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Abstract:

Multiple sclerosis (MS) is the most common autoimmune disease observed in young adults and is
known to be exceptionally difficult to diagnose accurately. Current diagnostic methods are
considered unreliable and inefficient, and they typically lack the needed specificity that allows for
routine monitoring of disease progression. In this work, we report a surface plasmon resonance
imaging (SPRi) method in combination with carbohydrate microarrays for the detection of
multiple sclerosis biomarkers in undiluted serum. A working range of 1 to 100 ng/mL was
demonstrated with the limit of detection (LODs) below 7 ng/mL. The microarrays utilized in this
work were coated with perfluorodecyltrichlorosilane (PFDTS) to interact strongly with the
hydrophobic tails of the ganglioside antigens, allowing for desirable antigenic display in a manner
mimicking a myelin sheath. Machine learning (ML) algorithms were applied to the carbohydrate
array/SPRi data analysis to understand and characterize the cross reactivities observed between
the antibodies. Both endpoint results and SPRi sensorgrams were analyzed with statistical models
for the evaluation of binding events that include kinetic and steady state components. In addition,
K-nearest neighbor (knn) and neural net (nnet) were utilized to examine specific and cross-reactive
binding, yielding higher accuracy than what traditional methods can achieve. The combination of
ML models and microarray data provides a comprehensive understanding of complex interactions

and could be used to differentiate and identify closely behaving biomarkers in a clinical setting.
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INTRODUCTION:

Rapid detection and monitoring of disease biomarker levels is vital to medical diagnosis
and therapeutic intervention, and thus constitutes an important part of research endeavors for the
advancement of medical sciences.(Broza et al., 2019) These biomarkers allow for early diagnosis
and thus enable disease differentiation, leading to faster implementation of treatments and targeted
therapies.(Clark and Kodadek, 2016) For multiple sclerosis (MS), several antibody and protein
biomarkers were found to target cell membrane components of the myelin sheath, such as
gangliosides and sulfatides. The myelin sheath is a lipid rich substance that surrounds and insulates
the neurons of the central nervous system (CNS), allowing for transmission of electrical pulses
that control various functions throughout the body.(Graner et al., 2020; Kuerten et al., 2020;
Mizutani et al., 2001; Pender et al., 2003) Among various membrane components of the myelin
sheath, gangliosides have received extensive research attention as they are significant for
maintaining structural stability, assist in cell to cell interactions, and aid in the regeneration and
growth of axons.(Cawley et al., 2021; Nowack et al., 2021; Schnaar, 2010) It has been observed
that with the progression of MS, the myelin sheath’s integrity diminishes, severely impacting the
CNS’ ability to communicate with the rest of the body.(Ivanova and Zakharova, 2017) The
damaged neural areas will cease to function normally, resulting in the symptoms associated with

MS.(Hoftberger et al., 2020)

Current diagnosis of MS relies heavily on characterizing damage to the CNS by scanning
for plaques or scar tissue, which indicate that trauma or an autoimmune attack has
occurred.(Ghasemi et al., 2017; Shedko et al., 2020) Evaluation of the severity of the plaques is
normally achieved by using a combination of several techniques, including magnetic resonance
imaging (MRI), evoked potential, spinal taps, and blood tests,(Ghasemi et al., 2017) while only
spinal taps are routinely used for direct detection of MS protein biomarkers.(Shedko et al., 2020)
Collection of cerebrospinal fluid (CSF), however, requires the use of lumbar punctures, which are
incredibly painful, difficult to perform, and only allow for a small amount of CSF to be
collected,(Costerus et al., 2018) leading to some diminished interest in the monitoring of MS
progression.(Derkus et al., 2017) Concurrently, there has been a great deal of interest in the
development of new approaches for quantifying MS biomarkers in blood.(Lycke and Zetterberg,

2017) Presently, blood tests are routinely performed to screen for established markers of other



diseases that have similar symptoms as MS for the purpose to rule them out in diagnosis.(Brownlee
et al., 2017) They are not normally used for direct MS diagnosis due to limited biomarker presence
in the blood resulting in much lower concentrations when compared to CSF samples.(Ziemssen et
al., 2019) Therefore, moving to a blood-test based detection method for MS markers would require
technical development for sensitivity improvement and robustness that could 1) quantify
concentrations and analyte/antigen interactions concurrently, 2) identify and differentiate cross
reactivity between biomarkers, and 3) eliminate background signals from various other

components in the patients’ blood sample.

While fluorescence and chemiluminescence detection schemes have been used,(Yang et
al., 2020) surface plasmon resonance imaging (SPRi), a label-free, real time, and direct detection
method, has increasingly been used broadly to detect disease biomarkers in various biological
samples.(Sharafeldin and Davis, 2021) The benefits offered by SPRi includes compatibility with
microarrays that allow for screening of multiple biomarkers simultaneously in a high throughput
and multiplexed manner, which can drastically improve the monitoring of disease
progression.(Lambert et al., 2018; Malinick, A. S. et al., 2020) A major drawback, however, is the
nonspecific binding when dealing with complex samples, such as blood.(Sharafeldin and Davis,
2021) Another challenge is the cross reactivity among various biomarkers in the sample, which is
a particularly troublesome issue for anti-ganglioside antibody detection where the difference
among carbohydrate headgroups is small. This convolutes signals and makes detection unreliable
due to false positive and/or negative results, causing major concerns for use in clinical
studies.(Mescheriakova et al., 2018) Antifouling surfaces and new SPRi methodologies have
therefore been the focus of many works to reduce these undesirable interferences.(D’Agata et al.,
2021; Damodaran and Murthy, 2016; Lambert et al., 2020; Malinick, A. S. et al., 2020; Nair et al.,
2020; Rikkert et al., 2020; Wu et al., 2021; Yang et al., 2020)
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Scheme 1. (A) Graphical representation of the biological process of antibodies attacking the
myelin sheath in multiple sclerosis during an autoimmune attack. (B) Capture and detection
scheme of anti- ganglioside antibodies associated with multiple sclerosis via the ganglioside
microarray and SPRi. (C) Visualization of the machine learning algorithm for a neural network
process including base layer, hidden layers, and output layers for all potential analyte antigen

interaction in this study.



Recently we reported a near super hydrophobic, perfluorodecyl-trichlorosilane (PFDTS)
surface for the detection of MS biomarkers. The antifouling properties of the ganglioside PFDTS
substrate were evaluated and characterized, and detection of 3 anti-ganglioside antibodies in 10 %
serum was successfully demonstrated.(Malinick, A. S. et al., 2020) In this work we expand the
study to investigate the sensing performance in clinical conditions by coupling machine learning
to the differentiation of MS specific antibodies in undiluted serum (Scheme 1). Extensive controls
were used to evaluate cross reactivity between the investigated antibodies and gangliosides, which
is critical for obtaining an accurate diagnosis in a clinical setting. To assess cross reactivity among
structurally similar carbohydrate antigens, we have performed modeling and statistical analysis
using various machine learning (ML) algorithms for post-acquisition data analysis. Data sets of
endpoint results, association, steady state, and dissociation energies were utilized, which provided
a more comprehensive understanding into the observed interactions than what traditional methods
can achieve.(Cui et al., 2020) Categorization by ML relies on complex algorithms to detect patterns
in the raw data where similar observations can be grouped or clustered together.(Das et al., 2015b)
This in-depth analysis allows for the discovery of previously overlooked patterns that can be used
to train the ML models to aid in the identification and differentiation of analytes present in a
complex biological sample.(Volk et al., 2020) The findings of the presented study establishes a
new methodology to address the technical difficulties of identifying analyte/antigen interactions
in complex media and that by correctly training ML models, they can be implemented to improve

biomarker detection for disease diagnosis.

EXPERIMENTAL METHODS:
Materials and Reagents:

Monosialoganglioside GM1 was purchased from Matreya (Pleasant Gap, PA). Trisialoganglioside
GT1b was obtained from Biosynth (Itsaca, I1). Asialoganglioside GA1 was acquired from Sigma-
Aldrich (St. Louis, MO). [H,1H,2H,2H-Perfluorodecyltrichlorosilane (PFDTS) was purchased
from Fisher Scientific (Pittsburgh, PA). Anti asialoganglioside GA1 human anti mouse monoclonal
antibody and anti monoganglioside GM rabbit polyclonal antibody, were both obtained from

Abcam (Cambridge, UK). Anti Trisialoganglioside GT1v ganglioside mouse monoclonal antibody



was obtained from Millipore Sigma (Billerica, MA). Human serum was purchased from Innovative

Research (Upper Marlboro, MD).
Fabrication of SPRi Substrates:

The SPRi arrays biochips were fabricated via the protocol reported in a previous paper.(Abbas et
al., 2011) In short, glass slides were spin-coated with hexamethyldisilazane (HMDS) to promote
adhesion. After baking at 110 °C for approximately 1 minute, UV exposure via a Karl-Suss MA-
6 system allowed for the creation of an array pattern on the photoresist, after which standard
photoresist development protocols were implemented. A 2 nm layer of titanium was first deposited
to act as an adhesion layer, after which a layer of 200 nm of gold was deposited to form wells. The
remaining photoresist was removed from the surface with acetone. A second 2nm layer of titanium
was deposited followed by a 48 nm layer of gold to form the sensing surface inside of the wells.
PECVD was then used to deposit 1-3 nm of SiO2 on the microarray chips, which would later be
treated with PFDTS. The final product was a microarray consisting of 10x10 well arrays that were

200 nm deep and 600 um in diameter.

Surface Functionalization and Preparation:

Functionalization of the chips was carried out with a similar protocol used previously.(Malinick,
A. S. et al., 2020) The surface of the chips was submerged in 1 mM PFDTS in toluene. After 30
minutes, the chip was removed from the solution and rinsed with toluene, ethanol, and deionized
water and dried under nitrogen gas. Once the chips were completely dry, 1.5 uL of the 100 pg/mL
stock solution for each ganglioside was incubated and allowed to dry in air to create four different
working channels. An S-shaped PDMS flow cell was used to create eight working wells per
channel where functionalization and interactions occurred under the same configuration for
reproducibility. The first channel was left un-functionalized as an internal reference to measure
chip to chip variation, whereas 1.5 pL of 100 pg/mL stock solutions was employed for generating

ganglioside channels with GA1, GM1, and GTiv.
SPRi analysis:

SPRi measurements were conducted on a home-built setup; a detailed description of which can be

found in previous work.(Wilkop et al., 2004) The functionalized chips were mounted onto an



optical stage that houses a PDMS flow cell. The array was placed in contact with an equilateral
SF2 prism (n = 1.65) with a layer of refractive index matching fluid (Cargill Laboratories, Cedar
Grove, NJ). A 648 nm light emitting diode (LED) was used as the light source for SPR excitation.
Reflected images of the microarray were captured by a cooled 12-bit CCD camera (QImaging
Retiga 1300) and data acquisition was controlled via a home built LabView program. Intensity
data was normalized by using the intensity from the p-polarized light over the s-polarized beam

and described as a percentage.
Statistical analysis and Machine Learning:

Partial least squares discrimination analysis (PLS-DA) plots were produced with MetaboAnalyst.
Principal component analysis (PCA) was completed with the prcomp function in R and graphed
with the ggbiplot package with an ellipse probability set to 95 % using the endpoint data. Neural
Network (nnet) was used to analyze both the endpoint data and SPRi sensorgram data. Nnet was
conducted using the nnet package for R and was plotted using an expanded grid in R. K nearest
neighbor (Knn) from the caret package was used to evaluate regions of the sensorgram related to
the antibody spiked in whole serum interaction study. The Knn model was visualized with ggbiplot
packages. For ML 70 % of the data was used to train the models and 30 % to test. Each model had
random iterations incorporated into them so that all of the data could be used to test the success of

the model.

RESULTS AND DISCUSSION:

SPR imaging analysis of anti-gangliosides in Serum

Microarrays offer the benefit of detecting many biomarkers simultaneously. However, reliably and
effectively using microarrays in a clinical setting requires an in-depth understanding of
background signals from the biological sample and the cross reactivity between the biomarkers of
interest that could be present in the sample.(D’Agata et al., 2021; Masson, 2017) The microarray
used in this study has a 4 x 8 arrangement with the 3D printed looped flow cell, capable of
monitoring the presence of many biomarkers concurrently. Previously, we showed that our myelin

sheath mimic is capable of detecting and differentiating MS specific antibodies in diluted serum



at 100 ng/mL.(Malinick, A. S. et al., 2020) In this study, we expand the investigation and focus on
detecting and differentiating three MS specific anti-ganglioside antibodies in whole serum at
disease-relevant concentrations ranging from 3 to 25 ng/mL.(Ivanova and Zakharova, 2017)
Antibodies for GTi», GM1, and GA1 gangliosides were used as they have been associated with
symptoms commonly observed in MS.(Ivanova and Zakharova, 2017; Kuerten et al., 2020;
Wanleenuwat and Iwanowski, 2019) Anti-GTib has been linked to the loss of muscle control in
the limbs, whereas anti-GM1 and anti-GA1 are believed to play significant roles in the damage of
myelin associated with the optic nerves, as they both have been correlated to changes in and loss
of vision.(Hogan et al., 2013; Ivanova and Zakharova, 2017; Kappler and Hennet, 2020;
Wanleenuwat and Iwanowski, 2019) Detection of these antibodies, as well as other anti-
ganglioside antibodies, should drastically increase the confidence and speed at which a diagnosis

is determined when coupled with currently established MS detection methods.
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Figure 1. (A) Entire sensorgram for 50 ng/mL of anti-GTiv in serum on a GT1v ganglioside surface.
(B) Average of 5 sensorgrams to depict association, steady state, and dissociation binding
interactions for 50 ng/mL anti-GT1b (Blue), anti-GM1 (Red), anti-GA1 (Green) interacting with a
GTl1v ganglioside surface. (C) Average of all observed bulk changes caused by MS specific
antibodies at 50 ng/mL in serum on the PFDTS functionalized ganglioside microarray. (Blue) %
RI, AU caused by 50 ng/mL anti-GTib on 0.1 mg/mL GTi,, GM1, and GA1 ganglioside surfaces,
(Red) binding between 50 ng/mL anti-GM: and 0.1 mg/mL on a GT1,, GM1, and GA1 ganglioside
surfaces, and (Green) binding between 100 ng/mL anti-GA1 and 0.1 mg/mL GT,, GM1, and GA1
ganglioside surfaces. (D) Image of ganglioside microarray by the CCD camera used in the SPR
imaging experiments. Each color indicates the functionalization of the surface PFDTS only
(Black), GA1 ganglioside surface (Green), GM1 ganglioside surfaces (Red), and GTib» ganglioside

surfaces (Blue).

Figure 1 shows the SPRi results for specific anti-gangliosides antibodies under various
conditions and the microarray image by gangliosides. The first step in the experiment was to inject
10 % serum diluted with PBS to block the surface to account for cross reactivity and nonspecific
binding. Different concentrations of serum dilutions were tested, but higher concentrations did not
offer any benefits over the 10 % dilution. As shown in Figure 1 A and B, there is a large angle
shift due to the change in refractive index units (RIU) once the spiked whole serum is introduced.
This shift can be attributed to the high concentration of proteins and other biological components
present in the sample.(Masson, 2017) Once the rinse cycle is initiated, the vast majority of the
material that caused the large shift is rinsed off, leaving behind only the specific
antibody/ganglioside interaction of interest and other materials of extremely high affinity. To
confirm the specific interaction, we conducted cross reactivity evaluations with several antibodies
for each concentration to determine how much of the observed shifts were due to specific
analyte/antigen interactions, as shown in Figure 1B. The small amount of nonspecific binding can
be attributed to the unique properties of the near super hydrophobic surface and the selectivity of
the sialic acids (SA) present on the antigenic sensing sites of the gangliosides.(Malinick, A. S. et
al., 2020) Figure 1C shows the bulk changes (in % RIU) of the investigated antibodies at 50 ng/mL
with the ganglioside microarray. High cross reactivity can be observed between anti-GM; and anti-
GA\1 and their respective gangliosides, whereas there is negligible cross reactivity between anti-

GTiv and anti-GAi1. This observation can be attributed to the number of SA for each



ganglioside.(Malinick, A. S. et al.,, 2020) This trend was present in all of the investigated
concentrations and can be seen in the supporting information, Figures 2S (A-I). The PFDTS
carbohydrate chips used here appear effective in addressing large levels of nonspecific binding
from complex media and cross reactivity between analytes, one of the major challenges of label-

free detection methods.(Masson, 2017)

Figure 2. Calibration curve for the specific binding of all of the investigated antibodies in serum.
Anti-GT1yb (Blue), anti-GM1 (Red), and anti-GA1 (Green). Each data point is the average of at least

5 wells.

A calibration curve for anti-GT1v, anti-GM1, and anti-GA after background subtraction is
shown in Figure 2. Each surface has a working range of 1 ng/mL to 100 ng/mL in undiluted serum.
The limits of detection (LOD) using the 36 method were calculated to be 4.5 ng/mL, 5.6 ng/mL,
and 6.6 ng/mL for anti-GTb, anti-GM1, and anti-GA1 respectively. Based on these calculations,

the detection limit of the carbohydrate microarrays appears to fall within the concentration range



of antibodies typically seen in patient serum samples,(Hausser-Kinzel and Weber, 2019; Ziemssen
et al., 2019) demonstrating that our microarray is capable of detecting, quantifying, and
differentiating MS biomarkers in a clinical setting. These capabilities validate that our presented
methodology offers unique and clear benefits when compared to other recently developed
detection methods for MS specific biomarkers, as presented in Table 1. While each of the listed
techniques have aided in the progression towards a more reliable and/or direct method for detecting
and monitoring MS specific biomarkers, they all lack in one or several of the key capabilities that
our method provides. Most notably in regards to the abilities to simultaneously screen, quantify,

and differentiate multiple biomarkers in biological samples.

Table 1. Comparison of recent biosensors developed for the detection and monitoring of MS

biomarkers.
Detected in
Biomarker Bioreceptor Method Amplification LOD Biological Reference
Sample
4.5 ng/mL or 30
. Lo M
anti-GTy GT; ganglioside
anti-GM, GM, ganglioside SPRi No 3.6 ng/mL or 37 Yes This work
M whole serum
anti-GA, GA, ganglioside 6.6 ng/mL or 44
pM
2.34 ng/mL or 16
. - pM
anti-GT, GT;, ganglioside
(Malinick,
anti-GM, GM, ganglioside SPRi No 100 ng/mL or 0.7 Yes Alexander S. et
nM 10 % serum
al., 2020)
anti-GA, GA, ganglioside Only tested 100
ng/mL or 0.7 nM
. . No (Miti et al.,
miR-17 DNA probe Localized SPR Yes 1 pM PBS 2020)
miR-422 0.55 pM
miR-223 0.88 pM
DNA probe SPRi Yes II\};"S (Sgua;f)elr;’)et al,
miR-216 1.19 pM
miR-23A 1.79 pM
DNA probe and Fluorescence Yes (Mansourian et
miR-145 fluorescent silver | spectrophotomet Yes 0.1 nM 50 % serum al., 2017)
nanocluster er




. . Yes
Un@entlﬁed Synthetic Indirectly by Not determined
antibodies . . Yes
) glycopeptide Cyclic and excess free only reported a . . (Bellagha-
present in . . Purified patient
. CSF114(Glc) square wave glycopeptide Fc- difference Chenchah et al.,
purified MS . serum samples of
. with ferrocenyl voltammetry CSF114(Gle) between healthy 2015)
patient serum . - . 0.04 to 4 ug/mL
moiety present in and sick samples
samples .
solution
Unidentified 4 Not reported
o Synthetic only compared Yes .
antibodies . (Real-Fernandez
resent in patient glycopeptide SPR No response 1% and 2 % etal., 2012)
p P CSF114(Glc) between healthy serum ”
serum samples .
and sick samples

While the developed method has met the technical requirements for the routine use of blood
tests for the evaluation of MS biomarkers in patient samples and even may streamline the
diagnostic procedure, the observed cross reactivity suggested simple quantification by binding
signals may be an oversimplified approach and could ignore potential interferences to the observed
results, as is the case for the studies shown in Table 1. Therefore, an accurate detection and
effective differentiation between analyte/antigen interactions would require in-depth statistical

analysis.

Cross reactivity and statistical analysis

Robust statistical analysis was performed to analyze and characterize data from both SPRi
sensorgrams and endpoint results. The endpoint data is the observed change in RIU of the analyte-
antigen interactions after accounting for observed cross reactivity between the other biomarkers
and nonspecific binding from serum. The calibration curves seen in Figure 2 are generated using
the collected end point data. Further analysis was conducted using principal component analysis
(PCA) and partial least squares discriminant analysis (PLS-DA), in order to characterize the data
to reveal impact by specific, nonspecific, and cross reactivity interactions, yielding more thorough
evaluation on antibody/ganglioside interactions than what traditional endpoint assay studies are
capable of. The use of these statistical analyses gives a good assessment of the effectiveness of the

ganglioside microarray’s ability to screen MS biomarkers.
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Figure 3. (A) 3D bar graph showing % RI, AU of all three antibodies interacting with the
ganglioside microarray at 25 ng/mL in serum. Anti-GT1p interactions (Blue), anti-GM interactions
in (Red), and anti-GA interactions in (Green). (B) Principal component analysis (PCA) showing
the ability to separate the three anti-ganglioside antibodies based on their induced response across
the whole microarray at 25 ng/mL. (C) PCA of all antibody/ganglioside interactions at each
concentration showing overlap of anti-GT1b beginning at 10 ng/mL and at 25 ng/mL for both anti-

GM | and anti-GA.1.

Principal component analysis was first carried out with the endpoint data for each antibody
interacting with three different ganglioside surfaces individually and as an entire data set. PCA, an
unsupervised statistical model with a clustering statistical algorithm that looks for linear patterns
in complex data sets,(Giuliani, 2017)(Wetzel, 2017) showed that at higher concentrations it could
easily determine the specific antibody/ganglioside interactions, but was less effective in
differentiating interactions at concentrations below 10 ng/mL for anti-GTib» and below 25 ng/mL
for anti-GM1 and anti-GA1. The different number of SAs on the ganglioside antigens may explain
why anti-GTip antibodies could still be differentiated at 10 ng/mL, as anti-GT v specifically targets
three SAs whereas anti-GM: and anti-GA: target antigenic site with one and zero SA,
respectively.(Koga et al., 2001) Figure 3 shows that when all concentrations are plotted, there is a
significant overlap between the antibodies at concentrations below 10 ng/mL, but at 25 ng/mL
only overlap is between anti-GM1 and anti-GA1. This agrees well with our previous observation
in 10 % serum where the majority of cross reactivity occurred between anti-GTiv and anti-GM1 or
anti-GM1 and anti-GA but little between anti-GTiv and anti-GAi.(Malinick, A. S. et al., 2020) It
is apparent that PCA had difficulty differentiating the antibodies at concentrations below 10 ng/mL

as the measurements themselves started to show uncertainty (LODs determined around 7 ng/mL).



AVG of 50 ng/mL of Anti-GT,,, Anti-GM,, and Anti-GA, in Serum on GT1b Ganglioside

Score Plot
Anti-GT.
isso | (A) (B)
Anti-GA,
°
- — e
< 1450 3 ]
= o0 o0 o
- <
= a
_E 1350 : od
< S ° o
2 < @ 0g°
£ 1250 2 &
o
3 §
x S -
1150
~ -
y
1050 Ll T T T T 4
80 90 100 110 120 130 140 3 2 -1 0 1 2
Time (minutes) Component 1 (55.9 %)
AVG of 10 ng/mL Anti-GT,, on Ganglioside Microarray in Serum Score Plot
(D) GT,, Surface
GM, Surface
GA, Surface
1100
—_
X 4
1080 ~
i 8
o o
2 ~ e
< 1060 -
= c °®
= g ° 9 » e L
o . ®
1040 o o
5 .
o s %
1020 ,
w4
1000 T T T T
150 160 170 180 190 200 210 220 4 2 0 2 4 6

Times (minutes) Component 1 (35.3 %)

Figure 4. (A) Average of sensorgrams for binding associated regions between 50 ng/mL of the
three investigated antibodies with a GT1b ganglioside functionalized PFDTS surface. Anti-GTib
interactions (Blue), anti-GM interactions in (Red), and anti-GA) interactions in (Green). (B)
Sample of Partial Least Squares Discriminant Analysis (PLS-DA) for all three antibodies at 50
ng/mL on a GTib ganglioside surface. (C) Average association, steady state, and dissociation
regions for anti-GT1b interacting with the 3 different functionalized ganglioside PFDTS surfaces.
(Blue) GTiv ganglioside surface, (Red) GM1 ganglioside surface, and (Green) GA1 ganglioside
surface. (D) Sample of PLS-DA analysis of anti-GTib» at 10 ng/mL classification based upon
interactions with (Blue) GTib ganglioside surface, (Red) GMi ganglioside surface, and (Green)

GA\1 ganglioside surface.

The PCA analysis with endpoint data provides a good glimpse of the interaction properties

between antibodies and gangliosides, but the results are limited. Further characterization of this



complex property was carried out with kinetic interaction data from the SPRi sensorgrams. To
achieve this, we utilized PLS-DA to analyze the regions associated with binding kinetics in the
sensorgrams related to the antibody ganglioside interactions. PLS-DA is a supervised or
classification based statistical method that looks for trends in the whole data set and makes a
prediction based upon these trends to determine the relationship that one data set has to
another.(Lee et al., 2018) We performed PLS-DA on the sensorgrams for 50 ng/mL of the three
MS specific antibodies in serum interacting with a GT1v ganglioside surface (Figure 4A) and for
10 ng/mL of anti-GTi» on the 3 different ganglioside surfaces (Figure 4C). Figure 4B shows
minimal overlap between anti-GTib and anti-GM: and between anti-GM1 and anti-GA1, but none
between anti-GTiv and anti-GA1. The interactions observed between the three antibodies and the
ganglioside surface can be attributed to anti-GA1 not targeting SAs whereas both anti-GTi» and
anti-GM1 do. In Figure 4D it is clear that 10 ng/mL anti-GT1v specifically binds to the GTib
ganglioside surface and there is only minor overlap between GM1 and GA1, while the majority of
binding occurs to GTiv and GM: ganglioside surfaces. There is no observable overlap between
anti-GT1b interactions with a GA1 ganglioside surface, indicating that anti-GT1v specifically targets
the SA on the carbohydrates head group. PLS-DA using the kinetic interaction data appears to

differentiate antibodies and ganglioside interactions more effectively than PCA did.

The promising results with PLS-DA and PCA prompted us to explore the data sets further
to understand the cross reactivity between the biomarkers. Although these statistical methods are
effective to reveal cross reactivity, they are limited in that only one data set was compared to
another, rather than finding patterns hidden in the endpoint data, sensorgrams, and binding kinetics
to predict the type of interactions that are occurring. Therefore, further statistical analysis with

machine learning (ML) was performed to evaluate the SPRi raw data.

Neural Networks and k Nearest Neighbor Algorithms

ML has become increasingly relevant and present in various aspects of scientific
investigation and society as a whole.(Das et al., 2015a) It appears to be only a matter of time before
ML algorithms are used routinely in disease diagnostics due to its ability to handle large and

complex data sets.(Cui et al., 2020) In this study we trained and tested a neural network (nnet) and



a k-nearest neighbor (knn) model using endpoint data for both specific and cross reactive
interactions. In addition, we performed these analyses using data from the sensorgrams that are
linked to association, steady state, and dissociation energies of the analyte/antigen interactions
based upon the changes in time and RIU values, which gave us access to over 65,000 data points
per sensorgram. By training and testing these models with the collected data, we can evaluate the
effectiveness of the algorithms and the functionalized substrates for detecting and differentiating
between antibody ganglioside interactions in a pseudo clinical setting. It will allow us to determine
if the combination of ML to label-free sensing methodology could facilitate the general high
throughput screening of antibodies/markers, which may drastically improve disease diagnosis and

the monitoring of their progression.

Nnets are essentially a virtual nervous system,(Cui et al., 2020) making it an ideal ML
model to use in the detection and evaluation of MS. Nnets are composed of three layers: an input,
hidden, and output layer.(Volk et al., 2020) A visualization of the nnet used in our study is shown
in Scheme 1C. The input layer consists of data that the user feeds into the model to train and test
the success rate of the algorithm;(Shahid et al., 2019) for our study, our input layers included the
time, RIU, endpoint data, and concentration depending on how we were analyzing the data. The
hidden layer is the intermittent computations that occur to define patterns and investigate the data
so that the algorithm can make predictions.(Cui et al., 2020) The output layer allows the user to
interpret the results generated by the model, which can either be used for classification, as for the
endpoint data, or a prediction, which was done for the sensorgram data.(Shahid et al., 2019) Nnets
have the ability to learn by themselves and produce outputs that are not limited to the inputs
originally provided to them, making them ideal for aiding in the detection and monitoring of
diseases where biomarkers in one patient can vary drastically to those in another patient.
Nevertheless, these new outputs would need to be verified before being included in the diagnosis

criteria.

The second model used in our work was kNN. kNN is a non-parametric classification
model that works by analyzing and comparing a single data point to the entirety of the data series
before moving to the next data point in the series; this allows for the detection and monitoring of
unique trends that other ML algorithms might overlook.(Peterson, 2009) In brief, the algorithm

attempts to predict the correct class of the test data by calculating and identifying trends among a



few data points (referred to as neighbors) and defines trends amongst the entire data series or the
entire neighborhood.(Cui et al., 2020) The model then compares the observed trends in the test
data between individual data points, groups of data points, and the entire data series to trends
observed in the training set.(Shahid et al., 2019) Unlike the nnet, all potential analyte/antigen
interactions would need to be predefined for the model to accurately identify, differentiate, and
predict between healthy and sick patient samples as well as which analyte/antigen interactions
were most likely occurring. Given the way that the kNN algorithm operates, we were only able to

reliably utilize it on the SPRi sensorgram data.

To train and determine the accuracy of the algorithms for various data sets, we
implemented multiple random iterations by randomly selecting 70 % of the collected data to be
used as a training set and the other 30 % to test the iteration of the model.(Shahid et al., 2019; Ugar
et al., 2020; Volk et al., 2020) This allowed us to use all of the collected data to train and test the
model, resulting in a more reliable algorithm than what only a portion of the data would
achieve.(Shahid et al., 2019; Ugar et al., 2020) While increasing the percentage and number of
training sets would undoubtedly improve the chance of the models to achieve the goal, it also
carries the risk of over fitting,(Shahid et al., 2019) which is a major concern and also the reason
why random iterations were utilized in this work.(Ying, 2019) The accuracies for the ML
algorithms discussed here are the average of all potential random iterations conducted in the

current study.

There are a few limitations to consider when using ML algorithms for this type of data
analysis. One must account for all potential cross reactive interactions and nonspecific binding for
the model to be considered truly reliable.(Volk et al., 2020) When potential interactions are not
taken into account or considered during the training period, it is very likely that false positive and
negative results will occur.(Cui et al., 2020) Nevertheless, with a model properly set-up and
running, training can be completed relatively quickly as long as the data is reliable and

reproducible.(Peiffer-Smadja et al., 2020)

Neural Network Data Analysis
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Figure 5. Receiver operating characteristic curve (ROC) for the analysis of the endpoint data
containing all antibody/ganglioside interaction with a neural network (nnet). Below the ROC curve
is a representative confusion matrix of the nnet testing data sets using random iterations, to evaluate

the accuracy of the model to identify the specific analyte antigen interactions of interest.

Figure 5 shows a receiver operating curve (ROC) for the endpoint data for all
antibody/ganglioside interactions at each studied concentration, which constitutes a total of 225
observations each of which contain the baseline, incubation, and post rinse cycles present in each
sensorgram. An ROC depicts the reliability of the algorithm to correctly classify models at all
classification thresholds based upon whether the model correctly or incorrectly identified which

antibody/ganglioside interactions were observed.(Tong et al., 2018) Our ROC curve indicates that



the model has an overall accuracy of 94 %. The table shown below the ROC curve is the average
of all possible random iterations that could occur, showing how accurately the model can identify
for the antibody/ganglioside interactions occurring in serum. If the model was trained with all
possible biomarkers associated with a disease, it could reliably differentiate and identify them
based upon their specific, nonspecific, and cross reactive interactions, which would drastically
improve the reliability of end point assays. We have applied the nnet to the endpoint data, which
focused on using concentration and specific RIU results. In addition, we applied further analysis
with the sensorgram data using both the nnet and kNN models.

The nnet modeling based on the sensorgram data was focused on three antibodies at 50
ng/mL in whole serum on a GTiv ganglioside surface and anti-GTip at 10 ng/mL in serum. This
dataset was selected with the consideration that GTi» has the most SA groups of the three
investigated gangliosides and has known cross reactivity with anti-GM1 and little with anti-GA1.
Anti-GTib at 10 ng/mL was selected as anti-GTib had the lowest LOD (4.5 ng/mL) and LOQ (15
ng/mL) of the three investigated antibodies in whole serum and has notable cross reactivity with
the GM1 ganglioside surface and none with a GA1 ganglioside surface as shown previously with

our statistical analysis.
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Figure 6. (A) nnet of the sensorgram for (Blue) 50 ng/mL anti-GTi» on a GT1b ganglioside surface,
(Green) 50 ng/mL anti-GM1 on a GTip ganglioside surface, and (Red) 50 ng/mL anti-GAi on a
GTiv ganglioside surface. (B) nnet for 10 ng/mL anti-GTi» with (Blue) a GT1v ganglioside surface,
(Green) GM1 ganglioside surface, and (Red) a GA1 ganglioside surface. (C) K nearest neighbor
model (kNN) depicting the binding interactions between (Red) 50 ng/mL anti-GAi1 on a GTib
ganglioside surface, (Green) 50 ng/mL anti-GMi on a GTv ganglioside surface, and (Blue) 50
ng/mL anti-GTivon a GT1b ganglioside surface. (D) KNN of 10 ng/mL anti-GTib interacting with
a (Blue) GTiv ganglioside surface, a (Green) GM: ganglioside surface, and a (Red) GAi

ganglioside surface.

Figures 6A and 6B show the nnet plots based on the location of individual time points and
their relation to specific RIU values. This is visualized as an expanded grid, depicting specific
prediction regions based upon observed trends in the sensorgrams shape as well as steady state and
kinetic information. A confusion matrix is shown below each expanded grid depicting the model’s
ability to classify which antibody/ganglioside interactions are occurring. As shown in Figures 6A
and 6B, there are clearly three distinct predictive regions based upon the location of these time
points and their relation to RIU values. In Figure 6A, there is a noticeable overlap between anti-
GTivand anti-GM1, as well as between anti-GM1 and anti-GA 1, but no overlap between anti-GT1b
and anti-GA1. In Figure 6B, a similar trend is observed, but the region of identification for 10
ng/mL anti-GTib interacting with a GM1 ganglioside surface is very small compared to the
dominate regions, which are the anti-GTi» on a GTib ganglioside surface and anti-GTib on a GA1
ganglioside surface. This indicates that the algorithm is able to differentiate between one antibody
and three ganglioside surfaces more effectively than three antibodies and one surface. Using the
sensorgram data for the three antibodies at 50 ng/mL on a GT 1 surface, the model has an accuracy
of 83%; and for 10 ng/mL anti-GT1v interacting with three different ganglioside surfaces has an
accuracy of 88%. Both accuracies are lower than those of the nnet endpoint data analysis, which
can be attributed to the fact that this data set has a much more complex features due to inclusion

of association, steady state, and dissociation patterns.

K-Nearest Neighbor Data Analysis



The kNN algorithm was applied to the same sensorgram dataset with the same training to
test ratio of 70 to 30 %. As seen in Figures 6C and 6D, the most likely paths to occur based upon
the specific analyte/antigen interactions from the training datasets are the solid lines. The colored
individual data points that surround the predicted paths are the cluster regions where specific
analyte/antigen interactions are most likely to occur. Notable confusion can be observed in both
Figures 6C and 6D in relation to the model’s clustering analysis capabilities in regards to regions
related to association and dissociation interactions. However, in regions related to the steady state
and post rinse cycles, the algorithm is highly successful. Even with these regions of high confusion,
the model produced high accuracy rates above 90 %. Specifically, we obtained 94 % accuracy for
50 ng/mL of three antibodies on a GTiv ganglioside surface and 96 % for 10 ng/mL anti-GT1b
interacting with three different ganglioside surfaces. The higher accuracy for differentiating
between ganglioside surfaces instead of antibodies agrees well with the findings of the nnet and
PLS-DA, as discussed previously.

The high accuracy observed for the KNN model in comparison to the nnet algorithm can
be attributed to the different approach by which the algorithms analyze the data series.(Peterson,
2009; Shahid et al., 2019) Both algorithms identify that there is a higher probability of
experiencing confusion between anti-GMi1 with the other two antibodies due to higher cross
reactivity. In addition, they agree on no confusion between anti-GT1b and anti-GA1. Both models
also show that differentiating between one antibody and three ganglioside surfaces is much more
reliable than differentiating between three antibodies and one ganglioside surface. These findings
agree well with the statistical analysis previously discussed to characterize the microarrays ability
to differentiate between analyte/antigen interactions. It also shows that these models are capable
of identifying an antibody that is interacting specifically with a ganglioside surface based upon
endpoint data, association, steady state, and dissociation kinetics.

Using the sensorgram dataset in combination with the endpoint data appears to be more
effective than relying on either one separately for disease biomarker characterization. The
combination allows for a more comprehensive review of the observed interactions, and also for
faster identification of abnormalities that individual ML algorithms may miss. This is critical to
the analysis of patient samples, where there is a high likelihood that unforeseen interactions could
have occurred that were not accounted for in the training series, such as those from patient’s

therapeutics/drugs and other disease biomarkers that are not affiliated with MS.(Peiffer-Smadja et



al., 2020) Relying on endpoint data alone may cause higher than expected false positive or negative
results due to these unaccounted interactions. We demonstrated that utilizing binding kinetic
interactions with the endpoint data, the unaccounted interactions could be more easily identified
and then corrected by the models. The findings of this study have the potential to drastically
improve label free detection methods as well as the reliability of screening many biomarkers

simultaneously.

Conclusion

In this work, we have shown that SPRi microarray biochips in combination with robust
statistical algorithms are capable of detecting, identifying, and differentiating antibody/ganglioside
interactions in whole serum samples. The work addressed a major concern of using antibodies for
the diagnosis of MS in a clinical setting, which is the high individual heterogeneity in patients and
the widely varied concentration range. We demonstrated that developing a detection scheme
allowing a range of antibodies measured with multiplexed capability, under identical assay
conditions, and being able to account for cross reactivity and nonspecific interactions is critical.
Using the PFDTS surface, the microarray can be easily extended to include more antigens desired,
and the hydrophobic regions will minimize the interferes from the background proteins. This is
ideal for glycolipids and sphingomyelins, which are the major components of the myelin sheath.
All three targeted antibodies were detectable and quantifiable within biologically relevant
concentrations between 3 ng/mL to 25 ng/mL. The statistical analysis and machine learning
algorithms implemented in this study allowed for the observation and evaluation of unique trends
and features between the antibodies and antigens, which allowed us to conduct a more intense
evaluation and gain a broader understanding than what traditional assays can achieve. The method
demonstrated here may improve patient-specific evaluation of MS biomarkers, and find use in
helping understand the disease progression. As can be seen from these results, robust data analysis
protocols are integral for future disease detection studies based on the complexity of biological

interactions.
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