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Abstract:   

Multiple sclerosis (MS) is the most common autoimmune disease observed in young adults and is 

known to be exceptionally difficult to diagnose accurately. Current diagnostic methods are 

considered unreliable and inefficient, and they typically lack the needed specificity that allows for 

routine monitoring of disease progression. In this work, we report a surface plasmon resonance 

imaging (SPRi) method in combination with carbohydrate microarrays for the detection of 

multiple sclerosis biomarkers in undiluted serum. A working range of 1 to 100 ng/mL was 

demonstrated with the limit of detection (LODs) below 7 ng/mL. The microarrays utilized in this 

work were coated with perfluorodecyltrichlorosilane (PFDTS) to interact strongly with the 

hydrophobic tails of the ganglioside antigens, allowing for desirable antigenic display in a manner 

mimicking a myelin sheath. Machine learning (ML) algorithms were applied to the carbohydrate 

array/SPRi data analysis to understand and characterize the cross reactivities observed between 

the antibodies. Both endpoint results and SPRi sensorgrams were analyzed with statistical models 

for the evaluation of binding events that include kinetic and steady state components. In addition, 

K-nearest neighbor (knn) and neural net (nnet) were utilized to examine specific and cross-reactive 

binding, yielding higher accuracy than what traditional methods can achieve. The combination of 

ML models and microarray data provides a comprehensive understanding of complex interactions 

and could be used to differentiate and identify closely behaving biomarkers in a clinical setting. 

Key Words: Surface plasmon resonance imaging, biomarker, ganglioside, microarray, machine 

learning, multiple sclerosis   



INTRODUCTION: 

Rapid detection and monitoring of disease biomarker levels is vital to medical diagnosis 

and therapeutic intervention, and thus constitutes an important part of research endeavors for the 

advancement of medical sciences.(Broza et al., 2019) These biomarkers allow for early diagnosis 

and thus enable disease differentiation, leading to faster implementation of treatments and targeted 

therapies.(Clark and Kodadek, 2016) For multiple sclerosis (MS), several antibody and protein 

biomarkers were found to target cell membrane components of the myelin sheath, such as 

gangliosides and sulfatides. The myelin sheath is a lipid rich substance that surrounds and insulates 

the neurons of the central nervous system (CNS), allowing for transmission of electrical pulses 

that control various functions throughout the body.(Graner et al., 2020; Kuerten et al., 2020; 

Mizutani et al., 2001; Pender et al., 2003) Among various membrane components of the myelin 

sheath, gangliosides have received extensive research attention as they are significant for 

maintaining structural stability, assist in cell to cell interactions, and aid in the regeneration and 

growth of axons.(Cawley et al., 2021; Nowack et al., 2021; Schnaar, 2010) It has been observed 

that with the progression of MS, the myelin sheath’s integrity diminishes, severely impacting the 

CNS’ ability to communicate with the rest of the body.(Ivanova and Zakharova, 2017) The 

damaged neural areas will cease to function normally, resulting in the symptoms associated with 

MS.(Höftberger et al., 2020)  

Current diagnosis of MS relies heavily on characterizing damage to the CNS by scanning 

for plaques or scar tissue, which indicate that trauma or an autoimmune attack has 

occurred.(Ghasemi et al., 2017; Shedko et al., 2020) Evaluation of the severity of the plaques is 

normally achieved by using a combination of several techniques, including magnetic resonance 

imaging (MRI), evoked potential, spinal taps, and blood tests,(Ghasemi et al., 2017) while only 

spinal taps are routinely used for direct detection of MS protein biomarkers.(Shedko et al., 2020) 

Collection of cerebrospinal fluid (CSF), however, requires the use of lumbar punctures, which are 

incredibly painful, difficult to perform, and only allow for a small amount of CSF to be 

collected,(Costerus et al., 2018) leading to some diminished interest in the monitoring of MS 

progression.(Derkus et al., 2017) Concurrently, there has been a great deal of interest in the 

development of new approaches for quantifying MS biomarkers in blood.(Lycke and Zetterberg, 

2017) Presently, blood tests are routinely performed to screen for established markers of other 



diseases that have similar symptoms as MS for the purpose to rule them out in diagnosis.(Brownlee 

et al., 2017) They are not normally used for direct MS diagnosis due to limited biomarker presence 

in the blood resulting in much lower concentrations when compared to CSF samples.(Ziemssen et 

al., 2019) Therefore, moving to a blood-test based detection method for MS markers would require 

technical development for sensitivity improvement and robustness that could 1) quantify 

concentrations and analyte/antigen interactions concurrently, 2) identify and differentiate cross 

reactivity between biomarkers, and 3) eliminate background signals from various other 

components in the patients’ blood sample. 

While fluorescence and chemiluminescence detection schemes have been used,(Yang et 

al., 2020) surface plasmon resonance imaging (SPRi), a label-free, real time, and direct detection 

method, has increasingly been used broadly to detect disease biomarkers in various biological 

samples.(Sharafeldin and Davis, 2021) The benefits offered by SPRi includes compatibility with 

microarrays that allow for screening of multiple biomarkers simultaneously in a high throughput 

and multiplexed manner, which can drastically improve the monitoring of disease 

progression.(Lambert et al., 2018; Malinick, A. S. et al., 2020) A major drawback, however, is the 

nonspecific binding when dealing with complex samples, such as blood.(Sharafeldin and Davis, 

2021) Another challenge is the cross reactivity among various biomarkers in the sample, which is 

a particularly troublesome issue for anti-ganglioside antibody detection where the difference 

among carbohydrate headgroups is small. This convolutes signals and makes detection unreliable 

due to false positive and/or negative results, causing major concerns for use in clinical 

studies.(Mescheriakova et al., 2018) Antifouling surfaces and new SPRi methodologies have 

therefore been the focus of many works to reduce these undesirable interferences.(D’Agata et al., 

2021; Damodaran and Murthy, 2016; Lambert et al., 2020; Malinick, A. S. et al., 2020; Nair et al., 

2020; Rikkert et al., 2020; Wu et al., 2021; Yang et al., 2020)  



 

Scheme 1. (A) Graphical representation of the biological process of antibodies attacking the 

myelin sheath in multiple sclerosis during an autoimmune attack. (B) Capture and detection 

scheme of anti- ganglioside antibodies associated with multiple sclerosis via the ganglioside 

microarray and SPRi. (C) Visualization of the machine learning algorithm for a neural network 

process including base layer, hidden layers, and output layers for all potential analyte antigen 

interaction in this study. 

 



Recently we reported a near super hydrophobic, perfluorodecyl-trichlorosilane (PFDTS) 

surface for the detection of MS biomarkers. The antifouling properties of the ganglioside PFDTS 

substrate were evaluated and characterized, and detection of 3 anti-ganglioside antibodies in 10 % 

serum was successfully demonstrated.(Malinick, A. S. et al., 2020) In this work we expand the 

study to investigate the sensing performance in clinical conditions by coupling machine learning 

to the differentiation of MS specific antibodies in undiluted serum (Scheme 1). Extensive controls 

were used to evaluate cross reactivity between the investigated antibodies and gangliosides, which 

is critical for obtaining an accurate diagnosis in a clinical setting. To assess cross reactivity among 

structurally similar carbohydrate antigens, we have performed modeling and statistical analysis 

using various machine learning (ML) algorithms for post-acquisition data analysis. Data sets of 

endpoint results, association, steady state, and dissociation energies were utilized, which provided 

a more comprehensive understanding into the observed interactions than what traditional methods 

can achieve.(Cui et al., 2020) Categorization by ML relies on complex algorithms to detect patterns 

in the raw data where similar observations can be grouped or clustered together.(Das et al., 2015b) 

This in-depth analysis allows for the discovery of previously overlooked patterns that can be used 

to train the ML models to aid in the identification and differentiation of analytes present in a 

complex biological sample.(Volk et al., 2020) The findings of the presented study establishes a 

new methodology to address the technical difficulties of identifying analyte/antigen interactions 

in complex media and that by correctly training ML models, they can be implemented to improve 

biomarker detection for disease diagnosis.  

 

EXPERIMENTAL METHODS:  

Materials and Reagents:  

Monosialoganglioside GM1 was purchased from Matreya (Pleasant Gap, PA). Trisialoganglioside 

GT1b was obtained from Biosynth (Itsaca, Il). Asialoganglioside GA1 was acquired from Sigma-

Aldrich (St. Louis, MO). 1H,1H,2H,2H-Perfluorodecyltrichlorosilane (PFDTS) was purchased 

from Fisher Scientific (Pittsburgh, PA). Anti asialoganglioside GA1 human anti mouse monoclonal 

antibody and anti monoganglioside GM1 rabbit polyclonal antibody, were both obtained from 

Abcam (Cambridge, UK). Anti Trisialoganglioside GT1b ganglioside mouse monoclonal antibody 



was obtained from Millipore Sigma (Billerica, MA). Human serum was purchased from Innovative 

Research (Upper Marlboro, MD).  

Fabrication of SPRi Substrates: 

The SPRi arrays biochips were fabricated via the protocol reported in a previous paper.(Abbas et 

al., 2011) In short,  glass slides were spin-coated with hexamethyldisilazane (HMDS) to promote 

adhesion. After baking at 110 °C for approximately 1 minute, UV exposure via a Karl-Suss MA-

6 system allowed for the creation of an array pattern on the photoresist, after which standard 

photoresist development protocols were implemented. A 2 nm layer of titanium was first deposited 

to act as an adhesion layer, after which a layer of 200 nm of gold was deposited to form wells. The 

remaining photoresist was removed from the surface with acetone. A second 2nm layer of titanium 

was deposited followed by a 48 nm layer of gold to form the sensing surface inside of the wells. 

PECVD was then used to deposit 1-3 nm of SiO2 on the microarray chips, which would later be 

treated with PFDTS. The final product was a microarray consisting of 10x10 well arrays that were 

200 nm deep and 600 µm in diameter. 

Surface Functionalization and Preparation: 

Functionalization of the chips was carried out with a similar protocol used previously.(Malinick, 

A. S. et al., 2020) The surface of the chips was submerged in 1 mM PFDTS in toluene. After 30 

minutes, the chip was removed from the solution and rinsed with toluene, ethanol, and deionized 

water and dried under nitrogen gas. Once the chips were completely dry, 1.5 µL of the 100 µg/mL 

stock solution for each ganglioside was incubated and allowed to dry in air to create four different 

working channels. An S-shaped PDMS flow cell was used to create eight working wells per 

channel where functionalization and interactions occurred under the same configuration for 

reproducibility. The first channel was left un-functionalized as an internal reference to measure 

chip to chip variation, whereas 1.5 µL of 100 µg/mL stock solutions was employed for generating 

ganglioside channels with GA1, GM1, and GT1b.  

SPRi analysis: 

SPRi measurements were conducted on a home-built setup; a detailed description of which can be 

found in previous work.(Wilkop et al., 2004)  The functionalized chips were mounted onto an 



optical stage that houses a PDMS flow cell. The array was placed in contact with an equilateral 

SF2 prism (n = 1.65) with a layer of refractive index matching fluid (Cargill Laboratories, Cedar 

Grove, NJ). A 648 nm light emitting diode (LED) was used as the light source for SPR excitation. 

Reflected images of the microarray were captured by a cooled 12-bit CCD camera (QImaging 

Retiga 1300) and data acquisition was controlled via a home built LabView program. Intensity 

data was normalized by using the intensity from the p-polarized light over the s-polarized beam 

and described as a percentage. 

Statistical analysis and Machine Learning: 

Partial least squares discrimination analysis (PLS-DA) plots were produced with MetaboAnalyst. 

Principal component analysis (PCA) was completed with the prcomp function in R and graphed 

with the ggbiplot package with an ellipse probability set to 95 % using the endpoint data. Neural 

Network (nnet) was used to analyze both the endpoint data and SPRi sensorgram data. Nnet was 

conducted using the nnet package for R and was plotted using an expanded grid in R. K nearest 

neighbor (Knn) from the caret package was used to evaluate regions of the sensorgram related to 

the antibody spiked in whole serum interaction study. The Knn model was visualized with ggbiplot 

packages. For ML 70 % of the data was used to train the models and 30 % to test. Each model had 

random iterations incorporated into them so that all of the data could be used to test the success of 

the model.  

 

RESULTS AND DISCUSSION: 

 

SPR imaging analysis of anti-gangliosides in Serum 

Microarrays offer the benefit of detecting many biomarkers simultaneously. However, reliably and 

effectively using microarrays in a clinical setting requires an in-depth understanding of 

background signals from the biological sample and the cross reactivity between the biomarkers of 

interest that could be present in the sample.(D’Agata et al., 2021; Masson, 2017) The microarray 

used in this study has a 4 x 8 arrangement with the 3D printed looped flow cell, capable of 

monitoring the presence of many biomarkers concurrently. Previously, we showed that our myelin 

sheath mimic is capable of detecting and differentiating MS specific antibodies in diluted serum 



at 100 ng/mL.(Malinick, A. S. et al., 2020) In this study, we expand the investigation and focus on 

detecting and differentiating three MS specific anti-ganglioside antibodies in whole serum at 

disease-relevant concentrations ranging from 3 to 25 ng/mL.(Ivanova and Zakharova, 2017) 

Antibodies for GT1b, GM1, and GA1 gangliosides were used as they have been associated with 

symptoms commonly observed in MS.(Ivanova and Zakharova, 2017; Kuerten et al., 2020; 

Wanleenuwat and Iwanowski, 2019) Anti-GT1b has been linked to the loss of muscle control in 

the limbs, whereas anti-GM1 and anti-GA1 are believed to play significant roles in the damage of 

myelin associated with the optic nerves, as they both have been correlated to changes in and loss 

of vision.(Hogan et al., 2013; Ivanova and Zakharova, 2017; Kappler and Hennet, 2020; 

Wanleenuwat and Iwanowski, 2019) Detection of these antibodies, as well as other anti-

ganglioside antibodies, should drastically increase the confidence and speed at which a diagnosis 

is determined when coupled with currently established MS detection methods. 

 



Figure 1. (A) Entire sensorgram for 50 ng/mL of anti-GT1b in serum on a GT1b ganglioside surface. 

(B) Average of 5 sensorgrams to depict association, steady state, and dissociation binding 

interactions for 50 ng/mL anti-GT1b (Blue), anti-GM1  (Red), anti-GA1 (Green) interacting with a 

GT1b ganglioside surface. (C) Average of all observed bulk changes caused by MS specific 

antibodies at 50 ng/mL in serum on the PFDTS functionalized ganglioside microarray. (Blue) % 

RI, AU caused by 50 ng/mL anti-GT1b on 0.1 mg/mL GT1b, GM1, and GA1 ganglioside surfaces, 

(Red) binding between 50 ng/mL anti-GM1 and 0.1 mg/mL on a GT1b, GM1, and GA1 ganglioside 

surfaces, and (Green) binding between 100 ng/mL anti-GA1 and 0.1 mg/mL GT1b, GM1, and GA1 

ganglioside surfaces. (D) Image of ganglioside microarray by the CCD camera used in the SPR 

imaging experiments. Each color indicates the functionalization of the surface PFDTS only 

(Black), GA1 ganglioside surface (Green), GM1 ganglioside surfaces (Red), and GT1b ganglioside 

surfaces (Blue).  

Figure 1 shows the SPRi results for specific anti-gangliosides antibodies under various 

conditions and the microarray image by gangliosides. The first step in the experiment was to inject 

10 % serum diluted with PBS to block the surface to account for cross reactivity and nonspecific 

binding. Different concentrations of serum dilutions were tested, but higher concentrations did not 

offer any benefits over the 10 % dilution. As shown in Figure 1 A and B, there is a large angle 

shift due to the change in refractive index units (RIU) once the spiked whole serum is introduced. 

This shift can be attributed to the high concentration of proteins and other biological components 

present in the sample.(Masson, 2017) Once the rinse cycle is initiated, the vast majority of the 

material that caused the large shift is rinsed off, leaving behind only the specific 

antibody/ganglioside interaction of interest and other materials of extremely high affinity. To 

confirm the specific interaction, we conducted cross reactivity evaluations with several antibodies 

for each concentration to determine how much of the observed shifts were due to specific 

analyte/antigen interactions, as shown in Figure 1B. The small amount of nonspecific binding can 

be attributed to the unique properties of the near super hydrophobic surface and the selectivity of 

the sialic acids (SA) present on the antigenic sensing sites of the gangliosides.(Malinick, A. S. et 

al., 2020) Figure 1C shows the bulk changes (in % RIU) of the investigated antibodies at 50 ng/mL 

with the ganglioside microarray. High cross reactivity can be observed between anti-GM1 and anti-

GA1 and their respective gangliosides, whereas there is negligible cross reactivity between anti-

GT1b and anti-GA1. This observation can be attributed to the number of SA for each 



ganglioside.(Malinick, A. S. et al., 2020) This trend was present in all of the investigated 

concentrations and can be seen in the supporting information, Figures 2S (A-I). The PFDTS 

carbohydrate chips used here appear effective in addressing large levels of nonspecific binding 

from complex media and cross reactivity between analytes, one of the major challenges of label-

free detection methods.(Masson, 2017) 

 

Figure 2. Calibration curve for the specific binding of all of the investigated antibodies in serum. 

Anti-GT1b (Blue), anti-GM1 (Red), and anti-GA1 (Green). Each data point is the average of at least 

5 wells.   

A calibration curve for anti-GT1b, anti-GM1, and anti-GA1 after background subtraction is 

shown in Figure 2. Each surface has a working range of 1 ng/mL to 100 ng/mL in undiluted serum. 

The limits of detection (LOD) using the 3σ method were calculated to be 4.5 ng/mL, 5.6 ng/mL, 

and 6.6 ng/mL for anti-GT1b, anti-GM1, and anti-GA1 respectively. Based on these calculations, 

the detection limit of the carbohydrate microarrays appears to fall within the concentration range 



of antibodies typically seen in patient serum samples,(Häusser-Kinzel and Weber, 2019; Ziemssen 

et al., 2019) demonstrating that our microarray is capable of detecting, quantifying, and 

differentiating MS biomarkers in a clinical setting. These capabilities validate that our presented  

methodology offers unique and clear benefits when compared to other recently developed 

detection methods for MS specific biomarkers, as presented in Table 1. While each of the listed 

techniques have aided in the progression towards a more reliable and/or direct method for detecting 

and monitoring MS specific biomarkers, they all lack in one or several of the key capabilities that 

our method provides. Most notably in regards to the abilities to simultaneously screen, quantify, 

and differentiate multiple biomarkers in biological samples.  

Table 1. Comparison of recent biosensors developed for the detection and monitoring of MS 

biomarkers.  

Biomarker Bioreceptor Method Amplification LOD 

Detected in 

Biological 

Sample 

Reference 

anti-GT1b 

 

anti-GM1 

 

anti-GA1 

GT1b ganglioside 

 

GM1 ganglioside 

 

GA1 ganglioside 

SPRi No 

4.5 ng/mL or 30 

pM 

 

5.6 ng/mL or 37 

pM 

 

6.6 ng/mL or 44 

pM 

Yes 

whole serum 
This work 

anti-GT1b 

 

anti-GM1 

 

anti-GA1 

GT1b ganglioside 

 

GM1 ganglioside 

 

GA1 ganglioside 

SPRi No 

2.34 ng/mL or 16 

pM 

 

100 ng/mL or 0.7 

nM 

 

Only tested 100 

ng/mL or 0.7 nM 

Yes 

10 % serum 

(Malinick, 

Alexander S. et 

al., 2020) 

miR-17 DNA probe Localized SPR Yes 1 pM 
No 

PBS 

(Miti et al., 

2020) 

miR-422 

 

miR-223 

 

miR-216 

 

miR-23A 

DNA probe SPRi Yes 

0.55 pM 

 

0.88 pM 

 

1.19 pM 

 

1.79 pM 

No 

PBS 

(Sguassero et al., 

2019) 

miR-145 

DNA probe and 

fluorescent silver 

nanocluster 

Fluorescence 

spectrophotomet

er 

Yes 0.1 nM 
Yes 

50 % serum 

(Mansourian et 

al., 2017) 



Unidentified 

antibodies 

present in 

purified MS 

patient serum 

samples 

Synthetic 

glycopeptide 

CSF114(Glc) 

with ferrocenyl 

moiety 

Cyclic and 

square wave 

voltammetry 

Yes 

Indirectly by 

excess free 

glycopeptide Fc-

CSF114(Glc) 

present in 

solution 

Not determined 

only reported a 

difference 

between healthy 

and sick samples 

Yes 

Purified patient 

serum samples of 

0.04 to 4 ug/mL 

(Bellagha-

Chenchah et al., 

2015) 

Unidentified 

antibodies 

present in patient 

serum samples 

Synthetic 

glycopeptide 

CSF114(Glc) 

SPR No 

Not reported 

only compared 

response 

between healthy 

and sick samples 

Yes 

1 % and 2 % 

serum 

(Real-Fernández 

et al., 2012) 

While the developed method has met the technical requirements for the routine use of blood 

tests for the evaluation of MS biomarkers in patient samples and even may streamline the 

diagnostic procedure, the observed cross reactivity suggested simple quantification by binding 

signals may be an oversimplified approach and could ignore potential interferences to the observed 

results, as is the case for the studies shown in Table 1. Therefore, an accurate detection and 

effective differentiation between analyte/antigen interactions would require in-depth statistical 

analysis.  

 

Cross reactivity and statistical analysis 

Robust statistical analysis was performed to analyze and characterize data from both SPRi 

sensorgrams and endpoint results. The endpoint data is the observed change in RIU of the analyte-

antigen interactions after accounting for observed cross reactivity between the other biomarkers 

and nonspecific binding from serum. The calibration curves seen in Figure 2 are generated using 

the collected end point data. Further analysis was conducted using principal component analysis 

(PCA) and partial least squares discriminant analysis (PLS-DA), in order to characterize the data 

to reveal impact by specific, nonspecific, and cross reactivity interactions, yielding more thorough 

evaluation on antibody/ganglioside interactions than what traditional endpoint assay studies are 

capable of. The use of these statistical analyses gives a good assessment of the effectiveness of the 

ganglioside microarray’s ability to screen MS biomarkers. 



 

Figure 3. (A) 3D bar graph showing % RI, AU of all three antibodies interacting with the 

ganglioside microarray at 25 ng/mL in serum. Anti-GT1b interactions (Blue), anti-GM1 interactions 

in (Red), and anti-GA1 interactions in (Green). (B) Principal component analysis (PCA) showing 

the ability to separate the three anti-ganglioside antibodies based on their induced response across 

the whole microarray at 25 ng/mL. (C) PCA of all antibody/ganglioside interactions at each 

concentration showing overlap of anti-GT1b beginning at 10 ng/mL and at 25 ng/mL for both anti-

GM1 and anti-GA1.  

Principal component analysis was first carried out with the endpoint data for each antibody 

interacting with three different ganglioside surfaces individually and as an entire data set. PCA, an 

unsupervised statistical model with a clustering statistical algorithm that looks for linear patterns 

in complex data sets,(Giuliani, 2017),(Wetzel, 2017) showed that at higher concentrations it could 

easily determine the specific antibody/ganglioside interactions, but was less effective in 

differentiating interactions at concentrations below 10 ng/mL for anti-GT1b and below 25 ng/mL 

for anti-GM1 and anti-GA1. The different number of SAs on the ganglioside antigens may explain 

why anti-GT1b antibodies could still be differentiated at 10 ng/mL, as anti-GT1b specifically targets 

three SAs whereas anti-GM1 and anti-GA1 target antigenic site with one and zero SA, 

respectively.(Koga et al., 2001) Figure 3 shows that when all concentrations are plotted, there is a 

significant overlap between the antibodies at concentrations below 10 ng/mL, but at 25 ng/mL 

only overlap is between anti-GM1 and anti-GA1. This agrees well with our previous observation 

in 10 % serum where the majority of cross reactivity occurred between anti-GT1b and anti-GM1 or 

anti-GM1 and anti-GA1 but little between anti-GT1b and anti-GA1.(Malinick, A. S. et al., 2020) It 

is apparent that PCA had difficulty differentiating the antibodies at concentrations below 10 ng/mL 

as the measurements themselves started to show uncertainty (LODs determined around 7 ng/mL). 



 

Figure 4. (A) Average of sensorgrams for binding associated regions between 50 ng/mL of the 

three investigated antibodies with a GT1b ganglioside functionalized PFDTS surface. Anti-GT1b 

interactions (Blue), anti-GM1 interactions in (Red), and anti-GA1 interactions in (Green). (B) 

Sample of Partial Least Squares Discriminant Analysis (PLS-DA) for all three antibodies at 50 

ng/mL on a GT1b ganglioside surface. (C) Average association, steady state, and dissociation 

regions for anti-GT1b interacting with the 3 different functionalized ganglioside PFDTS surfaces. 

(Blue) GT1b ganglioside surface, (Red) GM1 ganglioside surface, and (Green) GA1 ganglioside 

surface. (D) Sample of PLS-DA analysis of anti-GT1b at 10 ng/mL classification based upon 

interactions with (Blue) GT1b ganglioside surface, (Red) GM1 ganglioside surface, and (Green) 

GA1 ganglioside surface. 

The PCA analysis with endpoint data provides a good glimpse of the interaction properties 

between antibodies and gangliosides, but the results are limited. Further characterization of this 



complex property was carried out with kinetic interaction data from the SPRi sensorgrams. To 

achieve this, we utilized PLS-DA to analyze the regions associated with binding kinetics in the 

sensorgrams related to the antibody ganglioside interactions. PLS-DA is a supervised or 

classification based statistical method that looks for trends in the whole data set and makes a 

prediction based upon these trends to determine the relationship that one data set has to 

another.(Lee et al., 2018) We performed PLS-DA on the sensorgrams for 50 ng/mL of the three 

MS specific antibodies in serum interacting with a GT1b ganglioside surface (Figure 4A) and for 

10 ng/mL of anti-GT1b on the 3 different ganglioside surfaces (Figure 4C). Figure 4B shows 

minimal overlap between anti-GT1b and anti-GM1 and between anti-GM1 and anti-GA1, but none 

between anti-GT1b and anti-GA1. The interactions observed between the three antibodies and the 

ganglioside surface can be attributed to anti-GA1 not targeting SAs whereas both anti-GT1b and 

anti-GM1 do. In Figure 4D it is clear that 10 ng/mL anti-GT1b specifically binds to the GT1b 

ganglioside surface and there is only minor overlap between GM1 and GA1, while the majority of 

binding occurs to GT1b and GM1 ganglioside surfaces. There is no observable overlap between 

anti-GT1b interactions with a GA1 ganglioside surface, indicating that anti-GT1b  specifically targets 

the SA on the carbohydrates head group. PLS-DA using the kinetic interaction data appears to 

differentiate antibodies and ganglioside interactions more effectively than PCA did.  

The promising results with PLS-DA and PCA prompted us to explore the data sets further 

to understand the cross reactivity between the biomarkers. Although these statistical methods are 

effective to reveal cross reactivity, they are limited in that only one data set was compared to 

another, rather than finding patterns hidden in the endpoint data, sensorgrams, and binding kinetics 

to predict the type of interactions that are occurring. Therefore, further statistical analysis with 

machine learning (ML) was performed to evaluate the SPRi raw data.  

 

Neural Networks and k Nearest Neighbor Algorithms 

ML has become increasingly relevant and present in various aspects of scientific 

investigation and society as a whole.(Das et al., 2015a) It appears to be only a matter of time before 

ML algorithms are used routinely in disease diagnostics due to its ability to handle large and 

complex data sets.(Cui et al., 2020) In this study we trained and tested a neural network (nnet) and 



a k-nearest neighbor (knn) model using endpoint data for both specific and cross reactive 

interactions. In addition, we performed these analyses using data from the sensorgrams that are 

linked to association, steady state, and dissociation energies of the analyte/antigen interactions 

based upon the changes in time and RIU values, which gave us access to over 65,000 data points 

per sensorgram. By training and testing these models with the collected data, we can evaluate the 

effectiveness of the algorithms and the functionalized substrates for detecting and differentiating 

between antibody ganglioside interactions in a pseudo clinical setting. It will allow us to determine 

if the combination of ML to label-free sensing methodology could facilitate the general high 

throughput screening of antibodies/markers, which may drastically improve disease diagnosis and 

the monitoring of their progression.  

Nnets are essentially a virtual nervous system,(Cui et al., 2020) making it an ideal ML 

model to use in the detection and evaluation of MS. Nnets are composed of three layers: an input, 

hidden, and output layer.(Volk et al., 2020) A visualization of the nnet used in our study is shown 

in Scheme 1C. The input layer consists of data that the user feeds into the model to train and test 

the success rate of the algorithm;(Shahid et al., 2019) for our study, our input layers included the 

time, RIU, endpoint data, and concentration depending on how we were analyzing the data. The 

hidden layer is the intermittent computations that occur to define patterns and investigate the data 

so that the algorithm can make predictions.(Cui et al., 2020) The output layer allows the user to 

interpret the results generated by the model, which can either be used for classification, as for the 

endpoint data, or a prediction, which was done for the sensorgram data.(Shahid et al., 2019) Nnets 

have the ability to learn by themselves and produce outputs that are not limited to the inputs 

originally provided to them, making them ideal for aiding in the detection and monitoring of 

diseases where biomarkers in one patient can vary drastically to those in another patient. 

Nevertheless, these new outputs would need to be verified before being included in the diagnosis 

criteria. 

The second model used in our work was kNN. kNN is a non-parametric classification 

model that works by analyzing and comparing a single data point to the entirety of the data series 

before moving to the next data point in the series; this allows for the detection and monitoring of 

unique trends that other ML algorithms might overlook.(Peterson, 2009) In brief, the algorithm 

attempts to predict the correct class of the test data by calculating and identifying trends among a 



few data points (referred to as neighbors) and defines trends amongst the entire data series or the 

entire neighborhood.(Cui et al., 2020) The model then compares the observed trends in the test 

data between individual data points, groups of data points, and the entire data series to trends 

observed in the training set.(Shahid et al., 2019) Unlike the nnet, all potential analyte/antigen 

interactions would need to be predefined for the model to accurately identify, differentiate, and 

predict between healthy and sick patient samples as well as which analyte/antigen interactions 

were most likely occurring. Given the way that the kNN algorithm operates, we were only able to 

reliably utilize it on the SPRi sensorgram data. 

To train and determine the accuracy of the algorithms for various data sets, we 

implemented multiple random iterations by randomly selecting 70 % of the collected data to be 

used as a training set and the other 30 % to test the iteration of the model.(Shahid et al., 2019; Uçar 

et al., 2020; Volk et al., 2020) This allowed us to use all of the collected data to train and test the 

model, resulting in a more reliable algorithm than what only a portion of the data would 

achieve.(Shahid et al., 2019; Uçar et al., 2020) While increasing the percentage and number of 

training sets would undoubtedly improve the chance of the models to achieve the goal, it also 

carries the risk of over fitting,(Shahid et al., 2019) which is a major concern and also the reason 

why random iterations were utilized in this work.(Ying, 2019) The accuracies for the ML 

algorithms discussed here are the average of all potential random iterations conducted in the 

current study. 

There are a few limitations to consider when using ML algorithms for this type of data 

analysis. One must account for all potential cross reactive interactions and nonspecific binding for 

the model to be considered truly reliable.(Volk et al., 2020) When potential interactions are not 

taken into account or considered during the training period, it is very likely that false positive and 

negative results will occur.(Cui et al., 2020) Nevertheless, with a model properly set-up and 

running, training can be completed relatively quickly as long as the data is reliable and 

reproducible.(Peiffer-Smadja et al., 2020)  

 

Neural Network Data Analysis  



 

Figure 5.  Receiver operating characteristic curve (ROC) for the analysis of the endpoint data 

containing all antibody/ganglioside interaction with a neural network (nnet). Below the ROC curve 

is a representative confusion matrix of the nnet testing data sets using random iterations, to evaluate 

the accuracy of the model to identify the specific analyte antigen interactions of interest.  

Figure 5 shows a receiver operating curve (ROC) for the endpoint data for all 

antibody/ganglioside interactions at each studied concentration, which constitutes a total of 225 

observations each of which contain the baseline, incubation, and post rinse cycles present in each 

sensorgram. An ROC depicts the reliability of the algorithm to correctly classify models at all 

classification thresholds based upon whether the model correctly or incorrectly identified which 

antibody/ganglioside interactions were observed.(Tong et al., 2018) Our ROC curve indicates that 



the model has an overall accuracy of 94 %. The table shown below the ROC curve is the average 

of all possible random iterations that could occur, showing how accurately the model can identify 

for the antibody/ganglioside interactions occurring in serum. If the model was trained with all 

possible biomarkers associated with a disease, it could reliably differentiate and identify them 

based upon their specific, nonspecific, and cross reactive interactions, which would drastically 

improve the reliability of end point assays. We have applied the nnet to the endpoint data, which 

focused on using concentration and specific RIU results. In addition, we applied further analysis 

with the sensorgram data using both the nnet and kNN models.  

The nnet modeling based on the sensorgram data was focused on three antibodies at 50 

ng/mL in whole serum on a GT1b ganglioside surface and anti-GT1b at 10 ng/mL in serum. This 

dataset was selected with the consideration that GT1b has the most SA groups of the three 

investigated gangliosides and has known cross reactivity with anti-GM1 and little with anti-GA1. 

Anti-GT1b at 10 ng/mL was selected as anti-GT1b had the lowest LOD (4.5 ng/mL) and LOQ (15 

ng/mL) of the three investigated antibodies in whole serum and has notable cross reactivity with 

the GM1 ganglioside surface and none with a GA1 ganglioside surface as shown previously with 

our statistical analysis. 

 



Figure 6. (A) nnet of the sensorgram for (Blue) 50 ng/mL anti-GT1b on a GT1b ganglioside surface, 

(Green) 50 ng/mL anti-GM1 on a GT1b ganglioside surface, and (Red) 50 ng/mL anti-GA1 on a 

GT1b ganglioside surface. (B) nnet for 10 ng/mL anti-GT1b with (Blue) a GT1b ganglioside surface, 

(Green) GM1 ganglioside surface, and (Red) a GA1 ganglioside surface. (C) K nearest neighbor 

model (kNN) depicting the binding interactions between (Red) 50 ng/mL anti-GA1 on a GT1b 

ganglioside surface, (Green) 50 ng/mL anti-GM1 on a GT1b ganglioside surface, and (Blue) 50 

ng/mL anti-GT1b on a GT1b ganglioside surface. (D) KNN of 10 ng/mL anti-GT1b interacting with 

a (Blue) GT1b ganglioside surface, a (Green) GM1 ganglioside surface, and a (Red) GA1 

ganglioside surface.  

 

Figures 6A and 6B show the nnet plots based on the location of individual time points and 

their relation to specific RIU values. This is visualized as an expanded grid, depicting specific 

prediction regions based upon observed trends in the sensorgrams shape as well as steady state and 

kinetic information. A confusion matrix is shown below each expanded grid depicting the model’s 

ability to classify which antibody/ganglioside interactions are occurring. As shown in Figures 6A 

and 6B, there are clearly three distinct predictive regions based upon the location of these time 

points and their relation to RIU values. In Figure 6A, there is a noticeable overlap between anti-

GT1b and anti-GM1, as well as between anti-GM1 and anti-GA1, but no overlap between anti-GT1b 

and anti-GA1. In Figure 6B, a similar trend is observed, but the region of identification for 10 

ng/mL anti-GT1b interacting with a GM1 ganglioside surface is very small compared to the 

dominate regions, which are the anti-GT1b on a GT1b ganglioside surface and anti-GT1b on a GA1 

ganglioside surface. This indicates that the algorithm is able to differentiate between one antibody 

and three ganglioside surfaces more effectively than three antibodies and one surface. Using the 

sensorgram data for the three antibodies at 50 ng/mL on a GT1b surface, the model has an accuracy 

of 83%; and for 10 ng/mL anti-GT1b interacting with three different ganglioside surfaces has an 

accuracy of 88%. Both accuracies are lower than those of the nnet endpoint data analysis, which 

can be attributed to the fact that this data set has a much more complex features due to inclusion 

of association, steady state, and dissociation patterns.  

 

K-Nearest Neighbor Data Analysis  



The kNN algorithm was applied to the same sensorgram dataset with the same training to 

test ratio of 70 to 30 %. As seen in Figures 6C and 6D, the most likely paths to occur based upon 

the specific analyte/antigen interactions from the training datasets are the solid lines. The colored 

individual data points that surround the predicted paths are the cluster regions where specific 

analyte/antigen interactions are most likely to occur. Notable confusion can be observed in both 

Figures 6C and 6D in relation to the model’s clustering analysis capabilities in regards to regions 

related to association and dissociation interactions. However, in regions related to the steady state 

and post rinse cycles, the algorithm is highly successful. Even with these regions of high confusion, 

the model produced high accuracy rates above 90 %. Specifically, we obtained 94 % accuracy for 

50 ng/mL of three antibodies on a GT1b ganglioside surface and 96 % for 10 ng/mL anti-GT1b 

interacting with three different ganglioside surfaces. The higher accuracy for differentiating 

between ganglioside surfaces instead of antibodies agrees well with the findings of the nnet and 

PLS-DA, as discussed previously.  

The high accuracy observed for the kNN model in comparison to the nnet algorithm can 

be attributed to the different approach by which the algorithms analyze the data series.(Peterson, 

2009; Shahid et al., 2019) Both algorithms identify that there is a higher probability of 

experiencing confusion between anti-GM1  with the other two antibodies due to higher cross 

reactivity. In addition, they agree on no confusion between anti-GT1b and anti-GA1. Both models 

also show that differentiating between one antibody and three ganglioside surfaces is much more 

reliable than differentiating between three antibodies and one ganglioside surface. These findings 

agree well with the statistical analysis previously discussed to characterize the microarrays ability 

to differentiate between analyte/antigen interactions. It also shows that these models are capable 

of identifying an antibody that is interacting specifically with a ganglioside surface based upon 

endpoint data, association, steady state, and dissociation kinetics.  

Using the sensorgram dataset in combination with the endpoint data appears to be more 

effective than relying on either one separately for disease biomarker characterization. The 

combination allows for a more comprehensive review of the observed interactions, and also for 

faster identification of abnormalities that individual ML algorithms may miss. This is critical to 

the analysis of patient samples, where there is a high likelihood that unforeseen interactions could 

have occurred that were not accounted for in the training series, such as those from patient’s 

therapeutics/drugs and other disease biomarkers that are not affiliated with MS.(Peiffer-Smadja et 



al., 2020) Relying on endpoint data alone may cause higher than expected false positive or negative 

results due to these unaccounted interactions. We demonstrated that utilizing binding kinetic 

interactions with the endpoint data, the unaccounted interactions could be more easily identified 

and then corrected by the models. The findings of this study have the potential to drastically 

improve label free detection methods as well as the reliability of screening many biomarkers 

simultaneously. 

 

Conclusion 

In this work, we have shown that SPRi microarray biochips in combination with robust 

statistical algorithms are capable of detecting, identifying, and differentiating antibody/ganglioside 

interactions in whole serum samples. The work addressed a major concern of using antibodies for 

the diagnosis of MS in a clinical setting, which is the high individual heterogeneity in patients and 

the widely varied concentration range. We demonstrated that developing a detection scheme 

allowing a range of antibodies measured with multiplexed capability, under identical assay 

conditions, and being able to account for cross reactivity and nonspecific interactions is critical. 

Using the PFDTS surface, the microarray can be easily extended to include more antigens desired, 

and the hydrophobic regions will minimize the interferes from the background proteins. This is 

ideal for glycolipids and sphingomyelins, which are the major components of the myelin sheath. 

All three targeted antibodies were detectable and quantifiable within biologically relevant 

concentrations between 3 ng/mL to 25 ng/mL. The statistical analysis and machine learning 

algorithms implemented in this study allowed for the observation and evaluation of unique trends 

and features between the antibodies and antigens, which allowed us to conduct a more intense 

evaluation and gain a broader understanding than what traditional assays can achieve. The method 

demonstrated here may improve patient-specific evaluation of MS biomarkers, and find use in 

helping understand the disease progression. As can be seen from these results, robust data analysis 

protocols are integral for future disease detection studies based on the complexity of biological 

interactions. 
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