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Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge
in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial
dimensions, we experimentally investigate quantum algorithms for solving the Maximum Independent Set
problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop
optimization to test several variational algorithms, and subsequently apply them to systematically explore
a class of graphs with programmable connectivity. We find the problem hardness is controlled by the
solution degeneracy and number of local minima, and experimentally benchmark the quantum algorithm’s
performance against classical simulated annealing. On the hardest graphs, we observe a superlinear
quantum speedup in finding exact solutions in the deep circuit regime and analyze its origins.

Combinatorial optimization is ubiquitous in many areas of
science and technology. Many such problems have been
shown to be computationally hard and form the basis for
understanding complexity classes in modern computer sci-
ence (I). The use of quantum machines to accelerate solving
such problems has been theoretically explored for over two
decades using a variety of quantum algorithms (2-4). Typi-
cally, a relevant cost function is encoded in a quantum
Hamiltonian (5), and its low-energy state is sought starting
from a generic initial state either through an adiabatic evo-
lution (2) or a variational approach (3), via closed optimiza-
tion loops (6, 7). The computational performance of such
algorithms has been investigated theoretically (4, 8-13) and
experimentally (14-16) in small quantum systems with shal-
low quantum circuits, or in systems lacking the many-body
coherence believed to be central for quantum advantage (17,
18). However, these studies offer only limited insights into
algorithms’ performances in the most interesting regime
involving large system sizes and high circuit depths (19, 20).
Here we use a quantum device based on coherent, pro-
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grammable arrays of neutral atoms trapped in optical twee-
zers to investigate quantum optimization algorithms for
systems ranging from 39 to 289 qubits, and effective depths
sufficient for the quantum correlations to spread across the
entire graph. Specifically, we focus on Maximum Independ-
ent Set, a paradigmatic NP-hard optimization problem (2I).
It involves finding the largest independent set of a graph—a
subset of vertices such that no edges connect any pair in the
set. An important class of such Maximum Independent Set
problems involves unit disk graphs, which are defined by
vertices on a two-dimensional plane with edges connecting
all pairs of vertices within a unit distance of one another
(Fig. 1, A and B). Such instances arise naturally in problems
associated with geometric constraints that are important for
many practical applications, such as modeling wireless
communication networks (22, 23). While there exist poly-
nomial-time classical algorithms to find approximate solu-
tions to the Maximum Independent Set problem on such
graphs (24), solving the problem exactly is known to be NP-
hard in the worst case (23, 25).
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Maximum Independent Set on Rydberg atom arrays
Our approach utilizes a two-dimensional atom array de-
scribed previously (26). Excitation from a ground state |0)
into a Rydberg state |1) is utilized for hardware-efficient
encoding of the unit disk Maximum Independent Set prob-
lem (27). For a particular graph, we create a geometric con-
figuration of atoms using optical tweezers such that each
atom represents a vertex. The edges are drawn according to
the unit disk criterion for a unit distance given by the Rydberg
blockade radius Ry (Fig. 1C), the distance within which exci-
tation of more than one atom to the Rydberg state is prohib-
ited due to strong interactions (28). The Rydberg blockade
mechanism thus restricts the evolution primarily to the sub-
space spanned by the states that obey the independent set
constraint of the problem graph. Quantum algorithms for
optimization are implemented via global atomic excitation
using homogeneous laser pulses with a time-varying Rabi
frequency (and a time-varying phase) Q()e®® and detuning
A(t) (Fig. 1D). The resulting quantum dynamics is governed
by the Hamiltonian H = Hy + Hcost, With the quantum driver
H, and the cost function Hs given by

H, = EZ[Q (1)e[0), (1| -+ hc. |, Hep ==hA(6) Xom,+ DV, @

i i<j

where n; = |1)1|, and V; = Vo/(|r; - 14])° is the interaction
potential that sets the blockade radius R, and determines
the connectivity of the graph. For a positive laser detuning
A, the many-body ground state of the cost function Hamil-
tonian maximizes the total number of qubits in the Rydberg
state under the blockade constraint, corresponding to the
largest independent set MIS(G) (hereafter MIS) of the un-
derlying unit disk graph G (27) (Fig. 1E). Even with the finite
blockade energy and long-range interaction tails, we empiri-
cally find that the ground states of H.. still encode an MIS
for the ensemble of graphs studied here, see (25, 27).

Variational optimization via a closed quantum-
classical loop

In the experiment we deterministically prepare graphs with
vertices occupying 80% of an underlying square lattice, with
the blockade extending across nearest and next-nearest (di-
agonal) neighbors (Fig. 1C). This allows us to explore a class
of nonplanar graphs, for which finding the exact solution of
MIS is NP-hard for worst-case instances (25). To prepare
quantum states with a large overlap with the MIS solution
space, we use a family of variational quantum optimization
algorithms using a quantum-classical optimization loop. We
place atoms at positions defined by the vertices of the cho-
sen graph, initialize them in state |0), and implement a co-
herent quantum evolution corresponding to the specific

First release: 5 May 2022

science.org

choice of variational parameters (Fig. 1D). Subsequently, we
sample the wavefunction with a projective measurement
and determine the size of the output independent set by
counting the number of qubits in 1, utilizing classical post-
processing to remove blockade violations and reduce detec-
tion errors (25) (Fig. 1E). This procedure is repeated multi-
ple times to estimate the mean independent set size (3_;n;) of
the sampled wavefunction, the approximation ratio R =
(&in)/|MIS|, and the probability Pwis of observing an MIS
(where |MIS| denotes the size of an MIS of the graph). The
classical optimizer tries to maximize (3 m,;) by updating the
variational parameters in a closed-loop hybrid quantum-
classical optimization protocol (25) (Fig. 1D).

We test two algorithm classes, defined by different par-
ametrizations of the quantum driver and the cost function
in Eq. 1. The first approach consists of resonant (A = 0) laser
pulses of varying durations t; and phases ¢; (Fig. 2A). This
algorithm closely resembles the canonical Quantum Approx-
imate Optimization Algorithm (QAOA) (3), but instead of
exact single-qubit rotations, resonant driving generates an
effective many-body evolution within the subspace of inde-
pendent sets associated with the blockade constraint (25).
Phase jumps between consecutive pulses implement a global
phase gate (29), with a phase shift proportional to the cost
function of the Maximum Independent Set problem in the
subspace of independent sets (see eq. S2). Taken together,
these implement the QAOA, where each pulse duration Tt;
and phase ¢; are used as a variational parameters.

The performance of QAOA as a function of depth p (the
number of pulses) is shown in Fig. 2B for an instance of a
179-vertex graph embedded in a 15 x 15 lattice. We find that
the approximation ratio grows as a function of the number
of pulses up to p = 4, and increasing the depth further does
not appear to lead to better performance (Fig. 2B). As dis-
cussed in (25), we attribute these performance limitations to
the difficulty of finding the optimal QAOA parameters for
large depths within a limited number of queries to the ex-
periment, leakage out of the independent set subspace dur-
ing resonant excitation due to imperfect blockade associated
with the finite interaction energy between next-nearest
neighbors, as well as laser pulse imperfections.

The second approach is a variational quantum adiabatic
algorithm (VQAA) (2, 30), related to methods previously
used to prepare quantum many-body ground states (26, 31,
32). In this approach, we sweep the detuning A from an ini-
tial negative detuning A, to a final large positive value Ar at
constant Rabi frequency Q, along a piecewise-linear sched-
ule characterized by a total number of segments f, the dura-
tion t; of each, and the end detuning A; of each segment.
Moreover, we turn on the coupling Q in duration to and
smoothen the detuning sweep using a low-pass filter with a
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characteristic filter time ta (Fig. 2C), both of which mini-
mize nonadiabatic excitations and serve as additional varia-
tional parameters. For this evolution, we define an effective

circuit depth ﬁ as the duration of the sweep (T'=1; + ... + 1)

in units of the n-pulse time 15, which is the time required to
perform a spin flip operation.
We find that with only 3 segments optimized for an ef-

fective depth of [3 = 10 (Fig. 2D inset), the optimizer con-

verges to a pulse that substantially outperforms the QAOA
approach described above. Furthermore, the optimized
pulse shows a better performance compared to a linear

(one-segment) detuning sweep of the same f? (Fig. 2D). We

find that similar pulse shapes produce high approximation
ratios for a variety of graphs (see e.g., fig. S8C), consistent
with theoretical predictions of pulse shape concentration
(20, 25, 33, 34). At large sweep times ( ﬁ > 15), we observe a
turn-around in the performance likely associated with deco-
herence (25). For the remainder of this work, we focus on
the quantum adiabatic algorithm for solving Maximum In-
dependent Set.

Quantum optimization on different graphs

The experimentally optimized quasi-adiabatic sweep (de-
picted in Fig. 2D) was applied to 115 randomly generated
graphs of various sizes (N = 80 to 289 vertices). For graphs
of the same size (N = 180), the approximation error 1 - R
decreases and the probability of finding an MIS solution
Pyis increases with the effective circuit depth at early times,
with the former showing a scaling consistent with a power
law relation for short effective depths (Fig. 3A and fig. S15)
(25). We find a strong correlation between the performance
of the quantum algorithm on a given graph and its total
number of MIS solutions, which we refer to as the MIS de-
generacy Dpus(G) (hereafter Dpng). This quantity is calcu-
lated classically using a novel tensor network algorithm (25)
and varies by nine orders of magnitude across different 180-
vertex graphs. We observe a clear logarithmic relation be-
tween Djws and the approximation error 1 - R, accompanied
by a nearly three-orders-of-magnitude variation of Pyys at a

fixed depth ﬁ = 20 (Fig. 2B). Note that Pyis does not scale

linearly with the MIS degeneracy, as would be the case for a
naive algorithm that samples solutions at random. Figure
2C shows the striking collapse of 1 - R as a function of the
logarithm of the MIS degeneracy normalized by the graph
size, p = log(Dpus)/N. This quantity, a measure of MIS de-
generacy density, determines the hardness in approximating
solutions for the quantum algorithm at shallow depths.
These observations can be modeled as resulting from a
Kibble-Zurek-type mechanism where the quantum algo-
rithm locally solves the graph in domains whose sizes are
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determined by the evolution time and speed at which quan-
tum information propagates (35, 36). We show that the scal-
ing of the approximation error with depth can originate
from the conflicts between local solutions at the boundaries
of these independent domains (25). In graphs with a large
degeneracy density p, there may exist many MIS configura-
tions that are compatible with the local ordering in these
domains. This provides a possible mechanism to reduce
domain walls at their boundaries (fig. S14) and decrease the
approximation error. Such a scenario would predict a linear
relation between 1 - R and p at a fixed depth, which is con-
sistent with our observations (Fig. 2C and fig. S15).

Benchmarking against simulated annealing

To benchmark the results of the quantum optimization
against a classical algorithm, we use simulated annealing
(SA) (37). It seeks to minimize the energy of a cost Hamilto-
nian by thermally cooling a system of classical spins while
maintaining thermal equilibrium. Although some specifical-
ly tailored state-of-the-art algorithms (24, 38) may have bet-
ter performance than SA in solving the Maximum
Independent Set problem, we have chosen SA for extensive
benchmarking since similar to the quantum algorithms
used, it is a general-purpose algorithm which only relies on
information from the cost Hamiltonian for solving the prob-
lem. Our highly optimized variant of SA stochastically up-
dates local clusters of spins using the Metropolis-Hastings
(39) update rule, rejecting energetically unfavorable updates
with a probability dependent on the energy cost and the
instantaneous temperature (25). We use collective updates
under the MIS Hamiltonian cost function (eq. S15), which
applies an optimized uniform interaction energy to each
edge, penalizing states that violate the independent set cri-
terion (25). The annealing depth psa is defined as the aver-
age number of attempted updates per spin.

We compare the quantum algorithm and SA on two
metrics: the approximation error 1 - R, and the probability
of sampling an exact solution Pyys, which determines the
inverse of time-to-solution. As shown in Fig. 4A, for relative-
ly shallow depths and moderately hard graphs, optimized
SA results in approximation errors similar to those observed
on the quantum device. In particular, we find that the hard-
ness in approximating the solution for short SA depths is
also controlled by degeneracy density p (fig. S18, A and B).
However, some graph instances appear to be considerably
harder for SA compared to the quantum algorithm at higher
depths (see e.g., gold and purple curves in Fig. 4A).

Detailed analysis of the SA dynamics for graphs with low
degeneracy densities p reveals that for some instances, the ap-
proximation ratio displays a plateau at R = (|JMIS| - 1)/|MIS|,
corresponding to independent sets with one less vertex than
an MIS (Fig. 4A, gold and purple solid lines). Graphs dis-
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playing this behavior have a large number of local minima
with independent set size |MIS| - 1, in which SA can be
trapped up to large depths. By analyzing the dynamics of SA
at low temperatures as a random walk among |MIS| - 1 and
|MIS| configurations (Fig. 4D), we show in (25) that the abil-
ity of SA to find a global optimum is limited by the ratio of
the number of suboptimal independent sets of size |[MIS| - 1
to the number of ways to reach global minima, resulting in

a “hardness parameter” HP = Dpusi1/(IMIS|Dpag) (Fig. 4E).

This parameter lower bounds the mixing time for the Mar-
kov chain describing the SA dynamics at low temperatures
(eq. S19), and it appears to increase exponentially with the
square root of the system size for the hardest graphs (fig.
S11). This suggests that a large number of local minima
causes SA to take an exponentially long time to find an MIS
for the hardest cases as N grows. If SA performance satu-
rates this lower bound, its runtime to find an MIS is poly-
nomially related to the best known exact -classical
algorithms (40).

Quantum speedup on the hardest graphs

We now turn to study the algorithms’ ability to find exact
solutions on the hardest graphs (with up to N = 80), chosen
from graphs in the top two percentile of the hardness pa-

rameter HP (fig. S11). We find that for some of these graphs

(e.g., gold curves in Fig. 4, A to C), the quantum algorithm
quickly approaches the correct solutions, reducing the aver-
age Hamming distance (number of spin flips normalized by
N) to the closest MIS and increasing Puis, While SA remains
trapped in local minima at a large Hamming distance from
any MIS. For other instances (e.g., purple curves in Fig. 4, A
to C) both the quantum algorithm and SA struggle to find
the correct solution. Moreover, in contrast to our earlier
observations suggesting variational parameter concentra-
tion for generic graphs, we find that for these hard instanc-
es, the quantum algorithm needs to be optimized for each
graph individually by scanning the slow-down point of the
detuning sweep A(?) to maximize Puwis (Fig. 5, A and B, and
fig. S9) (25).

Figure 4E shows the resulting highest Pys reached with-
in a depth of 32 for each hard graph instance as a function

of the classical hardness parameter P. For simulated an-
nealing, we find the scaling Pyis = 1 - exp(-CHP%®), where

C is a positive fitted constant, which is in good agreement
with theoretical expectations (25). While for many instances
the quantum algorithm outperforms SA, there are significant
instance-by-instance variations, and on average, we observe a
similar scaling Pyis = 1 - exp(-CHP %) (dashed red line).
To understand these observations, we carried out de-
tailed analyses of both classical and quantum algorithms’
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performance for hard graph instances. Specifically, in (25)
we show that for a broad class of SA algorithms with both
single-vertex and correlated updates, the scaling is at best
Pyis = 1 - exp(-CHP?Y) (where C generally could have poly-
nomial dependence on the system size), indicating that the
observed scaling of our version of SA is close to optimal. To
gain insight into the origin of the quantum scaling, we nu-
merically compute the minimum energy gap 6mi» during the
adiabatic evolution using density-matrix renormalization
group (Fig. 5A) (25). Figure 5C shows that the performance
of the quantum algorithm is mostly well-described by quasi-
adiabatic evolution with transition probability out of the
ground state governed by the minimum energy gap, accord-
ing to the Landau-Zener formula p :1_exp(_ A(snzin) for a

constant 4, and n = 1.2(2) (4I). This observation suggests
that our quantum algorithm achieves near-maximum effi-
ciency, consistent with the smallest possible value of n =1
obtained for optimized adiabatic following (42).

By focusing only on instances with large enough spec-
tral gaps such that the evolution time T obeys the “speed
limit” determined by the uncertainty principle (8min > 1/7)
associated with Landau-Zener scaling (4I), we find an im-
proved quantum algorithm scaling Pyis = 1 - exp(-CHP-06302)

(Fig. 4E solid red line). Since 1/[-log(l - Pus)] = 1/Pus is
proportional to the runtime sufficient to find a solution by
repeating the experiment, the smaller exponent observed in

the scaling for quantum algorithm (~HP*® for SA and

~HPO5303 for the quantum algorithm) suggests a superline-
ar [with a ratio in scaling of 1.6(3)] speedup in the runtime
to find an MIS, for graphs where the deep-circuit-regime (T
> 1/8min) is reached. Moreover, the observed scaling is not
altered by the post-processing used on the experimental
data (25). We emphasize that achieving this speedup re-
quires an effective depth large enough to probe the lowest-
energy many-body states of the system; in contrast, no
speedup is observed for graph instances where this depth
condition is not fulfilled.

Discussion and outlook

Several mechanisms for quantum speedup in combinatorial
optimization problems have been previously proposed.
Grover-type algorithms are known to have a quadratic
speedup in comparison to brute-force classical search over
all possible solutions (43, 44). A quadratic quantum speedup
has also been suggested for quantized SA based on discrete
quantum walks (45, 46). However, these methods utilize
specifically constructed circuits, and are not directly appli-
cable to the algorithms implemented here. In addition, the
following mechanisms can contribute to the speedup ob-
served in our system. The quantum algorithm’s performance
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in the observed regime appears to be mostly governed by
the minimum energy gap Omin (Fig. 5C). We show that under
certain conditions, one can achieve coherent quantum en-
hancement for minimum gap resulting in a quadratic

speedup via 8min ~ HPY? (25). In practice, however, we find
that the minimum energy gap does not always correlate
with the classical hardness parameter HP, as is evident in

the spread of the quantum data in Fig. 4E (see also fig. S21).
Some insights into these effects can be gained by a more
direct comparison of the quantum algorithm with SA using
the same cost function corresponding to the Rydberg Ham-
iltonian (25) (Fig. 5D). While the observed power law scaling
supports the possibility of a nearly quadratic speedup for
instances in the deep circuit regime (Omim > 1/7), it is an
open question if such a speedup can be extended, with a
guarantee, on all instances. Finally, it is possible that Omin
alone does not fully determine the quantum performance, as
suggested by the data points that deviate from the Landau-
Zener prediction in Fig. 5C, where enhancement through
diabatic effects could be possible (34, 47).

While the scaling speedup observed here suggests a pos-
sibility of quantum advantage in runtime, to achieve practi-
cal runtime speedups over specialized state-of-the-art
heuristic algorithms [e.g., (38)], qubit coherence, system
size, and the classical optimizer loop need to be improved.
The useful depth accessible via quantum evolution is limited
by Rydberg state lifetime and intermediate-state laser scat-
tering, which can be suppressed by increasing the control
laser intensity and intermediate-state detuning. Advanced
error mitigation techniques such as STIRAP (48) as well as
error correction methods should also be explored to enable
large-scale implementations. The classical optimization loop
can be improved by speeding up the experimental cycle
time, and by using more advanced classical optimizers.
Larger atom arrays can be realized using improvements in
vacuum-limited trap lifetimes and sorting fidelity.

Our results demonstrate the potential of quantum sys-
tems for the discovery of new algorithms and highlight a
number of new scientific directions. It would be interesting
to investigate if instances with large Hamming distance be-
tween the local and global optima of independent set sizes
|MIS| - 1 and |MIS| can be related to the overlap gap prop-
erty of the solution space, which is associated with classical
optimization hardness (49). In particular, our method can
be applied to the optimization of “planted graphs,” designed
to maximize the Hamming distance between optimal and
suboptimal solutions, which can provably limit the perfor-
mance of local classical algorithms (50). Our approach can
also be extended to beyond unit disk graphs by using ancil-
lary atoms, hyperfine qubit encoding, and a reconfigurable
architecture based on coherent transport of entangled at-
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oms (5I). Furthermore, local qubit addressing during the
evolution can be used to both extend the range of optimiza-
tion parameters and the types of optimization problems (5).
Further analysis could elucidate the origins of classical and
quantum hardness, for example, by using graph neural net-
work approaches (52). Finally, similar approaches can be
used to explore realizations of other classes of quantum al-
gorithm [see e.g., (563)], enabling a broader range of poten-
tial applications.
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Fig. 1. Hardware-efficient encoding of the maximum independent set using Rydberg atom arrays. (A) An example of
a unit disk graph, with any single vertex (e.g., the blue vertex) being connected to all other vertices within a disk of unit
radius. (B) A corresponding MIS solution (denoted by the red nodes). (C) The Maximum Independent Set problem is
encoded with atoms placed at the vertices of the target graph and with interatomic spacing chosen such that the unit
disk radius of the graph corresponds to the Rydberg blockade radius. Shown is an example fluorescence image of
atoms, with gray lines added to indicate edges between connected vertices. (D) The system undergoes coherent
quantum many-body evolution under a programmable laser drive [Q(t), ¢(t), A(t)] and long-range Rydberg interactions
V. (E) A site-resolved projective measurement reads out the final quantum many-body state, with atoms excited to the
Rydberg state (red circles) corresponding to vertices forming an independent set. A classical optimizer uses the results
to update the parameters of the quantum evolution [Q(t), ¢(t), A(t)] to maximize a figure of merit for finding an MIS.
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Fig. 2. Testing variational quantum algorithms. (A) Implementation of the quantum approximate optimization
algorithm (QAOA), consisting of sequential layers of resonant pulses with variable duration t; and laser phase ¢i. (B)
Variational optimization of QAOA parameters results in a decrease in approximation error 1 — R, up to depthp =4
(inset: example performance of quantum-classical closed-loop optimization at p = 5). Approximation error
calculated using the top 50 percentiles of independent set sizes (1 — Ro5s) is used as the figure of merit to reduce
effects of experimental imperfections on the optimization procedure (25). (C) Quantum evolution can also be
parametrized as a variational quantum adiabatic algorithm (VQAA) using a quasi-adiabatic pulse with a piecewise-
linear sweep of detuning A(t) at constant Rabi coupling Q(t). Q(t) is turned on and off within tq, and a low-pass filter
with timescale 14 is used to smoothen the A(t) sweep. (D) Performance of a rescaled piecewise-linear sweep as a

function of its effective depth p = (11 + ... + 1)/t~ Variational optimization of a three-segment (orange) piecewise-

linear pulse (optimized for p =10) improves on the performance of a simple one-segment linear (blue) pulse as
well as the best results from QAOA (inset: detuning sweep profiles for one-segment (blue) and three-segment

(orange) optimized pulses for a total pulse duration of 2.0 us). Error bars for approximation ratio R are the
standard error of the mean here and throughout the text, and are smaller than the points.
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Fig. 3. Quantum algorithm performance across different graphs. (A) The approximation error 1 — R for an
optimized quasi-adiabatic sweep plotted as a function of effective depth p on four graphs of the same size (N =
180 vertices), showing strong dependence on the number of MIS solutions (MIS degeneracy) D (inset:
corresponding MIS probability Pws vs. P ). (B) At a fixed depth p =20, 1 - R and Pus for various 180-vertex graphs

are strongly correlated with Dwis;. (C) At the same effective depth p =20, 1 — R for 115 graphs of different sizes (N

= 80-289) and MIS degeneracies Dywis exhibit universal scaling with the degeneracy density p = log(Dyws))/N (inset:
data plotted as a function of N). Error bars for Pus, here and throughout the text, denote the 68% confidence

interval.
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Fig. 4. Benchmarking the quantum algorithm against classical simulated annealing. (A) Performance of the
quantum algorithm, and the optimized simulated annealing with the MIS Hamiltonian, shown as a function of depth

( p for quantum algorithm and psa for simulated annealing) for four 80-vertex graphs. Green (HP = 1.8, p = 0.13)
and grey (HP = 2.1, p = 0.11) graphs are easy for the quantum and classical algorithm; however, purple (HP =69, p

= 0.08) and gold (HP = 68, p = 0.06 are significantly harder and show a plateau at R = (|JMIS| - 1)/|MIS|, i.e.,

independent sets with one less vertex than an MIS. (B and C) One of the hard graphs (gold) shows much better
quantum scaling of average normalized Hamming distance to the closest MIS, and MIS probability (Pws) compared
to the other graph (purple). In contrast, the performance of SA (lines) remains similar between the two graphs. (D)

Configuration graph of independent sets of size |MIS| and |MIS| — 1 for an example 39-vertex graph (HP = 5),

where the edges connect two configurations if they are separated by one or two steps of simulated annealing. At
low temperatures, simulated annealing finds an MIS solution by a random walk on this configuration graph. (E)
—log(1 = Pwmis) for instance-by-instance optimized quantum algorithm (crimson) and simulated annealing (teal)

reached within a depth of 32, for 36 graphs selected from the top two percentile of hardness parameter HP for
each size. Power-law fits to the SA (teal, ~ HP 193®) and the quantum data (dashed crimson line, ~ HP0959) are

used to compare scaling performance with graph hardness HP. The error in the power law exponents from the fit is
the combination of statistical errors and the error in the least-squares fit. If only graphs with minimum energy gaps
large enough to be resolved in the duration of the quantum evolution are considered (&min > 1/T, excluding hollow
data points), the fit (solid crimson line) shows a superlinear speedup ~ HP 96313 over optimized simulated
annealing.
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Fig. 5. Understanding hardness for the quantum algorithm. (A) Energy gap between the ground (black) and first-
excited (blue) states, calculated using DMRG for a graph of 65 atoms. (B) To maximize Pws for hard graphs, the
frequency at which the detuning sweep is slowed down is varied (see fig. S9). The largest Pws corresponds to a slow-
down frequency close to the location of the minimum gap. (C) Measured Pus for a fixed effective depth p = 32 as a

function of the calculated minimum gap &min. FOor many instances the relation is well-described by the Landau-Zener

prediction for quasi-adiabatic ground state preparation. The shaded region corresponds to when the gap is too small (§min &
< 1/T) to be properly resolved relative to the quantum evolution time, and points in this region are excluded from the fit§_
both here and in the solid crimson line in Fig. 4E. (D) Scaling of —log(1 — Pws) observed in the experiment versus in%

simulated annealing under the classical Rydberg cost function, eq. S14, for best Pus reached within a depth of 32. These &

results are consistent with a nearly quadratic speedup for a subset of graphs where 8min > 1/T.
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