# HARMONIC BRANCHED COVERINGS AND UNIFORMIZATION OF CAT(k) SPHERES

#### CHRISTINE BREINER AND CHIKAKO MESE

ABSTRACT. Let S be a surface with a metric d satisfying an upper curvature bound in the sense of Alexandrov (i.e. via triangle comparison). We show that an almost conformal harmonic map from a surface into (S,d) is a branched covering. As a consequence, if (S,d) is homeomorphically equivalent to the 2-sphere  $\mathbb{S}^2$ , then it is conformally equivalent to  $\mathbb{S}^2$ . MSC 58E20, 30F10

### 1. Introduction

The uniformization theorem for Riemann surfaces was one of the landmark achievements in the mathematics of the 19th and early 20th centuries. Due to Koebe and Poincaré, and building on prior works of Gauss, Abel, Jacobi, Riemann, Weierstrass, Clebsch, Fuchs, Schwarz, Klein, Fricke, Hilbert and Osgood among others, the theorem asserts that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The result and its various proofs have had a major impact on several fields of mathematics, including complex analysis, geometry, combinatorial group theory and topology. In geometry for instance, the uniformization theorem implies that every smooth Riemannian metric g0 of constant Gaussian curvature; i.e. there exists a diffeomorphism g0 of constant Gaussian curvature; i.e. there exists a diffeomorphism g1 of g2 and a positive function g3 such that the pullback g3 of g4 via g5 and a satisfies g5.

In the past few decades, there has been a growing interest in non-smooth spaces and in their corresponding analysis. From this perspective, it is natural to examine the uniformization of non-smooth geometry and, in particular, ask when a geometric space is conformally equivalent to a Riemannian metric of constant Gaussian curvature. An example of a result of this type can be deduced from a classical result of Ahlfors-Bers [1] and Morrey [34]. Indeed, the Bounded Measurable Riemann Mapping Theorem, which generalizes the uniformization theorem, implies the following: If g is a bounded measurable Riemannian metric on the 2-sphere  $\mathbb{S}^2$ , then there exists a quasiconformal map  $u: \mathbb{S}^2 \to (\mathbb{S}^2, g)$  from the standard 2-sphere that is conformal almost everywhere and unique up to composition with a Möbius transformation. Here, by the standard 2-sphere, we mean the topological sphere  $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$  endowed with the metric  $g_{\mathbb{S}^2}$  inherited from the embedding  $\mathbb{S}^2 \to \mathbb{R}^3$ . To the extent of our knowledge, Y. Reshetnyak [36] was the first to address the question of conformal parameterization of metric spaces. The method employed in [36] is to take an approximation of a singular surface by piecewise linear surfaces and the

Date: March 18, 2021.

CB supported in part by NSF DMS-1609198 and NSF DMS CAREER-1750254, CM supported in part by NSF DMS-2005406.

local approach there differs from the global approach taken up here using harmonic maps. The local conformal parameterization problem for metric spaces was further studied by the second author in [30] and [31] via a harmonic maps approach. A current active area of study is the quasiconformal equivalency of the sphere, i.e. the question of when a metric space which is topologically equivalent to a sphere is quasiconformally equivalent to the Riemann sphere (e.g. [3], [29], [35]). We also add that the harmonic maps approach with an applied mathematics bent has been studied by several authors. For more detail on the work in this area, we refer to the survey paper of X. Gu, F. Luo and S. T. Yau [18] and the references therein.

In this paper, we take a different approach to the uniformization problem than the ones taken in the aforementioned work. Our focus is on the branched covering and uniformization of surfaces endowed with a distance function satisfying an upper curvature bound given in terms of the  $CAT(\kappa)$  inequality. This means that sufficiently small geodesic triangles are "skinnier" than a corresponding comparison triangle in a Riemannian surface of constant Gaussian curvature  $\kappa$ . In particular, our construction of a conformal map relies on the following: (i) The generalization of the Sacks-Uhlenbeck bubbling by the authors and their collaborators [5], namely the existence of a harmonic map from a compact surface to a  $CAT(\kappa)$  space, and (ii) A careful local analysis of the harmonic map when the domain and the target spaces are both (topologically) the 2-sphere. The analysis in (ii) allows us to conclude that the harmonic map from (i) is in fact a branched cover. We construct a 1-quasiconformal map by taking a quotient of this branched cover.

In order to elaborate on the existence statement of item (i), we recall the following deep theorem of Sacks and Uhlenbeck [40]: Given a finite energy map from a Riemann surface into a compact Riemannian manifold, either there exists a harmonic map homotopic to the given map or there exists a branched minimal immersion of the 2-sphere. The existence theory of harmonic maps when the target space has non-positive curvature has been widely addressed. However, the existence without the upper curvature bound of 0 is much more complicated, and this result of Sacks-Uhlenbeck was a breakthrough in the field. Indeed, their study of the "bubbling phenomena," that either a minimizing sequence of maps converges to a harmonic map or forms a "bubble" (i.e. a harmonic map from a sphere) has been a widely influential idea in geometric analysis. The authors of the current article and their collaborators generalized the Sacks-Uhlenbeck theorem in the metric space setting and proved the following [5]:

**Theorem.** If  $\Sigma$  is a compact Riemann surface, (X,d) is a compact locally  $CAT(\kappa)$  space, and  $\varphi: \Sigma \to (X,d)$  is a continuous finite energy map, then either there exists a harmonic map  $u: \Sigma \to (X,d)$  homotopic to  $\varphi$  or an almost conformal harmonic map  $v: \mathbb{S}^2 \to (X,d)$ .

On the one hand, by applying the above theorem with  $\Sigma = \mathbb{S}^2$ , either of the alternatives yields a harmonic map from the standard 2-sphere. On the other hand, proving uniformization requires the existence of a harmonic homeomorphism and, even when the initial map  $\varphi$  is a homeomorphism, it is unclear that the second alternative in the theorem yields a degree 1 map. Thus, further analysis of this harmonic map is needed. Note that the first author

<sup>&</sup>lt;sup>1</sup>Although not explicitly stated in his work with S. Wenger, A. Lytchak [28] has explained to us how 1-quasiconformality of the quasiconformal map can be shown for spaces "which do not contain infinitesimal non-Euclidean norms."

and S. Lakzian [6] completed the full bubble tree picture for harmonic maps into compact locally  $CAT(\kappa)$  spaces, but this compactness result also fails to guarantee the existence of a homeomorphism.

The second ingredient (i.e. item (ii)), the analysis of the local behavior of harmonic maps through its tangent maps, is the main technical accomplishment of this paper. The use of the tangent map as a tool in the analysis of harmonic maps in the singular setting was initiated in the seminal work of Gromov and Schoen [17] and also developed for example in [8], [9], [10], [11], [12], [13], [4]. We advance this idea further in the setting of  $CAT(\kappa)$  surfaces. Using tangent maps, we define a notion of a non-degenerate harmonic map in this setting of singular surfaces, generalizing harmonic diffeomorphisms between smooth surfaces. We prove that a non-degenerate harmonic map is well-behaved locally and thus defines a branched covering.

**Theorem 1.1.** A proper, non-degenerate harmonic map from a Riemann surface to an oriented locally  $CAT(\kappa)$  surface is a branched cover; i.e. the map is a covering map away from a discrete subset of the Riemann surface. If the map is degree 1, then the map is a homeomorphism.

Specializing to the case when the domain is the standard sphere, we obtain the following:

**Theorem 1.2.** A non-trivial harmonic map from the standard sphere  $\mathbb{S}^2$  to a locally  $CAT(\kappa)$  sphere is an almost conformal branched cover. If the map is degree 1, then it is a conformal (i.e. 1-quasiconformal) homeomorphism with conformal inverse.

Applying Theorem 1.2, we obtain a uniformization theorem. That is, if the  $CAT(\kappa)$  space is homeomorphic to a sphere then it is conformally equivalent to the standard sphere  $\mathbb{S}^2$ .

**Theorem 1.3.** If (S,d) is a locally  $CAT(\kappa)$  sphere, then there exists a conformal (i.e. 1-quasiconformal) harmonic homeomorphism  $h: \mathbb{S}^2 \to (S,d)$  from the standard sphere, with  $h^{-1}$  also conformal, which is unique up to composition with a Möbius transformation. Moreover, h is almost conformal and the energy of the map is twice the Hausdorff 2-dimensional measure of (S,d).

The notion of conformality (a.k.a. 1-quasiconformality) is in the metric space sense and captures the property that infinitesimal circles are transformed to infinitesimal circles (cf. Definition 4.9). Our theorem asserts more than conformal equivalence of the two spaces. Indeed, Theorem 1.3 asserts that the conformal equivalence is achieved by an almost conformal harmonic map. The notion of an almost conformal map captures the geometric property that the pullback metric of h is conformally equivalent to a Riemannian metric of constant curvature (cf. Definition 2.13).

#### Main ideas and Outline of the paper:

The paper is roughly divided into two parts:

- Part I: Local analysis and branched covering results (Sections 2-4)
- Part II: Existence and uniqueness results (Section 5)

PART I. The proof of Theorem 1.1 relies on the analysis of the local behavior of harmonic maps. The main tool for this is the Alexandrov tangent maps associated to a harmonic map

whose usefulness is due to the fact that they map into tangent cones of the target  $CAT(\kappa)$  space. (This is in analogy to the differentials of a smooth map between Riemannian manifolds which map into tangent spaces.) In comparison, a (non-Alexandrov) tangent map of a harmonic map into an arbitrary  $CAT(\kappa)$  space maps into an abstract metric space that is not necessarily a tangent cone, as indicated in [26, Section 3]. Generally speaking, an Alexandrov tangent map is not necessarily harmonic. Consider the following example.

Example. First, let  $(\mathbf{H}, g_{\mathbf{H}})$  be the smooth Riemannian surface given by

$$\mathbf{H} = \{(x, y) \in \mathbb{R}^2 : y > 0\}, \ g_{\mathbf{H}} = dy^2 + y^6 dx^2.$$

(It is instructive to think of this surface as the covering space of a cusp minus the cusp point, or more precisely, as a covering space of a surface of revolution in  $\mathbb{R}^3$  of the planar curve  $y=x^{\frac{1}{3}}$  minus the origin.) Next, let  $\overline{\mathbf{H}}$  be the metric completion of  $\mathbf{H}$  constructed by adding the boundary line  $\{y=0\}$  and identifying this line as a single point  $P_0$ . This is a CAT(0) space (and an important object in the study of Teichmüller space, cf. [12] and references therein). A vertical line  $\{x=c\}$  for a fixed constant  $c \in \mathbb{R}$  is a geodesic emanating from  $P_0$  and the angle between any two such geodesics at  $P_0$  is equal to 0. Thus, the space of directions at  $P_0$  (i.e. the equivalence class of geodesics where two geodesics are equivalent if and only if the angle between them is 0) has only one element. This implies that the tangent cone  $T_{P_0}\overline{\mathbf{H}}$  (i.e. a metric cone over the space of directions) is isometric to the interval  $[0, \infty)$ , and an Alexandrov tangent map of harmonic map u into  $\overline{\mathbf{H}}$  at a point in  $u^{-1}(P_0)$  can be viewed as a function mapping into the interval  $[0, \infty)$ . This Alexandrov tangent map cannot be a harmonic because otherwise it would violate the minimum principle for harmonic functions by having 0 in its range.

The situation for a harmonic map into a  $CAT(\kappa)$  surface is different than the above example since any tangent cone is a metric cone over a closed curve and does not allow for pathological tangent cones as in the example above (cf. Proposition 2.5). Indeed, we show that the Alexandrov tangent maps of a harmonic map into a  $CAT(\kappa)$  surface are harmonic (cf. Theorem 3.7). Thus, we can characterize Alexandrov tangent maps using the classification of homogeneous harmonic maps into a conical surface (cf. Kuwert [27]). From this, we deduce that non-degenerate harmonic maps are discrete and open. Thus, it follows by Väisälä's classical result that proper, non-degenerate harmonic maps (which include proper, almost conformal harmonic maps) are local homeomorphisms away from a set of topological dimensional zero, the branch set. We further improve this result and prove that the branch set is discrete by an application of the order function and using the structure of Alexandrov tangent maps. Consequently, we conclude that proper, non-degenerate harmonic maps are branched coverings. The following is an outline of PART I:

- §2 Preliminaries. We recall the definitions of  $CAT(\kappa)$  spaces and tangent cones. Furthermore, we recall the Korevaar-Schoen Sobolev spaces into metric spaces, including the notions of harmonic maps, pullback metrics and almost conformal maps, and explore the relationship of the Korevaar-Schoen energy density functions, metric differential and the Jacobian.
- §3 Tangent maps from [9]. We recall the notion of tangent maps from [17] and Alexandrov tangent maps from [9]. The main goal is to prove Theorem 3.7, which asserts that

- an Alexandrov tangent map associated to a harmonic map into a compact  $CAT(\kappa)$  space with the geodesic extendability condition is a homogeneous harmonic map. Note that a  $CAT(\kappa)$  surface satisfies the geodesic extendability condition.
- §4 Non-degenerate harmonic maps. This section contains the technical results needed to show that proper, non-degenerate harmonic maps are in fact branched covers. It also contains the proofs of Theorem 1.1 (end of Section 4.1) and Theorem 1.2 (end of Section 4.2).

First, we define the notion of non-degenerate harmonic maps between surfaces and show that such maps are discrete (cf. Lemma 4.3) and open (cf. Proposition 4.5). By further analysis, we demonstrate that the branch set is discrete and every such map is a branched cover (cf. Theorem 4.7). In Proposition 4.11, we relate the stretch constant of an Alexandrov tangent map to the quasiconformal constant of the harmonic maps. Finally, we show that every almost conformal harmonic map is non-degenerate (cf. Lemma 4.12).

PART II. We apply the results of Part I to find a harmonic conformal parameterization of a locally  $CAT(\kappa)$  sphere  $(\mathbb{S}^2,d)$ . We start by using the curvature assumption to construct a finite energy map. We then employ Corollary 2.19, i.e. the generalization of the Sacks-Uhlenbeck "bubbling", asserting the existence of a harmonic map  $u: \mathbb{S}^2 \to (\mathbb{S}^2,d)$ . Although u may not be a homeomorphism (it may not be a degree 1 map), Theorem 1.2 tells us that it is a conformal branched covering. The map u thus defines a complex structure on  $\mathbb{S}^2$  and a map (which we call id since it is essentially the identity map) from the quotient space defined by the branched cover. We study the relationship between the energy of an almost conformal homeomorphism and the area of its image to show that all such maps satisfy the expected area and energy equality and moreover are locally energy minimizing. Thus, id is, at least away from the branch points of u, an almost conformal harmonic homeomorphism. Applying the removable singularities theorem of [5], we demonstrate that id extends to an almost conformal harmonic homeomorphism on all of  $\mathbb{S}^2$ . The 1-quasiconformality follows from Theorem 1.2. Finally, we prove that the map is unique up to a Möbius transformation. The following is an outline of Part II.

# §5 Proof of Theorem 1.3.

- §5.1 We prove the uniqueness statement in Proposition 5.7: If a conformal harmonic homeomorphism exists, then it is unique up to a Möbius transformation of  $\mathbb{S}^2$ .
- §5.2 We explore the relationship between energy of a map and area of its image. In particular, for monotone maps into a  $CAT(\kappa)$  surface, being almost conformal is equivalent to energy being equal to twice the 2-dimensional Hausdorff measure of the image (cf. Lemma 5.9).
- §5.3 We complete the proof of Theorem 1.3 by first proving the existence of a finite energy map and then appealing to Corollary 2.19 and Theorem 1.2 to find an almost conformal harmonic branched cover. From there the proof follows as outlined above.

ACKNOWLEDGEMENTS: The authors would like to thank A. Lytchak and M. Romney for their interest in this work and useful conversations.

## 2. Preliminaries

2.1.  $CAT(\kappa)$  space. We review the notion of a  $CAT(\kappa)$  space. Intuitively, triangles in a  $CAT(\kappa)$  space are "slimmer" than corresponding "model triangles" in a standard space of constant curvature  $\kappa$ . These spaces generalize Riemannian manifolds of sectional curvature bounded from above by  $\kappa$ .

Let  $\kappa > 0$ . A metric space (X,d) is called a  $\frac{\pi}{\sqrt{\kappa}}$ -geodesic space if for each  $P,Q \in X$  such that  $d(P,Q) < \frac{\pi}{\sqrt{\kappa}}$ , there exists a curve  $\gamma_{PQ}$  such that the length of  $\gamma_{PQ}$  is exactly d(P,Q). We call  $\gamma_{PQ}$  a geodesic between P and Q. We denote the geodesic ball of radius r > 0 centered at  $P \in X$  by  $\mathcal{B}_r^X(P)$  (or  $\mathcal{B}_r^{(X,d)}(P)$  whenever more than one distance function is defined on X). We may drop the superscript X when the context is clear. Given a  $\frac{\pi}{\sqrt{\kappa}}$ -geodesic space (X,d), a geodesic  $\gamma_{PQ}$  with  $d(P,Q) < \frac{\pi}{\sqrt{\kappa}}$  and  $t \in [0,1]$ , let

$$P_t = (1 - t)P + tQ$$

denote the point on  $\gamma_{PQ}$  at distance td(P,Q) from P. Given three points  $P,Q,R\in X$  such that  $d(P,Q)+d(Q,R)+d(R,S)<\frac{2\pi}{\sqrt{\kappa}}$ , the geodesic triangle  $\triangle PQR$  is the triangle in X with sides given by the geodesics  $\gamma_{PQ},\gamma_{QR},\gamma_{RS}$ .

Let  $\mathbb{S}^2$  be the standard unit sphere and let  $\mathbb{S}^2_{\kappa}$  denote the scaled version of  $\mathbb{S}^2$  with Gauss curvature  $\kappa$ . Let  $\tilde{d}$  be the induced distance function on  $\mathbb{S}^2_{\kappa}$ . A comparison triangle for the geodesic triangle  $\triangle PQR$  in a  $\frac{\pi}{\sqrt{\kappa}}$ -geodesic space is a geodesic triangle  $\triangle \tilde{P}\tilde{Q}\tilde{R}$  on  $\mathbb{S}^2_{\kappa}$  such that  $d(P,Q) = \tilde{d}(\tilde{P},\tilde{Q}), d(Q,R) = \tilde{d}(\tilde{Q},\tilde{R})$  and  $d(R,P) = \tilde{d}(\tilde{R},\tilde{P})$ .

**Definition 2.1.** Let (X, d) be a metric space. Then X is a CAT $(\kappa)$  space if it is a complete  $\frac{\pi}{\sqrt{\kappa}}$ -geodesic space satisfying the following: If  $\triangle PQR$  is a geodesic triangle with perimeter less than  $\frac{2\pi}{\sqrt{\kappa}}$  and  $\triangle \tilde{P}\tilde{Q}\tilde{R}$  in  $\mathbb{S}^2_{\kappa}$  is a comparison triangle, then, for  $t, \tau \in [0, 1]$ ,

(2.1) 
$$d(P_t, R_\tau) \le \tilde{d}(\tilde{P}_t, \tilde{R}_\tau)$$

where

$$P_t = (1 - t)P + tQ, \qquad R_\tau = (1 - \tau)R + \tau Q,$$
  

$$\tilde{P}_t = (1 - t)\tilde{P} + t\tilde{Q}, \qquad \tilde{R}_\tau = (1 - \tau)\tilde{R} + \tau \tilde{Q}.$$

A complete geodesic space X is said to be *locally* CAT( $\kappa$ ) if, for every point P of X, there exists r > 0 sufficiently small such that  $\overline{\mathcal{B}_r^X(P)}$  is a CAT( $\kappa$ ) space.

Remark 2.2. A CAT(0) space (or an NPC space) is a complete geodesic space satisfying inequality (2.1) with  $\mathbb{S}^2_{\kappa}$  replaced by  $\mathbb{R}^2$  and with no perimeter restriction.

We recall the notion of angles and tangent spaces in a locally  $CAT(\kappa)$  space (X, d). Fix  $q_0 \in X$ , and let  $\mathcal{G}_{q_0}$  be the set of all geodesics emanating from  $q_0$ . For  $\gamma \in \mathcal{G}_{q_0}$  (resp.  $\hat{\gamma} \in \mathcal{G}_{q_0}$ ) and  $q_1 \in \gamma$  (resp.  $q_2 \in \hat{\gamma}$ ) with  $q_1 \neq q_0$  (resp.  $q_2 \neq q_0$ ) sufficiently close to  $q_0$ , the comparison angle  $\widetilde{\angle}_{q_0}(q_2, q_1)$  is the angle at the point corresponding to  $q_0$  of the comparison triangle to  $\Delta q_0 q_1 q_2$  in  $\mathbb{S}^2_{\kappa}$ . By the  $CAT(\kappa)$  assumption, the function

(2.2) 
$$t \mapsto \widetilde{\angle}_{q_0}(Q(t), P(t))$$
 is non-decreasing

where Q(t) (resp. P(t)) is a constant speed parameterization of  $\gamma$  (resp.  $\hat{\gamma}$ ) with  $Q(0) = q_0$  (resp.  $P(0) = q_0$ ). Thus, the limit

$$\angle(\gamma, \hat{\gamma}) := \lim_{t \to 0} \widetilde{\angle}_{q_0}(Q(t), P(t))$$

exists and this is the angle between the geodesics  $\gamma$  and  $\hat{\gamma}$ .

Define an equivalence relation in  $\mathcal{G}_{q_0}$  by letting

$$\gamma_1 \sim \gamma_2$$
 if and only if  $\angle(\gamma_1, \gamma_2) = 0$ .

The space of directions  $\mathcal{E}_{q_0}$  is the completion of the metric space of equivalence classes  $[\gamma]$  of  $\mathcal{G}_{q_0}$  with distance function  $\Theta(\cdot,\cdot)$  defined by

$$\Theta([\gamma_1], [\gamma_2]) = \angle(\gamma_1, \gamma_2).$$

The (Alexandrov) tangent cone of (X, d) at  $q_0$  is the CAT(0) space

$$T_{q_0}X = [0, \infty) \times \mathcal{E}_{q_0}/\sim',$$

where  $\sim'$  identifies all points of the form  $(0, [\gamma])$  as the vertex  $\mathcal{O}$ , along with the distance function given by

$$\delta^2((\rho_1, [\gamma_1]), (\rho_2, [\gamma_2])) = \rho_1^2 + \rho_2^2 - 2\rho_1\rho_2\cos\Theta([\gamma_1], [\gamma_2]).$$

For a sufficiently small neighborhood  $\mathcal{N}$  of  $q_0$ , there is a natural projection map

$$\log_{q_0}: \mathcal{N} \to T_{q_0} X$$

$$\log_{q_0}(q) = (d(q, q_0), [\gamma_q])$$

where  $\gamma_q$  is a geodesic ray emanating from  $q_0$  that goes through q.

The main interest in this paper is  $CAT(\kappa)$  surfaces and spheres.

**Definition 2.3.** A CAT( $\kappa$ ) space (resp. locally CAT( $\kappa$ ) space) (X, d) is a  $CAT(\kappa)$  manifold (resp. locally  $CAT(\kappa)$  manifold) if, for every point  $p \in X$ , there exists r > 0 sufficiently small such that  $\mathcal{B}_r^X(p)$  is homeomorphic to a unit ball in  $\mathbb{R}^n$ . We will say a CAT( $\kappa$ ) manifold (resp. locally CAT( $\kappa$ ) manifold) (X, d) is a  $CAT(\kappa)$  surface (resp. locally  $CAT(\kappa)$  surface) if n = 2. Finally, a  $CAT(\kappa)$  sphere (resp. locally  $CAT(\kappa)$  sphere) is a CAT( $\kappa$ ) surface (resp. locally  $CAT(\kappa)$  surface) which is homeomorphic to  $\mathbb{S}^2$ .

Remark 2.4. If (X, d) is a locally  $CAT(\kappa)$  manifold, then for each  $q_0 \in X$  there exists r > 0 sufficiently small such that the closed geodesic ball  $\overline{\mathcal{B}_r(q_0)}$  is a  $CAT(\kappa)$  space and the following properties are satisfied:

- (i) (Uniqueness of geodesics) There exists a unique geodesic between every pair of points in  $\mathcal{B}_r(q_0)$  and  $\mathcal{B}_{\epsilon}(q_0)$  is convex for every  $\epsilon \in (0, r]$  (cf. [7, II.1.4]).
- (ii) (Continuity of angles) For geodesics  $\gamma_p$  and  $\gamma_q$  in  $\mathcal{B}_r(q_0)$ , from  $q_0$  to p and q respectively, the function  $(p,q) \mapsto \angle(\gamma_p, \gamma_q)$  is continuous (cf. [7, II.3.3]).
- (iii) (Geodesic extendability) Every geodesic from  $q_0$  to a point in  $\mathcal{B}_r(q_0)$  can be extended to a geodesic from  $q_0$  to a point in  $\partial \mathcal{B}_r(q_0)$  (cf. [7, II.5.12]).

We use the following proposition in our analysis of tangent maps for harmonic maps into  $CAT(\kappa)$  surfaces. Since this is already known to the experts (e.g. [36]), we will only state it here and defer its proof to Appendix B.

**Proposition 2.5.** If (S,d) is a locally  $CAT(\kappa)$  surface, then the Alexandrov tangent cone  $T_{q_0}S$  of S at  $q_0 \in S$  is a metric cone over a finite length simple closed curve. More precisely, the space of directions  $\mathcal{E}_{q_0}$  is isometric to a finite length simple closed curve.

2.2. Korevaar-Schoen energy and harmonic maps. We refer the reader to [25] for details and background on the notion of finite energy (or  $W^{1,2}$ ) maps into metric spaces that we briefly summarize here. Note that we will be restricting the general theory of [25] to case when the domain dimension is 2.

**Definition 2.6.** Let  $\Sigma$  be a Riemann surface. A holomorphic disk  $\mathbb{D} \subset \Sigma$  is a coordinate neighborhood of  $\Sigma$  identified as a unit disk in the complex plane  $\mathbb{C}$  by the conformal coordinate z = x + iy. We will say a holomorphic disk  $\mathbb{D}$  is centered at p if  $p \in \Sigma$  is identified with 0. Furthermore, we denote for  $r \in (0,1)$ ,

$$\mathbb{D}_r = \{ z \in \mathbb{D} : |z| < r \}.$$

Let  $\Sigma$  be a Riemann surface and (X,d) be a complete metric space. The Sobolev space  $W^{1,2}(\Sigma,X) \subset L^2(\Sigma,X)$  is the space of finite energy maps  $u:\Sigma \to (X,d)$ . We recall that (because we restrict to the case when the domain dimension is 2) the energy of a map depends only on the conformal class of  $\Sigma$  (and not on the metric defined on  $\Sigma$ ).

For  $f \in W^{1,2}(\Sigma, X)$ , a holomorphic disk  $\mathbb{D}$  and  $\Gamma(T\mathbb{D})$  the space of Lipschitz vector fields on  $\mathbb{D}$ , we denote the *directional energy density function* for  $Z \in \Gamma(T\mathbb{D})$  (cf. [25, Section 1.7ff.]) and energy density function (cf. [25, Section 1.10ff.]) of f on  $\mathbb{D}$  by

$$|f_*(Z)|^2$$
 and  $|\nabla f|^2$ .

Let  $\{\partial_x, \partial_y\}$  be the standard orthonormal basis on  $\mathbb{D}$ . For a.e.  $z \in \mathbb{D}$ , we have (cf. [25, (1.10v)])

(2.4) 
$$\frac{1}{2}|\nabla f|^2(z) = \frac{1}{2\pi} \int_{\omega \in \mathbb{S}^1} |f_*(\omega)|^2(z) d\theta(\omega)$$

where  $\omega \in \Gamma(T\mathbb{D})$  is given by  $\omega = \cos \theta \cdot \partial_x + \sin \theta \cdot \partial_y$  for a fixed constant  $\theta \in [0, 2\pi)$ . Note that we have identified the set of such  $\omega$ 's with  $\mathbb{S}^1 = \{e^{i\theta}\}$  in the obvious way.

The measure  $|\nabla f|^2 dxdy$  is defined independently of the local holomorphic coordinates. The total energy of  $f \in W^{1,2}(\Sigma, X)$  is given by

$$^{d}E^{f} = \int_{\Sigma} |\nabla f|^{2} dx dy.$$

Given a subdomain  $\Omega$  of  $\Sigma$ , we denote the energy of f in  $\Omega$  by

$$^{d}E^{f}[\Omega] = \int_{\Omega} |\nabla f|^{2} dx dy.$$

Given  $h \in W^{1,2}(\mathbb{D}, X)$ , we define

$$W_h^{1,2}(\mathbb{D}, X) = \{ f \in W^{1,2}(\mathbb{D}, X) : Tr(h) = Tr(f) \}$$

where Tr(f) denotes the trace map of  $f \in W^{1,2}(\mathbb{D}, X)$ .

**Definition 2.7.** We say  $u \in W^{1,2}(\mathbb{D}, X)$  is energy minimizing if there exists  $P \in X$  and  $\rho > 0$  such that  $u(\mathbb{D}) \subset \mathcal{B}_{\rho}^{X}(P)$  and u minimizes energy among all maps in  $W_{u}^{1,2}(\mathbb{D}, \overline{\mathcal{B}_{\rho}^{X}(P)})$ .

**Definition 2.8.** We say that a map  $u \in W^{1,2}(\Sigma, X)$  is a harmonic map if it is locally energy minimizing; more precisely, for every  $p \in \Sigma$ , there exists a holomorphic disk  $\mathbb{D} \subset \Sigma$  centered at p such that  $u|_{\mathbb{D}}$  is energy minimizing.

**Theorem 2.9** ([42], [4]). If  $u : \mathbb{D} \to (X, d)$  is an energy minimizing map from a holomorphic disk  $\mathbb{D} \subset \Sigma$  into a  $CAT(\kappa)$  space X, then u is locally Lipschitz continuous. The Lipschitz constant depends only on  ${}^dE^u$ , the metric on  $\Sigma$ , and the distance to  $\partial \mathbb{D}$ .

**Lemma 2.10.** If u is as in Theorem 2.9 and  $Tr(u) \in C^0(\partial \mathbb{D})$ , then

$$\bar{u} = \left\{ \begin{array}{ll} u & in \ \mathbb{D} \\ Tr(u) & in \ \partial \mathbb{D} \end{array} \right.$$

is continuous in  $\bar{\mathbb{D}}$ .

*Proof.* By Theorem 2.9, it is sufficient to prove the continuity of  $\bar{u}$  at  $z_0 \in \partial \mathbb{D}$ . Let  $\epsilon > 0$  be sufficiently small such that the nearest point projection map onto any closed geodesic ball of radius  $\epsilon$  is distance non-increasing in the geodesically convex,  $CAT(\kappa)$  space  $\mathcal{N} \subset X$  (cf. [7, II.2.6(2)]). By the continuity of Tr(u), there exists  $\delta_1 > 0$  sufficiently small such that

$$\bar{u}(\partial \mathbb{D} \cap \mathbb{D}_{\delta_1}(z_0)) \subset \mathcal{B}_{\frac{\epsilon}{2}}(\bar{u}(z_0)).$$

By the Courant-Lebesque Lemma, there exists  $\delta \in (0, \delta_1), r \in (\delta^2, \delta)$  and  $Q \in X$  satisfying

$$\bar{u}(\partial \mathbb{D}_r(z_0) \cap \bar{\mathbb{D}}) \subset \mathcal{B}_{\frac{\epsilon}{2}}(Q).$$

Since

$$\bar{u}(\zeta) \in \mathcal{B}_{\frac{\epsilon}{2}}(\bar{u}(z_0)) \cap \mathcal{B}_{\frac{\epsilon}{2}}(Q) \text{ for } \zeta \in \partial \mathbb{D} \cap \partial \mathbb{D}_r(z_0),$$

we have

$$\bar{u}(\partial(\mathbb{D}_r(z_0)\cap\bar{\mathbb{D}}))\subset\mathcal{B}_{\epsilon}(\bar{u}(z_0)).$$

By the energy minimizing property of u and since the nearest point projection map into  $\mathcal{B}_{\epsilon}(\bar{u}(z_0))$  does not increase energy,

$$\bar{u}(\mathbb{D}_r(z_0)\cap\bar{\mathbb{D}})\subset\overline{\mathcal{B}_{\epsilon}(\bar{u}(z_0))}.$$

2.3. Almost conformal maps. Let  $u: \Sigma \to (X, d)$  be a harmonic map from a Riemann surface into a locally  $CAT(\kappa)$  space. Recall the construction in [25], [32] and [4] of a continuous, symmetric, bilinear, non-negative  $L^1$  tensorial operator associated with u,

(2.5) 
$$\pi: \Gamma(T\Sigma) \times \Gamma(T\Sigma) \to L^1(\Sigma)$$

defined by

$$\pi(Z,W) := \frac{1}{4}|u_*(Z+W)|^2 - \frac{1}{4}|u_*(Z-W)|^2.$$

This generalizes the notion of the pullback metric for maps into a Riemannian manifold, and hence we shall refer to  $\pi$  also as the pullback metric for u. The energy of u can be written as

$$^{d}E^{u} = \int_{\Sigma} \pi \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial x} \right) + \pi \left( \frac{\partial}{\partial y}, \frac{\partial}{\partial y} \right) dx dy.$$

**Definition 2.11.** The area of u is

$${}^{d}A^{u} = \int_{\Sigma} \sqrt{\pi \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right) \pi \left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) - \left(\pi \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)\right)^{2}} dx dy.$$

**Lemma 2.12.** Let  $u: \Sigma \to (X, d)$  be a harmonic map from a Riemann surface into a locally  $CAT(\kappa)$  space. The Hopf differential  $\Phi = \phi dz^2$  of u, defined in a holomorphic disk  $\mathbb{D} \subset \Sigma$  where

$$\phi(z) := \left[\pi\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right) - \pi\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) - 2i\pi\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)\right],$$

is holomorphic.

Proof. Let  $\zeta$  be a smooth function with compact support in a holomorphic disk  $\mathbb{D} \subset \Sigma$ . For  $\epsilon > 0$  sufficiently small and  $t \in (-\epsilon, \epsilon)$ , consider the diffeomorphism  $F_t : \Sigma \to \Sigma$  given in  $\mathbb{D}$  by  $F_t(z) = (1 + t\zeta(z))z$  and  $F_t$  identity outside of  $\mathbb{D}$ . Using the domain variation  $t \mapsto F_t$ , the assertion follows from following the argument of [41, Lemma 1.1] ([22, Chapter 3]), where the change of variables is justified by [25, Theorem 2.3.2].

**Definition 2.13.** The map  $u \in W^{1,2}(\Sigma, X)$  is said to be *almost conformal* if, for any holomorphic disk  $\mathbb{D} \subset \Sigma$  and a.e.  $z \in \mathbb{D}$ ,

$$\pi\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right) = \pi\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) \quad \text{and} \quad \pi\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) = 0.$$

**Lemma 2.14.** A harmonic map  $u: \mathbb{S}^2 \to (X, d)$  from the standard 2-sphere to a locally  $CAT(\kappa)$  space is almost conformal.

*Proof.* The only holomorphic quadratic differential on  $\mathbb{S}^2$  is identically equal to 0.

Remark 2.15. From the Cauchy-Schwarz inequality,

$$^{d}A^{u} \leq {}^{d}E^{u}/2$$

with equality if and only if u is an almost conformal map.

**Definition 2.16.** Let  $u: \Sigma \to \Sigma$  be an almost conformal map and  $\mathbb{D} \subset \Sigma$  be a holomorphic disk. The function  $\lambda_u: \mathbb{D} \to [0, \infty)$  defined by

$$\lambda_u = \pi \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial x} \right) = |\nabla u|^2 / 2$$

is called the *conformal factor* of u in  $\mathbb{D}$ . Note that the pullback metric of u in  $\mathbb{D}$  is given by  $\lambda_u(dx^2 + dy^2)$ .

**Theorem 2.17** ([32], Theorem 4.1, Theorem 5.1 and Lemma 5.2). If  $u: \Sigma \to (X, d)$  is an almost conformal harmonic map from a Riemann surface to a locally  $CAT(\kappa)$  space and  $\mathbb{D}$  a holomorphic disk, then the conformal factor  $\lambda_u$  of u in  $\mathbb{D}$  satisfies

- $\lambda_u$  is locally bounded.
- $\lambda_u \in W^{1,2}_{loc}(\mathbb{D})$ .
- $\triangle \lambda_u \ge -2\kappa \lambda_u^2$  weakly.
- $\triangle \log \lambda_u \ge -2\kappa \lambda_u$  weakly.

2.4. Existence of harmonic maps. As mentioned in the introduction, Sacks and Uhlenbeck [40] discovered a "bubbling phenomena" for harmonic maps from surfaces. The paper [4] considers an analogous result when the target space is a compact locally  $CAT(\kappa)$  space.

**Theorem 2.18** ([5]). Let  $\Sigma$  be a compact Riemann surface, (X,d) a compact locally  $CAT(\kappa)$  space and  $\varphi \in C^0 \cap W^{1,2}(\Sigma,X)$ . Then either there exists a harmonic map  $u: \Sigma \to (X,d)$  homotopic to  $\varphi$  or an almost conformal harmonic map  $v: \mathbb{S}^2 \to (X,d)$ .

In the case when  $\Sigma$  is the standard 2-sphere  $\mathbb{S}^2$ , Theorem 2.18 implies the following.

**Corollary 2.19.** If there exists a continuous, finite energy map h from the standard 2-sphere  $\mathbb{S}^2$  into a compact locally  $CAT(\kappa)$  space (X,d) then there exists an almost conformal harmonic map  $u: \mathbb{S}^2 \to (X,d)$ .

2.5. Metric differential and Jacobian. Throughout this subsection, (X, d) will denote a complete metric space. The following definitions are given in [24] and [23, Definition 7.9] respectively.

**Definition 2.20.** Let  $f: \mathbb{D} \to X$  and  $z_0 \in \mathbb{D}$ . If there exists a seminorm  $s: \mathbb{C} \to [0, \infty)$  satisfying

$$\lim_{z \to z_0} \frac{s(z - z_0) - d(f(z), f(z_0))}{|z - z_0|} = 0,$$

then  $MD(f, z_0) := s$  is said to be the *metric differential* of f at  $z_0 \in \mathbb{D}$ .

Remark 2.21. Kirchheim [24, Theorem 2] proved that if  $f: \mathbb{D} \to X$  is a Lipschitz map, then  $\mathrm{MD}(f,z_0)$  exists for a.e.  $z_0 \in \mathbb{D}$ .

**Definition 2.22.** Let  $f: \mathbb{D} \to X$  and  $z_0 \in \mathbb{D}$ . If there exists a seminorm  $s: \mathbb{C} \to [0, \infty)$  satisfying

$$ap \lim_{z \to z_0} \frac{s(z - z_0) - d(f(z), f(z_0))}{|z - z_0|} = 0,$$

then  $\mathrm{MD}_{ap}(f,z_0) := s$  is said to be the approximate metric differential of f at  $z_0 \in \mathbb{D}$ . Recall that a function  $\varphi : \mathbb{D} \to \mathbb{R}$  has an approximate limit  $L = \mathrm{ap} \lim_{z \to z_0} \varphi(z)$  at  $z_0$  if there exists a set A that has density 1 at  $z_0$  such that if  $z_n$  is a sequence in A and  $z_n \to z_0$ , then  $\varphi(z_n) \to L$ .

Remark 2.23. Let  $f, \hat{f}: \mathbb{D} \to X$  and  $A \subset \mathbb{D}$  be a measurable set such that  $f = \hat{f}$  in A. If  $z_0 \in A$  is a density 1 point of A such that  $MD(\hat{f}, z_0)$  exists, then  $MD_{ap}(f, z_0)$  exists and  $MD(\hat{f}, z_0) = MD_{ap}(f, z_0)$ .

The following definition can be found in [24, Definition 5] or [23, Theorem 7.10].

**Definition 2.24.** The Jacobian of a map  $f: \mathbb{D} \to X$  at  $z_0 \in \mathbb{D}$  is defined as

$$\mathcal{J}_f(z_0) = \left(\frac{1}{2\pi} \int_{\omega \in \mathbb{S}^1} \left( MD_{ap}(f, z_0)(\omega) \right)^{-2} d\mathcal{H}^1(\omega) \right)^{-1}$$

whenever  $\mathrm{MD}_{ap}(f,z_0)(\omega) \neq 0$  for a.e.  $\omega \in \mathbb{S}^1$ . Otherwise, define  $\mathcal{J}_f(z_0) = 0$ .

The following lemma relates the metric differential of a finite energy map to its directional energy density function. We defer the proof to Appendix C.

**Lemma 2.25.** If  $f \in W^{1,2}(\mathbb{D}, X)$ , then for a.e.  $z_0 \in \mathbb{D}$ 

$$\mathrm{MD}_{ap}(f, z_0)(\omega) = |f_*(\omega)|(z_0), \quad a.e. \ \omega \in \mathbb{S}^1$$

In particular, the Jacobian of f at a.e.  $z_0 \in \mathbb{D}$  with  $MD_{ap}(f,z_0)(\omega) \neq 0$  for a.e.  $\omega \in \mathbb{S}^1$  is

$$\mathcal{J}_f(z_0) = \left(\frac{1}{2\pi} \int_{\omega \in \mathbb{S}^1} |f_*(\omega)|^{-2} (z_0) d\mathcal{H}^1(\omega)\right)^{-1}$$

whenever  $|f_*(\omega)|^2(z_0) \neq 0$  a.e.  $\omega \in \mathbb{S}^1$ . Otherwise,  $\mathcal{J}_f(z_0) = 0$ .

#### 3. Tangent maps

The goal of this section is to prove Theorem 3.7 which shows that for harmonic maps into  $CAT(\kappa)$  manifolds, an Alexandrov tangent map of a harmonic map u is itself a tangent map of u. (Since harmonic maps are continuous, all the "local" results in this section stated for  $CAT(\kappa)$  spaces remain valid after replacing by locally  $CAT(\kappa)$ .)

3.1. Construction of tangent maps. Let  $u : \mathbb{D} \to (X, d)$  be a harmonic map to a  $CAT(\kappa)$  space,  $p_0 \in \Sigma$  and  $\mathbb{D} \subset \Sigma$  be a holomorphic disk centered at  $p_0$ . We will now summarize the construction of a tangent map of u. (For more details, we refer the reader to [26] where the notion of convergence for a sequence of maps into different NPC spaces first appears, and also [4] where this notion is generalized from NPC to  $CAT(\kappa)$  spaces.)

For  $\sigma > 0$  sufficiently small, let

(3.1) 
$$\mu_{\sigma} := \sqrt{\frac{\int_{\partial \mathbb{D}_{\sigma}} d^2(u, u(0)) d\theta}{\sigma}}.$$

We construct a  $CAT(\mu_{\sigma}^2 \kappa)$  space  $(X, d_{\sigma})$  by endowing X with a distance function

(3.2) 
$$d_{\sigma}(q, q') = \mu_{\sigma}^{-1} d(q, q').$$

A blow up map of u at  $p_0$  is

$$u_{\sigma}: \mathbb{D} \to (X, d_{\sigma}), \quad u_{\sigma}(x) = u(\sigma x).$$

By [4, Proposition 6.5 and Section 8],

$$(3.3) \lim_{\sigma \to 0} \frac{\int_{\mathbb{D}} |\nabla u_{\sigma}|^2 dx dy}{\int_{\partial \mathbb{D}} d_{\sigma}^2(u_{\sigma}, u_{\sigma}(0)) d\theta} = \lim_{\sigma \to 0} \frac{\sigma \int_{\mathbb{D}_{\sigma}} |\nabla u|^2 dx dy}{\int_{\partial \mathbb{D}_{\sigma}} d^2(u, u(0)) d\theta} =: \operatorname{ord}^u(0) \text{ exists and } \operatorname{ord}^u(0) \ge 1.$$

The normalization by  $\mu_{\sigma}$  implies that

(3.4) 
$$\int_{\partial \mathbb{D}} d_{\sigma}^{2}(u_{\sigma}, u_{\sigma}(0)) d\theta = 1.$$

Thus, the energy of  $u_{\sigma}$  is uniformly bounded, and by Theorem 2.9,  $\{u_{\sigma}\}$  is uniformly Lipschitz continuous in  $\mathbb{D}_r$  for any  $r \in (0,1)$ .

We now inductively define maps  $\{u_{\sigma,i}\}$  and pullback pseudodistance functions  $\{\rho_{\sigma,i}\}$  as follows: First, we let

$$\Omega_0 = \mathbb{D}.$$

Having defined  $\Omega_{i-1}$ , we inductively define

$$\Omega_i = \Omega_{i-1} \times \Omega_{i-1} \times [0,1].$$

Identify  $\Omega_i \subset \Omega_{i+1}$  via the inclusion  $x \mapsto (x, x, 0)$  and set

$$\Omega_{\infty} = \bigcup_{i=0}^{\infty} \Omega_i.$$

Next, let

$$u_{\sigma,0} = u_{\sigma} : \Omega_0 \to (X, d_{\sigma}).$$

Having defined the map  $u_{\sigma,i-1}:\Omega_{i-1}\to (X,d_{\sigma})$ , we define

$$u_{\sigma,i}:\Omega_i\to (X,d_\sigma),\ u_{\sigma,i}(x,y,t)=\gamma(t)$$

where  $\gamma:[0,1]\to (X,d_{\sigma})$  is the constant speed parameterization of the unique geodesic from  $u_{\sigma,i-1}(x)=\gamma(0)$  to  $u_{\sigma,i-1}(y)=\gamma(1)$ . Let

$$\rho_{\sigma,i}: \Omega_i \times \Omega_i \to [0,\infty), \quad \rho_{\sigma,i}(x,y) = d_{\sigma}(u_{\sigma,i}(x), u_{\sigma,i}(y)).$$

Finally, we define

$$\rho_{\sigma,\infty}: \Omega_{\infty} \times \Omega_{\infty} \to [0,\infty), \quad \rho_{\sigma,\infty}|_{\Omega_i} = \rho_{\sigma,i}.$$

We define an equivalence relation  $\sim_{\rho_{\sigma,\infty}}$  by setting

$$x \sim_{\rho_{\sigma,\infty}} y \Leftrightarrow \rho_{\sigma,\infty}(x,y) = 0.$$

Then  $\rho_{\sigma,\infty}$  is a distance function on  $\Omega_{\infty}/\sim_{\rho_{\sigma,\infty}}$  and let  $X_{\infty}:=\overline{\Omega_{\infty}/\sim_{\rho_{\sigma,\infty}}}$  denote its metric completion. We can isometrically identify

$$X_{\infty} := \overline{\Omega_{\infty} / \sim_{\rho_{\sigma,\infty}}} \approx \overline{Cvx(u_{\sigma}(\mathbb{D}))}.$$

As explained in [4], there exists a sequence

(3.5) 
$$\sigma_i \to 0 \text{ and } \rho_{*,i} : \Omega_i \times \Omega_i \to [0,\infty) \text{ for } i = 0,1,\ldots$$

such that the pullback pseudodistance functions  $\rho_{\sigma_j,i}$  converge locally uniformly to  $\rho_{*,i}$  on each  $\Omega_i$ . We thus obtain a pullback pseudodistance function

$$d_*: \Omega_\infty \times \Omega_\infty \to [0, \infty), \quad d_*|_{\Omega_i} = \rho_{*,i}.$$

We define an equivalence relation  $\sim_*$  by setting

$$x \sim_* y \Leftrightarrow d_*(x,y) = 0$$

and let  $\Omega_{\infty}/\sim_*$  denote the space of equivalent classes  $[\cdot]$ . The metric completion  $X_* = \overline{\Omega_{\infty}/\sim_*}$  of  $\Omega_{\infty}/\sim_*$  along with the distance function  $d_*$  naturally defined on  $X_*$  is an NPC space. Define

$$(3.6) u_*: \mathbb{D} \to (X_*, d_*), \quad u_* = \iota \circ \Pi$$

where

$$\iota: \mathbb{D}/\sim_* = \Omega_0/\sim_* \hookrightarrow X_*$$

is the inclusion map and

$$\Pi: \mathbb{D} \to \mathbb{D}/\sim_*, \quad \Pi(z) = [z]$$

is the natural projection map.

**Definition 3.1.** We say the sequence  $f_j: \Omega_0 \to (X_j, d_j)$  converges locally uniformly in the pullback sense to  $f: \Omega_0 \to (X_\infty, d_\infty)$  if, for each i, the pullback pseudodistances of  $f_{j,i}: \Omega_i \to (X_j, d_j)$  converge locally uniformly to the pullback pseudodistance of  $f_i: \Omega_i \to (X_*, d_*)$ .

**Definition 3.2.** Any map  $f: \mathbb{D} \to Y$  into an NPC space is called a *tangent map* of a harmonic map  $u: \mathbb{D} \to (X, d)$  if there exists a sequence  $\sigma_j \to 0$  such that  $\{u_{\sigma_j}\}$  converges locally uniformly in the pullback sense to f.

Remark 3.3. For the sequence  $\sigma_j \to 0$  as in (3.5), the sequence of blow up maps  $\{u_{\sigma_j}\}$  converges locally uniformly in the pullback sense to the map  $u_*$  given by (3.6) according to Definition 3.1 and  $u_*$  is a tangent map of  $u: \mathbb{D} \to (X, d)$  according to Definition 3.2.

As explained in [17], [4], and Appendix A, a tangent map  $u_*$  is a degree  $\alpha$  homogeneous harmonic map where

$$\alpha = \operatorname{ord}^{u}(0) = \operatorname{ord}^{u_{*}}(0) \ge 1$$

is the order of u at 0 (cf. (3.3)).

This means that we can extend  $u_*$  to  $\overline{\mathbb{D}}$  by continuity and, for any  $x \in \partial \mathbb{D}$ ,

 $r \mapsto u_*(rx)$  parametrizes a geodesic in  $X_*$ 

and

(3.7) 
$$d_*(rx,0) = r^{\alpha} d_*(x,0), \quad \forall r \in (0,1).$$

3.2. Alexandrov tangent maps for maps with locally compact targets. Next assume that X is a locally compact  $CAT(\kappa)$  space. We review the notion of an Alexandrov tangent map introduced in [9]. Let  $q_0 = u(p_0)$ . Let

$$\log = \log_{q_0} : \mathcal{N} \subset X \to T_{q_0} X$$

be the natural projection map (cf. (2.3)) from a sufficiently small neighborhood  $\mathcal{N}$  of  $q_0$ . Furthermore, let  $\{u_{\sigma_j}\}$  be a sequence of blow up maps at  $p_0$  converging locally uniformly in the pullback sense to  $u_*$ . We define

$$\log_{\sigma}: (X, d_{\sigma}) \to (T_{q_0}X, \delta)$$

analogously to log (with d replaced by  $d_{\sigma}$ ). Here we point out that the notion of a geodesic and of  $\angle$  are invariant under scaling of the distance function. More specifically, if  $\gamma$  is a geodesic in (X, d), then  $\gamma$  is a geodesic in  $(X, d_{\sigma})$ . Moreover, the value of  $\angle(\gamma_1, \gamma_2)$  in  $(X, d_{\sigma})$  is the same for any  $\sigma > 0$ . (On the other hand,  $\widetilde{\angle}_{q_0}(q_1, q_2)$  depends on the distance function  $d_{\sigma}$ .)

The map  $\log_{\sigma}$  is a non-expansive map (i.e. distance non-increasing map). Thus, by Theorem 2.9,  $\{v_{\sigma} = \log_{\sigma} \circ u_{\sigma}\}$  is a sequence of maps into  $T_{q_0}X$  with a uniform local Lipschitz bound. Analogous to the construction of  $u_{\sigma,i}$  and  $\rho_{\sigma,i}$  from  $u_{\sigma,0} = u_{\sigma}$ , we start with  $v_{\sigma,0} = v_{\sigma}$  and inductively define

$$v_{\sigma,i}:\Omega_i\to (T_{q_0}X,\delta)$$

and

$$\hat{\rho}_{\sigma,i}: \Omega_i \times \Omega_i \to [0,\infty), \quad \hat{\rho}_{\sigma,i}(x,y) = \delta(v_{\sigma,i}(x), v_{\sigma,i}(y)).$$

Since X is locally compact,  $T_{q_0}X$  is locally compact. Thus, for each i, there exists a sequence  $\sigma_j \to 0$  such that  $\{v_{\sigma_j,i} = \log_{\sigma_j} \circ u_{\sigma_j,i}\}$  converges locally uniformly to a map

$$v_{*,i}:\Omega_i\to T_{q_0}X.$$

By a diagonalization procedure, we conclude that (after taking a subsequence),  $\{v_{\sigma_j} : \mathbb{D} \to T_{q_0}X\}$  converges locally uniformly in the pullback sense to  $v_* : \mathbb{D} \to T_{q_0}X$ .

**Definition 3.4.** We will call the map  $v_* : \mathbb{D} \to (T_{u(p_0)}X, \delta)$  an Alexandrov tangent map of a harmonic map  $u : \mathbb{D} \to (X, d)$  at  $p_0$ .

**Definition 3.5.** Let  $u: \Sigma \to (X, d)$  be a harmonic map from a Riemann surface into a locally compact  $CAT(\kappa)$  space,  $p_0 \in \Sigma$  and  $\mathbb{D}$  a holomorphic disk centered at  $p_0$ . A map  $u_*$  (resp.  $v_*$ ) is said to be a tangent map of u at  $p_0$  (resp. Alexandrov tangent map of u at  $p_0$ ) if  $u_*$  (resp.  $v_*$ ) is a tangent map (resp. Alexandrov tangent map) of  $u|_{\mathbb{D}}$ .

Remark 3.6. As previously stated, a tangent map  $u_*$  is a harmonic map. This follows from the fact that all blow up maps  $u_{\sigma}$  are harmonic maps (since harmonicity is preserved under the rescaling of the target distance function) and [26, Theorem 3.11]. On the other hand, an Alexandrov tangent map  $v_*$  is not necessarily harmonic. In Theorem 3.7, we show that the local compactness of X and the manifold hypothesis are sufficient conditions for  $v_*$  to be a harmonic map.

3.3. Tangent maps for maps into  $CAT(\kappa)$  manifolds. We now specialize to the case when X is a  $CAT(\kappa)$  manifold (cf. Definition 2.3).

**Theorem 3.7.** Let  $u: \Sigma \to (X, d)$  be a harmonic map from a Riemann surface into a  $CAT(\kappa)$  manifold,  $p_0 \in \Sigma$  and  $\mathbb{D}$  a holomorphic disk centered at  $p_0$ . Then an Alexandrov tangent map of u at  $p_0$  is a tangent map of u at  $p_0$ . In particular,  $v_*$  is a degree  $\alpha = \operatorname{ord}^u(p_0)$  homogeneous harmonic map.

The proof of Theorem 3.7 is a direct consequence of Lemma 3.8 below.

**Lemma 3.8.** Let  $u : \Sigma \to (X, d)$  be a harmonic map from a Riemann surface into a  $CAT(\kappa)$  space,  $p_0 \in \Sigma$  and  $\mathbb{D}$  be a holomorphic disk centered at  $p_0$ . Furthermore, let  $q_0 = u(p_0) \in X$  and  $\mathcal{B} := \mathcal{B}_r(q_0)$  be a geodesic ball and assume the following:

- (i)  $\partial \mathcal{B}$  and  $\overline{\mathcal{B}}$  are compact.
- (ii) For any point  $q \in \mathcal{B}$ , there exists a geodesic  $\gamma$ , containing q, from  $q_0$  to a point on  $\partial \mathcal{B}$ .

(Note that if (X, d) is a  $CAT(\kappa)$  manifold, then (i) holds since X is locally compact and (ii) holds by [7, Theorem II.5.12].)

If the sequence of blow up maps  $\{u_{\sigma_j}\}$  of u at  $p_0$  converges locally uniformly in the pullback sense to a tangent map  $u_*: \mathbb{D} \to X_*$  and  $\{v_{\sigma_j} = \log_{\sigma_j} \circ u_{\sigma_j}\}$  converges locally uniformly in the pullback sense to an Alexandrov tangent map  $v_*: \mathbb{D} \to T_{u(p_0)}X$ , then  $\{u_{\sigma_j}\}$  converges locally uniformly in the pullback sense to  $v_*$ . The Alexandrov tangent map  $v_*$  is a homogeneous harmonic map with

(3.8) 
$$d_*(u_*(x_0), u_*(x_1)) = \delta(v_*(x_0), v_*(x_1)), \quad \forall x_0, x_1 \in \mathbb{D}.$$

Moreover, the energy density function and the directional energy density functions of  $u_{\sigma_j}$  converge weakly to those of  $v_*$ .

*Proof.* Rescaling if necessary, we can assume (X, d) is a locally CAT(1) manifold. Fix i and let  $x_0, x_1 \in \Omega_i$ . Throughout this proof, k = 0 or k = 1. For  $\sigma_j > 0$  sufficiently small,

 $u(\mathbb{D}_{\sigma_j}) \subset \mathcal{B}$ . By condition (ii), there exists a geodesic  $\gamma_{k,j}$  from  $q_0$  to a point  $\hat{p}_{k,j} \in \partial \mathcal{B}$  containing the point  $u_{\sigma_j,i}(x_k)$ . Set

$$l_{k,j} := d_{\sigma_j}(u_{\sigma_j,i}(x_k), q_0).$$

Thus,

$$v_{\sigma_j,i}(x_k) := \log_{\sigma_i} \circ u_{\sigma_j,i}(x_k) = (l_{k,j}, [\gamma_{k,j}]).$$

By condition (i),  $\partial \mathcal{B}$  is compact. Thus, by taking a subsequence if necessary, we can assume (3.9)  $\hat{p}_{k,j}$  converges to  $\hat{p}_k$  as  $j \to \infty$ .

Let  $\gamma_k$  be the geodesic from  $q_0$  to  $\hat{p}_k$ . For each j, consider  $\gamma_k$  as a geodesic in  $(X, d_{\sigma_j})$  and let  $p_{k,j}$  be the point on  $\gamma_k$  satisfying

$$d_{\sigma_i}(p_{k,j}, q_0) = l_{k,j}.$$

Since  $(X, d_{\sigma_j})$  is a  $CAT(\mu_{\sigma_j}^2)$  space, we use a comparison triangle in the sphere  $\mathbb{S}^2_{\mu_{\sigma_j}^2}$  with Gauss curvature  $\mu_{\sigma_j}^2$  to define comparison angles. More specifically,  $\widetilde{Z}_{q_0}^{(\mu_{\sigma_j})}(p,q)$  is the angle at  $\tilde{q}_0$  of the comparison triangle  $\Delta \tilde{q}_0 \tilde{p} \tilde{q}$  in the sphere  $\mathbb{S}^2_{\mu_{\sigma_j}^2}$ . By the definition of angles and comparison angles, we have

(3.10) 
$$\Theta([\gamma_k], [\gamma_{k,j}]) \le \widetilde{\angle}_{q_0}^{(\mu_{\sigma_j})}(u_{\sigma_j,i}(x_k), p_{k,j}) \le \widetilde{\angle}_{q_0}^{(\mu_{\sigma_j})}(\hat{p}_{k,j}, \hat{p}_k).$$

From (3.9) and (3.10), we conclude

$$\lim_{\sigma_{i} \to 0} \delta(v_{\sigma_{j},i}(x_{k}), (l_{k,j}, [\gamma_{k}])) = \lim_{\sigma_{j} \to 0} \delta((l_{k,j}, [\gamma_{k,j}]), (l_{k,j}, [\gamma_{k}])) = 0.$$

Furthermore,

$$\lim_{j \to \infty} l_{k,j} = d_*(u_{*,i}(x_k), u_{*,i}(0)) =: l_k,$$

and therefore

$$\lim_{\sigma_j \to 0} \delta(v_{\sigma_j,i}(x_k), (l_k, [\gamma_k])) = \lim_{\sigma_j \to 0} \delta(v_{\sigma_j,i}(x_k), (l_{k,j}, [\gamma_k])) = 0.$$

By the definition of  $v_{*,i}$ , we thus have that

$$v_{*,i}(x_k) = (l_k, [\gamma_k]).$$

From (3.9) and the second inequality in (3.10), we conclude that

$$\lim_{\sigma_j \to 0} d_{\sigma_j}(u_{\sigma_j,i}(x_k), p_{k,j}) = 0.$$

Thus,

$$(3.11) d_*(u_{*,i}(x_0), u_{*,i}(x_1)) = \lim_{\sigma_j \to 0} d_{\sigma_j}(u_{\sigma_j,i}(x_0), u_{\sigma_j,i}(x_1)) = \lim_{\sigma_j \to 0} d_{\sigma_j}(p_{0,j}, p_{1,j}).$$

Since  $p_{0,j} \in \gamma_0$  and  $p_{1,j} \in \gamma_1$ , the definition of angles implies

$$\lim_{\sigma_j \to 0} \widetilde{Z}_{q_0}^{(\mu_{\sigma_j})}(p_{0,j}, p_{1,j}) = \angle(\gamma_0, \gamma_1).$$

Thus,

(3.12) 
$$\lim_{\sigma_j \to 0} d_{\sigma_j}(p_{0,j}, p_{1,j}) = \delta((l_0, [\gamma_0]), (l_1, [\gamma_1])) = \delta(v_{*,i}(x_0), v_{*,i}(x_1)).$$

Combining (3.11), (3.12), we obtain

$$d_*(u_{*,i}(x_0), u_{*,i}(x_1)) = \delta(v_{*,i}(x_0), v_{*,i}(x_1)).$$

In particular, this implies that  $u_{\sigma_j}$  converges locally uniformly in the pullback sense to  $v_*$  and that  $v_*$  is homogeneous.

To complete the proof, consider the metric cone C(X) over X. More precisely, (C(X), D) is an NPC space given by

$$\mathcal{C}(X) = [0, \infty) \times X / \sim$$

where  $\sim$  identifies all points of the form (0,p) as the vertex  $\mathcal{O}$ , along with the distance function D given by

$$D^{2}((\rho_{1}, q_{1}), (\rho_{2}, q_{2})) = \rho_{1}^{2} + \rho_{2}^{2} - 2\rho_{1}\rho_{2}\cos\min\{\pi, d(q_{1}, q_{2})\}.$$

Furthermore, define the rescaled distance function on  $\mathcal{C}(X)$  by

$$D_{\sigma} = \mu_{\sigma}^{-1} D.$$

Define the embedding of X into  $\mathcal{C}(X)$  by

$$\iota: X \hookrightarrow \mathcal{C}(X), \quad \iota(q) = (1, q).$$

The *lift* of the blow up map to C(X) is the map defined by

$$\bar{u}_{\sigma_j}: \mathbb{D} \to (\mathcal{C}(X), D_{\sigma_j}), \quad \bar{u}_{\sigma_j} = \iota \circ u_{\sigma_j}.$$

The lift  $\bar{u}_{\sigma_j}$  has the same energy density and directional energy density functions as those of  $u_{\sigma_j}$  and is within  $\epsilon_j \to 0$  of minimizing. Furthermore, the sequence  $\{\bar{u}_{\sigma_j}\}$  converges locally uniformly in the pullback sense to  $u_*$ , and hence to  $v_*$  (cf. [4, proof of Proposition 7.5]). Therefore, by [26, Theorem 3.11],  $v_*$  is harmonic and the energy density function and directional energy density functions of  $u_{\sigma_j}: \mathbb{D} \to (X, d_{\sigma_j})$  converge to those of  $v_*$ .

### 4. Non-degenerate harmonic maps

We will now restrict to harmonic maps which satisfy a non-degeneracy condition. Non-degeneracy generalizes the notion of a full rank differentiable map between manifolds. We will show that non-degenerate harmonic maps between surfaces have enough structure to develop a degree theory and exploit some classical results.

This section contains the proofs of Theorem 1.1 (end of Subsection 4.1) and Theorem 1.2 (end of Subsection 4.2).

**Definition 4.1.** We say a harmonic map  $u: \Sigma \to (S, d)$  from a Riemann surface into a locally  $CAT(\kappa)$  manifold is non-degenerate if any tangent map  $u_*: \mathbb{D} \to (X_*, d_*)$  of u at  $p_0 \in \Sigma$  has the property that

(4.1) 
$$d_*(u_*(z), u_*(0)) > 0, \ \forall z \in \mathbb{D} \setminus \{0\}.$$

# 4.1. Non-degenerate harmonic maps between surfaces are branched covers.

**Definition 4.2.** The branch set  $\mathcal{B}_u$  of a harmonic map  $u: \Sigma \to (S, d)$  is the set of points p such that u is not a local homeomorphism at p.

We will show that non-degenerate harmonic maps are open and discrete. Väisälä [43] demonstrated the set  $\mathcal{B}_u$  is of topological co-dimension 2 for open and discrete maps between topological manifolds. Using the order function, we can then improve this assertion to show that  $\mathcal{B}_u$  is a discrete set.

Discreteness follows immediately from the definition of non-degeneracy and the existence of a tangent map. (Note the discreteness result does not require that the target be a manifold.)

**Lemma 4.3.** If  $u: \Sigma \to (X, d)$  is a non-degenerate harmonic map from a Riemann surface into a locally  $CAT(\kappa)$  space, then u is discrete.

Proof. On the contrary, assume that u is not discrete; i.e. there exist  $q_0 \in X$  and a sequence  $p_j \to p_0$  such that  $u(p_j) = q_0$ . Let  $\mathbb{D}$  be a holomorphic disk centered at  $p_0$  and let  $z_j \in \mathbb{D}$  correspond to  $p_j$ . Let  $\sigma_j = 2|z_j|$  and consider a sequence of blow up maps  $\{u_{\sigma_j}\}$  of  $u\big|_{\mathbb{D}}$ . By taking a subsequence if necessary, we can assume that the sequence  $\{u_{\sigma_j}\}$  converges locally uniformly in the pullback sense to a tangent map  $u_*$  and that the sequence  $\{\zeta_j = \frac{z_j}{\sigma_j}\} \subset \partial \mathbb{D}_{\frac{1}{2}}(0)$  converges to  $\zeta_0 \in \partial \mathbb{D}_{\frac{1}{2}}(0)$ . Since  $u_{\sigma_j}(\zeta_j) = u_{\sigma_j}(0)$ , we have  $u_*(\zeta_0) = u_*(0)$ . This contradicts the fact that u is a non-degenerate map.

To prove openness of u, we exploit the structure of the Alexandrov tangent cone  $T_qS$  for a point q in a  $CAT(\kappa)$  surface (S,d). Indeed, Proposition 2.5 asserts that  $T_qS$  is a cone over a finite length closed curve. Thus there exists an orientation preserving (with respect to the orientation of  $T_qS$  inherited from S) isometry

$$(4.2) I_q: T_qS \to (\mathbb{C}, ds^2)$$

where

(4.3) 
$$ds^{2} = \beta^{2}|z|^{2(\beta-1)}|dz|^{2}$$

for a suitable constant  $\beta \geq 1$ . The constant  $\beta$  is determined by the cone angle of  $T_qS$ ; indeed, the curvature measure of  $(\mathbb{C}, ds^2)$  is  $2\pi(1-\beta)\delta_0$  where  $\delta_0$  is a Dirac measure at the origin.

Kuwert [27, Lemma 3] classified all homogeneous, harmonic maps from  $\mathbb{C}$  to  $(\mathbb{C}, ds^2)$ . Accordingly, we have the following:

• If an Alexandrov tangent map  $v_*$  satisfies (4.1), then up to orientation and rotation (and with  $\alpha = \operatorname{ord}^u(p)$ )

(4.4) 
$$I_{u(p)} \circ v_*(z) = \begin{cases} cz^{\alpha/\beta} & \text{if } k = 0, \\ c\left(\frac{1}{2}\left(k^{-\frac{1}{2}}z^{\alpha} + k^{\frac{1}{2}}\bar{z}^{\alpha}\right)\right)^{1/\beta} & \text{if } 0 < k < 1. \end{cases}$$
 with

$$(4.5) \alpha/\beta \in \mathbb{N}.$$

• If  $v_*$  does not satisfy (4.1), then there exist a finite number of disjoint sectors of  $\mathbb{D}$  such that  $v_*$  maps each sector to a geodesic ray. In this case, k = 1.

Here  $k = k_u(p) \in [0, 1]$  is the *stretch* of u at p and the constant c in (4.4) is determined by the normalization (cf. (3.4) and  $W^{1,2}$ -trace theory [25, Theorem 1.12.2])

(4.6) 
$$\int_{\partial \mathbb{D}} \delta^2(v_*, \mathcal{O}) d\theta = 1.$$

Remark 4.4. If any tangent map of u at p satisfies (4.1), then all tangent maps of u at p satisfy (4.1). To see this, first note that Lemma 3.8 implies that a tangent map  $u_*$  satisfies (4.1) if and only if its corresponding Alexandrov tangent map  $v_*$  does. From the characterization given above,  $v_*$  satisfies (4.1) if and only if  $k_u(p) \neq 1$ . Finally, the value of k is independent of the choice of tangent map (cf. [27, Lemma 5]); that is the stretch function is a well defined function  $k_u: \Sigma \to [0,1]$ . Therefore, as soon as one tangent map  $u_*$  satisfies (4.1),  $k_u(p) \neq 1$  and thus all tangent maps satisfy (4.1).

**Proposition 4.5.** A non-degenerate harmonic map  $u : \Sigma \to (S, d)$  from a Riemann surface into a  $CAT(\kappa)$  surface is an open map.

Proof. Let  $\mathcal{U} \subset \Sigma$  be an open set,  $p_0 \in \mathcal{U}$ ,  $q_0 = u(p_0)$  and  $\mathbb{D} \subset \mathcal{U}$  be a holomorphic disk centered at  $p_0$ . Let  $\{u_{\sigma_j}\}$  be a sequence of blow up maps of  $u|_{\mathbb{D}}$  converging locally uniformly in the pullback sense to  $v_* : \mathbb{D} \to T_{q_0}S$ . By (4.4),  $v_*(\mathbb{D}_{\frac{1}{2}})$  is an open set and hence  $\mathcal{B}_{\rho}^{T_{q_0}S}(\mathcal{O}) \subset v_*(\mathbb{D}_{\frac{1}{2}})$  for some  $\rho > 0$ . Thus, for sufficiently small  $\sigma_j$ , the geodesic disk  $\mathcal{B}_{\rho}^{(S,d_{\sigma_j})}(q_0)$  is contained in  $u_{\sigma_j}(\mathbb{D})$ . Equivalently,  $\mathcal{B}_{\sigma_j\rho}^{(S,d)}(q_0) \subset u(\mathbb{D}_{\sigma_j}) \subset u(\mathcal{U})$ .

The proof that u is a branched cover requires that points with high order are discrete. The proof of this discreteness does not require the Alexandrov tangent map be harmonic, and is thus true for a larger class of maps. In the following lemma, we do not require that u be non-degenerate or (X, d) be a manifold.

**Lemma 4.6.** Let  $u: \Sigma \to (X, d)$  be a harmonic map from a Riemann surface into a locally  $CAT(\kappa)$  space. Then  $\mathcal{A} := \{z \in \Sigma : \alpha_u(z) = \operatorname{ord}^u(z) \geq 2\}$  is a discrete set.

Proof. Suppose there exists  $\{p_j\} \subset \mathcal{A}$  such that  $p_j \to p_0$ . Let  $\mathbb{D}$  be a holomorphic disk centered at  $p_0$  and let  $z_j \in \mathbb{D}$  correspond to  $p_j$ . Let  $\sigma_j = 2|z_j|$  and consider a sequence of blow up maps  $\{u_{\sigma_j}\}$  of u at 0. By taking a subsequence if necessary, we can assume that the sequence  $\{u_{\sigma_j}\}$  converges locally uniformly in the pullback sense to a tangent map  $u_*$  and that the sequence  $\{\zeta_j = \frac{z_j}{\sigma_j}\} \subset \partial \mathbb{D}_{\frac{1}{2}}(0)$  converges to  $\zeta_0 \in \partial \mathbb{D}_{\frac{1}{2}}(0)$ . By Lemmas A.1 and A.4,  $\limsup_{j\to\infty} \alpha_{u_{\sigma_j}}(\zeta_j) \leq \alpha_{u_*}(\zeta_0) = 1$ . Thus, we have that  $\alpha_{u_{\sigma_j}}(\zeta_j) < 2$  for j sufficiently large which in turn implies  $\alpha_u(z_j) < 2$ , a contradiction.

**Theorem 4.7.** If  $u: \Sigma \to (S, d)$  is a proper, non-degenerate harmonic map from a Riemann surface to an oriented locally  $CAT(\kappa)$  surface, then u is a branched cover.

*Proof.* Let  $\deg_K f$  be as defined in [14, Definition VIII.4.2]. Since u is a discrete map, for any  $p_0 \in \Sigma$  with  $q_0 = u(p_0)$ , there exists a connected, simply connected neighborhood U of  $p_0$  such that

$$\{p_0\} = U \cap u^{-1}(q_0).$$

Thus,  $\deg_{q_0} u|_V = \deg_{q_0} u|_U$  for any neighborhood  $V \subset U$  of  $p_0$ . Since u is an open map,

$$\mathbb{Z} = H_1(\mathbb{S}^1) = H_2(\bar{\mathbb{D}}, \partial \mathbb{D}) = H_2(U, U \setminus p_0) = H_2(u(U), u(U) \setminus q_0)$$

and

$$\deg_{q_0} u|_U = (u|_U)_{\#}(1)$$

where

$$(u|_U)_\#: H_2(U, U \backslash p_0) \to H_2(u(U), u(U) \backslash q_0)$$

is the induced homomorphism of the local homology groups. Thus,  $\deg_{q_0} u|_U$  is the (signed) winding number of the curve  $u \circ \gamma$  around  $q_0$  where  $\gamma$  is a positively oriented parameterization of  $\partial \mathbb{D}$  where  $\mathbb{D}$  is a conformal disk centered at  $p_0$  compactly contained in U. We denote

$$w_{\#}(p_0) := \deg_{q_0} u|_U = (u|_U)_{\#}(1).$$

The integer  $w_{\#}(p_0)$  satisfies the following properties:

- (i)  $|w_{\#}(p_0)|$  is equal to  $\alpha/\beta$  in (4.5) for every tangent map of u at  $p_0$ . Indeed, for  $\sigma > 0$  sufficiently small, the map  $\log_{q_0} : u_{\sigma}(\mathbb{D}) \to \log_{q_0}(u_{\sigma}(\mathbb{D})) \subset T_{q_0}S$  is a homotopy equivalence with  $\log_{q_0}^{-1}(\mathcal{O}) = \{q_0\}$  (cf. Subsection 3.2). Thus, the claim follows from the uniform convergence of  $v_{\sigma_i} = \log_{q_0} \circ u_{\sigma_i}$  to  $v_*$  as asserted in Lemma 3.8.
- (ii) Either  $w_{\#}(p) = 1$  for all  $p \in \Sigma \backslash \mathcal{B}_u$  or  $w_{\#}(p) = -1$  for all  $p \in \Sigma \backslash \mathcal{B}_u$ . To see this, first note that  $|w_{\#}(p)| = 1$  for all  $p \in \Sigma \backslash \mathcal{B}_u$  since u is a local homeomorphism on  $\Sigma \backslash \mathcal{B}_u$ . But since  $\Sigma \backslash \mathcal{B}_u$  is connected (because dim  $\mathcal{B}_u = 0$  by [43, Theorem 5.4]), we conclude that either  $w_{\#}(p) = 1$  for all  $p \in \Sigma \backslash \mathcal{B}_u$  or  $w_{\#}(p) = -1$  for all  $p \in \Sigma \backslash \mathcal{B}_u$ .
- (iii) Either  $w_{\#}(p) > 0$  for all  $p_0 \in \Sigma$  or  $w_{\#}(p) < 0$  for all  $p_0 \in \Sigma$ . To see this, assume without the loss of generality that  $w_{\#}(p) = 1$  for all  $p \in \Sigma \setminus \mathcal{B}_u$ . For  $p_0 \in \mathcal{B}_u$ , we need to show  $w_{\#}(p_0) > 0$ . Let U be as in (4.7). With  $q_0 = u(p_0)$ , let

(4.8) 
$$B := \mathcal{B}_{\epsilon}(q_0)$$
 be such that  $\bar{B} \subset u(U)$  and  $V := u^{-1}(B)$ .

By [14, Proposition VIII.4.4],  $\deg_{\bar{B}} u|_V = \deg_q u|_V$  for all  $q \in \bar{B}$ . In particular,

$$w_{\#}(p_0) = \deg_{q_0} u|_V = \deg_q u|_V, \ \forall q \in B.$$

Since  $u^{-1}(B)$  is an open set and  $\dim(\mathcal{B}_u) = 0$  (cf. [43, Theorem 5.4]),  $B \setminus u(\mathcal{B}_u) \neq \emptyset$ . For  $q \in B \setminus u(\mathcal{B}_u)$ , let  $(u|_U)^{-1}(q) := \{p_1, \ldots, p_k\}$  and  $\{V_i\}_{i=1}^k$  be an open cover of V such that each  $V_i$  contains exactly one element  $p_i$  of  $u^{-1}(q)$ . Thus, [14, Proposition VIII.4.7] implies

(4.9) 
$$w_{\#}(p_0) = \deg_q u|_V = \sum_{i=1}^k \deg_q u|_{V_i} = \sum_{i=1}^k w_{\#}(p_i).$$

Since  $q \in B \setminus u(\mathcal{B}_u)$ , we have that  $w_{\#}(p_i) = 1$  and thus  $w_{\#}(p_0) = k > 0$ .

To show that u is a branched cover, we need to show that  $\mathcal{B}_u$  is a discrete set and u is an even covering away from  $\mathcal{B}_u$ . By [14, Proposition and Definition VIII.4.5], u is an even covering on  $\Sigma \setminus \mathcal{B}_u$ .

Since  $\mathcal{A} = \{z \in \Sigma : \operatorname{ord}^u(z) \geq 2\}$  is a discrete set by Lemma 4.6, to prove  $\mathcal{B}_u$  is discrete it is sufficient to show that

$$(4.10) \mathcal{B}_u \subset \mathcal{D} \subset \mathcal{A}$$

where

$$\mathcal{D} = \{ p \in \Sigma : |w_{\#}(p)| \neq 1 \}.$$

To show the inclusion on the right in (4.10), let  $p_0 \in \mathcal{D}$ . This implies that  $\alpha/\beta \geq 2$  in (4.5) for every tangent map of u at  $p_0$ . Hence,  $\alpha = \operatorname{ord}^{v_*}(0) = \operatorname{ord}^{u}(p_0) \geq 2$ , and  $p_0 \in \mathcal{A}$ .

\_\_\_

To show the inclusion on the left in (4.10), we show  $p_0 \notin \mathcal{D} \Rightarrow p_0 \notin \mathcal{B}_u$ ; in other words, u is a local homeomorphism at  $p_0 \in \Sigma \setminus \mathcal{D}$ . Assume without the loss of generality that  $\deg_{q_0} u|_{U} = 1$  instead of -1, where U is as in (4.7). Following (4.9),

$$1 = \deg_{q_0} u|_V = \sum_{i=1}^k w_\#(p_i) \text{ where } (u|_V)^{-1}(q) := \{p_1, \dots, p_k\}$$

for any  $q \in B = \mathcal{B}_{\epsilon}(q_0)$  where B and  $V = u^{-1}(B)$  are as in (4.8). Since, by (iii),  $w_{\#}(p)$  has the same sign for all  $p \in V$ , the set  $(u|_V)^{-1}(q)$  must consist of exactly one element for each  $q \in B$ ; i.e.  $u|_V : V \to B$  is injective. Thus  $u|_V : V \to B$  is an open, continuous bijection, and hence a homeomorphism.

**Corollary 4.8.** Suppose  $u: \Sigma \to (S,d)$  is a proper, non-degenerate harmonic map from a Riemann surface to an oriented locally  $CAT(\kappa)$  surface. If u is degree 1, then u is a homeomorphism.

*Proof.* By [14, Proposition VIII.4.5 and Proposition VIII.4.7],

$$1 = \deg(u) = \sum_{\{p \in \Sigma : u(p) = q\}} w_{\#}(p).$$

Since  $w_{\#}(p)$  has the same sign for all  $p \in \Sigma$ ,  $\{p : u(p) = q\}$  must consist of exactly one element for each  $q \in S$ . Thus u is an open, continuous bijection, and hence a homeomorphism.  $\square$ 

PROOF OF THEOREM 1.1. Theorem 4.7 asserts that such a map is a branched cover. If this map is degree 1, then Corollary 4.8 implies that it is a homeomorphism.  $\Box$ 

4.2. Non-degenerate maps and H(k)-quasiconformality. Recall the geometric notion of quasiconformality (cf. [20]).

**Definition 4.9.** For a homeomorphism  $u:(X,d_X)\to (Y,d_Y)$  between metric spaces, define  $H_u:X\to [1,\infty)$  by setting

$$H_u(p) := \limsup_{r \to 0} \frac{L_u(p, r)}{l_u(p, r)}$$

where

$$L_u(p,r) = \max_{d_X(p,q)=r} d_Y(u(p), u(q)),$$
  
 $l_u(p,r) = \min_{d_X(p,q)=r} d_Y(u(p), u(q)).$ 

A map  $u:(X,d_X)\to (Y,d_Y)$  between metric spaces is said to be H-quasiconformal if u is a homeomorphism and  $H_u(p)\leq H$  for all  $p\in X$ .

We let  $\Sigma$  denote a Riemann surface and fix a conformal metric g on  $\Sigma$  of constant curvature -1, 0, or 1. Let  $u : \Sigma \to (S, d)$  be a non-degenerate harmonic homeomorphism from  $\Sigma$  to a locally  $CAT(\kappa)$  surface. In constructing the tangent map we choose normal coordinates

with respect to this metric g. The tangent map structure of (4.4) and the definition of H imply that for each  $p \in \Sigma$ , if  $\alpha = \operatorname{ord}^{u}(p)$  and  $k = k_{u}(p)$ , then

(4.11) 
$$H_{v_*}(0) := \begin{cases} 1, & \text{if } k = 0, \\ \left(\frac{k^{-\frac{1}{2} + k^{\frac{1}{2}}}}{k^{-\frac{1}{2} - k^{\frac{1}{2}}}}\right)^{\frac{1}{\alpha}}, & \text{if } k \in (0, 1). \end{cases}$$

Note that  $\alpha$  and k are independent of the choice of tangent map and thus this structure holds for all (Alexandrov) tangent maps of u at p.

**Lemma 4.10.** Let  $u: \Sigma \to (S,d)$  be a non-degenerate harmonic homeomorphism from a Riemann surface to a locally  $CAT(\kappa)$  surface. Then, for every  $p_0 \in \Sigma$ ,

$$H_u(p_0) = H_{v_*}(0) = H_{u^{-1}}(u(p_0))$$

where  $v_*$  is a tangent map of u at  $p_0$ .

*Proof.* Let  $p_0 \in \Sigma$ . Use normal coordinates with respect to the Riemannian metric g to identify a neighborhood of  $p_0$  with a disk  $\mathbb{D}$  and  $p_0$  with the origin  $0 \in \mathbb{D}$ . Let  $r_i \to 0$  be such that

$$H_u(0) = \lim_{i \to \infty} \frac{L_u(0, r_i)}{l_u(0, r_i)}.$$

Let  $z'_i, \zeta'_i \in \mathbb{D}$  be points such that

$$|z_i'| = r_i = |\zeta_i'|, L_u(0, r_i) = d(u(0), u(z_i'))$$
 and  $l_u(0, r_i) = d(u(0), u(\zeta_i')).$ 

Let  $\sigma_i = 2r_i$ ,  $z_i = \frac{z_i'}{\sigma_i}$  and  $\zeta_i = \frac{\zeta_i'}{\sigma_i}$ . Note that  $|z_i| = |\zeta_i| = \frac{r_i}{\sigma_i} = \frac{1}{2}$ . Taking a subsequence if necessary, we can assume  $z_i \to z_\infty$ ,  $\zeta_i \to \zeta_\infty$  and  $u_{\sigma_i}$  converges locally uniformly to  $v_*$ . Then

$$H_u(0) = \lim_{i \to \infty} \frac{L_u(0, r_i)}{l_u(0, r_i)} = \frac{\delta(v_*(0), v_*(z_\infty))}{\delta(v_*(0), v_*(\zeta_\infty))} \le H_{v_*}(0).$$

Next, note that by homogeneity

$$H_{v_*}(0) = \frac{L_{v_*}(0, \frac{1}{2})}{l_{v_*}(0, \frac{1}{2})}.$$

Now let  $\hat{z}_{\infty}, \hat{\zeta}_{\infty} \in \mathbb{D}$  with  $|\hat{z}_{\infty}| = |\hat{\zeta}_{\infty}| = \frac{1}{2}$  such that

$$H_{v_*}(0) = \frac{\delta(v_*(0), v_*(\hat{z}_{\infty}))}{\delta(v_*(0), v_*(\hat{\zeta}_{\infty}))} = \lim_{\sigma_i \to 0} \frac{d_{\sigma_i}(u(0), u(\hat{z}_{\infty}))}{d_{\sigma_i}(u(0), u(\hat{\zeta}_{\infty}))} = \lim_{\sigma_i \to 0} \frac{d(u(0), u(\sigma_i \hat{z}_{\infty}))}{d(u(0), u(\sigma_i \hat{\zeta}_{\infty}))} \le H_u(0).$$

Thus,  $H_u(0) = H_{v_*}(0)$ .

We will next show that for  $P_0 := u(p_0)$ ,  $H_{u^{-1}}(P_0) = H_{v_*}(0)$ . Let  $\rho_i \to 0$ ,  $P_i, Q_i \in S$  such that

$$H_{u^{-1}}(P_0) = \limsup_{\rho \to 0} \frac{L_{u^{-1}}(P_0, \rho)}{l_{u^{-1}}(P_0, \rho)} = \lim_{i \to \infty} \frac{L_{u^{-1}}(P_0, \rho_i)}{l_{u^{-1}}(P_0, \rho_i)},$$

$$d(P_0, P_i) = \rho_i \text{ and } L_{u^{-1}}(P_0, \rho_i) = d_g(u^{-1}(P_0), u^{-1}(P_i)),$$

$$d(P_0, Q_i) = \rho_i \text{ and } l_{u^{-1}}(P_0, \rho_i) = d_g(u^{-1}(P_0), u^{-1}(Q_i)).$$

Use normal coordinates centered at  $u^{-1}(P_0)$  with respect to the Riemannian metric g to identify a neighborhood of  $u^{-1}(P_0)$  with a disk  $\mathbb{D}$  and  $u^{-1}(P_0)$  with the origin  $0 \in \mathbb{D}$ . Assuming  $\rho_i$  is sufficiently small, let  $z_i', \zeta_i' \in \mathbb{D}$  be such that

$$z'_i = u^{-1}(P_i)$$
 and  $\zeta'_i = u^{-1}(Q_i)$ 

which implies

$$H_{u^{-1}}(P_0) = \lim_{i \to \infty} \frac{|z_i'|}{|\zeta_i'|}.$$

Let  $\sigma_i = 2|z_i'|$ ,  $z_i = \frac{z_i'}{\sigma_i}$ ,  $\zeta_i = \frac{\zeta_i'}{\sigma_i}$ . Thus,  $|z_i| = \frac{1}{2}$  and  $|\zeta_i| \leq \frac{1}{2}$ . There exists a subsequence of blow up maps  $u_{\sigma_i}$ , which we denote again by  $u_{\sigma_i}$ , that converge locally uniformly (after rotation if necessary) to a tangent map  $v_*$  which again satisfies (4.4) and (4.11).

We can assume  $z_i \to z_\infty$ ,  $\zeta_i \to \zeta_\infty$  and

$$\arg z_{\infty} = \frac{\pi}{2\alpha}$$
 and  $\arg \zeta_{\infty} = 0$ .

Moreover,  $|z_{\infty}| = \frac{1}{2}$  and for  $\delta$  induced by the metric  $\beta^2 |z|^{2(\beta-1)} |dz|^2$ ,

$$\begin{split} \lim_{i \to \infty} d_{\sigma_i}(P_0, P_i) &= \delta(0, v_*(z_\infty)) \\ &= \int_0^{|v_*(z_\infty)|} \beta t^{\beta - 1} dt \\ &= |v_*(z_\infty)|^{\beta} \\ &= \begin{cases} \frac{c^\beta}{2^\alpha}, & \text{if } k = 0, \\ \frac{c^\beta}{2} \left(k^{-\frac{1}{2}} \left(\frac{1}{2}\right)^\alpha - k^{\frac{1}{2}} \left(\frac{1}{2}\right)^\alpha\right), & \text{if } k \in (0, 1) \end{cases} \\ &= \begin{cases} \frac{c^\beta}{2^\alpha}, & \text{if } k = 0, \\ \frac{c^\beta}{2^{\alpha + 1}} \left(k^{-\frac{1}{2}} - k^{\frac{1}{2}}\right), & \text{if } k \in (0, 1). \end{cases} \end{split}$$

Similarly, with  $|\zeta_{\infty}| =: r \leq \frac{1}{2}$ , we obtain

$$\lim_{i \to \infty} d_{\sigma_i}(P_0, P_i) = \lim_{i \to \infty} d_{\sigma_i}(P_0, Q_i) = \begin{cases} \frac{c^{\beta}}{r^{\alpha}}, & \text{if } k = 0\\ \frac{c^{\beta}}{2} r^{\alpha} \left(k^{-\frac{1}{2}} + k^{\frac{1}{2}}\right), & \text{if } k \in (0, 1). \end{cases}$$

Combining the above two equalities and solving for r, we obtain

$$H_{u^{-1}}(P_0) = \lim_{i \to \infty} \frac{|z_i|}{|\zeta_i|} = \frac{|z_\infty|}{|\zeta_\infty|} = \frac{1}{2r} = \begin{cases} 1, & \text{if } k = 0\\ \left(\frac{k^{-\frac{1}{2} + k^{\frac{1}{2}}}}{k^{-\frac{1}{2} - k^{\frac{1}{2}}}}\right)^{\frac{1}{\alpha}}, & \text{if } k \in (0, 1) \end{cases} = H_{v_*}(0).$$

**Proposition 4.11.** Let  $u: \Sigma \to (S, d)$  be a non-degenerate harmonic homeomorphism from a Riemann surface (with the fixed constant curvature metric g chosen as before) to a locally  $CAT(\kappa)$  surface and let  $k_u(p)$  denote the stretch of u at p (cf. Remark 4.4). Then u and  $u^{-1}$  are both H(k)-quasiconformal in the metric space sense with

(4.12) 
$$H(k) := \begin{cases} 1, & \text{if } k = 0, \\ \frac{k^{-\frac{1}{2}} + k^{\frac{1}{2}}}{k^{-\frac{1}{2}} - k^{\frac{1}{2}}}, & \text{if } k \in (0, 1) \end{cases}$$

if and only if  $k := \sup\{k_u(p) : p \in \Sigma\} \in [0, 1)$ .

*Proof.* By Lemma 4.10 and (4.11), for each  $p \in \Sigma$ , if  $k_u(p) \in [0,1)$  then with  $\alpha = \operatorname{ord}^u(p)$ 

$$H_u(p) = H_{u^{-1}}(u(p)) = \begin{cases} 1, & \text{if } k_u(p) = 0, \\ \left(\frac{k_u(p)^{-\frac{1}{2}} + k_u(p)^{\frac{1}{2}}}{k_u(p)^{-\frac{1}{2}} - k_u(p)^{\frac{1}{2}}}\right)^{\frac{1}{\alpha}}, & \text{if } k_u(p) \in (0, 1). \end{cases}$$

Let  $k := \sup\{k_u(p) : p \in \Sigma\}$ . If  $k \in [0,1)$  then since  $\alpha = \operatorname{ord}^u(p) \ge 1$  for all  $p \in \Sigma$ , we immediately conclude the result with  $H_k$  as in (4.12).

On the other hand, if k=1 then there exist  $p_i \in \Sigma$  such that  $H_u(p_i) \to \infty$  and thus u cannot be H-quasiconformal for any H.

**Lemma 4.12.** A non-trivial almost conformal harmonic map  $u: \Sigma \to (S,d)$  from a Riemann surface to a locally  $CAT(\kappa)$  surface is non-degenerate. Indeed, an Alexandrov tangent map  $v_*$  of u at  $p_0 \in \Sigma$  is of the form  $I_{u(p_0)} \circ v_* = \frac{z^{\alpha/\beta}}{\sqrt{2\pi}}$  with  $\frac{\alpha}{\beta} \in \mathbb{N}$  where  $I_{u(p_0)}$  is as in (4.2),  $\alpha = ord^u(p_0)$  and  $\beta$  is as in (4.3).

Proof. Let  $p_0 \in \Sigma$  and  $u_{\sigma_j}$  be the sequence of blow up maps that converges locally uniformly to  $v_*: \mathbb{D} \to T_{u(p_0)}S$  (cf. Lemma 3.8). Then the Hopf differentials  $\Phi_{u_{\sigma_j}}$  converge to  $\Phi_{v_*}$ . Since u is almost conformal, so is  $u_{\sigma_j}$  and thus  $\Phi_{u_{\sigma_j}} \equiv 0$ . Since the directional energy densities of  $u_{\sigma_j}$  converge weakly to those of  $v_*$ ,  $\Phi_{v_*} \equiv 0$ , and hence  $v_*$  is an almost conformal map; i.e.  $I_{u(p_0)} \circ v_* = cz^{\alpha/\beta}$  (cf. (4.4)). By (4.6),  $c = \frac{1}{\sqrt{2\pi}}$ .

PROOF OF THEOREM 1.2. Let  $u: \mathbb{S}^2 \to (S, d)$  be a non-trivial harmonic map from the standard sphere to a locally  $CAT(\kappa)$  sphere. Then u is almost conformal by Lemma 2.14 which in turn implies u is non-degenerate by Lemma 4.12. It follows from Theorem 1.1 that u is a branched cover, and if the degree of u is 1 then u is a homeomorphism. The structure of  $v_*$  at every point of  $\mathbb{S}^2$  given by Lemma 4.12 implies that k=0 for all  $p \in \mathbb{S}^2$ . Thus, the 1-quasiconformal assertion follows from Proposition 4.11.

# 5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. First, in Subsection 5.1 we use the structure of an almost conformal Alexandrov tangent map  $v_*$  given in Lemma 4.12 and the weak differential inequalities satisfied by the conformal factor  $\lambda_u$  given in Theorem 2.17 to prove the uniqueness statement in Theorem 1.3. In Subsection 5.2, we use the approximate metric differential and its structure for finite energy maps given in Lemma 2.25 coupled with the coarea formula to relate the Hausdorff measure of the image of a map to its total energy. Finally, in Subsection 5.3 we prove the main theorem.

5.1. Uniqueness of almost conformal harmonic homeomorphisms. The goal of this subsection is to prove a uniqueness statement for an almost conformal harmonic homeomorphism (cf. Proposition 5.7). We start with some preliminary results that rely heavily on Theorem 2.17 (cf. [32]) and the representation of Alexandrov tangent maps given in Lemma 4.12.

**Lemma 5.1.** If  $u: \Sigma \to (S,d)$  is an almost conformal harmonic map from a Riemann surface into a locally  $CAT(\kappa)$  space and  $\mathbb{D}$  is a holomorphic disk with conformal coordinates z = x + iy centered at  $p \in \Sigma$ , then there exists an  $L^1$ -representative  $\tilde{\lambda}_u$  of the conformal factor  $\lambda_u$  such that

$$\lim_{\sigma \to 0} \frac{1}{2\pi\sigma} \int_{\partial \mathbb{D}_{\sigma}(z_0)} \lambda_u \, d\mathcal{H}^1 = \lim_{\sigma \to 0} \frac{1}{\pi\sigma^2} \int_{\mathbb{D}_{\sigma}(z_0)} \lambda_u \, dx dy = \tilde{\lambda}_u(z_0), \quad \forall z_0 \in \mathbb{D}$$

where  $\mathbb{D}_{\sigma}(z_0) = \{z \in \mathbb{D} : |z - z_0| < \sigma\}.$ 

*Proof.*  $\lambda_u$  satisfies the weak differential inequality  $\Delta \lambda \geq -2\kappa \lambda^2$  and is locally bounded (cf. Theorem 2.17). Thus, for any  $z_0 \in \mathbb{D}$ ,

$$\lim_{\sigma \to 0} \frac{1}{2\pi\sigma} \int_{\partial \mathbb{D}_{\sigma}(z_0)} \lambda_u \, d\mathcal{H}^1 = \lim_{\sigma \to 0} \frac{1}{\pi\sigma^2} \int_{\mathbb{D}_{\sigma}(z_0)} \lambda_u \, dx dy \text{ exists}$$

by the mean value inequality. By the Lebesgue differentiation theorem, the function  $\tilde{\lambda}_u$  given by this limit at every point of  $\mathbb{D}$  is in the  $L^1$ -class of the conformal factor.

Remark 5.2. We will henceforth denote the  $L^1$ -representative  $\tilde{\lambda}_u$  in Lemma 5.1 by  $\lambda_u$ .

**Lemma 5.3.** For u as in Lemma 5.1, if  $\lambda_u$  is the conformal factor of u in  $\mathbb{D}$  and  $\mathcal{Z}_u = \{z \in \mathbb{D} : \lambda_u(z) = 0\}$ , then  $\dim_{\mathcal{H}}(\mathcal{Z}_u) = 0$ .

*Proof.* The conformal factor  $\lambda_u$  satisfies the weak differential inequality  $\Delta \log \lambda_u \geq -2\kappa \lambda_u$  and is locally bounded (cf. Theorem 2.17). Thus, the result follows from the standard theory of subharmonic functions (cf. [19]).

**Lemma 5.4.** If  $u: \Sigma \to (S,d)$  is an almost conformal harmonic map from a Riemann surface into a locally  $CAT(\kappa)$  surface and  $\mathbb{D}$  is a holomorphic disk in  $\Sigma$ , then  $A := \{z \in \mathbb{D} : \operatorname{ord}^u(z) > 1\}$  is a countable set.

*Proof.* Since  $A = \bigcup_{n \in \mathbb{N}} A_n$  where  $A_n = \{z \in \mathbb{D} : \operatorname{ord}^u(z) > 1 + \frac{1}{n}\}$ , it is sufficient to show that  $A_n$  is a discrete set. But this follows immediately from the proof of Lemma 4.6.

**Lemma 5.5.** If  $u: \Sigma \to (S,d)$  is an almost conformal harmonic map from a Riemann surface into a locally  $CAT(\kappa)$  surface and  $\mathbb{D}$  is holomorphic disk in  $\Sigma$ , then

$$\lim_{z \to z_0} \frac{d^2(u(z), u(z_0))}{|z - z_0|^2} = \lambda_u(z_0), \quad \forall z_0 \in \mathbb{D}$$

where  $\lambda_u$  is the conformal factor of u in  $\mathbb{D}$ .

Proof. Let  $z_0 \in \mathbb{D}$  and without loss of generality, assume  $z_0 = 0$ . It is sufficient to show that every sequence  $\frac{d(u(z_i),u(0))}{|z_i|}$  with  $z_i \to 0$  has a subsequence that converges to  $\lambda_u(0)$ . Let  $\sigma_i = 2|z_i|$ . Choose a subsequence  $\sigma_{i'} \to 0$  such that  $\hat{z}_{i'} = \frac{z_{i'}}{\sigma_{i'}} \to \hat{z}_* \in \partial \mathbb{D}_{\frac{1}{2}}$  and the sequence  $\{u_{\sigma_{i'}}\}$  of blow up maps converges locally uniformly in the pullback sense to an Alexandrov tangent map  $v_*$ . By Lemma 4.12,  $v_*$  is identified with the complex-valued function  $I_{u(0)} \circ v_* : \mathbb{C} \to (\mathbb{C}, ds^2)$  given by  $I_{u(0)} \circ v_*(z) = \frac{z^{\alpha/\beta}}{\sqrt{2\pi}}$  where  $\alpha = \operatorname{ord}^u(0)$  and  $ds^2 = \beta^2 |z|^{2(\beta-1)} |dz|^2$ . Thus,

$$\delta^2(v_*(\hat{z}_*), v_*(0)) = \frac{1}{2\pi \cdot 2^{2\alpha}}.$$

By (3.1), (3.3), and Lemma 5.1,

$$(5.1) \qquad \lim_{\sigma \to 0} \frac{\mu_u^2(\sigma)}{\sigma^2} = \lim_{\sigma \to 0} \frac{\int_{\partial \mathbb{D}_{\sigma}} d^2(u, u(0)) d\theta}{\sigma^3} = \lim_{\sigma \to 0} \frac{2 \int_{\mathbb{D}_{\sigma}} \lambda_u \, dx dy}{\alpha \sigma^2} = \frac{2\pi \lambda_u(0)}{\alpha}.$$

Therefore,

$$\lim_{i \to \infty} \frac{d^2(u(z_{i'}), u(0))}{|z_{i'}|^2} = \lim_{i \to \infty} \frac{\mu_u^2(\sigma_{i'})}{\sigma_{i'}^2} \cdot \lim_{i \to \infty} \frac{\sigma_{i'}^2}{|z_{i'}|^2} \cdot d_{\sigma_{i'}}^2 \left( u_{\sigma_{i'}}(\hat{z}_{i'}), u_{\sigma_{i'}}(0) \right)$$

$$= \frac{2\pi\lambda_u(0)}{\alpha} \cdot \frac{\delta^2(v_*(\hat{z}_*), v_*(0))}{|\hat{z}_*|^2} = \frac{\lambda_u(0)}{\alpha} 2^{2(1-\alpha)}.$$

If  $\alpha > 1$ , then from the monotonicity property of energy (cf. [4, Corollary 6.8])

$$\frac{1}{\sigma^{2\alpha}} E^u[\mathbb{D}_{\sigma}] \le e^{\rho^{\gamma}} \frac{1}{\rho^{2\alpha}} E^u[\mathbb{D}_{\rho}], \quad 0 < \sigma < \rho < \sigma_0$$

for some  $\sigma_0$ ,  $\gamma > 0$ . We therefore conclude

$$\lambda_u(0) = \lim_{\sigma \to 0} \frac{1}{\pi \sigma^2} \int_{\mathbb{D}_{\sigma}} \lambda_u \, dx dy = C \lim_{\sigma \to 0} \sigma^{2(\alpha - 1)} = 0.$$

Thus, for either  $\alpha = 1$  or  $\alpha > 1$ , we obtain  $\lim_{i \to \infty} \frac{d^2(u(z_{i'}), u(0))}{|z_{i'}|^2} = \lambda_u(0)$ .

When  $\operatorname{ord}^{u}(z_{0}) = 1$ , we get a "lower-Lipschitz bound" near  $z_{0}$  which depends only on the conformal factor.

**Lemma 5.6.** Let  $u: \Sigma \to (S,d)$  be an almost conformal harmonic map from a Riemann surface into a  $CAT(\kappa)$  surface and  $\mathbb{D}$  is holomorphic disk in  $\Sigma$ . Suppose that  $z_0 \in \mathbb{D}$  and  $\operatorname{ord}^u(z_0) = 1$ . Then

$$\lim_{z,\zeta \to z_0} \frac{d^2(u(z), u(\zeta))}{|z - \zeta|^2} = \lambda_u(z_0)$$

where  $\lambda_u$  is the conformal factor of u in  $\mathbb{D}$ .

Proof. Without the loss of generality, assume  $z_0 = 0$ . It is sufficient to show that every sequence  $\frac{d(u(z_i),u(\zeta_i))}{|z_i-\zeta_i|}$  with  $z_i,\zeta_i \to 0$  has a subsequence that converges to  $\lambda_u(0)$ . Let  $\sigma_i = 2\max\{|z_i|,|\zeta_i|\}$ . By relabeling and taking a subsequence if necessary, assume that  $\sigma_i = 2|z_i| \geq 2|\zeta_i|$ . Furthermore, choose a subsequence  $\sigma_{i'} \to 0$  such that  $\hat{z}_{i'} = \frac{z_{i'}}{\sigma_{i'}} \to \hat{z}_* \in \partial \mathbb{D}_{\frac{1}{2}}$ ,  $\hat{\zeta}_{i'} = \frac{\zeta_{i'}}{\sigma_{i'}} \to \hat{\zeta}_* \in \overline{\mathbb{D}_{\frac{1}{2}}}$  and the sequence  $\{u_{\sigma_{i'}}\}$  of blow up maps converges locally uniformly in the pullback sense to an Alexandrov tangent map  $v_*$ . Since  $\operatorname{ord}^u(0) = 1$ , the representation of  $v_*$  given by Lemma 4.12 implies that  $\alpha_u(0) = 1 = \beta(u(0))$  and  $I_{u(0)} \circ v_*(z) = \frac{z}{\sqrt{2\pi}}$ . Moreover the metric on the tangent cone (cf. (4.3)) is given by  $ds^2 = |dz|^2$ . It follows that  $\delta^2(v_*(\hat{z}_*), v_*(\hat{\zeta}_*)) = \frac{|\hat{z}_* - \hat{\zeta}_*|^2}{2\pi}$ . Thus,

$$\lim_{i \to \infty} \frac{d^2(u(z_{i'}), u(\zeta_{i'}))}{|z_{i'} - \zeta_{i'}|^2} = \lim_{i \to \infty} \frac{\mu_u^2(\sigma_{i'})}{\sigma_{i'}^2} \cdot \lim_{i \to \infty} \frac{\sigma_{i'}^2}{|z_{i'} - \zeta_{i'}|^2} \cdot d_{\sigma_{i'}}^2 \left(u_{\sigma_{i'}}(\hat{z}_{i'}), u_{\sigma_{i'}}(\hat{\zeta}_{i'})\right)$$

$$= 2\pi \lambda_u(0) \cdot \frac{\delta^2(v_*(\hat{z}_*), v_*(\hat{\zeta}_*))}{|\hat{z}_* - \hat{\zeta}_*|^2} = \lambda_u(0).$$

**Proposition 5.7** (Uniqueness of almost conformal harmonic homeomorphisms from  $\mathbb{S}^2$ ). An almost conformal harmonic homeomorphism from the standard sphere  $\mathbb{S}^2$  into a locally  $CAT(\kappa)$  sphere is uniquely determined up to a Möbius transformation of  $\mathbb{S}^2$ ; i.e. if  $u, v : \mathbb{S}^2 \to (S, d)$  are almost conformal harmonic homeomorphisms from the standard sphere into a  $CAT(\kappa)$  sphere, then  $u = v \circ M$  where  $M : \mathbb{S}^2 \to \mathbb{S}^2$  is a Möbius transformation.

*Proof.* Let  $\mathbb{D}'$  be a holomorphic disk with conformal coordinates z = x + iy,  $\mathbb{D}$  be a holomorphic disk with conformal coordinates  $\zeta = \xi + i\eta$  and  $v^{-1} \circ u(\mathbb{D}') \subset \mathbb{D}$ . Let  $\lambda_u$  (resp.  $\lambda_v$ ) be the conformal factor of u (resp. v) in  $\mathbb{D}'$  (resp.  $\mathbb{D}$ ). We denote the restriction of  $v^{-1} \circ u$  to  $\mathbb{D}'$  as

$$\hat{u} = v^{-1} \circ u|_{\mathbb{D}'} : \mathbb{D}' \to \mathbb{D}, \quad \hat{u}(x,y) = (\xi(x,y), \eta(x,y)).$$

For  $z_0 \in \mathbb{D}'$ , let  $\zeta_0 = \hat{u}(z_0) = v^{-1} \circ u(z_0)$ . Furthermore, we write  $\zeta = \hat{u}(z) = v^{-1} \circ u(z)$ . Thus,

$$d(v(\zeta), v(\zeta_0)) = d(u(z), u(z_0))$$

and, since  $v^{-1} \circ u$  is a homeomorphism,

$$z \to z_0 \Leftrightarrow \zeta \to \zeta_0$$
.

Assume that  $\lambda_v(\zeta_0) > 0$  and  $\operatorname{ord}^v(\zeta_0) = 1$ . By applying Lemma 5.5,

$$\lim_{z \to z_0} \frac{|\hat{u}(z) - \hat{u}(z_0)|}{|z - z_0|} = \lim_{z \to z_0} \frac{|\hat{u}(z) - \hat{u}(z_0)|}{d(u(z), u(z_0))} \frac{d(u(z), u(z_0))}{|z - z_0|}$$

$$= \lim_{z \to z_0} \frac{|\hat{u}(z) - \hat{u}(z_0)|}{d(u(z), u(z_0))} \lim_{z \to z_0} \frac{d(u(z), u(z_0))}{|z - z_0|}$$

$$= \lim_{\zeta \to \zeta_0} \frac{|\zeta - \zeta_0|}{d(v(\zeta), v(\zeta_0))} \lim_{z \to z_0} \frac{d(u(z), u(z_0))}{|z - z_0|}$$

$$= \sqrt{\frac{\lambda_u(z_0)}{\lambda_v(\zeta_0)}} < \infty.$$
(5.2)

We next prove the following.

CLAIM. 
$$\mathcal{H}^2(u^{-1} \circ v(\mathcal{S}_v)) = 0$$
 where  $\mathcal{S}_v = \{\zeta \in \mathbb{D} : \lambda_v(\zeta) = 0\} \cup \{\zeta \in \mathbb{D} : \operatorname{ord}^v(\zeta) > 1\}.$ 

PROOF OF CLAIM. On the contrary, assume that  $\mathcal{H}^2(u^{-1} \circ v(\mathcal{S}_v)) > 0$ . Since  $\dim_{\mathcal{H}}(\mathcal{S}_u) = 0$  where  $\mathcal{S}_u = \{z \in \mathbb{D}' : \lambda_u(z) = 0\} \cup \{z \in \mathbb{D}' : \operatorname{ord}^u(z) > 1\}$  by Lemma 5.3 and Lemma 5.4, we have that  $\mathcal{H}^2(u^{-1} \circ v(\mathcal{S}_v) \setminus \mathcal{S}_u) > 0$ . Thus, by [15, 2.10.19], there exists a constant C and a point  $z_0 \in u^{-1} \circ v(\mathcal{S}_v) \setminus \mathcal{S}_u$  such that

$$\lim_{r \to 0} \frac{\mathcal{H}^2((u^{-1} \circ v(\mathcal{S}_v) \setminus \mathcal{S}_u) \cap \mathbb{D}_r(z_0))}{r^2} \ge C.$$

By Lemma 5.6 (since  $z_0 \notin S_u$ ) and the above inequality, we can choose r > 0 such that

$$d^{2}(u(z), u(z')) \ge \frac{1}{2}\lambda_{u}(z_{0})|z - z'|^{2}, \quad \forall z, z' \in \mathbb{D}_{r}(z_{0}) \subset \mathbb{D}'$$

and

$$\mathcal{H}^2((u^{-1} \circ v(\mathcal{S}_v) \setminus \mathcal{S}_u) \cap \mathbb{D}_r(z_0)) \ge \frac{Cr^2}{2}.$$

Thus, if  $\mathcal{H}_d^2$  represents the Hausdorff 2-dimensional measure with respect to the distance function d on S, then

$$\mathcal{H}_{d}^{2}((v(\mathcal{S}_{v})\backslash u(\mathcal{S}_{u}))\cap u(\mathbb{D}_{r}(z_{0}))) \geq \frac{1}{2}\lambda_{u}(z_{0})\mathcal{H}^{2}((u^{-1}\circ v(\mathcal{S}_{v})\backslash \mathcal{S}_{u})\cap \mathbb{D}_{r}(z_{0}))$$
$$\geq \frac{Cr^{2}}{4}\lambda_{u}(z_{0})>0.$$

On the other hand, with L the Lipschitz constant of v in  $\mathbb{D}_R(0)$  for some  $R \in (0,1)$  sufficiently large such that  $v^{-1} \circ u(\mathbb{D}_r(z_0)) \subset \mathbb{D}_R(0)$  and the fact that  $\dim_{\mathcal{H}}(\mathcal{S}_v) = 0$  by Lemma 5.3 and Lemma 5.4,

$$\mathcal{H}_d^2((v(\mathcal{S}_v)\setminus u(\mathcal{S}_u))\cap u(\mathbb{D}_r(z_0))) \leq \mathcal{H}_d^2(v(\mathcal{S}_v)\cap u(\mathbb{D}_r(z_0))) \leq L^2\mathcal{H}^2(\mathcal{S}_v\cap v^{-1}\circ u(\mathbb{D}_r(z_0))) = 0.$$
 Thus, we have arrived at a contradiction.

By the above claim, (5.2) holds for a.e.  $z_0 \in \mathbb{D}'$ . By the Radamacher-Stepanoff Theorem (cf. [15, 3.1.9]),  $\hat{u}(x,y) = (\xi(x,y), \eta(x,y))$  is differentiable almost everywhere in  $\mathbb{D}'$  and thus for a.e.  $z_0 \in \mathbb{D}'$ 

$$|d\hat{u}_{z_0}(\vec{v})| = \sqrt{\frac{\lambda_u(z_0)}{\lambda_v(\zeta_0)}}$$
 for every unit vector  $\vec{v}$ .

Since the right hand side of the equality above is independent of the unit vector  $\vec{v}$  and is not zero for a.e.  $z_0 \in \mathbb{D}'$  (c.f. Lemma 5.3), we have shown  $H_{v^{-1} \circ u}(p) = 1$  for a.e.  $p \in \mathbb{S}^2$ . By [16, Theorem 16],  $v^{-1} \circ u$  is a Möbius transformation.

5.2. Area versus energy. Using the coarea formula, we demonstrate that the two dimensional Hausdorff measure of the image of a finite energy map from a disk is always less than or equal to half its energy. Of particular interest in this paper is when equality holds.

**Definition 5.8.** Let  $h: \Sigma \to (S,d)$  be a continuous map. Then h is called monotone if  $h^{-1}(P)$  is connected for every  $P \in S$ .

**Lemma 5.9.** If (X,d) is a complete metric space and  $f: \overline{\mathbb{D}} \to X$  is a finite energy map, then the following hold:

- (a)  $\mathcal{H}^2(f(\mathbb{D})) \leq {}^dE^f/2$ . (b)  $\mathcal{H}^2(f(\mathbb{D})) = {}^dE^f/2 = {}^dA^f$  if f is an almost conformal monotone map (cf. Definition 2.11).
- (c) If  $\mathcal{H}^2(f(\mathbb{D})) = {}^dE^f/2$ , f is monotone, and  $f(\overline{\mathbb{D}}) \subset \mathcal{B}_r(q_0)$  where  $\mathcal{B}_r(q_0)$  is a  $CAT(\kappa)$ surface, then f is an almost conformal, injective, energy minimizing map.

*Proof.* Let  $\{A_n\}$  be the disjoint measurable subsets of  $\mathbb D$  such that  $\mathcal H^2\left(\mathbb D\setminus\bigcup_{n=1}^\infty A_n\right)=0$  and  $d(f(z), f(\zeta)) \leq n|z-\zeta|, \ \forall z, \zeta \in A_n$  (cf. Claim in the proof of Lemma 2.25). Fix n, apply the Kuratowski isometric embedding of X into a Banach space  $l^{\infty}(X)$  of bounded functions on X and then apply the Kirsbraun theorem for Banach spaces to extend the restriction map  $f|_{A_n}: A_n \to X \subset l^{\infty}(X)$  to a Lipschitz map  $\hat{f}_n: \mathbb{C} \to l^{\infty}(X)$ . By [24, Theorem 2],  $MD(\hat{f}_n, z_0) = MD_{ap}(\hat{f}_n, z_0)$  exists for a.e.  $z_0$ . By applying the coarea formula to the Lipschitz map  $\hat{f}_n$  (cf. [24, Theorem 7]), we obtain

$$\int_{X} \#\{\hat{f}_{n}^{-1}(p) \cap A_{n}\} d\mathcal{H}^{2}(p) = \int_{A_{n}} \mathcal{J}_{\hat{f}_{n}}(z) dx dy.$$

Since  $\hat{f}_n = f$  in  $A_n$ , we have  $MD(\hat{f}_n, z) = MD_{ap}(f, z)$  for any density 1 point  $z \in A_n$ . After applying the Lebesgue density theorem,

$$\int_X \#\{f^{-1}(p) \cap A_n\} d\mathcal{H}^2(p) = \int_X \#\{\hat{f}_n^{-1}(p) \cap A_n\} d\mathcal{H}^2(p) = \int_{A_n} \mathcal{J}_f(z) \, dx dy.$$

Summing over  $n = 1, 2, \ldots$ , we obtain

(5.3) 
$$\int_{X} \#\{f^{-1}(p)\}d\mathcal{H}^{2}(p) = \int_{\mathbb{D}} \mathcal{J}_{f}(z) dxdy.$$

Let

$$(5.4) E = \{ z \in \mathbb{D} : \mathcal{J}_f(z) = 0 \}.$$

For a.e.  $z \in \mathbb{D} \setminus E$ ,  $|f_*(\omega)|^2(z) \neq 0$  for a.e.  $\omega \in \mathbb{S}^1$ . Thus,

$$\mathcal{J}_{f}(z) = \left(\frac{1}{2\pi} \int_{\omega \in \mathbb{S}^{1}} |f_{*}(\omega)|^{-2}(z) d\mathcal{H}^{1}(\omega)\right)^{-1} \text{ (by Lemma 2.25)}$$

$$\leq \frac{1}{2\pi} \int_{\omega \in \mathbb{S}^{1}} |f_{*}(\omega)|^{2}(z) d\mathcal{H}^{1}(\omega) \text{ (by Jensen's inequality)}$$

$$= |\nabla f|^{2}(z)/2 \text{ (by (2.4))}.$$

By combining (5.3) and (5.5), we obtain (5.6)

$$\mathcal{H}^{2}(f(\mathbb{D})) \leq \int_{\mathbb{D}} \mathcal{J}_{f}(z) \, dx dy = \int_{\mathbb{D} \setminus E} \mathcal{J}_{f}(z) \, dx dy \leq \frac{1}{2} \int_{\mathbb{D} \setminus E} |\nabla f|^{2} dx dy \leq \frac{1}{2} \int_{\mathbb{D}} |\nabla f|^{2} \, dx dy$$

which proves (a).

Next, assume  $f \in W^{1,2}(\mathbb{D}, X)$  is an almost conformal monotone map. The inner product structure of  $\pi$  and the conformality relation (i.e.  $\pi_{11} = \pi_{22}$  and  $\pi_{12} = 0$ ) implies that at a.e.  $z \in \mathbb{D}$ ,  $|f_*(\omega)|^2(z) = \pi_{11}(z) = |\nabla f|^2(z)/2$  for a.e.  $\omega \in \mathbb{S}^1$ . In the case when  $\mathcal{J}_f(z) \neq 0$  or the case when  $\mathcal{J}_f(z) = 0$ , Lemma 2.25 implies that  $\mathcal{J}_f(z) = |\nabla f|^2(z)/2$  for a.e.  $z \in \mathbb{D}$ . Thus, the right hand side of (5.3) is equal to  ${}^dE^f/2 = {}^dA^f$  (cf. Definition 2.11 and Remark 2.15). This then implies that  $\#\{f^{-1}(p)\} \neq \infty$  for a.e.  $p \in X$  since the left hand side of (5.3) is  $< \infty$ . Since f is monotone, we conclude that  $\#\{f^{-1}(p)\} = 1$  for a.e.  $p \in X \cap f(\mathbb{D})$ . Thus, (5.3) implies (b).

Finally, assume  $\mathcal{H}^2(f(\mathbb{D})) = {}^dE^f/2$ , f is monotone and  $f(\overline{\mathbb{D}}) \subset \mathcal{B}_r(q_0)$ . Since f is monotone,  $f(\overline{\mathbb{D}}) = \overline{\Omega}$  where  $\Omega$  is the topological disk in  $\overline{\mathcal{B}_r(q_0)}$  bounded by the simple closed curve  $f(\partial \mathbb{D})$ . Let u be the energy minimizing map in  $W_f^{1,2}(\mathbb{D}, \mathcal{B}_r(q_0))$ . By the continuity of u (cf. Lemma 2.10),  $\overline{\Omega} \subset u(\overline{\mathbb{D}})$ . Combining this with item (a),  ${}^dE^f = 2\mathcal{H}^2(f(\mathbb{D})) \leq 2\mathcal{H}^2(u(\mathbb{D})) \leq {}^dE^u$ , which implies that f = u is the energy minimizing map in  $W_f^{1,2}(\mathbb{D}, \mathcal{B}_r(q_0))$ .

Combining (5.6) with the assumption  $\mathcal{H}^2(f(\mathbb{D})) = {}^dE^f/2$ , we conclude

$$\#\{f^{-1}(p)\cap\mathbb{D}\}=1 \text{ for a.e. } p\in f(\mathbb{D}), \ \int_E |\nabla f|^2 dxdy=0 \text{ and } \int_{\mathbb{D}} \mathcal{J}_f(z)dxdy={}^dE^f/2.$$

The second equality above implies that  $|\nabla f|^2(z) = 0$  for a.e.  $z \in E$ , and thus  $|f_*(\omega)|^2(z) = 0$  for a.e.  $\omega \in \mathbb{S}^1$  and a.e.  $z \in E$ . The third equality implies that Jensen's inequality (5.5) must be an equality for a.e.  $z \in \mathbb{D} \setminus E$ , and thus  $\omega \mapsto |f_*(\omega)|^2(z)$  is a constant function for a.e.  $z \in \mathbb{D} \setminus E$ . We therefore conclude that f is almost conformal which in turn implies f is non-degenerate by Lemma 4.12 and discrete by Lemma 4.3. Since f is monotone and discrete, we conclude that f is injective. This completes the proof of (c).

5.3. **Proof Theorem 1.3.** The strategy of the proof of Theorem 1.3 is as follows: Using a triangulation, we construct a finite energy map which is not necessarily a homeomorphism. By Corollary 2.19 and Theorem 1.2, we can find an almost conformal harmonic branched cover u of  $\mathbb{S}^2$ . We then use u to define an equivalence relation on  $\mathbb{S}^2$  where  $\mathcal{Q} := \mathbb{S}^2 / \sim$  is homeomorphic to  $\mathbb{S}^2$ . We use the natural projection map  $\pi$  to construct a complex atlas  $\tilde{\mathcal{A}}$  on  $\mathcal{Q}$ . The key to making this work is the following consequence of the proof of Proposition 5.7: Given restrictions  $u_1 = u|_{U^{(1)}}$  and  $u_2 = u|_{U^{(2)}}$  of u to two connected components  $U^{(1)}$  and  $U^{(2)}$  of  $\pi^{-1}(U)$ , the composition  $u_2^{-1} \circ u_1$  is a biholomorphic map. For id defined such that  $u = \pi \circ id$ , we then use Lemma 5.9 and the local results to show that  $id : \mathcal{Q} \to (S, d)$  is the almost conformal harmonic homeomorphism with respect to the atlas  $\tilde{\mathcal{A}}$ .

PROOF OF THEOREM 1.3. We will denote by  $d_{\mathbb{S}^2}$  the induced distance function on  $\mathbb{S}^2$  by the standard metric  $g_{\mathbb{S}^2}$ . Since we are assuming that S is homeomorphic to  $\mathbb{S}^2$ , we can replace (S,d) by  $(\mathbb{S}^2,d)$  by pulling back the distance function d to  $\mathbb{S}^2$  from S by a homeomorphism. In the first three steps below, we construct a finite energy continuous map  $f: \mathbb{S}^2 \to (\mathbb{S}^2,d)$  (not necessarily homeomorphic). In the fourth step, we use the map u to demonstrate id, as defined above, is the almost conformal harmonic homeomorphism.

STEP 1. Construct a sequence  $\{\mathcal{T}_0^n\}$  of triangulations on  $\mathbb{S}^2$  such that each  $\mathcal{T}_0^n$  is a geodesic triangulation with respect to  $d_{\mathbb{S}^2}$  and, for the vertex set  $\mathcal{V}(\mathcal{T}_0^n)$  of  $\mathcal{T}_0^n$ ,

$$(5.7) \quad \max\{d_{\mathbb{S}^2}(v,v'): v,v'\in\mathcal{V}(\mathcal{T}_0^n) \text{ such that } v \text{ and } v' \text{ are adjacent}\} \to 0 \text{ as } n\to\infty.$$

To construct  $\{\mathcal{T}_0^n\}$ , we start with the standard sequence of triangulations which refine the equilateral triangle inscribed in the unit disk. That is, let  $\triangle$  be a (closed, two-dimensional) equilateral triangle inscribed in  $\overline{\mathbb{D}} \subset \mathbb{C}$ . Let  $\mathcal{T}^0$  be the triangulation of  $\triangle$  with only one face, namely  $\triangle$  itself. Then let  $\mathcal{T}^1, \mathcal{T}^2, \ldots$  be the sequence of triangulations of  $\triangle$  defined inductively by the usual refinement; i.e. the triangulation  $\mathcal{T}^n$  is defined from  $\mathcal{T}^{n-1}$  by taking each face F of  $\mathcal{T}^{n-1}$  (which is an equilateral triangle) and inscribing in it an equilateral triangle, with side length half that of F, and letting the four resulting equilateral triangles be faces of  $\mathcal{T}^n$ .

We now transfer the triangulation  $\{\mathcal{T}^n\}$  to the unit disk. Let  $\psi: \triangle \to \overline{\mathbb{D}}$  be a surjective map defined in the following manner. For  $p \in \partial \triangle$ , let  $\psi(p) \in \partial \mathbb{D}$  be the point where the ray from origin through p intersects the unit circle  $\partial \mathbb{D}$ . For any point on the line segment from 0 to p, let  $\psi(p)$  map linearly onto a line segment from 0 to  $\psi(p)$ . Then  $\{\psi_*(\mathcal{T}^n)\}$  is a triangulation of  $\overline{\mathbb{D}}$ .

Finally, we transfer the triangulation to  $\mathbb{S}^2$ . Let  $\operatorname{proj}^-: \overline{\mathbb{D}} \to \mathbb{S}^2_- = \{(x,y,z) \in \mathbb{S}^2 : z \leq 0\}$  be the restriction of the stereographic projection map  $\operatorname{proj}: \mathbb{C} \to \mathbb{S}^2 \setminus \{(1,0,0)\}$  and let  $A: \mathbb{S}^2 \to \mathbb{S}^2$  be the antipodal map A(x,y,z) = (-x,-y,-z). Define the triangulation  $\mathcal{T}^n_0$  on  $\mathbb{S}^2$  as follows: First, we push forward the vertex set  $\mathcal{V}(\psi_*(\mathcal{T}^n))$  of  $\psi_*(\mathcal{T}^n)$  along with the adjacency relation to  $\mathbb{S}^2$  via  $\operatorname{proj}^-$  and via  $A \circ \operatorname{proj}^-$ . The new vertex set is the vertex set  $\mathcal{V}(\mathcal{T}^n_0)$  of  $\mathcal{T}^n_0$ . Define the edge set  $\mathcal{E}(\mathcal{T}^n_0)$  of  $\mathcal{T}^n_0$  to be the set of geodesics with respect to  $d_{\mathbb{S}^2}$  between  $v,v' \in \mathcal{V}(\mathcal{T}^n_0)$  whenever v and v' are adjacent. (Note that we identify the vertices and edges that overlap on the equator  $\{(x,y,z)\in\mathbb{S}^2:z=0\}$ .) Thus,  $\mathcal{T}^n_0$  is a geodesic triangulation of  $\mathbb{S}^2$  with respect to  $d_{\mathbb{S}^2}$ . Since  $\operatorname{proj}^-\circ\psi$  and  $A\circ\operatorname{proj}^-\circ\psi$  are Lipschitz maps, we have (5.7).

Step 2. Show that

(5.8)  $\max\{d(v,v'):v,v'\in\mathcal{V}(\mathcal{T}_0^n)\text{ such that }v\text{ and }v'\text{ are adjacent}\}\to 0 \text{ as }n\to\infty.$ 

The claim (5.8) follows from the fact that the metric topology induced by d is equivalent to the surface topology of  $\mathbb{S}^2$  (which is in turn equivalent to the metric topology induced by  $d_{\mathbb{S}^2}$ ). Indeed, assume on the contrary that there exists  $\epsilon > 0$ , an increasing sequence  $\{n_i\} \in \mathbb{N}$  and  $v_{n_i}, v'_{n_i} \in \mathcal{V}(\mathcal{T}_0^{n_i})$  such that  $d(v_{n_i}, v'_{n_i}) \geq \epsilon$  and  $v_{n_i}$  adjacent to  $v'_{n_i}$ . By taking a subsequence if necessary, we can assume  $\{v_{n_i}\}$ ,  $\{v'_{n_i}\}$  are converging, i.e.  $v_{n_i} \to v_{\infty}$  and  $v'_{n_i} \to v'_{\infty}$ . Thus,  $d(v_{\infty}, v'_{\infty}) \geq \epsilon$ . By the equivalence of the metric topology induced by d and by  $d_{\mathbb{S}^2}$ , there exists a geodesic ball  $\mathcal{B}^{d_{\mathbb{S}^2}}_{\delta}(v_{\infty}) \subset \mathcal{B}^d_{\epsilon}(v_{\infty})$ . This is a contradiction since  $v'_{\infty} \notin \mathcal{B}^d_{\epsilon}(v_{\infty})$  but  $v'_{\infty} \in \mathcal{B}^{d_{\mathbb{S}^2}}_{\delta}(v_{\infty})$  for sufficiently large  $n \in \mathbb{N}$ .

Step 3. Define a finite energy map  $f: \mathbb{S}^2 \to (\mathbb{S}^2, d)$ .

To define f, observe that by (5.8) and the equivalence of the metric topologies, for  $n \in \mathbb{N}$  sufficiently large, each face of the triangulation  $\mathcal{T}_0^n$  is contained in a closed geodesic ball (with respect to d) which is a  $CAT(\kappa)$  space. Fix such  $n \in \mathbb{N}$ . Let F be a (closed) face of  $\mathcal{T}_0^n$  and T be a geodesic triangle with respect to d with the same vertices as F. Let  $f_F : \partial F \to \partial T$  be a constant speed parameterization (with respect to  $d_{\mathbb{S}^2}$  on  $\partial F$  and d on  $\partial T$ ) with speed  $L_F$ . By Reshetnyak's theorem [39], we can extend this boundary parameterization to a map  $f_F : F \to T$  with Lipschitz bound of  $L_F$ . (More simply, we can define  $f_F$  by fixing a vertex  $v_0$  and an edge E opposite of  $v_0$  in F. We then extend  $f_F$  by mapping the line from  $v_0$  to a point  $p \in E$  to the geodesic from  $f_F(v_0)$  to  $f_F(p)$  by a constant speed parameterization. By the  $CAT(\kappa)$  condition, the extension map has a Lipschitz bound of  $L_F$ .) Finally, define a Lipschitz map  $f: (\mathbb{S}^2, d_{\mathbb{S}^2}) \to (\mathbb{S}^2, d)$  by setting  $f|_F = f_F$ , which has a Lipschitz bound of  $L = \max\{L_F : F \in \mathcal{T}_0^n\}$ . Thus,  $f: \mathbb{S}^2 \to (\mathbb{S}^2, d)$  is a finite energy map, although f is not necessarily a homeomorphism. Indeed, it is possible that the images under f of two distinct open faces of  $\mathcal{T}_0^n$  intersect.

Step 4. Use the analysis of almost conformal harmonic maps to construct an almost conformal harmonic homeomorphism.

With the finite energy map  $f: \mathbb{S}^2 \to (\mathbb{S}^2, d)$  as constructed above, we can apply Corollary 2.19 to assert the existence of a harmonic map  $u: \mathbb{S}^2 \to (\mathbb{S}^2, d)$ . By Theorem 1.2, u

is an almost conformal branched cover. Denote the branch set of u by  $\mathcal{B}$ . If u is injective, then u is an almost conformal harmonic homeomorphism. This completes STEP 4, so we will assume instead that  $u|_{\mathbb{S}^2\setminus\mathcal{B}}$  is a k-sheeted cover of  $\mathbb{S}^2\setminus u(\mathcal{B})$  for k>1.

Define an equivalence relation on  $\mathbb{S}^2$  by setting

$$p \sim q \iff u(p) = u(q).$$

Denote the quotient space  $\mathbb{S}^2/\sim$  by  $\mathcal{Q}$ ; i.e.  $\mathcal{Q}$  is the set of equivalence classes  $[\cdot]$ . The topology on  $\mathcal{Q}$  is defined by requiring that  $U \subset \mathcal{Q}$  is open if and only if  $\pi^{-1}(U)$  is open where

$$\pi: \mathbb{S}^2 \to \mathcal{Q}, \quad \pi(p) = [p]$$

is the natural projection map. The induced map  $[p] \mapsto u(p)$  is essentially the identity map of  $\mathbb{S}^2$  and thus we will denote it as

$$id: \mathcal{Q} \to (\mathbb{S}^2, d).$$

Since id is a closed, continuous bijection,  $\mathcal{Q}$  is a topological sphere. In summary, we have the following commutative diagram:

$$\begin{array}{c|c}
\mathbb{S}^2 \\
\pi \downarrow & \downarrow \\
\mathcal{Q} \xrightarrow{\mathrm{id}} (\mathbb{S}^2, d)
\end{array}$$

The restriction  $\pi|_{\mathbb{S}^2\setminus\mathcal{B}}$  is a k-sheeted cover of  $\mathcal{Q}\setminus\pi(\mathcal{B})$ .

Let  $\mathcal{A}$  be a complex structure on  $\mathcal{Q}\setminus\pi(\mathcal{B})$  which makes  $\pi|_{\mathbb{S}^2\setminus\mathcal{B}}$  a holomorphic covering map. More precisely, we can define  $\mathcal{A}$  as follows: For  $[p] \in \mathcal{Q} \setminus \pi(\mathcal{B})$ , let

- $U_{[p]}$  be a neighborhood of [p] in  $\mathcal{Q} \setminus \pi(\mathcal{B})$ ,  $\left\{U_{[p]}^{(i)}\right\}_{i=1,\dots,k}$  be the disjoint open sets of  $\mathbb{S}^2$  such that  $\bigcup_i U_{[p]}^{(i)} = \pi^{-1}(U_{[p]})$  and  $\pi|_{U_{[p]}^{(i)}}$ :  $U_{[p]}^{(i)} \to U_{[p]}$  is a homeomorphism, and
- $\{\varphi_{[p]}^{(i)}: U_{[p]}^{(i)} \to \mathbb{D} \subset \mathbb{C}\}$  be complex charts of  $\mathbb{S}^2$ .

The key observation we will use below is that

$$\left(\pi|_{U_{[p]}^{(i)}}\right)^{-1} \circ \pi|_{U_{[p]}^{(1)}} = \left(u|_{U_{[p]}^{(i)}}\right)^{-1} \circ u|_{U_{[p]}^{(1)}} \text{ is a biholomorphic map.}$$

The validity of (5.9) follows from the fact that the right hand side of the equation can be shown to be holomorphic by the same argument as the proof of Proposition 5.7 (cf. [16, Theorem 16]).

For each i = 1, ..., k, define

$$\bar{\varphi}_{[p]}^{(i)} := \varphi_{[p]}^{(i)} \circ \left(\pi|_{U_{[p]}^{(i)}}\right)^{-1} : U_{[p]} \to \mathbb{D}.$$

We claim that the atlas

$$\mathcal{A} = \left\{ \left( U_{[p]}, \bar{\varphi}_{[p]}^{(1)} \right) \right\}_{[p] \in \mathcal{Q} \backslash \pi(\mathcal{B})}$$

covering  $\mathcal{Q}\setminus\pi(\mathcal{B})$  defines a complex structure on  $\mathcal{Q}\setminus\pi(\mathcal{B})$ . To see this, first note that

(5.10) 
$$\bar{\varphi}_{[p]}^{(i)} \circ \left(\bar{\varphi}_{[p]}^{(1)}\right)^{-1} : \mathbb{D} \to \mathbb{D}$$
 is biholomorphic.

Indeed, (5.10) follows from (5.9) and the fact that

$$\begin{split} \bar{\varphi}_{[p]}^{(i)} \circ \left(\bar{\varphi}_{[p]}^{(1)}\right)^{-1} &= \varphi_{[p]}^{(i)} \circ \left(\pi|_{U_{[p]}^{(i)}}\right)^{-1} \circ \left(\varphi_{[p]}^{(1)} \circ \left(\pi|_{U_{[p]}^{(1)}}\right)^{-1}\right)^{-1} \\ &= \varphi_{[p]}^{(i)} \circ \left(\pi|_{U_{[p]}^{(i)}}\right)^{-1} \circ \pi|_{U_{[p]}^{(1)}} \circ \left(\varphi_{[p]}^{(1)}\right)^{-1}. \end{split}$$

If  $U_{[p]} \cap U_{[q]} \neq \emptyset$ , then there exists i, j such that  $U_{[p]}^{(i)} \cap U_{[q]}^{(j)} \neq \emptyset$ . Since

$$\bar{\varphi}_{[p]}^{(i)} \circ \left(\bar{\varphi}_{[q]}^{(j)}\right)^{-1} = \varphi_{[p]}^{(i)} \circ \left(\varphi_{[q]}^{(j)}\right)^{-1} \text{ on } \varphi_{[q]}^{j} \left(U_{[p]}^{(i)} \cap U_{[q]}^{(j)}\right)$$

and

$$\bar{\varphi}_{[p]}^{(1)} \circ \left(\bar{\varphi}_{[q]}^{(1)}\right)^{-1} = \bar{\varphi}_{[p]}^{(1)} \circ \left(\bar{\varphi}_{[p]}^{(i)}\right)^{-1} \circ \varphi_{[p]}^{(i)} \circ \left(\varphi_{[q]}^{(j)}\right)^{-1} \circ \bar{\varphi}_{[q]}^{(j)} \circ \left(\bar{\varphi}_{[q]}^{(1)}\right)^{-1},$$

we conclude

$$(5.11) \bar{\varphi}_{[p]}^{(1)} \circ \left(\bar{\varphi}_{[q]}^{(1)}\right)^{-1} : \; \bar{\varphi}_{[q]}^{(1)} \left(U_{[p]} \cap U_{[q]}\right) \; \to \; \bar{\varphi}_{[p]}^{(1)} \left(U_{[p]} \cap U_{[q]}\right) \text{ is biholomorphic.}$$

We have thus shown that the transition maps of  $\mathcal{A}$  are holomorphic as required, and hence  $\mathcal{A}$  is a complex atlas.

For any  $[b] \in \pi(\mathcal{B})$ , let  $U_{[b]}$  be a neighborhood of [b] such that a connected component  $\mathcal{U} \subset \mathbb{S}^2$  of  $\pi^{-1}(U_{[b]})$  satisfies  $\mathcal{U} \cap \mathcal{B} = \{b\}$  and  $\mathcal{U}^* := \mathcal{U} \setminus \{b\}$  is biholomorphic to  $\mathbb{D}^* := \mathbb{D} \setminus \{0\}$ . Let  $U_{[b]}^* := \pi(\mathcal{U}^*) = U_{[b]} \setminus \{[b]\}$  and define

$$\mathcal{A}_{[b]} = \left\{ \left( U_{[p]} \cap U_{[b]}^*, \bar{\varphi}_{[p]}^{(1)}|_{U_{[p]} \cap U_{[b]}^*} \right) : \left( U_{[p]}, \bar{\varphi}_{[p]}^{(1)} \right) \in \mathcal{A} \right\}.$$

In other words,  $\mathcal{A}_{[b]}$  is the restriction of the complex charts of  $\mathcal{A}$  to  $U_{[b]}^*$ , and hence defines a complex structure on  $U_{[b]}^* \subset \mathcal{Q}$ . Since  $U_{[b]}^*$  is homeomorphic to an annulus and  $\pi|_{\mathcal{U}^*}$ :  $\mathcal{U}^* \simeq \mathbb{D}^* \to U_{[b]}^*$  is a holomorphic covering map with respect to the complex charts  $\mathcal{A}_{[b]}$ , the Riemann surface  $(U_{[b]}^*, \mathcal{A}_{[b]})$  is biholomorphic to  $\mathbb{D}^*$ ; i.e. there exists a homeomorphism

$$\phi_{[b]}: U_{[b]}^* \to \mathbb{D}^*$$

such that, for any chart  $\left(U_{[p]} \cap U_{[b]}^*, \bar{\varphi}_{[p]}^{(1)}|_{U_{[p]} \cap U_{[b]}^*}\right) \in \mathcal{A}_{[b]}$ ,

$$(5.12) \phi_{[b]} \circ (\bar{\varphi}_{[p]}^{(1)})^{-1} : \bar{\varphi}_{[p]}^{(1)} \left( U_{[p]} \cap U_{[b]}^* \right) \to \phi_{[b]} \left( U_{[p]} \cap U_{[b]}^* \right) \text{ is biholomorphic.}$$

Extend  $\phi_{[b]}$  to a homeomorphism

$$\bar{\phi}_{[b]}:U_{[b]}\to\mathbb{D}.$$

The atlas  $\widetilde{\mathcal{A}} := \mathcal{A} \cup \{(U_{[b]}, \overline{\phi}_{[b]})\}_{b \in \pi(\mathcal{B})}$  defines a complex structure which makes  $\mathcal{Q}$  into the Riemann sphere  $\mathbb{S}^2$ . Indeed, (5.11) and (5.12) show that the transition maps in  $\widetilde{\mathcal{A}}$  are biholomorphic.

With the complex structure on  $\mathcal{Q}$  defined by  $\widetilde{\mathcal{A}}$ , the homeomorphism

$$id: \mathbb{S}^2 \simeq \mathcal{Q} \to (\mathbb{S}^2, d)$$

is an almost conformal harmonic map. To see this, first note that  $\pi|_{U_{[p]}^{(1)}}$  is a biholomorphic map in the coordinate neighborhood  $U_{[p]}$  for any  $p \notin \mathcal{B}$  and  $u = \mathrm{id} \circ \pi$  is an almost conformal harmonic map. Therefore, id is an almost conformal harmonic map in  $\mathcal{Q} \setminus \pi(\mathcal{B})$ . Thus, by the removable singularities theorem (cf. [5, Section 3]), id is an almost conformal harmonic map on  $\mathbb{S}^2 \simeq \mathcal{Q}$ . Lemma 5.9 (b) and Theorem 1.2 imply that id is a conformal harmonic homeomorphism satisfying  $\mathcal{H}^2(\mathrm{id}(\mathbb{S}^2)) = {}^dE^{\mathrm{id}}[\mathbb{S}^2]/2$ . Uniqueness follows from Proposition 5.7.  $\square$ 

# APPENDIX A. THE ORDER FUNCTION

We use the notation of [4], which differs slightly from notation within this paper. The interested reader will have an easier time checking the details of the proofs herein as they relate to the work in [4]. Note that the role of  $\sigma_j \to 0$  in this paper is replaced by  $\lambda_j \to 0$  below. Also  $\mathcal{C}X$  denotes the NPC cone over X.

**Lemma A.1.** Let  $u: B_1(0) \to (X, d)$  be a finite energy harmonic map where  $B_1(0) \subset M$ , (M, g) is a Riemannian manifold and (X, d) is a locally  $CAT(\kappa)$  space. Let  $x \in M$  and let  $\overline{u}_*: B_1(0) \to (X_*, d_*)$  denote a tangent map of u at x as constructed in [4, Proposition 7.5]. Then

$$\operatorname{ord}^{u_*}(0) = \alpha_*(0) = \alpha(x) = \operatorname{ord}^{u}(x).$$

*Proof.* By the proof of [4, Lemma 8.1], it is enough to show that

(A.1) 
$${}^{d_*}E^{\overline{u}_*}(\sigma) = \lim_{k \to \infty} {}^{D_k}E^{\overline{u}_k}_{g_k}(\sigma)$$

where

$$u_k(x) := u(\lambda_k x)$$

$$\overline{u}_k(x) := [u_k(x), 1] \in X \times \{1\} \subset \mathcal{C}X$$

$$g_k(x) := g(\lambda_k x)$$

$$d_k(x) := (\lambda_k^{1-n} I_k)^{-1/2} d(p, q)$$

$$D_k(p, q) := (\lambda_k^{1-n} \overline{I}_k)^{-1/2} D(p, q)$$

$$I_k := \inf_{q \in X} \int_{\partial B_{\lambda_k}(0)} d_k^2(u, q) d\Sigma_g$$

$$\overline{I}_k := \inf_{q \in \mathcal{C}X} \int_{\partial B_{\lambda_k}(0)} D_k^2([u, 1], q) d\Sigma_g.$$

By [4, Proposition 7.5],  $\overline{u}_k$  converges locally uniformly in the pullback sense to  $\overline{u}_*$ . Since  $\overline{u}_k$  maps into the NPC metric space  $(\mathcal{C}X, D_k)$ , it suffices to prove that  $\overline{u}_k$  satisfies the hypotheses of [26, Theorem 3.11] when we consider  $\overline{u}_k$  defined on a domain with a fixed metric. (The conclusion of this theorem gives the convergence of energy density measures.) To that end, we prove the following two claims for  $\overline{u}_k: (B_1(0), \delta) \to (\mathcal{C}X, D_k)$ , where  $\delta$  is the Euclidean metric.

Claim A.2. For k large enough,  $\overline{u}_k$  is within  $\epsilon_k$  of minimizing on  $(B_1, \delta)$  with  $\lim_{k \to \infty} \epsilon_k = 0$ .

Proof. Let  $v_k = {}^{Dir}\overline{u}_k : B_1 \to (\mathcal{C}X, D_k)$  be the Dirichlet solution for  $\overline{u}_k$ , but with respect to the Euclidean metric  $\delta$ . We normalize the metric  $g_k$  (and continue to refer to it as  $g_k$  for convenience) and we recall that the normalization preserves energy. In particular,  $u_k$  is still minimizing with respect to the normalization. Since  $g_k$  is smooth, there exists c > 0 such that for all  $\Omega \subset B_1$ ,

$$(A.2) (1 - c\lambda_k)^{D_k} E_{\delta}^{\overline{u}_k}[\Omega] \le {}^{D_k} E_{\alpha_k}^{\overline{u}_k}[\Omega] \le (1 + c\lambda_k)^{D_k} E_{\delta}^{\overline{u}_k}[\Omega].$$

Note that the same string of inequalities holds for  $v_k$  as well. It follows that

$$\begin{array}{l}
^{D_{k}}E_{\delta}^{\overline{u}_{k}}[B_{1}] \leq (1 - c\lambda_{k})^{-1D_{k}}E_{g_{k}}^{\overline{u}_{k}}[B_{1}] \text{ by (A.2)} \\
\leq (1 - c\lambda_{k})^{-3D_{k}}E_{g_{k}}^{v_{k}}[B_{1}] \text{ by the proof of [4, Proposition 7.5]} \\
\leq (1 - c\lambda_{k})^{-3}(1 + c\lambda_{k})^{D_{k}}E_{\delta}^{v_{k}}[B_{1}] \text{ by (A.2)} \\
\leq (1 + C\lambda_{k})^{D_{k}}E_{\delta}^{v_{k}}[B_{1}] \\
\leq ^{D_{k}}E_{\delta}^{v_{k}}[B_{1}] + 2C\lambda_{k}^{d_{k}}E^{\overline{u}_{k}}[B_{1}] \text{ by the proof of [4, Proposition 7.5]}.
\end{array}$$

Claim A.3. There exists C > 0 independent of t > 0 and of k such that

$$^{D_k}E_{\delta}^{\overline{u}_k}(B_1\backslash B_{1-t})\leq Ct.$$

*Proof.* Note that for k large enough,  $u|_{B_{2\lambda_k}}$  is minimizing and therefore  $u_k|_{B_2}$  is minimizing. By [4, Proposition 8.2] and the proof of [4, Lemma 7.5], there exists a constant C' > 0 independent of k such that for  $x, y \in B_{3/2}$ ,

$$D_k(\overline{u}_k(x), \overline{u}_k(y)) \le 2d_k(u_k(x), u_k(y)) \le C'|x-y|.$$

It follows that  $\overline{u}_k$  is Lipschitz on  $B_{3/2}$  with constant C' independent of k. Therefore

$$^{D_k}E_{q_k}^{\overline{u}_k}(B_1\backslash B_{1-t}) \leq Ct.$$

where C depends only on C' and the dimension of M. The result follows with  $\delta$  in place of  $g_k$  by the estimate (A.2).

The two claims imply that  $\overline{u}_k$  satisfy the hypotheses of [26, Theorem 3.11] and thus

$$^{d_*}E^{\overline{u}_*}(\sigma) = \lim_{k \to \infty} {}^{D_k}E^{\overline{u}_k}_{\delta}(\sigma).$$

Applying (A.2) then implies (A.1).

**Lemma A.4.** Let (M, g) be a Riemannian manifold and (X, d) be a locally compact  $CAT(\kappa)$  space. Let  $u: (M, g) \to (X, d)$  be a harmonic map. Then the order function  $\alpha_u$  is upper semi-continuous.

*Proof.* It is enough to show that  $\alpha_u$  is the decreasing limit of continuous functions. By definition,

$$\alpha_u(x) = \lim_{\sigma \to 0^+} \frac{\sigma E_x(\sigma)}{I_x(\sigma, Q_\sigma)} = \lim_{\sigma \to 0^+} \frac{\sigma F_x(\sigma)}{I_x(\sigma, Q_\sigma)} \lim_{\sigma \to 0^+} \frac{E_x(\sigma)}{F_x(\sigma)}$$

where  $E_x(\sigma)$ ,  $F_x(\sigma)$ ,  $I_x(\sigma, Q_\sigma)$  are defined in [4, Section 6] and the subscript "x" signifies the centering of each ball at  $x \in M$ . By [4, Lemma 6.3],  $\lim_{\sigma \to 0^+} \frac{E_x(\sigma)}{F_x(\sigma)} = C_1 < \infty$  and thus

$$\alpha_u(x) = C_1 \lim_{\sigma \to 0^+} \frac{\sigma F_x(\sigma)}{I_x(\sigma, Q_\sigma)}.$$

In [4, Section 6] it is verified that  $\frac{\sigma F_x(\sigma)}{I_x(\sigma,Q_\sigma)}$  is monotone nondecreasing in  $\sigma$ . Therefore,  $\alpha_u$  is upper semi-continuous.

## Appendix B. Proof of Proposition 2.5

*Proof.* Let r > 0 be as in Remark 2.4. The strategy is to first show that  $\partial \mathcal{B}_{\epsilon}(q_0)$  is homeomorphic to a circle for  $\epsilon \in (0, r)$ . Using this, we will then show that the space of directions  $\mathcal{E}_{q_0}$  is homeomorphic to a circle. Local compactness then implies that  $\mathcal{E}_{q_0}$  is isometric to a simple closed curve of finite length.

We can assume that r > 0 is chosen sufficiently small such that there exists a homeomorphism  $h : \mathbb{D} \to \mathcal{B}_r(q_0)$ . Without the loss of generality, we may assume  $h(0) = q_0$ . Fix  $\epsilon \in (0, r)$ . Let

$$\overline{\mathbb{B}}_{\epsilon} = h^{-1}(\overline{\mathcal{B}_{\epsilon}(q_0)})$$

and

$$\delta = \inf_{x \in \partial \mathbb{D}, y \in \overline{\mathbb{B}}_{\epsilon}} |x - y|.$$

Since  $\partial \mathbb{D}$  and  $\overline{\mathbb{B}}_{\epsilon}$  are compact sets,  $\delta > 0$ . Thus,  $\mathbb{D}_{1-\frac{\delta}{2}}$  contains  $\overline{\mathbb{B}}_{\epsilon}$ . Pull back the distance function on S to  $\mathbb{D}$  via h and still denote it by d. Thus,  $(\mathbb{D}, d)$  has the same properties (i.e. uniqueness, continuity and extendability of geodesics) as  $\mathcal{B}_r(q_0)$ . Throughout this proof, we adopt the following notation:

- $\gamma_Q$  is the geodesic from 0 to a point Q.
- $\gamma_{PQ}$  is the geodesic from a point P to a point Q.

We will prove that  $\partial \mathbb{B}_{\epsilon}$  is homeomorphic to a circle by showing that  $\partial \mathbb{B}_{\epsilon}$  is path connected and  $\partial \mathbb{B}_{\epsilon} \setminus \{q_1, q_2\}$  is disconnected for any  $q_1, q_2 \in \partial \mathbb{B}_{\epsilon}$ ,  $q_1 \neq q_2$ . Indeed, these two properties characterize  $\partial \mathbb{B}_{\epsilon}$  as a topological circle by [33].

• Proof that  $\partial \mathbb{B}_{\epsilon}$  is connected.

The nearest point projection (with respect to the metric d)

$$\pi_{\epsilon}: \partial \mathbb{D}_{1-\frac{\delta}{2}} \to \partial \mathbb{B}_{\epsilon} = h^{-1}(\partial \mathcal{B}_{\epsilon}(q_0))$$

is well-defined. Indeed, for any  $Q \in \partial \mathbb{D}_{1-\frac{\delta}{2}}$ , the unique geodesic  $\gamma_Q$  from 0 to Q intersects a unique point in  $\partial \mathbb{B}_{\epsilon}$ . The map  $\pi_{\epsilon}$  is continuous by the CAT( $\kappa$ ) property (cf. [7, II.1.7]). For  $q \in \partial \mathbb{B}_{\epsilon}$ , property (i) implies that the geodesic  $\gamma_q$  can be extended to a geodesic  $\gamma_Q$  for  $Q \in \partial \mathbb{D}_{1-\frac{\delta}{2}}$ . This in turn implies that  $\pi_{\epsilon}(Q) = q$ , thereby proving  $\pi_{\epsilon}$  is surjective. Let  $q_1, q_2 \in \partial \mathbb{B}_{\epsilon}$ . By surjectivity of  $\pi_{\epsilon}$ , there exist  $Q_1, Q_2 \in \partial \mathbb{D}_{1-\frac{\delta}{2}}$  such that  $\pi_{\epsilon}(Q_1) = q_1$  and  $\pi_{\epsilon}(Q_2) = q_2$ . Let  $\bar{A} \subset \partial \mathbb{D}_{1-\frac{\delta}{2}}$  be a closed arc connecting  $Q_1$  to  $Q_2$ . By the continuity of  $\pi_{\epsilon}$ ,  $\pi_{\epsilon}(\bar{A})$  is a path from  $q_1$  to  $q_2$ . This proves  $\partial \mathbb{B}_{\epsilon}$  is path connected.

• Proof that  $\partial \mathbb{B}_{\epsilon} \setminus \{q_1, q_2\}$  is disconnected for  $q_1, q_2 \in \partial \mathbb{B}_{\epsilon}, q_1 \neq q_2$ .

For i = 1, 2, extend the geodesic  $\gamma_{q_i}$  to a geodesic  $\gamma_{Q_i}$  with  $Q_i \in \partial \mathbb{D}_{1-\frac{1}{2}}$ . Let q be the point on  $\gamma_{Q_1} \cap \gamma_{Q_2}$  furthest away from 0. Thus,  $\gamma_q \cup \gamma_{qQ_i} = \gamma_{Q_i}$  and

$$(B.1) d(0,q) < \epsilon < d(0,Q_1)$$

since  $\pi_{\epsilon}(Q_1) = q_1 \neq q_2 = \pi_{\epsilon}(Q_2)$  and  $d(0, q_1) = \epsilon$ . Let A and A' be the two distinct open arcs of  $\partial \mathbb{D}_{1-\frac{\delta}{2}} \setminus \{Q_1, Q_2\}$ . The simple closed curve  $\Gamma = \gamma_{qQ_1} \cup \gamma_{qQ_2} \cup A$  bounds a topological disk which we denote by  $\mathcal{D}$ . (Note that from Schoenflies theorem, there exists a homeomorphism  $f: \mathbb{R}^2 \to \mathbb{R}^2$  such that  $f(\Gamma)$  is the unit circle in  $\mathbb{R}^2$ .) Similarly, the simple closed curve  $\Gamma' = \gamma_{qQ_1} \cup \gamma_{qQ_2} \cup A'$  bounds another topological disk which we denote by  $\mathcal{D}'$ .

Contrary to the claim, assume  $\partial \mathbb{B}_{\epsilon} \setminus \{q_1, q_2\}$  is connected. Then either  $\partial \mathbb{B}_{\epsilon} \setminus \{q_1, q_2\} \subset \mathcal{D}$  or  $\partial \mathbb{B}_{\epsilon} \setminus \{q_1, q_2\} \subset \mathcal{D}'$ . Relabeling if necessary, assume the latter which implies that  $\partial \mathbb{B}_{\epsilon} \cap \mathcal{D} = \emptyset$ . On the other hand,  $\mathcal{D}$  is a topological disk, and thus we can choose a curve  $\sigma$  from  $q \in \Gamma = \partial \mathcal{D}$  to  $Q_1 \in \Gamma = \partial \mathcal{D}$  whose interior is contained in  $\mathcal{D}$ . By the intermediate value theorem and (B.1), there exists  $p \in \sigma$  such that  $d(0, p) = \epsilon$ . Thus,  $p \in \partial \mathbb{B}_{\epsilon} \cap \mathcal{D}$  which is a contradiction to the fact that  $\partial \mathbb{B}_{\epsilon} \cap \mathcal{D} = \emptyset$ . This proves  $\partial \mathbb{B}_{\epsilon} \setminus \{q_1, q_2\}$  is disconnected.

Now that we have shown  $\partial \mathbb{B}_{\epsilon} = h^{-1}(\partial \mathcal{B}_{\epsilon}(q_0))$  is a topological circle, we will use this fact to show  $\mathcal{E}_{q_0}$  is also a topological circle. We will use the map

$$\mathcal{L}: \partial \mathbb{B}_{\epsilon} \to \mathcal{E}_{q_0}, \ Q \mapsto [\gamma_Q]$$

to show that  $\mathcal{E}_{q_0}$  is connected and  $\mathcal{E}_{q_0} \setminus \{ [\gamma_{Q_1}], [\gamma_{Q_2}] \}$  is disconnected if  $[\gamma_{Q_1}] \neq [\gamma_{Q_2}]$ .

• Proof that  $\mathcal{E}_{q_0}$  is connected.

The map  $\mathcal{L}$  is continuous and surjective by properties (ii) and (iii) which implies that  $\mathcal{E}_{q_0}$  is path connected. Indeed, let  $\sigma$  be a path from  $Q_1$  to  $Q_2$  in  $\partial \mathcal{B}_{\epsilon}$ . Then  $\mathcal{L}(\sigma)$  is a path from  $[\gamma_{Q_1}]$  to  $[\gamma_{Q_2}]$ .

• Proof that  $\mathcal{E}_{q_0}\setminus\{[\gamma_{Q_1}],[\gamma_{Q_2}]\}$  is disconnected if  $[\gamma_{Q_1}]\neq[\gamma_{Q_2}]$ .

This proof will consist of two steps. First, we will show that  $\mathcal{L}$  is a monotone map; i.e.  $\mathcal{L}^{-1}([\gamma_Q])$  is connected for any  $[\gamma_Q] \in \mathcal{E}_{q_0}$  (cf. CLAIM 1). This implies that  $\partial \mathbb{B}_{\epsilon} \setminus (\mathcal{L}^{-1}([\gamma_{Q_1}]) \cup \mathcal{L}^{-1}([\gamma_{Q_2}])) = U \cup U'$  where U, U' are distinct open sets. Second, we will prove that  $\mathcal{L}(U)$  and  $\mathcal{L}(U')$  are open arcs (cf. CLAIM 2). This proves  $\mathcal{E}_{q_0} \setminus \{[\gamma_{Q_1}], [\gamma_{Q_2}]\}$  is disconnected.

CLAIM 1.  $\mathcal{L}$  is monotone.

PROOF. Let  $[\gamma_Q] \in \mathcal{E}_{q_0}$  with  $Q \in \partial \mathbb{B}_{\epsilon}$ , and let  $P \in \mathcal{L}^{-1}([\gamma_Q])$  with  $Q \neq P$ . Thus,  $\angle(\gamma_Q, \gamma_P) = 0$ . Since  $\partial \mathbb{B}_{\epsilon}$  is a topological circle, there exist exactly two distinct connected open arcs of  $\partial \mathbb{B}_{\epsilon} \setminus \{Q, P\}$  which we call A and A'. It is sufficient to show that one of  $\overline{A}$  or  $\overline{A'}$  is contained in  $\mathcal{L}^{-1}([\gamma_Q])$ . We do this by letting q be the point on  $\gamma_Q \cap \gamma_P$  furthest away from 0 and considering the following two cases separately.

CASE 1:  $q \neq 0$ . Let  $\mathcal{D}$  be the topological disk bounded by the simple closed curve  $\gamma_{qQ} \cup \gamma_{qP} \cup A$ , and let  $\mathcal{D}'$  be the topological disk bounded by the simple closed curve  $\gamma_{qQ} \cup \gamma_{qP} \cup A'$ . By relabeling if necessary, we will assume that  $\gamma_q \subset \overline{\mathcal{D}'}$  and  $\gamma_q \cap \mathcal{D} = \emptyset$ . For  $Q' \in \overline{A} \subset \partial \mathbb{B}_{\epsilon}$ , we observe that  $\gamma_{Q'} = \gamma_q \cup \gamma_{qQ'}$  with  $\gamma_{qQ'} \subset \overline{\mathcal{D}}$ . Since  $\gamma_q \subset \gamma_Q \cap \gamma_{Q'}$ , we conclude  $\angle(\gamma_Q, \gamma_{Q'}) = 0$ . In other words,  $\gamma_{Q'} \in [\gamma_Q]$  which implies  $[\gamma_{Q'}] \in \mathcal{L}^{-1}([\gamma_Q])$  for all  $Q' \in \overline{A}$ . This implies that  $\overline{A} \subset \mathcal{L}^{-1}([\gamma_Q])$  and  $\overline{A}$  is a path from Q to P in  $\mathcal{L}^{-1}([\gamma_Q])$ .

CASE 2: q = 0. For  $t \in (0, \epsilon]$ , let  $t \mapsto Q(t)$  (resp. P(t)) be the arclength parameterization of  $\gamma_Q$  (resp.  $\gamma_P$ ). The assumption that q = 0 implies  $Q(t) \neq P(t)$  for all  $t \in (0, \epsilon]$ . Let  $\gamma_t$  be the geodesic from Q(t) to P(t). Fix  $t_0 \in (0, \epsilon)$  and a point  $q_0' \in \gamma_{t_0} \setminus \{Q(t_0), P(t_0)\}$ . Let  $\gamma_{Q_0'}$  for  $Q_0' \in \partial \mathbb{B}_{\epsilon}$  be the geodesic extension of  $\gamma_{q_0'}$ . By relabeling if necessary, assume  $Q_0' \in A$ . Let  $\mathcal{D}$  be the topological disk bounded by the simple closed curve  $\gamma_Q \cup \gamma_P \cup A$ . Then  $\bar{\mathcal{D}}$  is geodesically convex.

Fix any  $Q' \in \overline{A}$  and  $t \in (0, \epsilon)$ . Observe that  $\mathcal{D} \setminus \gamma_t$  equals two open sets  $\mathcal{D}_1$  and  $\mathcal{D}_2$  with  $0 \in \overline{\mathcal{D}_1}$  and  $Q' \in \overline{\mathcal{D}_2}$ . Since  $\gamma_{Q'} \subset \overline{\mathcal{D}}$ ,  $\gamma_{Q'}$  must intersect  $\gamma_t$ . Furthermore,  $\gamma_t$  cannot intersect  $\gamma_{Q'}$  at more than one point because of geodesic uniqueness. Thus,  $\gamma_{Q'} \cap \gamma_t$  contains exactly one point which we denote by  $q'_t$ .

We now consider the geodesic triangle  $\triangle 0Q(t)q'_t$  (with vertices 0, Q(t) and  $q'_t$ ). We claim that  $d(Q(t), q'_t)$ , the length of the side opposite to the vertex, is equal to o(t) while d(0, Q(t)) and  $d(0, q'_t)$ , the lengths of the adjacent sides to the vertex 0, is equal to O(t). Indeed, since

$$0 = \angle(\gamma_Q, \gamma_P) = \lim_{t \to 0} \tilde{\angle}(Q(t), P(t)),$$

we have

$$\lim_{t \to 0} \frac{d(Q(t), q'_t)}{t} \le \lim_{t \to 0} \frac{d(Q(t), P(t))}{t} = 0.$$

Furthermore, d(0, Q(t)) = t by definition. Thus, by the triangle inequality,

$$1 = \lim_{t \to 0} \frac{d(Q(t), 0) - d(Q(t), q_t')}{t} \leq \lim_{t \to 0} \frac{d(q_t', 0)}{t}.$$

We therefore conclude by the definition of  $\tilde{\angle}$  that

$$\angle(\gamma_Q, \gamma_{Q'}) = \lim_{t \to 0} \tilde{\angle}(Q(t), q'_t) = 0, \quad \text{for } Q' \in \bar{A}.$$

This implies that  $\bar{A} \subset \mathcal{L}^{-1}([\gamma_Q])$  and  $\bar{A}$  is a path from Q to P in  $\mathcal{L}^{-1}([\gamma_Q])$ .  $\square(\text{CLAIM 1})$ 

Since  $\mathcal{L}$  is monotone,  $\mathcal{L}^{-1}([\gamma_{Q_i}])$  is connected for i=1,2. Thus  $\partial \mathbb{B}_{\epsilon} \setminus (\mathcal{L}^{-1}([\gamma_{Q_1}]) \cup \mathcal{L}^{-1}([\gamma_{Q_2}]) = U \cup U'$  where U, U' are distinct open sets.

CLAIM 2.  $\mathcal{L}(U)$  and  $\mathcal{L}(U')$  are open subsets in  $\mathcal{E}_{q_0}$ .

PROOF. Let  $[\gamma_{Q_0}] \in \mathcal{L}(U)$  with  $Q_0 \in U$ . We will first show that there exists  $\delta > 0$  such that  $\angle(\gamma_{Q_0}, \gamma_P) > \delta$  for all  $P \in \overline{U'}$ . Indeed, on the contrary, assume that there exist  $P_i \in \overline{U'}$  such that  $\angle(\gamma_{Q_0}, \gamma_{P_i}) < \frac{1}{i}$ . By taking a subsequence if necessary, assume  $P_i \to Q_\infty \in \overline{U'}$ . By the continuity of angles,  $\angle(\gamma_{Q_0}, \gamma_{Q_\infty}) = \lim_{i \to \infty} \angle(\gamma_{Q_0}, \gamma_{P_i}) = 0$  which implies that  $Q_\infty \in \mathcal{L}^{-1}([\gamma_{Q_0}]) \subset U$ . Since  $U \cap \overline{U'} = \emptyset$ , this is a contradiction. Thus, for  $\delta > 0$  as above, the geodesic ball  $\mathcal{B}^{\mathcal{E}_{q_0}}_{\delta}([\gamma_{Q_0}])$  is contained in  $\mathcal{L}(U)$ . This proves  $\mathcal{L}(U)$  is open.

Similarly,  $\mathcal{L}(U')$  is open.

 $\Box$ (Claim 2)

Since  $\mathcal{L}(U) \cap \mathcal{L}(U') = \emptyset$ ,  $\mathcal{L}(U) \cup \mathcal{L}(U') = \mathcal{E}_{q_0} \setminus \{ [\gamma_{Q_1}], [\gamma_{Q_2}] \}$  and  $\mathcal{L}(U)$ ,  $\mathcal{L}(U')$  are open, we conclude  $\mathcal{E}_{q_0} \setminus \{ [\gamma_{Q_1}], [\gamma_{Q_2}] \}$  is disconnected. By [33],  $\mathcal{E}_{q_0}$  is homeomorphic to a circle. As a closed and bounded set,  $\partial \mathcal{B}_{\epsilon}$  is compact. Thus,  $\mathcal{E}_{q_0} = \mathcal{L}(\partial \mathcal{B}_{\epsilon})$  is also compact which implies that it is isometric to a finite length closed curve. We therefore conclude that  $\mathcal{E}_{q_0}$  isometric to a simple closed curve of finite length.

# APPENDIX C. PROOF OF LEMMA 2.25

*Proof.* We start with the following claim (see also [21]):

Claim. There exists a set  $\{A_n\}$  of countable disjoint measurable subsets of  $\mathbb{D}$  with

$$\mathcal{H}^2\left(\mathbb{D}\backslash\bigcup_{n=1}^\infty A_n\right) = 0$$

such that

$$d(f(z), f(\zeta)) \le n|z - \zeta|, \ \forall z, \zeta \in A_n.$$

PROOF OF CLAIM. By Reshetnyak's characterization of finite energy maps (cf. [37]) and the equivalence of the class of Reshetnyak finite energy maps and the class of Korevaar-Schoen finite energy maps (cf. [38]), there exists  $\phi \in L^2(\mathbb{D})$  such that

$$|\nabla f_{z_0}|(z) \leq \phi(z)$$
 a.e.  $z \in \mathbb{D}$  where  $f_{z_0}(\cdot) = d(f(\cdot), f(z_0))$ .

Extend  $\phi$  to  $\mathbb{C}$  by setting it equal to zero outside of  $\mathbb{D}$ , and let  $M\phi^2$  be the Hardy-Littlewood maximal function of the integrable function  $\phi^2$ ; i.e.

$$M\phi^{2}(z) = \sup_{\overline{D} \ni z} \frac{1}{|D|} \int_{D} \phi^{2} dx dy$$

where the supremum is taken over all disks D such that  $z \in \overline{D}$  and |D| is the (Euclidean) volume of the disk. For  $z_0, z_1 \in \mathbb{D}$ , let  $r = |z_0 - z_1|$  and  $z_t = (1 - t)z_0 + tz_1$ . Integrating  $z \in \mathbb{D}_r(z_{\frac{1}{2}})$  and dividing by  $\frac{\pi}{r^2}$ , we have

$$\frac{1}{\pi r^{2}} \int_{\mathbb{D}_{r}(z_{\frac{1}{2}})} d(f(z_{0}), f(z)) \, dx dy = \frac{1}{\pi r^{2}} \int_{\mathbb{D}_{r}(z_{\frac{1}{2}})} |f_{z_{0}}(z_{0}) - f_{z_{0}}(z)| \, dx dy$$

$$\leq \frac{1}{\pi r^{2}} \int_{\mathbb{D}_{r}(z_{\frac{1}{2}})} \left( |z_{0} - z_{1}| \int_{0}^{1} |\nabla f_{z_{0}}| \left( (1 - t)z_{0} + tz \right) dt \right) \, dx dy$$

$$\leq |z_{0} - z_{1}| \int_{0}^{1} \left( \frac{1}{\pi r^{2}} \int_{\mathbb{D}_{tr}(z_{\frac{t}{2}})} |\nabla f_{z_{0}}| \, dx dy \right) dt$$

$$\leq |z_{0} - z_{1}| \int_{0}^{1} t^{2} \left( \frac{1}{\pi (tr)^{2}} \int_{\mathbb{D}_{tr}(z_{\frac{t}{2}})} \phi \, dx dy \right) dt$$

$$\leq |z_{0} - z_{1}| \int_{0}^{1} t^{2} \left( \frac{1}{\pi (tr)^{2}} \int_{\mathbb{D}_{tr}(z_{\frac{t}{2}})} \phi^{2} \, dx dy \right) dt$$

$$\leq \frac{1}{3}|z_0 - z_1| M\phi^2(z_0).$$

Similarly, we obtain

$$\frac{1}{\pi r^2} \int_{\mathbb{D}_r(z_{\frac{1}{n}})} d(f(z_1), f(z)) \, dx dy \le \frac{1}{3} |z_0 - z_1| M \phi^2(z_1),$$

and the triangle inequality implies

$$d(f(z_0), f(z_1)) = \frac{1}{\pi r^2} \int_{\mathbb{D}_r(z_{\frac{1}{2}})} d(f(z_0), f(z_1)) \, dx dy$$

$$\leq \frac{1}{\pi r^2} \int_{\mathbb{D}_r(z_{\frac{1}{2}})} d(f(z_0), f(w)) \, dx dy + \frac{1}{\pi r^2} \int_{\mathbb{D}_r(z_{\frac{1}{2}})} d(f(z_1), f(w)) \, dx dy$$

$$\leq |z_0 - z_1| \left( M\phi^2(z_0) + M\phi^2(z_1) \right).$$

Since  $M\phi^2 \in L^1$ , we have

$$\mathcal{H}^2\left(\mathbb{D}\setminus\bigcup_{n=1}^{\infty}A_n\right)=0 \text{ where } A_n=\left\{z\in\mathbb{D}:n-1\leq 2M\phi^2(z)< n\right\}$$

and by the above inequality

$$d(f(z), f(\zeta)) \le n|z - \zeta|, \ \forall z, \zeta \in A_n.$$

 $\Box$ (CLAIM).

Let  $\{A_n\}$  be as in the Claim. Fix n, apply Kuratowski isometric embedding of X into a Banach space  $l^{\infty}(X)$  of bounded functions on X with norm  $||\cdot||$  and then apply the Kirsbraun theorem for Banach spaces to extend the restriction map  $f|_{A_n}: A_n \to X \subset l^{\infty}(X)$  to a Lipschitz map  $\hat{f}: \mathbb{C} \to l^{\infty}(X)$ . By [24, Theorem 2],  $\mathrm{MD}(\hat{f}, z_0)$  exists for a.e.  $z_0 \in \mathbb{C}$  and

$$||\hat{f}(z) - \hat{f}(\zeta)|| - \text{MD}(\hat{f}, z_0)(z - \zeta) = o(|z - z_0| + |\zeta - z_0|).$$

In particular, for  $z_0, z \in A_n$ ,

$$d(f(z), f(z_0)) - MD(\hat{f}, z_0)(z - z_0) = o(|z - z_0|).$$

Combined with the fact that  $f = \hat{f}$  in  $A_n$ , this implies that if  $z_0 \in A_n$  is a density 1 point of  $A_n$ , then  $MD_{ap}(f, z_0)$  exists and

$$MD_{ap}(f, z_0) = MD(\hat{f}, z_0).$$

By [25, Theorem 1.8.1 and Lemma 1.9.5], for a.e.  $z_0 \in \mathbb{D}$ ,

$$|f_*(\omega)|^2 = \lim_{r \to 0} \frac{d^2(f(z_0), f(z_0 + r\omega))}{r^2}, \text{ a.e. } \omega \in \mathbb{S}^1.$$

Thus, for a.e.  $z_0 \in A_n$ 

$$\mathrm{MD}_{ap}(f, z_0)(\omega) = |f_*(\omega)|(z_0), \text{ a.e. } \omega \in \mathbb{S}^1.$$

The assertion now follows from the definition of  $\mathcal{J}_f$  and the fact that  $\mathcal{H}^2(\mathbb{D}\setminus\bigcup_{n=1}^\infty A_n)=0$ .

#### References

- [1] L. Ahlfors and L. Bers. Riemann's mapping theorem for variable metrics. Ann. of Math. 72 (1960) 385-404.
- [2] C. Biasi, C. Gutierrez and E. L. dos Santos, *The implicit function theorem for continuous functions*. Topol. Methods Nonlinear Anal. **32** (2008), no. 1, 177–185.
- [3] M. Bonk and B. Kleiner. Quasisymmetric parametrizations of two-dimensional metric spheres. Invent. Math 150 (2001) 127-183.
- [4] C. Breiner, A. Fraser, L. Huang, C. Mese, P. Sargent, Y. Zhang. Regularity of harmonic maps from Polyhedra to CAT(1) Spaces. Calc. Var. Partial Differential Equations 57 (2018), no. 1, Paper No. 12, 35 pp.
- [5] C. Breiner, A. Fraser, L. Huang, C. Mese, P. Sargent, Y. Zhang. Existence of harmonic maps into CAT(1) spaces. Comm. Anal. Geom. 28 (2020), no. 4, 781–835.
- [6] C. Breiner and S. Lakzian, Bubble tree convergence for harmonic maps into compact locally CAT(1) spaces, Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 144, 23 pp.
- [7] M. R. Bridson and A. Haefliger, *Metric spaces of non-positive curvature*, Grundlehren der Mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999.
- [8] G. Daskalopoulos and C. Mese. *Harmonic maps between singular spaces I*. Comm. Anal. Geom. 18 (2010) 257-337.
- [9] G. Daskalopoulos and C. Mese. *Monotonicity properties of harmonic maps into NPC spaces*. J. Fixed Point Theory Appl. 11 (2012) 225-243.
- [10] G. Daskalopoulos and C. Mese. On the Singular Set of Harmonic Maps into DM-Complexes. Memoirs of the American Math. Soc. Vol 239, no 1129, (2016).
- [11] G. Daskalopoulos and C. Mese. Essential Regularity of the Model Space for the Weil-Petersson Metric. Journal für die reine und angewandte Mathematik (Crelles Journal) 750 (2019) 53-96.
- [12] G. Daskalopoulos and C. Mese. Rigidity of Teichmueller space. Invent. Math http://doi.org/10.1007/s00222-020-01020-2
- [13] G. Daskalopoulos and C. Mese. Superrigidity of Hyperbolic Buildings. GAFA Vol. 21 (2011) 905-919.
- [14] A. Dold. Lectures of Algebraic Topology Springer-Verlag, Berlin, 1980.
- [15] H. Federer. Geometric Measure Theory. Springer-Verlag, New York, 1969.
- [16] F. W. Gehring, Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc 103 (1962) 353–393.
- [17] M. Gromov and R. Schoen. Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Publ. Math. IHES 76 (1992) 165-246.
- [18] X. Gu, F. Luo and S. T. Yau. Computational Conformal Geometry Behind Modern Technologies. To appear in the Notices AMS.
- [19] W. K. Hayman and P. B. Kennedy. Subharmonic Functions, Volume 1 Academic Press, London, 1976.
- [20] J. Heinonen. What is...a quasiconformal mapping. Notices of the AMS 53 (2006) 1334-1335.
- [21] J. Heinonen et al., Sobolev spaces on metric measure spaces, New Mathematical Monographs, 27, Cambridge University Press, Cambridge, 2015.
- [22] J. Jost. Two-dimensional Geometric Variational Problems. Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs, and Tracts, 1991, New York.
- [23] M. Karmanova. Rectifiable sets and coarea formula for metric-valued mappings. Journal of Functional Analysis 254 (2008) 1410-1447.
- [24] B. Kirchheim. Rectifiable metric spaces: Local Structure and regularity of the Hausdorff measure. Proc. Amer. Math. Soc. (1994) 113-123.
- [25] N. Korevaar and R. Schoen. Sobolev spaces and energy minimizing maps into metric space targets. Comm. Anal. Geom. 1 (1993) 561-659.
- [26] N. Korevaar and R. Schoen. Global existence theorem for harmonic maps to non-locally compact spaces. Comm. Anal. Geom. 5 (1997) 333-387.

- [27] E. Kuwert. Harmonic maps between flat surfaces with conical singularities. Math. Z. (1996) 421-436.
- [28] A. Lytchak, private communication.
- [29] A. Lytchak and S. Wenger. Canonical parameterizations of metric disks. Duke Math. J. 169 (2020) 761-797.
- [30] C. Mese, Minimal surfaces and conformal mappings into singular spaces, Thesis, Stanford University, 1996.
- [31] C. Mese. The structure of singular spaces of dimension 2. Manu. Math. 100 (1999) 375-389.
- [32] C. Mese. The curvature of minimal surfaces in singular spaces. Comm. Anal. Geom. 9 (2001) 3-34.
- [33] R. L. Moore. Concerning simple continuous curves. Trans. Amer. Math. Soc. 21 (1920) 333-347.
- [34] C. B. Morrey, Jr. On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43 (1938) 126-166.
- [35] K. Rajala. Uniformization of two-dimensional metric surfaces. Invent. Math 207 (2017) 1301– 1375
- [36] Y. G. Reshetnyak. Two-dimensional manifolds of bounded curvature. Geometry IV, volume 70 of Encyclopaedia Math. Sci., 3-163, 245-250. Springer, Berlin, 1993.
- [37] Y. G. Reshetnyak. Sobolev-type classes of functions with values in a metric space. Sib. Math. J. 38 (1997) 657-675.
- [38] Y. G. Reshetnyak. Sobolev-type classes of functions with values in a metric space II. Sib. Math. J. 45 (2004) 709-721.
- [39] Y. G. Reshetnyak. Nonexpanding maps in a space of curvature no greater than K. Sib. Math. J. 9 (1968) 918-927.
- [40] J. Sacks and K. Uhlenbeck. The Existence of Minimal Immersions of 2-Spheres Ann. of Math. 113 (1981) 1-24.
- [41] R. Schoen. Analytic aspects of the harmonic map problem. Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), 321-358, Math. Sci. Res. Inst. Publ., 2, Springer, New York, 1984.
- [42] T. Serbinowski. Harmonic maps into metric spaces of curvature bounded from above. Thesis, University of Utah, 1995.
- [43] J. Väisälä, Discrete open mappings on manifolds. Ann. Acad. Sci. Fenn. Ser. A I No. 392 (1966), 10 pp.

DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, BRONX, NY 10458 Email address: cbreiner@fordham.edu

Johns Hopkins University, Department of Mathematics,  $3400~\mathrm{N}.$  Charles Street, Baltimore, MD 21218

Email address: cmese@math.jhu.edu