throughput array format. The results showed that the gold substrate enhances MALDI-
MS performance, generating a lipid library that consists of 54 identified lipid species without a
purification process. The results indicate these three herbicides have a pronounced and different
effect on mass peaks from ecological relevant indicator species, C. reinhardtii. Analysis of algal
lipid response to atrazine and norflurazon showed a significant reduction in DGDG content at low
concentrations. In contrast, subspecies of TAG saw a significant increase of these energy storing
lipids. Clomazone with a relatively high ECso had little effect on DGDG levels at the highest
concentration tested and showed only a slight increase in TAG levels. The results indicate that
lipid conversion during herbicide induced stress conditions in algae leads to TAG accumulation
and DGDG depletion. Volcano plots, a viable analysis tool for identifying lipids markedly affected

by different herbicides, yields multiple lipid species with statistically significant greater than two-
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fold changes. PCA combined with PLS-DA analysis showed that this lipidomic approach can be
used to analyze trends in lipid abundance for classification of specific herbicides. The up and down
regulation of lipids can be linked to unique herbicide effects and these patterns can then potentially
be useful for identifying which herbicides are affecting the algae. Compared to other techniques
in the analysis of lipids from cells, this approach is fast as there is no need for extraction. In
addition, this approach can be used to study lipid mass profiles in similar cell types and may
similarly be extended to variation analysis in those samples, particularly in efforts to monitor the
environment. This work demonstrates the effectiveness of plasmonic substrates to enable robust
tracking of lipid abundance and signatures upon cellular treatment. Further presenting

opportunities to study more complex microorganisms and their reaction to environmental changes.
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(34:3), (34:4), (34:5), (34:6),
(34:7)
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(36:0), (36:1), (36:2), (36:3),
(36:4), (34:2), (34:3), (34:4),
(32:0), (32:1)

Major components of
photosynthetic membranes that are
responsible for cell signaling and
membrane structure.

TAG accumulation during stress
conditions is a common phenotypic
response

DGTS are nitrogen containing and
extraplastidic lipid molecules that
have been characterized as a
substitute for phosphatidylcholines,
and function as a proxy for
structural integrity in membranes.
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~ M

Identified Lipid Lipid Molecular Species Lipid Class Physiology Cso
Classes Identified Nf

nc

nc

Table 1. A list of lipid classes and species types detected by MALDI-MS. Parenthesis denotes

the presence of all isomers with the same number of carbons and double bonds, for example
(36:2). Up and down arrows indicate an overall change in lipid abundance at ECso for three

herbicides and the resulting impact on cell physiology. At =

clomazone, nc = no change.

atrazine, Nf = norflurazon, Cl =
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of three herbicides used for exposure tests on algae (B). Herbicide dose-responsive curves for
conventional analysis of toxicity and calculation of ECso values. Dose response curves show the
algae response upon exposure to different herbicides. ECso of atrazine was measured at 1.2 + 0.3
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from mass spectra are extracted for statistical analysis and to investigate the effects of herbicide

on algal lipidome.
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Figure 5. Heat maps of lipid abundance based on lipid species and concentration of herbicide

exposure. Exposure doses are indicated along the x-axis for corresponding lipid species along the

y-axis of the heat maps. Colored legends along the right side of the heatmaps show the averaged

peak intensity of lipid from low (white) to high intensity (dark blue). Atrazine’s effect on TAG
lipid species (A), on DGTS lipid species (B), and on DGDG lipid species (C). Norflurazon’s
effect on DGDG lipid species (D) and clomazone’s effect on DGDG lipid species (E).



492

493
494

495
496

497
498
499
500
501

= at
= c|
= no

B Scores Plot

Component 2 ( 46.3 %)

-10

Component 1 ( 12.3 %)

Figure 6. Dendrogram representation of hierarchical similarities between single cells, and PLS-
DA maximizes the covariance between X (data) and Y (group) and is often used in the analysis of
large biological datasets. The variance displayed in the plot above is the explained variance for X.
A pronounced separation is revealed between the three groups of data. Ellipses indicate 95%

confidence fitting.



502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

Reference:

1. Walker;, C. H.; Sibly;, R. M.; Hopkin;, S. P.; Peakall, D. B., Principles of
ecotoxicology. 4 ed.; CRC Press: 2012.

2. Walker, C.; Sibly, R.; Hopkin, S.; Peakall, D., Principles of Ecotoxicology. CRC Press:
2012.

3. Ackerman, F., The economics of atrazine. Int J Occup Env Heal 2007, 13 (4), 437-445.
4. Choudri, B. S.; Charabi, Y.; Ahmed, M., Pesticides and Herbicides. Water Environ Res
2018, 90 (10), 1663-1678.

5. Zhang, X. W.; Xia, P.; Wang, P. P.; Yang, J. H.; Baird, D. J., Omics Advances in
Ecotoxicology. Environ Sci Technol 2018, 52 (7), 3842-3851.

6. Teo, C. C.; Chong, W. P. K.; Tan, E.; Basri, N. B.; Low, Z.J.; Ho, Y. S., Advances in
sample preparation and analytical techniques for lipidomics study of clinical samples. Trac-
Trend Anal Chem 2015, 66, 1-18.

7. Rustam, Y. H.; Reid, G. E., Analytical Challenges and Recent Advances in Mass
Spectrometry Based Lipidomics. Anal Chem 2018, 90 (1), 374-397.

8. Jurowski, K.; Kochan, K.; Walczak, J.; Baranska, M.; Piekoszewski, W.; Buszewski,
B., Comprehensive review of trends and analytical strategies applied for biological samples
preparation and storage in modern medical lipidomics: State of the art. Trac-Trend Anal Chem
2017, 86, 276-289.

9. Lewis, M.; Thursby, G., Aquatic plants: Test species sensitivity and minimum data
requirement evaluations for chemical risk assessments and aquatic life criteria development for
the USA. Environ Pollut 2018, 238, 270-280.

10. Scanlan, L. D.; Loguinov, A. V.; Teng, Q.; Antczak, P.; Dailey, K. P.; Nowinski, D.
T.; Kornbluh, J.; Lin, X. X.; Lachenauer, E.; Arai, A.; Douglas, N. K.; Falciani, F.;
Stapleton, H. M.; Vulpe, C. D., Gene transcription, metabolite and lipid profiling in eco-indicator
daphnia magna indicate diverse mechanisms of toxicity by legacy and emerging flame-
retardants. Environ Sci Technol 2015, 49 (12), 7400-10.

11. Blanksby, S. J.; Mitchell, T. W., Advances in Mass Spectrometry for Lipidomics. Annu
Rev Anal Chem 2010, 3, 433-465.

12. Holcapek, M.; Liebisch, G.; Ekroos, K., Lipidomic Analysis. Anal Chem 2018, 90 (7),
4249-4257.

13. Checa, A.; Bedia, C.; Jaumot, J., Lipidomic data analysis: tutorial, practical guidelines
and applications. Anal Chim Acta 2015, 885, 1-16.

14. Yang, K.; Han, X., Lipidomics: Techniques, Applications, and Outcomes Related to
Biomedical Sciences. Trends Biochem Sci 2016, 41 (11), 954-969.

15. Kind, T.; Liu, K. H.; Lee, D. Y.; DeFelice, B.; Meissen, J. K.; Fiehn, O., LipidBlast in
silico tandem mass spectrometry database for lipid identification. Nat Methods 2013, 10 (8), 755-
8.

16. Sud, M.; Fahy, E.; Cotter, D.; Brown, A.; Dennis, E. A.; Glass, C. K.; Merrill, A. H.;
Murphy, R. C.; Raetz, C. R. H.; Russell, D. W.; Subramaniam, S., LMSD: LIPID MAPS
structure database. Nucleic Acids Res 2007, 35, D527-D532.

17. Vieler, A.; Wilhelm, C.; Goss, R.; Suss, R.; Schiller, J., The lipid composition of the
unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana
investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 2007, 150 (2), 143-55.



547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

18. Falck, D.; Haberger, M.; Plomp, R.; Hook, M.; Bulau, P.; Wuhrer, M.; Reusch, D.,
Affinity purification of erythropoietin from cell culture supernatant combined with MALDI-
TOF-MS analysis of erythropoietin N-glycosylation. Sci Rep 2017, 7 (1), 5324.

19. Manikandan, M.; Wu, H. F., Bio-mimicked gold nanoparticles with complex fetal bovine
serum as sensors for single cell MALDI MS of cancer cell and cancer stem cell. Sensor Actuat B-
Chem 2016, 231, 154-165.

20. Tracey, T. J.; Steyn, F.J.; Wolvetang, E. J.; Ngo, S. T., Neuronal Lipid Metabolism:
Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci
2018, /1, 10.

21. Zenobi, R., Single-Cell Metabolomics: Analytical and Biological Perspectives. Science
2013, 342 (6163), 1201-+.

22. Ibanez, A.J.; Fagerer, S. R.; Schmidt, A. M.; Urban, P. L.; Jefimovs, K.; Geiger, P.;
Dechant, R.; Heinemann, M.; Zenobi, R., Mass spectrometry-based metabolomics of single
yeast cells. P Natl Acad Sci USA 2013, 110 (22), 8790-8794.

23. Rahi, P.; Prakash, O.; Shouche, Y. S., Matrix-Assisted Laser Desorption/Ionization
Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications:
Challenges and Scopes for Microbial Ecologists. Front Microbiol 2016, 7, 1359.

24, Lu, J.J.; Tsai, F.J.; Ho, C. M.; Liu, Y. C.; Chen, C. J., Peptide Biomarker Discovery
for Identification of Methicillin-Resistant and Vancomycin-Intermediate Staphylococcus aureus
Strains by MALDI-TOF. Anal Chem 2012, 84 (13), 5685-5692.

25. Krismer, J.; Sobek, J.; Steinhoff, R. F.; Fagerer, S. R.; Pabst, M.; Zenobi, R., Screening
of Chlamydomonas reinhardtii Populations with Single-Cell Resolution by Using a High-
Throughput Microscale Sample Preparation for Matrix-Assisted Laser Desorption lonization
Mass Spectrometry. Appl Environ Microb 2015, 81 (16), 5546-5551.

26. Krismer, J.; Steinhoff, R. F.; Zenobi, R., Single-cell MALDI Tandem Mass
Spectrometry: Unambiguous Assignment of Small Biomolecules from Single Chlamydomonas
reinhardtii Cells. Chimia 2016, 70 (4), 236-239.

27. Krismer, J.; Tamminen, M.; Fontana, S.; Zenobi, R.; Narwani, A., Single-cell mass
spectrometry reveals the importance of genetic diversity and plasticity for phenotypic variation
in nitrogen-limited Chlamydomonas. Isme J 2017, 11 (4), 988-998.

28. Shanta, P. V.; Li, B.; Stuart, D. D.; Cheng, Q., Plasmonic Gold Templates Enhancing
Single Cell Lipidomic Analysis of Microorganisms. Anal Chem 2020, 92 (9), 6213-6217.

29. Sasso, S.; Stibor, H.; Mittag, M.; Grossman, A. R., From molecular manipulation of
domesticated Chlamydomonas reinhardtii to survival in nature. eLife 2018, 7, €39233.

30. Abbas, A.; Linman, M. J.; Cheng, Q., Patterned resonance plasmonic microarrays for
high-performance SPR imaging. Anal Chem 2011, 83 (8), 3147-52.

31. Kaya, T.; Kaneko, T.; Kojima, S.; Nakamura, Y.; Ide, Y.; Ishida, K.; Suda, Y.;
Yamashita, K., High-sensitivity immunoassay with surface plasmon field-enhanced fluorescence
spectroscopy using a plastic sensor chip: application to quantitative analysis of total prostate-
specific antigen and GalNAcbetal-4GlcNAc-linked prostate-specific antigen for prostate cancer
diagnosis. Anal Chem 2015, 87 (3), 1797-803.

32. Jing Liu; Rolf Lauterbach; Harald Paulsen; Knoll, W., Immobilization of Light-
Harvesting Chlorophyll a/b Complex

(LHCIIb) Studied by Surface Plasmon Field-Enhanced Fluorescence Spectroscopy. Langmuir
2008, 24, 9661-9667.



592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

33.  Liebermann, T. K., W.,, Surface-plasmon field-enhanced fluorescence spectroscopy.
Colloid Surface A 2000, 171 (1-3), 115-130.

34, Jicheng Duan; Matthew J. Linman; Cheng, Q., Ultrathin Calcinated Films on a Gold
Surface for

Highly Effective Laser Desorption/Ionization of

Biomolecules. Anal Chem 2010, 82, 5088—-5094.

35. Pilolli, R. P., F.; Cioffi, N.,, Gold nanomaterials as a new tool for bioanalytical
applications of laser desorption ionization mass spectrometry. Anal Bioanal Chem 2012, 402 (2),
601-623.

36. Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S. Z.; Bourque, G.; Wishart, D. S.; Xia, J.
G., MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic
Acids Res 2018, 46 (W1), W486-W494.

37. Blann, K. L.; Anderson, J. L.; Sands, G. R.; Vondracek, B., Effects of Agricultural
Drainage on Aquatic Ecosystems: A Review. Crit Rev Env Sci Tec 2009, 39 (11), 909-1001.

38. Gilliom, R. J.; Barbash, J. E.; Crawford, C. G.; Hamilton, P. A.; Martin, J. D.;
Nakagaki, N.; Nowell, L. H.; Scott, J. C.; Stackelberg, P. E.; Thelin, G. P. Pesticides in the
Nation's Streams and Ground Water, 1992-2001; 1411309553; US Geological Survey: 2006.

39. Gilliom, R. J., Pesticides in U.S. streams and groundwater. Environ Sci Technol 2007, 41
(10), 3407-3413.

40. Choquette, A. F., Pesticides and Nitrate in Groundwater Underlying Citrus Croplands,
Lake Wales Ridge, Central Florida, 1999-2005. U.S. Geological Survey Open-File Report 2013—
1271, 2014; Vol. 28 p.

41. Fischer, B. B.; Rufenacht, K.; Dannenhauer, K.; Wiesendanger, M.; Eggen, R. L.,
Multiple stressor effects of high light irradiance and photosynthetic herbicides on growth and
survival of the green alga Chlamydomonas reinhardtii. Environ Toxicol Chem 2010, 29 (10),
2211-9.

42. Kabra, A. N.; Ji, M. K.; Choi, J.; Kim, J. R.; Govindwar, S. P.; Jeon, B. H., Toxicity of
atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas
mexicana. Environ Sci Pollut Res Int 2014, 21 (21), 12270-8.

43. Yasuor, H.; TenBrook, P. L.; Tjeerdema, R. S.; Fischer, A. J., Responses to clomazone
and 5-ketoclomazone by Echinochloa phyllopogon resistant to multiple herbicides in Californian
rice fields. Pest Manag Sci 2008, 64 (10), 1031-9.

44, Scupakova, K.; Balluff, B.; Tressler, C.; Adelaja, T.; Heeren, R. M. A.; Glunde, K.;
Ertaylan, G., Cellular resolution in clinical MALDI mass spectrometry imaging: the latest
advancements and current challenges. Clin Chem Lab Med 2020, 58 (6), 914-929.

45. Do, T. D.; Comi, T.J.; Dunham, S. J. B.; Rubakhin, S. S.; Sweedler, J. V., Single Cell
Profiling Using lonic Liquid Matrix-Enhanced Secondary Ion Mass Spectrometry for Neuronal
Cell Type Differentiation. Anal Chem 2017, 89 (5), 3078-3086.

46. Taylor, M. J.; Lukowski, J. K.; Anderton, C. R., Spatially Resolved Mass Spectrometry
at the Single Cell: Recent Innovations in Proteomics and Metabolomics. J Am Soc Mass
Spectrom 2021, 32 (4), 872-894.

47. Xie, T. T.; Liu, Q.; Cai, W. P.; Chen, Z.; Li, Y. Q., Surface plasmon-coupled
directional emission based on a conformational-switching signaling aptamer. Chem Commun
2009, (22),3190-3192.



636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

48. Cao, S. H.; Cai, W. P.; Liu, Q.; Xie, K. X.; Weng, Y. H.; Huo, S. X.; Tian, Z. Q.; Li,
Y. Q., Label-Free Aptasensor Based on Ultrathin-Linker-Mediated Hot-Spot Assembly To
Induce Strong Directional Fluorescence. J Am Chem Soc 2014, 136 (19), 6802-6805.

49.  Liebermann, T.; Knoll, W., Surface-plasmon field-enhanced fluorescence spectroscopy.
Colloids and Surfaces a-Physicochemical and Engineering Aspects 2000, 171 (1-3), 115-130.
50. Jeong, Y.; Kook, Y. M.; Lee, K.; Koh, W. G., Metal enhanced fluorescence (MEF) for
biosensors: General approaches and a review of recent developments. Biosens Bioelectron 2018,
111,102-116.

51. Almeida, A. C.; Gomes, T.; Langford, K.; Thomas, K. V.; Tollefsen, K. E., Oxidative
stress in the algae Chlamydomonas reinhardtii exposed to biocides. Aquat Toxicol 2017, 189, 50-
59.

52. Franz, A. K.; Danielewicz, M. A.; Wong, D. M.; Anderson, L. A.; Boothe, J. R.,
Phenotypic Screening with Oleaginous Microalgae Reveals Modulators of Lipid Productivity.
Acs Chem Biol 2013, 8 (5), 1053-1062.

53. Vieler, A.; Wilhelm, C.; Goss, R.; Sub, R.; Schiller, J., The lipid composition of the
unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana
investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 2007, 150 (2), 143-155.

54. Yang, D. W.; Song, D. H.; Kind, T.; Ma, Y.; Hoefkens, J.; Fiehn, O., Lipidomic
Analysis of Chlamydomonas reinhardtii under Nitrogen and Sulfur Deprivation. Plos One 2015,
10 (9), e0137948.

55. Legeret, B.; Schulz-Raffelt, M.; Nguyen, H. M.; Auroy, P.; Beisson, F.; Peltier, G.;
Blanc, G.; Li-Beisson, Y., Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii
under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids.
Plant Cell Environ 2016, 39 (4), 834-847.

56. Yao, L. X.; Gerde, J. A.; Lee, S. L.; Wang, T.; Harrata, K. A., Microalgae Lipid
Characterization. J Agr Food Chem 2015, 63 (6), 1773-1787.

57. Danielewicz, M. A.; Anderson, L. A.; Franz, A. K., Triacylglycerol profiling of marine
microalgae by mass spectrometry. J Lipid Res 2011, 52 (11), 2101-2108.

58. Liu, B.; Vieler, A.; Li, C.; Daniel Jones, A.; Benning, C., Triacylglycerol profiling of
microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica. Bioresour Technol 2013,
146,310-316.

59. Stringano, E.; Cramer, R.; Hayes, W.; Smith, C.; Gibson, T.; Mueller-Harvey, I.,
Deciphering the complexity of sainfoin (Onobrychis viciifolia) proanthocyanidins by MALDI-
TOF mass spectrometry with a judicious choice of isotope patterns and matrixes. Anal Chem
2011, 83 (11),4147-53.

60. Strohalm, M.; Kavan, D.; Novak, P.; Volny, M.; Havlicek, V., mMass 3: A Cross-
Platform Software Environment for Precise Analysis of Mass Spectrometric Data. Anal Chem
2010, 82 (11), 4648-4651.

61. Nussberger, S.; Dorr, K.; Wang, D. N.; Kuhlbrandt, W., Lipid-protein interactions in
crystals of plant light-harvesting complex. J Mol Biol 1993, 234 (2), 347-56.

62. Allakhverdiev, S. I.; Awai, K.; Benning, C.; Block, M. A.; Brown, A. P.; Browse, J.;
Cahoon, E. B.; Charuvi, D.; Chen, M.; Chuartzman, S. G.; Dérmann, P.; Dubots, E.;
Frentzen, M.; Gavilanes-Ruiz, M.; Giavalisco, P.; Goss, R.; Guskov, A.; Hoélzl, G.; Jouhet, J.;
Kern, J.; Kinney, A. J.; Kirchhoff, H.; Krauss, N.; Lechno-Yossef, S.; Los, D. A.; Maréchal,
E.; Meyer, K.; Miller, R.; Mizusawa, N.; Moellering, E. R.; Mullineaux, C. W.; Murata, N.;
Nakamura, Y.; Nevo, R.; Ohta, H.; Plasencia, J.; Rafferty, J. B.; Reich, Z.; Sadre, R.; Sato,



682  N.; Saucedo-Garcia, M.; Seiwert, B.; Shimojima, M.; Shimoni, E.; Slabas, A. R.; Tsabari, O.;
683  Wada, H.; Wilhelm, C.; Willmitzer, L.; Wolk, C. P.; Zinchenko, V. V.; Zouni, A., Lipids in
684  Photosynthesis Essential and Regulatory Functions. Springer: 2009; Vol. 30.

685  63. Li, Y.; Horsman, M.; Wu, N.; Lan, C. Q.; Dubois-Calero, N., Biofuels from

686  microalgae. Biotechnol Prog 2008, 24 (4), 815-20.

687  64. Anderson, L. A., Chemical Stimulation of Lipid Production in Microalgae and Analysis
688 by NMR Spectroscopy for Biofuel Applications. University of California, Davis: 2015.

689  65. Breitenbach, J.; Zhu, C. F.; Sandmann, G., Bleaching herbicide norflurazon inhibits
690  phytoene desaturase by competition with the cofactors. J Agr Food Chem 2001, 49 (11), 5270-
691  5272.

692  66. Ferhatoglu, Y.; Barrett, M., Studies of clomazone mode of action. Pestic Biochem Phys
693 2006, 85 (1), 7-14.

694

695



696  TOC Graphic

697
698

699
700



