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ABSTRACT: 23 

Misuse of agrochemicals has a long-lasting negative impact on aquatic systems. 24 

Mismanagement of herbicides in agri-food sectors is often linked to simultaneous decline in the 25 

health of downstream waterways. However, monitoring of herbicide levels in these areas is a 26 

laborious task, and modern analytical approaches, such as solid phase extraction liquid 27 

chromatography mass spectrometry (SPE-LC-MS) and enzyme-linked immunosorbent assay 28 

(ELISA), are low throughput and require significant sample preparation. We report here the use of 29 

microchip technology in combination with matrix-assisted laser desorption ionization mass 30 

spectrometry (MALDI-MS) for assessment of the ecotoxicological effect of agrochemicals on 31 

aquatic species at the single cell level. This approach quantifies the fluctuations in lipid content in 32 

sentinel organisms and targets a microalga, Chlamydomonas reinhardtii (C. reinhardtii) as the 33 

model system. Specifically, we investigated the cytotoxicity of three herbicides (atrazine, 34 

clomazone, and norflurazon) on C. reinhardtii by analyzing lipid component variation upon 35 

assorted herbicide exposure. Lipidomic profiling reveals significantly altered lipid content at 36 

>EC50 in atrazine exposed cells. The response for norflurazon showed similar trends, but 37 

diminished in magnitude, while the result for clomazone was near muted. At lower herbicide 38 

concentrations digalactosyldiacylglycerols (DGDGs) showed a rapid decrease in abundance, while 39 

several other lipids displayed a moderate increase. The microchip-based MALDI technique 40 

demonstrates the ability to achieve lipidomic profiling of aquatic species exposed to different 41 

stressors, proving effective for high-throughput screening and single cell analysis in ecotoxicity 42 

studies. 43 

 44 

 45 

Synopsis:  46 

A platform for whole cell lipidomics analysis using microchip enhanced MALDI mass 47 

spectrometry that investigates cytotoxic effects of herbicides on lipid systems with algae 48 

Chlamydomonas reinhardtii.   49 



INTRODUCTION: 50 

Despite advances in agri-administration practice and industrial safeguards, contamination 51 

of waterways and watersheds has resulted in a significant loss of species richness in aquatic 52 

systems.1, 2 For example, misuse of herbicides in agri-food sectors is frequently associated with 53 

precipitous decline of health in downstream waterways, closure of public areas, and reputational 54 

damage to negligent growers and chemical manufactures.2, 3 Strategies are needed to monitor the 55 

effects of spray drift or runoff of herbicides into non-crop areas adjacent to agricultural zones, and 56 

preserve diversity of species in aquatic systems.4-8 Analysis of chemical risk has traditionally relied 57 

on analytical techniques such as SPE-LC-MS and ELISA for quantitative measurement of 58 

herbicides, while microcosm studies have been used for the characterization of mortality or 59 

inhibition of chlorophyll production in sensitive non-target aquatic species. However, these 60 

techniques are low throughput and require a significant amount of sample preparation and long 61 

instrument run-times, and little information is provided on the physiological mechanisms that 62 

cause chronic or acute toxicity.7 Surrogate species assays9 have also been used to monitor 63 

bioactivity and bio-inhibition, but they typically require auxiliary measurements, extractions, and 64 

chemical standards to understand the biophysical processes responsible for inhibition.  65 

A large number of herbicides are designed to target lipid-based photosystems contained 66 

within invasive plant species, which play key roles in terrestrial and aquatic ecology.2 Lipids are 67 

abundant in whole cells, making them an ideal target for cell-based analysis. For chemical and 68 

toxicity characterization, lipidomic profiling of sensitive species such as algae that are key 69 

members of both terrestrial and aquatic systems has been studied10. In conventional approaches, 70 

sample is processed by extraction, derivatization, and separation, followed by analysis with multi-71 

capable analytical instrumentations, such as GC-FID, LC-MS, and GC-MS.5-8, 11-14 The data is then 72 

searched against a database (i.e., LipidBlast,15 Lipid Maps,16 etc) to identify the subspecies. These 73 

techniques, however, are rather laborious, requiring extensive sample preparation, sophisticated 74 

separation and/or enrichment procedure, and tedious processing of mass spectral data.  75 

In recent years, MALDI-MS has been used to collect lipid profiles and monitor lipid 76 

response to stress,5, 11, 12, 14 which yields simple mass spectral fingerprints for selective (i.e. 77 

targeted) lipid sample analysis. The most common algae lipid classes identified with MALDI-MS 78 

are monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), diacylglycerol 79 

(DAG), triacylglycerol (TAG), and diacylglyceryltrimethylhomo-Ser (DGTS). Less prominent 80 



lipid classes such as sulfoquinovosyl-diacylglycerol, phosphatidylglycerol, phosphatidylcholine, 81 

and phosphatidylethanolamine are also typically identified.17 Compared to conventional 82 

approaches, MALDI-MS has many added benefits: reduced time for sample preparation, less 83 

variation from sample handling, and reduced chance of sample degradation, which are common 84 

limitations of sample processing. The design of novel substrates and surface functionalities for 85 

MALDI-MS has further improved enrichment of cellular targets and enhanced signals.7, 12, 14, 18, 19 86 

In chemical and toxicological studies of aquatic environments, specific “omics” processes 87 

such as transcriptomics, metabolomics, proteomics, and lipidomics have attracted considerable 88 

attention, and work on algae species has shown their sensitivity to environmental toxicants.5 The 89 

extraction of fluorescent photoactive lipids (chlorophylls) and the monitoring of fluorescence has 90 

been employed to quantify the effect of herbicides on photosystems in algae.2 Given that lipids are 91 

considered biomarkers for toxicity exposure as alterations in the lipidome can be identified at 92 

below cytotoxic levels, these changes are also utilized to trace back biochemical pathways and 93 

identify sources of the toxicity effects.20 An effective approach was developed by Zenobi et al. 94 

where micro-array for mass spectrometry (MAMS)21 was used to investigate metabolomic 95 

biomarkers in populations of yeast cells.22 This technique is attractive as later developments based 96 

on similar concepts allow for microbial identification in hospitals settings.23, 24 Furthermore, it 97 

enables straightforward toxicity study where an in-depth understanding of the ecotoxicological 98 

impact of herbicides on aqua species can be obtained by monitoring the lipid markers and their 99 

response to stimulated exposure. The same group has shown that MAMS is capable of 100 

simultaneously enriching, desorbing, and ionizing the most abundant lipids in a single algae cell,25, 101 

26 and providing phenotypic variations in a limited nitrogen environment.27 We have recently 102 

demonstrated a gold microchip method based on plasmonic enhancement of ionization of low 103 

abundance lipid species, allowing for a large lipidome to be identified without extraction.28 The 104 

combination of plasmonic characteristics of gold microarray with MALDI leads to new technical 105 

advantages in ionization efficiency and sample localization, making it an ideal platform to study 106 

toxicity and cellular response of organisms to photochemical inhibiting molecules at the single cell 107 

level.  108 

In this work, we report quantitative monitoring and evaluation of toxicity response in single 109 

cell algae to photo-inhibiting herbicides with Chlamydomonas reinhardtii (C. reinhardtii). C. 110 

reinhardtii is a well-characterized green alga found in freshwater and damp soils, which is 111 



common in the cultivated fields of North America and Japan, forming a key component of the soil 112 

microbiome.29 Monitoring the toxic effects of chemicals on this ubiquitous, ecologically relevant, 113 

and sensitive organism will identify broader implications on the overall health of the ecosystem. 114 

Probing the effect of photo-inhibiting herbicides on algae also provides insights into mechanisms 115 

by which primary producers are affected and their contribution to ecosystem-wide alterations. The 116 

work utilizes a combination of fluorescence and MALDI-MS on a gold micro-chip array for 117 

identification of stressed cells by performing lipid profiling. Figure 1 shows the framework for 118 

monitoring toxicity in aquatic environments, where C. reinhardtii were exposed to varied levels 119 

of herbicides. The toxicity of three herbicides (atrazine, clomazone, and norflurazon) was 120 

characterized, and statistical analysis was performed to determine indicators of significant toxicity. 121 

In addition, we used algae as a surrogate species for lipidomic phenotype cluster analysis 122 

(covariant analysis), which led to a cluster-based identification of herbicides. The applicability of 123 

the platform for assessing a xenobiotic’s general risk to other species with similar ecotoxicological 124 

responses is discussed.  125 

   126 

 127 

EXPERIMENTAL: 128 

Materials: 129 

Super dihydrobenzoic acid, biotechnology certified dimethyl sulfoxide (DMSO), and analytical 130 

grade solvents were purchased from Sigma Aldrich. POPC (1-palmitoyl-2-oleoyl-glycero-3-131 

phosphocholine) was purchased from Avanti Polar Lipids, Inc (Alabaster, AL). Atrazine, 132 

clomazone, and norflurazon were purchased from AccuStandard Inc. (New Haven, CT). BK7 glass 133 

microscope slides came from Fisher Scientific. High purity water (>18 MΩ cm-1) was obtained 134 

from a Barnstead E-Pure water purification system. C. reinhardtii (+) bacteria-free (#152040), and 135 

sterile Algae-Gro® medium were purchased from Carolina Inc (Burlington, NC).  136 

 137 

Algae Culture Conditions and 96-Hour Acute Herbicide Toxicity: 138 

Freshwater wild-type algae strain, C. reinhardtii, was maintained in a medium at 25˚C with a “cool 139 

white” fluorescent illumination on a 12-hour cycle. For analysis of toxicity, the stationary culture 140 

was seeded and cultured until exponential to stationary phase (~1-2 weeks). The analysis of growth 141 

was spectrophotometrically determined from logarithmic growth at 600 nm. The relationship 142 



between the cell count and absorbance intensity is shown in Figure S1. At the exponential-to-143 

stationary growth phase, the cells were spiked with static concentrations of 3 herbicides, atrazine 144 

(5, 10, 50, 100 M), clomazone (25, 75, 100 M), or norflurazon (5, 10, 50, 100 M). Cells were 145 

collected at 96-hours post herbicide exposure and washed 3 times using ultrapure water after 5 146 

minutes of centrifugation at 2500 g. Cells were promptly spotted via micro syringe onto gold 147 

microchips using an x-y stage on a nanoliter electrodeposition system (Nanoliter Cool Wave 148 

Liquid Systems). To quench cell metabolism, the microchips with drying cells were immediately 149 

placed into a vacuum desiccator.  150 

 151 

Fabrication of the Gold Microchips: 152 

The gold microchip array was fabricated in the Cleanroom Facility at UCR following our 153 

previously published procedure.30 The physical parameters of finished gold µchips are as follows: 154 

each well on a gold microchip has a diameter of 800 µm, with the well bottom covered with 50 155 

nm thick gold and the edges of wells covered with 200 nm gold. In brief, glass slides (1 x 3 inches) 156 

were cleaned with Piranha solution (H2SO4:H2O2, 3:1, Caution!), rinsed with ultrapure water and 157 

ethanol, and dried under nitrogen. The photoresist was then spun-coated onto glass slides and 158 

baked at 110 °C. A mask aligner and UV-light were used to pattern the photoresist, followed by 159 

development for 45 seconds in a developing solution. Next, e-beam deposition was used to deposit 160 

2/200 nm of Cr/Au onto the arrays. A spray gun filled with acetone was used to remove the 161 

photoresist to reveal the array pattern, followed by e-beam deposition of 2/50 nm of Cr/Au onto 162 

the surface to produce a pristine gold well array. Freshly made microchips were placed in a vacuum 163 

desiccator for storage. 164 

 165 

Overview of Workflow: Metal Enhanced Fluorescence and MALDI-MS Lipidomic Analysis  166 

A conventional 96-hour EC50 bioassay of ecotoxicity was coupled with gold microarrays for 167 

metabolic analysis of toxicity in C. reinhardtii. The flow-chart of the method is shown in Figure 168 

1. All tests were conducted after a 96-hour exposure to targeted chemicals. The procedures for 169 

gold microchip profiling of algal lipid mass fingerprints were recently published28.  The method 170 

can be broken into four parts: i) sample preparation ii) metal enhanced fluorescence (MEF) 171 

facilitated localization, iii) acquisition of lipidomic data by MALDI-MS (MS/MS), and iv) data 172 

processing. The gold microarray is an integral part of the substrate design and demonstrated three 173 



major merits: (i) enhanced fluorescence signal31-33 due to the coupling of surface plasmon with the 174 

fluorophore’s emission, (ii) enhanced MS/MS due to rapid thermalization of excited electrons (i.e. 175 

hot-electron transfer)34 and generation of laser-induced plasma at near gold ablation thresholds35 176 

and (iii) robustness of the surface to oxidation, sample processing, and sample archiving.  177 

Fluorescence images and bright-field images of cells were obtained using an 178 

epifluorescence microscope equipped with a TRITC filter cube for fluorescence detection of 179 

chlorophyll and a QImaging Retiga 1300. FIJI software package (ImageJ) was used to assemble 180 

individual fluorescence images into their respective locations on the array. This grid of 181 

fluorescence images (320/chip) was interfaced with a template-design using MALDI-MS software 182 

(Series Explorer Software). The interface facilitated unambiguous localization of cells within 183 

wells, which is necessary for laser targeting with MALDI-MS. This step also eliminated unwanted 184 

data acquisitions from wells that did not contain lysed cells for analysis. The microchip was placed 185 

on a holder that was modified to accommodate standard 1″x3″ glass slides and loaded into the 186 

mass spectrometer. A reflectron AB-Sciex 5800 MALDI-TOF instrument operating in positive 187 

mode with a laser fluence of 4500 a.u. was used to collect lipid mass profiles. One spectrum 188 

contains m/z values versus intensity (a.u.) that were averaged from 200 shots collected in a 189 

continuous linear or v-shaped laser-pattern over a single cell or packet of few cells. The tandem 190 

MS spectra were obtained from a scan of global lipid profiles and precursor ion selection of peaks 191 

with high resolution and s/n values. A tentative lipid library was compiled from experimental m/z 192 

peaks values, MS/MS data, and references. All mean values were calculated from >37 193 

spectra/samples to generate charts, heatmaps, and statistical analysis of the results. 194 

 195 

Data Processing and Statistical Analysis  196 

Metaboanalyst software package36 was utilized to perform the statistical analysis of controls (n > 197 

40) versus herbicide exposures (n > 25), and Prism7 was used to generate volcano plots. Additional 198 

information of processing and data analysis is described below in Results and Discussion. 199 

 200 

RESULTS AND DISCUSSION: 201 

 202 

Assessment of Herbicide Morbidity in an Aquatic System 203 

The herbicides tested here target the photosystems of algae in different ways, with Atrazine 204 

targeting photosystem II while clomazone and norflurazon on synthesis of pigments (carotenoids 205 



and chlorophyll). Spectrophotometric based bioassays provide a binary analysis on lethality, which 206 

has been extrapolated to determine risk in other organisms that harbor the photosynthetic system 207 

in practice37. However, they are less effective to trace the cause of changes and cannot directly 208 

link the observed change to a particular mode of action that may also affect other organisms in the 209 

system. We set to correlate the changes in the lipid profile to the toxicity of the herbicide and 210 

identify the herbicide’s downstream lipid targets with statistical tools, which is important for 211 

pollutant studies in environmental toxicity assessment.  212 

It is reported that atrazine and clomazone concentrations greater than 0.4 nM are common 213 

in U.S. streams and groundwater, and a total molecular concentration of atrazine at greater than 10 214 

µM is often observed in consecutive months.38 The atrazine and norflurazon concentrations in 215 

agricultural streams and shallow groundwater can shift even more dramatically based on time of 216 

year and region.38, 39 Spatiotemporal monitoring of downstream rivers associated with tributary 217 

agricultural streams revealed atrazine levels frequently exceed the 12.5 g/mL (58 µM) benchmark 218 

set by the US Environmental Protection Agency.38 While monitoring of surficial-aquifer wells has 219 

identified median norflurazon concentrations of 25.0 µg/L and 22.0 µg/L for its degradate dimethyl 220 

norflurazon, with the highest  concentration reported at 105 µg/L, far exceeding Florida’s health-221 

guidance benchmark.40 222 

We first characterized the herbicide morbidity for algae C. reinhardtii with the three 223 

compounds. As shown in Figure 2C, EC50 values, ascertained from the dose-response curves of 224 

96-hours post exposure, are 1.2 µM for atrazine, 6.6 µM for norflurazon, and >150 µM for 225 

clomazone, respectively. These empirically derived EC values agree relatively well with those in 226 

recently published literature41, 42 for atrazine and norflurazon, while the proherbicide clomazone 227 

requires bioactivation to inhibit the isoprenoid pathway, a potentially null bioactivation pathway 228 

in Chlamydomonas.43 These differences were further investigated by the lipid profiling experiment 229 

that offers a new angle to understand the mechanisms.   230 

 231 

Gold Microchip with MEF for MALDI-MS Analysis of Algae Lipidome  232 

Utilizing the plasmonic micro arrays, we conducted surface enhanced MS analysis of C. 233 

reinhardtii by first locating the cells using MEF, followed by MALDI-MS and MALDI-MS/MS 234 

to acquire detailed mass spectra for identifying lipids. For whole cell lipid profiling, the laser beam 235 

must be precisely directed to the microorganisms confined to a specific region to enhance the 236 



effectiveness. An alternative method would be MALDI imaging, which turns out to be less ideal 237 

for this study as scanning the surface with single- or few-cells would prove daunting in both data 238 

analysis and time required for scanning.44 Furthermore, the resolution of a stand-alone MALDI-239 

MS imaging system has yet to reach a resolution needed for single cell analysis,17, 45 and the 240 

location of cells can only be determined after the scan from MS data. Only a few pixels within the 241 

region of a single cell are produced, but recent advances show promise in improving spatial 242 

resolution46. A straightforward approach that allows convenient localization of the cells prior to 243 

MS data collection would be highly useful. 244 

The gold microarray substrate proves to be an ideal surface for that purpose due to marked 245 

fluorescence enhancement. It has been reported that a thin gold film of 50 nm in thickness can 246 

generate a strong evanescent wave under proper optical configuration.47, 48 The coupling between 247 

the wave and nearby fluorophores located within 20-200 nm from the surface causes a fluorescence 248 

enhancing effect. This phenomenon, known as MEF,49 is broadly observed and used for signal 249 

enhancement in fluorescence-based sensing50. Algae shows an autofluorescence property due to 250 

the presence of chlorophyll a in the membrane, but the signal is usually very weak. MEF 251 

substantially improves the fluorescence images (supporting information), makes it simple and 252 

clear to pinpoint cells inside the substrate wells. The images were stitched together into a series of 253 

images for synchronization with a homebuilt template within the MALDI-MS software, which 254 

enabled single cell or multiple cells to be quickly localized for laser ionization in MALDI.  255 

 256 

Lipid Profiling and Population Averaging of C. reinhardtii 257 

The dysregulation of lipids in microalgae are associated with stress induced genomic 258 

regulation5 or oxidative damage51 caused by changes in the environment, including nutrient level 259 

perturbations, or the presence of harmful exogenous molecules.52 Lipidome characterization of an 260 

indicator species has been used to investigate the impact of exogenous herbicide on microalgae.  261 

The most widely used techniques for detailed analysis of the sample’s total lipidome involve lipid 262 

extraction, chromatographic separation, and ESI-MS ionization.6-8 Another method is the shotgun 263 

approach that combines lipid extraction with direct-infusion ESI.11, 12 Single cell MALDI-MS 264 

method has multiple advantages over the ESI-MS approaches, with straightforward sample 265 

preparation being the most attractive one. Our MALDI-MS results show that data from multiple-266 

cell spectra had smaller variation in signal intensity than the single-cell spectra. Nevertheless, 267 



normal population heterogeneity in C. reinhardtii is < 5%,21, 45. As such we present averaged data 268 

obtained from multiple samples that are representative of the entire population (n > 25), which fits 269 

the purpose of the current study that is focused on characterization, identification, and quantitation 270 

of toxicity in an algae population. Heterogeneity is incorporated into the statistical variance that is 271 

accounted for in later studies. Our results also revealed that the level of variation within a typical 272 

population is minimal compared to the C. reinhardtii’s response to herbicide. All spectra were 273 

obtained from cells that were taken from biological replicates and non-herbicide containing 274 

controls. From this point forward, single cell data spectra (n > 25) were analyzed for clustering 275 

linkages and significance of lipid class change.  276 

Table 1 summarizes the lipid species of C. reinhardtii identified by microarray MALDI-277 

MS. The parenthesis represents R1 and R2 groups acyl chain residues of varying lengths. The 278 

assignments of the lipids are in agreement with those made by others,25, 53-57, including those using 279 

lipophilic extraction to characterize C. reinhardtii’s lipid profiles.53-58  From the results, the 280 

ionization of chlorophylls [M-Mg++3H]+ is clearly suppressed.  Chlorophylls is commonly a major 281 

peak that obscures low abundance lipid species, whereas its suppression allows identification of 282 

many other low abundance lipids. In addition, a substantial increase in ionization efficiency of 283 

other lipids is observed, likely through a combination of ion suppression, sample confinement, and 284 

metal enhancement effects.28 This facilitated the assignment of many peaks not previously 285 

detectable under similar conditions in a single mass spectrum. While the general consensus has 286 

been that efficient ionizers such as chlorophyll59 should be separated ex-situ from samples before 287 

ionization experiments, this process is no longer necessary using the gold microarrays. 288 

Data Explorer software was used to mass calibrate the spectrum and export text files. An 289 

open source software known as mMass60 was used to obtain m/z, baseline, peak values (S/N > 5), 290 

and conduct a preliminary lipid search to identify lipids from the Lipidmaps®
16 library. Precursor 291 

ions were selected from the profile and CID-MS was used to confirm lipid classes. For CID-MS 292 

analysis, the precursor ion window was set to ± 0.2-1.5 m/z units, with the window size being 293 

contingent on the presence and abundance of nearby peaks. We found that DGDGs, MGDGs, 294 

DGTS, and TAGs were efficiently desorbed from the gold surface, while DAGs were ionized to a 295 

lesser extent (Figure 3). Previous work has found MALDI-MS is a useful technique to identify and 296 

compare TAG and DGDG levels from 500 mL culture of cells using separation, which is not 297 

possible with GC-MS due to low abundance and instability of derivatized compounds.57 298 



For spectra analysis, weak signals at 871.57 m/z and 885.55 m/z are assigned to light 299 

capturing molecules chlorophyll a [M-Mg++3H]+ and chlorophyll b [M-Mg++3H]+, respectively. 300 

The most abundant DGDG and TAG species are assigned to Na+ and K+ adducts of DGDG (34:3), 301 

TAG 54:3, and TAG 54:2. MS/MS fragmentation was conducted for analysis of the most abundant 302 

lipid subspecies, from DGDG, TAG, DGTS, and MGDG. The microchips are highly selective to 303 

the ionization of DGDG and TAG compounds, because polar and neutral compounds easily adduct 304 

with cationic sodium to form stabile positive ions. Both Na+ and K+ adducts of DGDG and TAG 305 

were identified in the lipid mass profile, and fragmentation of precursor ions confirmed 306 

identification and elemental analysis of acyl side chains. DGTS lipids were identified as only 307 

protonated adducts; this may likely be due to DGTS’s zwitterionic nature and the acidic matrix 308 

environment.  309 

Figure 4 shows a quantitative analysis to evaluate lipid concentrations and determine 310 

percent concentration of lipid subspecies. In this work, the relative percent concentration 311 

measurements (n > 25 and peaks = 60) of each lipid were performed. The data obtained by the 312 

MEF/MALDI-MS µchip method has been compared to previously published research using LC-313 

ESI-MS and they agree well with this work. In Figure 4A and 4B abundance of various DGDG 314 

lipid species can be seen compared across increasing herbicide concentrations, indicating species 315 

that are most affected by associated herbicide treatment. There is limited change in lipid abundance 316 

across lipid species for clomazone affected algae except at the highest concentration of 150 µM 317 

where a decrease in DGDG (36:3), DGDG (36:4), and DGDG (36:5) is seen. While for norflurazon 318 

abundant lipid species DGDG (34:3) and DGDG (34:6) have considerable decreases in lipid 319 

abundance upon even low (10 µM) treatment. Also, significant changes in low abundance lipid 320 

species such as DGDG (36:2) through DGDG (36:7) can be identified. Significant changes in 321 

DGDG lipid species are also seen in atrazine affected algae as shown in previous publication.28 322 

Volcano plot in (Figure 4D) displays lipid species with significant changes (P<=0.05) of two-fold 323 

or greater indicated in green for those of decreasing abundance and red for those increasing in 324 

abundance. 325 

 326 

Evaluation of the Impact of Herbicides on Algae Lipidome: Statistical Analysis  327 

As summarized in Table 1, norflurazon at below benchmark concentrations and near 328 

EC50 values (1 µM and 10 µM) produced a striking decrease in the overall abundance of all 329 



DGDG compounds in algae after 96 hours (Figure 4). Atrazine demonstrates the same decrease 330 

in DGDG compounds28 while also displaying increases in DGTS and TAG lipid species at and 331 

below EC50 values followed by a significant decrease for concentrations above the EC50 value 332 

(Figure S3). Galactolipids (MGDG and DGDG) are major components of photosynthetic 333 

membranes that are responsible for cell signaling and membrane structure.56 In higher plants, di-334 

galactolipids are non-bilayer forming lipids that support protein aggregation in Photosystem II.61 335 

A similar function of DGDG in green-algae plastids62 explains the apparent decreasing signal of 336 

DGDG lipids in response to norflurazon’s inhibition of phytoene desaturase and the subsequent 337 

breakdown of the lipid supported photosystem complex (Figure 4). The observed decrease in 338 

DGDG was accompanied by an increase in MGDG intensity, which suggests that norflurazon 339 

induced stress resulted in a breakdown of DGDG, into lyso-DGDG forms (i.e. MGDG). TAG 340 

signals showed an overall increase in number of TAG molecules, by either de novo or 341 

scavenging synthesis of TAGs, which was a compensatory effect of DGDG signal decreases in 342 

C. reinhardtii (Table 1). TAG accumulation during stress conditions is a common phenotypic 343 

response in many types of algae, which has been reviewed extensively in the literature.63 344 

DGTS are nitrogen containing and extraplastidic lipid molecules that have been 345 

characterized as a substitute for phosphatidylcholines, and function as a proxy for structural 346 

integrity in membranes. Furthermore, studies focused on nitrogen deprivation54 and heat stress55 347 

for biofuel production have suggested a varied response, and either a causal decrease55, 64 or 348 

increase27, 54 effect on the concentration of DGTS lipids. This discrepancy is attributed primarily 349 

to temporal analysis of stress, i.e. the length of the experiment27, 54 (hours to weeks). This is further 350 

nuanced by effects from differential lipid remodeling54, algae in various growth stages54 and 351 

genetic diversity27. Our results show that atrazine, a nitrogen-abundant environmental pollutant, 352 

resulted in a dramatic increase in the abundance of short-chain DGTS lipids. The increase in DGTS 353 

signals agrees with the temporal model in that our examinations were conducted with cultures in 354 

the late-stationary growth phase and herbicide stress increased abundance of DGTS. It appears 355 

there is a threshold concentration of atrazine, wherein 50 µM and greater, induced a spectrum-356 

wide decrease in lipid signal, and with a post-96-hour exposure, it ultimately leads to a 100% 357 

mortality.  358 

For norflurazon treated algae similar changes were identified for DGDG, TAG, and DGTS 359 

lipid species. These changes likely follow similar mechanisms to those for atrazine affected algae, 360 



as both herbicides are photosystem II inhibitors. The end result is the same for both herbicides, but 361 

the mode of action is different. Norflurazon’s effect is propagated through the reduction of 362 

carotenoid biosynthesis via inhibition of phytoene desaturase.65 This distinction can be clearly seen 363 

in the difference in EC50 values and the extent to which lipid species are up or down regulated. As 364 

the EC50 for norflurazon is higher this indicates that the bleaching effects caused by norflurazon’s 365 

phytoene desaturase inhibition either take longer to affect algae lipid systems or are not as directly 366 

related to lipid pathways as the electron transport processes affected by atrazine. This is further 367 

supported by the regulation of lipid species coinciding with that for atrazine treated algae but to 368 

lower extents, thus indicating that the same lipid accumulation and breakdown pathways were 369 

activated but with less severity. 370 

Clomazone also targets pigment synthesis but it did not have a significant effect on 371 

lipidomic clustering. It has been speculated to require plant-bioactivation to become an active 372 

inhibitor in photosynthetic organisms,66 and thus is possibly a null pathway in C. reinhardtii.66 373 

From the data presented here we can see that clomazone does not get activated within algae and 374 

therefore had little effect on algae lipid systems. This is especially clear when compared with 375 

norflurazon which significantly altered lipid profiles and targets the same synthesis pathways as 376 

clomazone.  377 

To illustrate how each of the lipid variables were affected by herbicides, volcano plots are 378 

provided for visualization of the most significant changes in large data sets.13, 14 As shown in 379 

Figure 4, the effect of 10 µM norflurazon (log2(FC(norflurazon /control)) is characterized by a 380 

significant excess of TAG molecules and a decrease in DGDG molecules. A significant change 381 

threshold of P = 0.05 and FC > 2 was used to compartmentalize lipids into the upper left and right 382 

corners of the volcano plot. This strategy proved to be highly effective for cell based lipidomic 383 

toxicity screening. 384 

We have demonstrated that this microarray technique can characterize differences in 385 

lipidomic responses to two different herbicides with similar modes of action. Norflurazon and 386 

clomazone are both inhibitors of pigment synthesis, yet their effects on C. reinhardtii are strikingly 387 

different. Clomazone at very high concentrations had little effect on inhibition of cell growth 388 

(Figure 2), and the volcano plot in Figure 4C showed a relatively high concentration (75µM) of 389 

clomazone also had little effect on lipid abundance. In comparison, norflurazon saw a significant 390 

amount of TAG accumulation and effects on cell growth at a much lower concentration (10 µM).  391 



Hierarchical clustering in Figure 6B shows strong linkage of lipidome composition and 392 

physiological response of individual cells exposed to different types of herbicides. Some overlap 393 

exists between toxicological response of lipidome to atrazine and norflurazon, which is likely due 394 

to the similarities in the two herbicide’s modes-of-action (target photosystem II). Unsupervised 395 

multivariate principal component analysis (PCA) was used to explain the variance in the data set 396 

and distinguish single cell lipid profiles under different herbicide induced stress conditions. There 397 

was no separation between clomazone and its control as all of the control values fell within the 398 

95% confidence region of the clomazone data set, which is understandable based on the lack of 399 

bioactivation within algae systems. PCA score plots of atrazine and norflurazon versus control 400 

showed good separation, and partial least squares discriminate analysis (PLS-DA) was performed 401 

to further separate the herbicide groups into distinguishable phenotypic clusters (Figure 6). PLS-402 

DA addresses questions on how well the lipid response profile of C. reinhardtii predicts which 403 

herbicide is responsible for toxicity. Differentiation of lipid clusters can, therefore, be used to 404 

facilitate herbicide classification and may be useful in the prediction or identification of herbicide 405 

contamination in polluted waterways and watersheds. Hence, statistical analysis of exposure data 406 

obtained from sensitive indicator species can be combined with higher trophic organisms to 407 

determine and/or measure environmental health.  408 

In this work, we have reported a new method that combines microarray analysis, sample 409 

archiving, fluorescence microscopy, and single cell mass spectrometry to study toxicity of three 410 

herbicides. MEF and enhanced MALDI-MS/MS were combined to analyze lipids from whole cells 411 

in a high-throughput array format. The results showed that the gold substrate enhances MALDI-412 

MS performance, generating a lipid library that consists of 54 identified lipid species without a 413 

purification process. The results indicate these three herbicides have a pronounced and different 414 

effect on mass peaks from ecological relevant indicator species, C. reinhardtii. Analysis of algal 415 

lipid response to atrazine and norflurazon showed a significant reduction in DGDG content at low 416 

concentrations. In contrast, subspecies of TAG saw a significant increase of these energy storing 417 

lipids.  Clomazone with a relatively high EC50 had little effect on DGDG levels at the highest 418 

concentration tested and showed only a slight increase in TAG levels. The results indicate that 419 

lipid conversion during herbicide induced stress conditions in algae leads to TAG accumulation 420 

and DGDG depletion. Volcano plots, a viable analysis tool for identifying lipids markedly affected 421 

by different herbicides, yields multiple lipid species with statistically significant greater than two-422 



fold changes.  PCA combined with PLS-DA analysis showed that this lipidomic approach can be 423 

used to analyze trends in lipid abundance for classification of specific herbicides. The up and down 424 

regulation of lipids can be linked to unique herbicide effects and these patterns can then potentially 425 

be useful for identifying which herbicides are affecting the algae. Compared to other techniques 426 

in the analysis of lipids from cells, this approach is fast as there is no need for extraction. In 427 

addition, this approach can be used to study lipid mass profiles in similar cell types and may 428 

similarly be extended to variation analysis in those samples, particularly in efforts to monitor the 429 

environment. This work demonstrates the effectiveness of plasmonic substrates to enable robust 430 

tracking of lipid abundance and signatures upon cellular treatment. Further presenting 431 

opportunities to study more complex microorganisms and their reaction to environmental changes.  432 
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 445 
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Table 1. A list of lipid classes and species types detected by MALDI-MS. Parenthesis denotes 447 

the presence of all isomers with the same number of carbons and double bonds, for example 448 

(36:2). Up and down arrows indicate an overall change in lipid abundance at EC50 for three 449 

herbicides and the resulting impact on cell physiology. At = atrazine, Nf = norflurazon, Cl = 450 

clomazone, nc = no change. 451 
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 457 

Figure 1. Overview of framework to determine the ecotoxicological ramifications of aberrant 458 

herbicides on the lipidome in the indicator species C. reinhardtii.459 



460 

Figure 2. Bright field (top) and fluorescent (bottom) images of C. reinhardtii algae (A). Structure 461 

of three herbicides used for exposure tests on algae (B). Herbicide dose-responsive curves for 462 

conventional analysis of toxicity and calculation of EC50 values. Dose response curves show the 463 

algae response upon exposure to different herbicides. EC50 of atrazine was measured at 1.2 ± 0.3 464 

μM, norflurazon EC50 at 6.6 ± 1.6 μM, and clomazone EC50 at >150 μM. (C). Relative 465 

abundance of algal lipids associated with atrazine herbicide treatment (D). Ion abundance data 466 

from mass spectra are extracted for statistical analysis and to investigate the effects of herbicide 467 

on algal lipidome.   468 



 469 

 470 

Figure 3. MALDI-MS with distinct m/z regions where the different lipid types are found to form 471 

the lipid fingerprint of C. reinhardtii. 472 
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 475 
 476 

Figure 4. The effect of Norflurazon (A) and Clomazone (B) concentration on 477 

digalactosyldiacylglycerol (DGDG) abundance in algae. Statistical analysis of variation in the data 478 

reveals significant changes in concentration of lipids after 96 hours in (C) 75 µm of clomazone 479 

and (D) 10 µm of norflurazon. 480 
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 483 
 484 

Figure 5. Heat maps of lipid abundance based on lipid species and concentration of herbicide 485 

exposure. Exposure doses are indicated along the x-axis for corresponding lipid species along the 486 

y-axis of the heat maps. Colored legends along the right side of the heatmaps show the averaged 487 

peak intensity of lipid from low (white) to high intensity (dark blue). Atrazine’s effect on TAG 488 

lipid species (A), on DGTS lipid species (B), and on DGDG lipid species (C). Norflurazon’s 489 

effect on DGDG lipid species (D) and clomazone’s effect on DGDG lipid species (E). 490 
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 494 

 495 

Figure 6. Dendrogram representation of hierarchical similarities between single cells, and PLS-496 

DA maximizes the covariance between X (data) and Y (group) and is often used in the analysis of 497 

large biological datasets. The variance displayed in the plot above is the explained variance for X. 498 

A pronounced separation is revealed between the three groups of data. Ellipses indicate 95% 499 

confidence fitting.  500 
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