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Abstract—This paper presents a new current controller in
the synchronous reference frame and its associated design for
enhancing the performance of three-phase grid-connected in-
verters, especially against weak-grid conditions. The existing
controllers do not perform strongly during high-impedance grid
conditions and lead to oscillations and instability issues due to
the interactions between the synchronization and control units.
The proposed controller addresses this issue by 1) deriving a
linear model of the three-phase phase-locked loop (PLL), 2)
integrating the PLL model into the current controller design,
3) using a multivariable control design for multi-input multi-
output systems, and 4) designing the controller gains using
optimal linear quadratic theory. The proposed controller has
superior performance over a substantially wider range of weak-
grid conditions compared to conventional controllers. Extensive
simulation and experimental results are presented in order to
validate and reveal the desirable performance of the proposed
controller.

Index Terms—Linear quadratic regulator (LQR), multi-input
multi-output (MIMO) controller, phase-locked loop (PLL), three-
phase grid-connected voltage-source converter (VSC), weak grids.

I. INTRODUCTION

Integrating distributed and renewable energy resources

into the power grid is growing. Power electronic convert-

ers (PECs) interface the distributed energy resource (DER)

devices while complying with the grid codes and standards

[1]–[3]. PECs must robustly perform against system changes

and uncertainties—such as a high-impedance grid (commonly

known as the weak-grid condition)—where the frequency and

voltage at the point of common coupling (PCC) can experience

fluctuations. The converter dynamics amplify such conditions,

so oscillations and instabilities occur [4]–[10]. The weak-grid
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Québec H3T 1J4, Canada, E-mail: houshang.karimi@polymtl.ca, seyed-
milad.hosseinizadeh@polymtl.ca.
Masoud Davari is with the Department of Electrical and Computer Engi-

neering, Georgia Southern University, Statesboro, GA 30460, USA, E-mail:
mdavari@georgiasouthern.edu; davari@ualberta.ca.

conditions limit the amount of power that an inverter can feed

to the grid [7], [11]–[13]. A robust and optimal controller can

increase the power transfer capacity of the inverter by allowing

its operation closer to its steady-state stability limit, which is

the maximum real power that the PECs can inject into the grid

when the power is gradually increased.

In the control system of a grid-connected inverter, the phase-

locked loop (PLL) [8], [14]–[17] is employed to extract the

phase angle of grid voltage for synchronization, i.e., for the

transformations between the abc- and dq-frames. The impacts

of the PLL on weak-grid conditions have been extensively

reported in many studies—e.g., see [8], [10], [12], [18]–

[25]—they have revealed that the system stability margins are

strongly affected by the PLL bandwidth.

Different approaches to enhancing the robustness of the

inverter responses in weak-grid conditions by mitigating the

adverse effects of PLL dynamics have been reported in the

literature. The work in [4] shows that the stability of the

overall converter depends on the real part of the admittance

transfer function. This study recommends the bandwidth of

PLL below one-tenth of that of the overall closed-loop control

system such that the input conductance remains positive for

most sub-synchronous frequencies. The decreased bandwidth,

however, degrades the transient responses of the system. In

[8], an input multiplicative perturbed model and a μ-synthesis
approach to optimally synthesizing a robust ac-bus voltage

controller have been proposed in order to enhance the whole

system’s robustness. Still, its design stage is complex and leads

to synthesized controller transfer functions of a high order.

Studies in [26], [27] introduce a voltage feed-forward

method to reduce the PLL instability effect during high-

impedance grid conditions where the q-axis grid voltage is

filtered and used in the q-channel of the current controller.

The analysis and system performance for very weak-grid

conditions are not presented. The work in [28] has introduced

a similar current feed-forward method to improve the stability

of the system. The work in [29] modifies the PLL via an

impedance-based compensation term, allowing the inverter to

synchronize to a virtual but stronger grid node. The design

of the virtual impedance and the filters in the PLL constitute

the challenges associated with this method. Along the same

line, [11] has proposed considering an artificial stronger bus to

operate the PLL on it. A power control method is introduced
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in [30] where the capacitor voltage of the LCL filter is also

controlled in the internal loop. This method causes the loss of

current limiting, and the design of internal loop compensators

to yield a robust operation can be challenging.

The work in [31] proposes damping of the post-fault os-

cillations amplified during weak-grid conditions, in droop-

based grid-forming inverters, by using an adaptive virtual

resistor. The study in [32] introduces a current-error-based

angle and magnitude compensation strategy based on the

classical voltage-source converter (VSC) vector control, which

improves system stability and power transfer capability of the

VSC connected to a very weak grid. The magnitude compen-

sation is applied to the quadrature component of the reference

voltage, and the angle compensation is added to the measured

phase angle of the grid voltage. The study in [33] uses an

impedance-compensated PLL where a filtered component of

the output current is also employed to compensate for the

output voltage. It, however, needs to switch between different

controller designs for different grid strengths.

The studies in [34]–[37] have explored nonlinear control

strategies. The study in [34] proposes an adaptive stabilizing

control strategy within the PLL to damp the quadrature compo-

nent of the grid voltage in order to minimize the oscillations

due to loop interactions under low short-circuit ratio [SCR

or equivalently short-circuit capacity ratio (SCCR) in [8]] and

reduced grid voltage. The work presented in [35] accomplishes

a combination of the PLL dynamics with the grid-connected

VSI control using a disturbance observer integrated into the

sliding mode control to address the uncertainties and external

disturbance during weak-grid conditions. Similarly, [36] has

used the feedback linearization method to develop a robust

controller to regulate the active power and output voltage

of the grid-connected VSC. This approach is shown to have

a broader range of operations compared with the common

vector control approach. The work in [36] investigates the

stability and domain of attraction of the equilibrium point of

the system; it uses the Lyapunov theorem to extend the domain

of attraction of the equilibrium point. Such controllers are gen-

erally complex in design and analysis, and their performances

within various operating conditions need to be studied.

To summarize, the existing approaches have improved the

robustness of the inverter controller by either improving the

feed-forward terms (coming from the PLL to the controller),

synchronizing to a virtual but stronger grid node, adding more

internal control loops, or exploring nonlinear control strategies.

To the best of the authors’ knowledge, none of them have

been found to “integrate” the PLL into the three-phase current

controller entirely via a multivariable controller and regard

the PLL-integrated control synthesis as a multi-input multi-

output (MIMO) design simultaneously. Although some have

incorporated an “approximate” model of the PLL, e.g., a SISO

transfer function model of the PLL, or looked at the PLL

dynamics [34], [35], [38]–[40], they have not considered a

MIMO system, a multivariable controller, and an exact PLL

model concurrently. On the contrary, the method proposed in

this paper accurately and thoroughly integrates a precise dy-

namic model of the PLL and current control methodologies—

thereby stabilizing all dynamics via one unified control ap-
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Fig. 1. System and controller of a grid-connected inverter.

proach. As a result, the proposed method is able to employ

the accurate interconnected, detailed dynamics of three-phase

grid-connected inverters to design a MIMO controller, which

mathematically matches the problem under consideration. The

work [41] has presented an approach to fully integrating the

PLL in a single-phase inverter controller in the stationary

frame using a large-signal linear time-invariant (LTI) model of

the single-phase enhanced PLL (ePLL). It has demonstrated

substantial performance enhancement in weak-grid conditions.

The approach based on the synchronous reference frame

(SRF) (also known as the dq-frame control) together with

SRF-PLL is widely applied to three-phase grid-connected

converters in the power industry. This matter is studied in

this paper. However, integrating PLL into the entire control

design process and controller structure generally mitigates

interactions between PLL and the control loop. Yet, the details

associated with different PLLs and controllers should be

investigated for each case. Recently, the same concept has

been developed and applied to the controller in the stationary

domain; see [42].

Compared with a single-phase system and the approach

presented in [41], two significant differences need to be

considered and addressed. 1) The dq-frame or SRF-PLL is

employed, and the controller operates in the dq-frame, i.e., the

rotating frame (not the stationary frame), and 2) the controller

has two channels. In order to fully address the problem, it re-

quires this paper to 1) derive a comprehensive LTI state-space

model of the SRF-PLL suitable for control design integration

and 2) develop a MIMO controller approach to avoiding the

negative impact of decoupling terms [43] and establishing

constructive coupling terms. This paper addresses these two

aspects: 1) derivation of a PLL model and 2) formation and

optimal design of a MIMO controller—including the PLL

model. Extensive, comparative simulations and experimental

results confirm and demonstrate the substantial improvement

of the inverter performance in weak-grid conditions.

II. STUDY SYSTEM

The study system is a three-phase grid-connected VSC

with the vector current controller implemented in the dq-
frame. Figure 1 shows its complete block diagram. A stiff

dc voltage (denoted by Vdc) is assumed in this study. The

VSC is connected to the grid at PCC via an L-filter whose

inductance is properly chosen such that the peak-to-peak

current ripple is sufficiently small, e.g., below 10% of the
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TABLE I
BASIC SYSTEM PARAMETERS

Parameter Symbol Value
Inverter power rating Sinv 10 kVA
L-filter inductance (per phase) L 4 mH
L-filter resistance (per phase) R 1 mΩ
DC-bus voltage Vdc 600 V
Grid voltage (L-N rms value) Vs 120 V
Grid frequency fn 60 Hz
Grid inductance (per phase) Lg 0–11 mH
Grid resistance (per phase) Rg 0.3ωnLg Ω
Short-circuit ratio or SCR or 1.000–10.976
short-circuit capacity ratio [8] SCCR (for Lg 10.976–1 mH)
Switching frequency fsw 10 kHz

peak rated current. A local load is connected to PCC. All the

impedances reflecting the actual practical effects, such as the

local grid impedance, the transformer impedance, and the line

impedance, are considered and aggregated as grid impedance

(denoted by Zg). A weak grid is modeled through a Thévenin

voltage source (vs) behind the grid impedance Zg , and the grid

is weaker for larger amplitudes of practical Zgs, i.e., |Zg|, or
equivalently lower SCRs/SCCRs (see [8] for their values for

different grids). This approach to modeling a weak grid has

been widely adopted in the research literature on weak-grid-

related studies [26]–[40]. Table I provides the set of parameters

for the study system employed in the majority of simulations in

this paper. For a fair comparison, both controllers are designed

with the same criteria to achieve smoothness of transients with

suitable damping and speed of response and without steady-

state error over the widest possible range of grid strengths.

III. MIMO CONTROLLER

A MIMO controller based on an extended linear quadratic

tracking approach has been recently proposed in [44] and has

shown a superior performance. This method is regarded as the

conventional controller here, forming a basis for developing

the proposed controller design method. Therefore, this MIMO

approach is briefly reviewed here.

The converter/grid current and voltage equations in the dq-
frame are summarized as

L
did
dt

+Rid−ωgLiq=ud−vgd

L
diq
dt

+Riq+ωgLid=uq−vgq

(1)

where vgd, vgq and id, iq are the dq components of voltage

vg and current ig, respectively. Also, ud and uq are control

inputs in the dq-frame. The transformation to/from dq uses φ̂g

(from the PLL) as the reference angle. Moreover, ωn is the

nominal angular frequency and ωg is the measured value.

For a common controller with PI (proportional-integral)

terms, define the set of state variables as

x1=

∫
eddt, x2=

∫
eqdt, x3= id, x4= iq

where ed = i∗d− id and eq = i∗q− iq are the current tracking

errors. The state equations will be

ẋ1 = i∗d − x3, ẋ2 = i∗q − x4,

ẋ3 = −R

L
x3 + ωgx4 +

1

L
ud +

1

L
vgd,

ẋ4 = −R

L
x4 − ωgx3 +

1

L
uq +

1

L
vgq,

(2)

and the control vector is u = [ud uq]
T .

The state equations and control inputs are linearly trans-

formed by applying d
dt to convert tracking problem into

regulation problem. With z = dx
dt and w = du

dt , the state

equations and control law are re-written as

ż1 = −z3, ż2 = −z4,

ż3 = −R

L
z3 + ωgz4 +

1

L
wd,

ż4 = −R

L
z4 − ωgz3 +

1

L
wq.

(3)

Equation (3) can be represented in state-space representation

as ż = Az +Bw where the matrices A and B are given by

A =

⎡
⎢⎢⎣
0 0 −1 0
0 0 0 −1
0 0 −R

L ωg

0 0 −ωg −R
L

⎤
⎥⎥⎦ ;B =

⎡
⎢⎢⎣
0 0
0 0
1
L 0
0 1

L

⎤
⎥⎥⎦ .

As x1 =
∫
eddt, it is obvious that z1 = ed, and similarly,

z2 = eq . Moreover, z3 = d
dt id, and z4 = d

dt iq . Thus, the
controller gains are optimally designed to minimize the cost

function J =
∫∞
0

(zTQz+wTRw)dt, where Q is a positive

semi-definite matrix with diagonal entries qi, i= 1, .., 4, and
R is selected to be equal to the 2× 2 identity matrix. Matrix

Q is chosen according to the following steps.

Step I: Initialize q1 and q2 to small positive number around

zero. Keep all other q′is at zero.

Step II: Start with q1 and gradually increase it (followed by

the same increase in q2) such that the tracking error builds

up to a desirable speed.

Step II: Increase q3 and q4 gradually such that all closed-loop

poles have desired speed and damping.

By selecting the suitable values of diagonal elements q′is in

Q, the closed-loop poles are placed at the desired location,

and the corresponding controller gain K is found through

K = lqr(A, B, Q, R)—where “lqr” is a MATLAB

command. Figure 2 shows the loci of all closed-loop poles with

respect to an increase in qi. First, q1 is increased from 10−1

to 105.5 followed by same increase in q2 in order to penalize

the tracking error in both d and q loops. Then, q4 is gradually

increased from 0 to 2 so as to achieve desired damping and

speed of the system poles. The closed-loop poles are finally

placed at [−304± j468,−235± j91] with the controller gain

K =

[−460.85 322.25 2.00 −0.11
−322.25 −460.85 −0.11 2.31

]
.

IV. PROPOSED CURRENT CONTROLLER

The common SRF-PLL that provides the synchronization

angle for transformations to/from the dq-frame is shown in
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Fig. 2. Loci of closed-loop poles for q1 = [10−1 → 105.5] (blue),
q2=[10−1 → 105.5] (red), and q4=[0 → 2] (black).

Fig. 3. It is a nonlinear system of order three which can

be characterized by three state variables. As it has been

established in the literature that the dominant cause of system

instability and oscillations during weak-grid conditions is the

loop interactions between the PLL and the current controller,

the central idea of the proposed controller is to integrate and

incorporate these three state variables of the PLL into the

MIMO controller. Fig. 4 shows the block diagram of the

proposed multivariable controller. The state variables of the

PLL are also incorporated in the controller design to address

the instability issues caused by the weak-grid conditions.

Considering the effect of grid impedance and the PLL, the

converter and grid voltage/current equations are written as

(L+Lg)
dîd
dt

+(R+Rg)̂id−ωg(L+Lg)̂iq= v̂gd+ûd−v̂sd

(L+Lg)
dîq
dt

+(R+Rg)̂iq+ωg(L+Lg)̂id= v̂gq+ûq−v̂sq

(4)

where v̂sd, v̂sq are the dq components of vs. All the transfor-

mations are done using the PLL angle φ̂g , where ·̂ is used to

denote the transformed variables.

For an integrating controller, define the state variables as

x1=

∫
eddt, x2=

∫
eqdt, x3= îd, x4= îq

where ed = i∗d− îd and eq = i∗d− îq . Denoting T0 = (L+
Lg)

−1, T1=T0(LRg−LgR), T2=T0Lg, and T3=T0L, the
state equations of the system and the controller are

ẋ1 = i∗d − x3, ẋ2 = i∗q − x4,

ẋ3 = T0[−(R+Rg)x3 + v̂gd + ûd − v̂sd] + ω̂gx4,

ẋ4 = T0[−(R+Rg)x4 + v̂gq + ûq − v̂sq]− ω̂gx3.

(5)

A. PLL Model

Let x5, x6, and x7 be the state variables of the PLL as

defined and shown in Fig. 3. Considering μ = μ1 = μ3

ẋ5= −μx5 + μv̂gd, ẋ6=x7 + μ
v̂gq
x5

, ẋ7=μ2
v̂gq
x5

. (6)

. 2
3

÷ μ2
s

μ3

1
s

C(φ)

. 2
3

μ1

s+μ1
.

S(φ)
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φ̂
g
=

x
6
+
ω
n
t
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+

ωn
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+

v̂gd V̂g
v̂g

Fig. 3. Block diagram of the PLL [45].

Define the vectors S and C as

S(θ) =

⎡
⎣ sin (θ)
sin (θ − 120)
sin (θ + 120)

⎤
⎦ , C(θ) =

⎡
⎣ cos (θ)
cos (θ − 120)
cos (θ + 120)

⎤
⎦ .

Let vg be voltage at PCC with peak value of Vg , ig be the

inverter output current with peak value Ig , and vs be the stiff

grid voltage with peak value of Vs. Thus, vs = VsS(φs), vg =
VgS(φg), ig = IgS(φi). Subsequently,

v̂sd =
2

3
ST(φ̂g)vs = Vs cos(φ̂g − φs) = Vs cos(x6)

v̂sq =
2

3
CT(φ̂g)vs = −Vs sin(φ̂g − φs) = −Vs sin(x6)

Next, expressions for v̂gd and v̂gq are derived in terms of

v̂sd, v̂sq and other state variables. Applying KVL between vg

and vs on the d axis yields

Lg
dîd
dt

+Rg îd − ω̂gLg îq = v̂gd − v̂sd. (7)

By substituting (7) in (4) dîd
dt = −R

L îd + ω̂g îq +
ûd

L − v̂gd
L , Lg

or L, one gets v̂gd = T1x3 + T2ûd + T3Vs cos(x6). Similarly,

v̂gq = T1x4 + T2ûq − T3Vs sin(x6). Substituting v̂gd and v̂gq
in (6), the PLL state equations can be derived as

ẋ5 =− μx5 + μ[T1x3 + T2ûd + T3Vs cos(x6)]

ẋ6 =x7 +
μ

x5
[T1x4 + T2ûq − T3Vs sin(x6)]

ẋ7 =
μ2

x5
[T1x4 + T2ûq − T3Vs sin(x6)].

(8)

Finally, the complete state equations, including the two state

variables of the system, two variables of integrators in the

controller, and three variables of the PLL, are obtained as

ẋ1 =i∗d − x3, ẋ2 = i∗q − x4,

ẋ3 =−T0(R+Rg)x3+T0[T1x3+T2ûd+T3Vs cos(x6)]

+ ωnx4 + T0ûd − T0Vs cos(x6),

ẋ4 =−T0(R+Rg)x4+T0[T1x4+T2ûq−T3Vs sin(x6)]

− ωnx3 + T0ûq + T0Vs sin(x6),

ẋ5 =− μx5 + μ[T1x3 + T2ûd + T3Vs cos(x6)]

ẋ6 =x7 +
μ

x5
[T1x4 + T2ûq − T3Vs sin(x6)]

ẋ7 =
μ2

x5
[T1x4 + T2ûq − T3Vs sin(x6)].

(9)

It is evident that the PLL nonlinearity penetrates into the entire

system and makes the overall system nonlinear.
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Fig. 4. Proposed multivariable, PLL-integrated current controller for three-phase grid-connected inverters.

B. Linearization of State Equations

The state equations (9) are linearized around the equilibrium

point. In order to obtain the equilibrium point, first note that

the currents at this point are x∗
3 = i∗d, x

∗
4 = i∗q . For the nominal

grid impedance of (R1+jωnL1) and considering the phase of

vs as the reference, nominal amplitude (V ∗
g ) and phase angle

(δ∗g ) of v
∗
g can be found as

v∗
g = (vsd + jvsq) + (i∗d + ji∗q)(R1 + jωnL1),

= Vs +R1i
∗
d − ωnL1i

∗
q + j(R1i

∗
q + ωnL1i

∗
d),

∴ V ∗
g =

√
(Vs+R1i∗d−ωnL1i∗q)2+(R1i∗q+ωnL1i∗d)2,

δ∗g = tan−1[
R1i

∗
q + ωnL1i

∗
d

Vs +R1i∗d − ωnL1i∗q
].

(10)

Therefore, x∗
5 = V ∗

g , and x∗
6 = δ∗g . During the steady-state,

û∗
d − v̂∗sd + v̂∗gd = (R+R1)i

∗
d is valid, or equivalently,

(R+R1)x
∗
3= û∗

d+T1x
∗
3+T2û

∗
d+T3Vs cosx

∗
6−Vs cosx

∗
6

û∗
d=

1

1+T2
[(R+R1−T1)x

∗
3+(1−T3)Vs cos(x

∗
6)]

(11)

Similarly, û∗
q = 1

1+T2
[(R+R1−T1)x

∗
4 +(T3− 1)Vs sin(x

∗
6)].

Then, the linearization around the equilibrium point is

performed in order to derive

˙̃x = Ax̃+Bũ (12)

where x̃ = x − x∗ = [x̃1 x̃2 ... x̃7]
T , x = [x1 x2 ... x7]

T ,
x∗ = [x∗

1 x∗
2 ... x∗

7]
T , and u = [ûd ûq]

T . The aij element of

matrix A and bij elements of matrix B are calculated through

aij =
∂ẋi

∂xj

∣∣
∗, ∀ i ∈ [1, .., 7], j ∈ [1, .., 7] (13)

bij =
∂ẋi

∂uj

∣∣
∗, ∀ i ∈ [1, .., 7], j ∈ [1, 2] (14)

as detailed in Appendix A.

C. Selection of PLL Gains

As shown in Fig. 3, the PLL has 3 gains—i.e., μ1, μ2,

and μ3. With μ1 = μ3 = μ = 2ζ1ωn and μ2 = μ2

4ζ2
2
, the

characteristic equation of PLL is s2 + μs + μ2 = 0. The

damping ratio ζ1 corresponds to the filtering level of the PLL.

The damping ratio ζ2 corresponds to the frequency estimation

dynamics and inversely determines its bandwidth. In this study,

ζ1=0.4, ζ2=2 are chosen which correspond to μ1=μ3=300
and μ2=5700.

D. Optimal Design of Proposed Controller

In order to employ the linear quadratic regulator (LQR)

approach to designing the controller gains, (12) is linearly

transformed by applying d
dt to its both sides to arrive at

ż = Az+Bw (15)

where, z = dx
dt and w = du

dt . Then, the state variables z1 and

z2 represent the tracking errors in the d and q axes, respec-

tively. Therefore, the controller gains are optimally designed

by minimizing the cost function J =
∫∞
0

(zTQz+wTRw)dt,
where Q is a positive semi-definite matrix with diagonal

entries qi, i = 1, 2, .., 7, and R is the 2 × 2 identity matrix.

The elements of matrix Q are selected through the following

proposed steps.

Step I: Initialize q1 and q2 at a small positive number around

zero. Keep all other q′is at zero.

Step II: Start with q1 and gradually increase it followed by

q2 such that the tracking error builds up to a desirable speed.

Step III: Increase q4 gradually such that high frequency

closed-loop complex poles have desired damping.

Step IV: Increase q5 gradually to fine tune the speed and

damping of all the closed-loop poles (including the PLL).

Figure 5 shows the loci of all closed-loop poles with respect

to an increase in q′is: q1 from 10−1 to 105.5 (blue), q2 from

10−1 to 105, q4 from 0 to 6, and q5 from 0 to 1. The closed-

loop poles are finally placed at [−305 ± j405, − 158 ±
j10, − 330, − 91, − 22] to have similar dynamics as

conventional ones. The corresponding controller gain is K=[−427.33 205.55 2.11 −0.08 0.14 2.96 0.09
−365.53 −240.31 −0.03 2.77 −0.03 49.71 0.07

]
.

E. Robustness Analysis of Proposed Controller

The robustness of the proposed controller is compared with

that of the conventional controllers against uncertainty in the

grid inductance (Lg) using an eigenvalue analysis. Figure 6

shows that the poles of the conventional controller experi-

ence more significant location changes—and hence, shifting

towards the imaginary axis—than location changes of the

proposed controller’s poles for both low and high power

scenarios. This observation confirms the proposed controller’s

“higher” level of robustness against grid weakness.
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Fig. 5. Loci of close-loop poles of the proposed controller for q1=
[10−1 → 105.5] (blue), q2 = [10−1 → 105] (black), q4 = [0 → 6]
(cyan), and q5 = [0 → 1] (red). The final locations are marked by
asterisk (*).

Fig. 6. Eigenvalues of the proposed and conventional con-

trollers when Lg varies from 0 mH to 10 mH for high-power

(left) and low-power (right) system.

V. SIMULATION RESULTS

Simulations are performed in the PSIM software for the

selected system parameters and the designed controller gains.

The operation and grid connection of the power inverter

are sequentially performed. At first, the PLL is started, and

the generated vgd, vgq by the PLL are used to have a

soft start. The desired characteristics of the controllers are

achieving fast and smooth transient response without any

steady-state error for the widest possible range of grid strength

or fault. Therefore, the stability margin of the conventional

and proposed controllers at different grid strength levels

are compared based on two conditions: 1) the power jump

withstand capacity and 2) fault-ride-through capability. The

power jump withstand capacity is defined as the maximum

Fig. 7. Power jump withstand capacity of low-power inverter—in
which SCR changes from 1.829 to 1.000 with respect to Lg variations
from 6.000 mH to 10.976 mH, according to Table I.

Fig. 8. Fault-ride-through capacity of low-power inverter—in which
SCR changes from 2.195 to 1.000 with respect to Lg variations from
5 mH to 10.976 mH, according to Table I.

real power step command that the inverter system can execute

without oscillatory transients leading to instability. These two

conditions provide extreme case scenarios in which the inverter

system can operate—depicting the robustness of the control

system. These simulation results are collected and presented

for a low-power inverter (10 kVA) and a high-power inverter

(5 MVA).

A. Low-Power Inverter (Sinv = 10 kVA)

The system parameters in Table I and the controller gains

designed above are employed in this section. The grid in-

ductance values of 1.000–10.976 mH correspond to the SCR

values of 10.976–1.000, respectively.
1) Power Jump Withstand Capacity: Figure 7 shows the

real power jump withstand capacity of both conventional and

proposed controllers for different grid strength levels. Both

controllers can withstand a rated power jump of 10 kW when

Lg is less than 6 mH. As the grid inductance increases, the

ability of the conventional controller to withstand power jump

rapidly decreases and reaches close to zero for Lg = 9 mH.

However, the proposed controller can withstand rated power

jump up until Lg = 9 mH. It can withstand jump of 4 kW for

Lg = 13 mH. This shows a substantial level of improvement.
2) Fault Ride-Through Capacity: A three-phase fault with a

voltage drop of 80% is applied at 1/4 distance from PCC in the
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TABLE II
HIGH-POWER SYSTEM AND CONTROL PARAMETERS

Parameter Symbol Value
Inverter power rating Sinv 5 MVA
L-filter inductance (per phase) L 2 mH
DC-bus voltage Vdc 8 kV
Grid voltage (L-N rms value) Vs 1.9 kV
Grid inductance (per phase) Lg 0–6 mH
Short-circuit ratio or SCR or 1.000–5.746
short-circuit capacity ratio [8] SCCR (for Lg 5.746–1.0mH)

Conventional controller gains:

K =

[−138.7 111.3 0.83 −0.09
−111.3 −138.7 −0.09 1.1

]

Proposed controller gains:

K =

[−235.1 118.9 1.1 −0.04 0.16 251.9 1.9
−211.4 −132.2 0.04 1.5 −0.03 833.7 0.4

]

interconnecting line for 0.05 seconds to observe its impact on

controller performances. Figure 8 shows the fault ride-through

capacity of both conventional and proposed controllers for

different grid strength levels. Both controllers can inject rated

power to the grid and ride through the fault when Lg is less

than 5 mH. As the grid inductance increases, the ability of

the conventional controller to inject power to the grid rapidly

decreases and reaches zero for Lg = 8 mH. However, the

proposed controller can ride through fault while operating at

rated power up until Lg = 7 mH. Even for extremely weak-

grid conditions, the proposed controller can ride through fault

while functioning at more than 30% of rated capacity.

B. High-Power Inverter (Sinv = 5 MVA)

A 5-MVA inverter is chosen and the system parameters

are properly chosen, and the controller gains are designed

following similar steps as is in the low-power inverter scenario

described. The system and control parameters are presented

in Table II. The grid inductance values of 1.000–5.746 mH

correspond to the SCR values of 5.746–1.00, respectively.

1) Power Jump Withstand Capacity: Figure 9 shows the

real power jump withstand capacity of both conventional and

proposed controllers for different grid strength levels. Both

controllers can withstand a rated power jump of 5 MW up to

Lg = 4 mH. As the grid inductance increases, the ability of

both controllers to withstand power jump gradually decreases.

However, the proposed controller is able to withstand around

1 MW more power jumps for all grid strength levels.

2) Fault Ride-Through Capacity: Similar to the low-power

scenario, a three-phase fault with a voltage drop of 80%

is applied at 1/4 distance from PCC in the interconnecting

line for 0.05 seconds to observe its impact on controller

performances. Figure 10 shows the fault ride-through capacity

of both conventional and proposed controllers for different

grid strength levels. It shows that the proposed controller has

better fault tolerance for the entire range of grid impedance

except when 5.5 mH< Lg < 6.25 mH where the conventional

controller performs marginally better than the proposed one.

VI. EXPERIMENTAL RESULTS

A test bed/rig available in the lab (as described below) is

employed to validate the performance and implementation of

the proposed controller and shows its practicability. Figure 11

Fig. 9. Power jump withstand capacity of high-power inverter—in
which SCR changes from 1.436 to 1.000 with respect to Lg variations
from 4.000 mH to 5.746 mH, according to Table II.

Fig. 10. Fault ride-through capacity of high-power inverter—in which
SCR changes from 2.873 to 1.000 with respect to Lg variations from
2.000 mH to 5.746 mH, according to Table II.

Fig. 11. Experimental set-up.

shows a photograph of the experimental test bed/rig used to

test the proposed controller. The controllers are implemented

in the real-time simulator OP5600 from OPAL-RT Technolo-

gies. The OP5600 generates the switching pulses for a 20 kVA

Semikron SKH161 inverter which has six IGBTs with drivers.

The dc source of 160 V is built using a 3-phase passive rectifier

connected to an auto-transformer. The auto-transformer input

is connected to a three-phase transformer which reduces the

grid of 120 V (line-to-neutral rms value) to 30 V (line-to-

neutral rms value). The inverter, designed for the base current

of 10.2 A, is connected via an L-filter of 5 mH to the grid.

A parallel RLC (R = 15 Ω, L = 55 mH, C = 38 μF) load

is connected at PCC, and an impedance is connected between

the grid and PCC to mimic weak-grid conditions. The voltage
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Fig. 12. Scenario I (Lg=0 mH): inverter current in the dq-frame.
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Fig. 13. Scenario II (Lg=5 mH): inverter current in the dq-frame.

and current waveforms are measured by the OP8660 sensor

and then forwarded to the OP5600. The data from OPAL-RT

are saved and plotted using MATLAB. Multiple scenarios have

been implemented and tested as described below.

Since it was not feasible to emulate grid faults in our experi-

ments, the disturbance of the load connection/disconnection in

weak grid conditions is considered. This produces a momen-

tary voltage change which is somewhat similar to a voltage

sag during grid faults even though not to the same extent.

Therefore, a similar conclusion about the relative robustness of

the proposed controller against grid faults can be anticipated.

Scenario I—Strong Grid—In this scenario, there is no

impedance between PCC and the grid. The system is started

with zero current. The following sequence of disturbances

are applied: Id increases from 0 to 4 A [0.4 per unit (pu)]

at t = 0.1 s, Iq decreases from 0 to –2 A (–0.2 pu) at

t = 0.3 s, Iq jump from –2 to 2 A (0.2 pu) at t = 0.5 s,

Iq goes back to 0 at t= 0.7 s and finally Id returns to 0 at

t=0.9 s. Figure 12 shows the inverter current in the dq-frame.

Both controllers perform well and similar in this scenario. The

transient response of the Iq signal is acceptably damped with

a time constant and a settling time in the order of one cycle

and two cycles, respectively.

Scenario II—Mildly Weak Grid—In this scenario, there

is an impedance of 5 mH inserted between PCC and the
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Fig. 14. Scenario III (Lg=10 mH): inverter current in the dq-frame.
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Fig. 15. Scenario IV (Lg=20 mH): inverter current in the dq-frame.

grid. The system is started with zero current, and the RLC

load is connected. The following sequence of disturbances are

applied: Id increases from 0 to 4 A (0.4 pu) at t=0.1 s, Iq
decreases from 0 to –2 A (–0.2 pu) at t = 0.3 s, local load

is disconnected at t = 0.5 s and reconnected at t = 0.7 s,

Iq goes back to 0 at t = 0.9 s and finally Id returns to 0

at t= 1.1 s. Figure 13 shows the inverter current in the dq-
frame. The performances of both controllers are similar—with

the proposed controller being marginally better in terms of

overshoots and settling time.

Scenario III—Weak Grid—In this scenario, an impedance

of 10 mH is inserted between PCC and the grid. The system

is started at zero current, and the RLC load is connected. The

following sequence of disturbances are applied: Id increases

from 0 to 4 A (0.4 pu) at t = 0.1 s, Iq decreases from

0 to –2 A (–0.2 pu) at t = 0.3 s, Iq increases from –2

to 2 A (0.2 pu) at t = 0.5 s, local load is disconnected

at t = 0.7 s and reconnected at t = 0.9 s, Iq goes back

to 0 at t = 1.1 s and finally Id returns to 0 at t=1.3 s.

Figure 14 shows the inverter current in the dq-frame. The

performance of the conventional control system is oscillatory

and is approaching the instability region—especially when the

local load is disconnected. However, the performance of the

proposed controller has smooth transients without oscillations.

Authorized licensed use limited to: Georgia Southern University. Downloaded on May 19,2022 at 01:11:16 UTC from IEEE Xplore.  Restrictions apply.



0885-8993 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2022.3164878, IEEE
Transactions on Power Electronics

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.2

0

0.2

0.4

cu
rr

en
t (

pu
)

Proposed control system responses: Scenario V

Id

Iq

-0.5

0

0.5

cu
rr

en
t (

pu
)

I
abc
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Fig. 17. Scenario VI (Lg=25 mH): (proposed) inverter current.

Scenario IV—Very Weak Grid and Small Power Jumps—
In this scenario, an impedance of 20 mH is connected between

PCC and the grid. The system is started with zero current, and

the RLC load is connected. A step change of 2 A in Id is

applied at t=0.1 s followed by a step change of –1 A (–0.1

pu) in Iq at t=0.3 s. The local load is disconnected at t=0.5 s

and is reconnected at t=0.7 s. Iq returns to 0 at t=0.9 s and

Id goes back to zero at t=1.1 s. The inverter output currents

in the dq-frame is shown in Fig. 15. The conventional control

system’s response is highly oscillatory and is on the brink

of instability even for such a low-power operation. However,

the proposed control system responds robustly to the applied

disturbances with short and smooth transients.

Scenario V—Very Weak Grid and Large Power Jumps—
Figure 16 shows that the proposed controller performs well

with smooth transients even for large step changes in the

current reference and the connection/disconnection of the load.

Scenario VI—Extremely Weak Grid and Large Power
Jumps—In this scenario, the grid impedance is further in-

creased to 25 mH. Figure 17 shows that the proposed system

is still stable and performs satisfactorily.

Scenario VII—Transients in ABC Current—Figure 18

compares the transient response of both controllers for two

grid strength levels when 2 A (0.2 pu) jump in real current

Id is applied. Due to the unavailability of a three-channel

oscilloscope, only the currents of two phases with the vertical

axis of 0.1 pu/div (for current) and the horizontal axis of 20

Fig. 18. Current jump transients for both controllers in strong and
weak grid conditions shown on a two-channel oscilloscope (vertical
axis is 0.1 pu/div for current, and horizontal axis is 20 ms/div).

ms/div are presented. The current of the third phase can be

computed since the configuration is a three-wire system.

VII. CONCLUSION

This paper has proposed and studied a new controller for

the three-phase grid-connected inverters that use vector current

control in the synchronous rotating frame. The ideas of the

paper have been summarized as 1) employing a multivariable

controller (instead of two separate channels) and 2) including

the dynamics of the phase-locked loop (PLL) in the controller.

An appropriate linear time-invariant model of the three-phase

PLL has been derived and incorporated within the multivari-

able current controller—whose entire control gains have been

designed via an optimal control theory approach. An algorithm

for the systematic design of the whole controller gains has

also been proposed. Comparative simulations and experimental

results have been included to confirm the robustness of the

proposed controller for the entire range of strong to extremely

weak-grid conditions.

APPENDIX A

CALCULATION OF MATRICES OF LINEARIZED MODEL

Elements of matrix B are calculated according to (14) as

b31 = T0T2 + T0; b42 = T0T2 + T0, b51 = μT2; b62 =
μ
x∗
5
T2; b72 = μ2

x∗
5
T2. All other elements are zero. Elements of

matrix A are calculated according to equation (13) as

a13 =− 1; a24 = −1; a33 = −T0(R+Rg) + T0T1;

a34 =ωn; a36 = −T0T3Vs sin(x
∗
6) + T0Vs sin(x

∗
6);

a43 =− ωn; a44 = −T0(R+Rg) + T1T0;

a46 =− T0T3Vs cos(x
∗
6) + T0Vs cos(x

∗
6);

a53 =μT1; a55 = −μ; a56 = −μT3Vs sin(x
∗
6);

a64 =μ
T1

x∗
5

; a65 =
μ

x∗
5
2 {T1x

∗
4 + T2û

∗
q − T3Vs sin(x

∗
6)};

a66 =− μ

x∗
5

T3Vs cos(x
∗
6), a67 = 1, a74 = μ2

T1

x∗
5

,

a75 =
μ2

x∗
5
2 [T1x

∗
4+T2û

∗
q−T3Vs sinx

∗
6]; a76=−μ2

x∗
5

T3Vs cosx
∗
6.

All other elements in A are equal to zero.
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