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Abstract—This paper proposes a novel control for the
multiple-input, single-inductor, multiple-output (MISIMO)
dc–dc converters. It is digitally and discretely implemented, 
which can have an outstanding performance in low-power 
applications so that at the power of 10 mW, it has an 
efficiency of 92.5%. Conventionally, in this power range, an 
attempt is made to take advantage of an analog design that 
is flexible. Thus, a fully programmable (software designed) 
converter with digital design using a microcontroller is in 
great demand. This converter design basis is to deploy the 
microcontroller’s central processing unit (CPU) as little as 
possible. Also, it only turns on the CPU when necessary to 
be employed in low-power, portable systems, e.g., energy-
harvesting technologies. Therefore, construction costs are
significantly reduced. Depending on the energy level of the 
inputs, they can simultaneously be utilized to charge the 
outputs. This paper uses stability analysis, time-
multiplexing control method, and variable-frequency pulse-
width modulation in the proposed control design. Each 
output can be charged with different frequencies according 
to its load, and the maximum switching frequency is equal 
to 10 kHz. Also, the proposed technique for zero-current 
switching has been digitally implemented; it can be utilized
to determine the optimal value of the inductor discharge 
duty cycle based on the inductor’s left-side voltage.
Comparative simulations and experimental results reveal 
the superiority and practicality of the proposed approach.

Index Terms—Multiple input single inductor multiple 
outputs (MISIMO) dc–dc converter, time-multiplexing 
control, variable-frequency pulse-width modulation (PWM),
zero-current switching (ZCS).

I. INTRODUCTION

ANY power consumers, such as portable electronic 
equipment, telecommunication circuits, data 

transmission, etc., require several independent supply voltages 
[1]–[10]. Especially in the last decade, there has been an across-
the-board need for portable electronic equipment. Such 
electronic equipment usually has an electronic power 
management system (EPMS) to deliver regulated and stable 
supply voltages to various consuming parts, including 
processors, Bluetooth and Wi-Fi modules, radio frequency 
power amplifiers, and LCD modules [1]–[5]. With more 
applications and integration of these circuits and modules onto 
smaller motherboards and using system-on-chips, more 
stringent performance metrics for systems in terms of the need 
for smaller footprints, lower cost, and higher efficiency are 
faced.

In EPMSs, a dc–dc converter controller can be either analog 
or digital. In the past, analog implementations have mostly been 
preferred—see [1], [11]—while newer implementations use 
digital and discrete design more and more. Digital 
implementation requires many digital gates (e.g., see [12]),
which are very suitable for the integrated design, but not so 
ideal for discrete design. The same digital design can also be 
done using a microcontroller. Since most systems have a 
processor available, control of the dc–dc converter can be 
delegated to the same processor. This idea already exists [13].

Utilizing a microcontroller has several significant challenges. 
First, turning on and off the switches with software commands, 
on the one hand, dramatically increases the power consumption 
of the microcontroller because the microcontroller must always 
be on to control the converter. This matter can be a problem in 
wireless systems or cases where the system is low-power, and 
the microcontroller is not always on [14], [15]. On the other 
hand, implementing accurate timing by microcontroller 
commands is not an easy task [16], [17]. For example, if the 
microcontroller receives an interruption, the timings will be 
disrupted. This article proposes an alternative solution to use 
microcontroller timers/counters that generate timings by 
hardware—making power consumption much lower and 
accuracy much higher.

The microcontroller will only be turned on in order to reset 
the timing in the timer/counter. In this way, the intervals that 
the microcontroller turns on reach 1% or even less, which 
practically reduces or eliminates the effect of the 
microcontroller power consumption on the power converter 
efficiency. Therefore, in contrast to integrated design—which 
is inherently adaptable—our discrete design is flexible with the 
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help of software to achieve a fully programmable (software 
designed) converter. As a result, a significant reduction in 
construction costs is seen [15], [18].

EPMSs consisting of several dc–dc switching converters are 
employed to achieve greater efficiency—thereby receiving 
their required power from a battery or other energy resources.
These switching converters must work independently and have 
no interference and cross-regulation on each other. The 
multiple-input, single-inductor, multiple-output (MISIMO) dc–
dc switching converter [see Fig. 1(a)] is a low-cost and suitable 
alternative to the conventional multiple switching converter 
structures [17], [19]–[25]. The multiple supply voltages affect 
a switching node in an MISIMO dc–dc converter, cross-
regulation occurs between the outputs, significantly affecting 
the voltage regulation performance in steady-state and dynamic 
operation, and even in some situations, may lead to system 
instability. This effect of cross-regulation has been studied in 
several references (e.g., [1]–[10], [17], [23]), and various 
control methods have been introduced to improve it. For ease 
of reference, the “MISIMO dc–dc converter” is referred to as 
the “MISIMO converter” hereinafter.

In an MISIMO converter, due to the multi-input of this 
converter, it is possible to use a rechargeable lithium battery, 
photovoltaic (PV) cells, and thermoelectric generator or any 
other source that can produce energy. This type of converter 
should be possible to use several sources to charge the outputs 
simultaneously. These sources can also be employed to charge 
the lithium battery when the sources’ energy level is high. Such 
converters can be deployed where battery life is critical, such as 
energy-harvesting (EH) systems [19]–[22].

This paper aims to discretely design and implement a 
converter that uses only one microcontroller. Besides, it seeks 
to use a digital controller, which can be employed in low-power 
applications; in those applications, the power consumption of 
the microcontroller becomes essential and must be reduced in 
some way. In this regard, this paper proposes reducing the 
power consumption of the microcontroller by making use of the 
timer/counter hardware of the microcontroller and by time 
limiting the CPU turning on [12], [14], [15], [18].

Benefiting from multiple inputs also matters. In this regard, 
having an algorithm to obtain the optimal duty cycle for the 
input and output switches so that the cross-regulation problem 
no longer exists is essential in low-power applications. The 
maximum switching frequency is 10 kHz, which is a relatively 
low frequency. In low-power applications, when the load value 
at the output is low, the switching frequency should also be 
reduced [19], [21]. Furthermore, the controller’s power 
consumption appears substantial—especially at low loads. 
Thus, it significantly affects the efficiency and hence should be 

reduced. For that reason, the controller’s CPU should be 
prevented from being turned on too much in such a case in order 
to minimize its power consumption. Other applications include 
medical and portable devices. In those instruments—in order to 
have long battery life and the best performance for power 
consumption—the controller’s CPU may be turned off for a 
long time, or EPMS may even require the system to go into 
standby (or shutdown) when no power is drawn from the output
[14], [15].

Some specific MISIMO converters have been considered for 
EH systems [19]–[22]. Most of these converters have focused
on improving efficiency due to the low power at their inputs. 
These converters work in discontinuous conduction mode 
(DCM). However, the corresponding control schemes vary with
the types and features of the input sources.

The solar EH systems also utilize MISIMO converters with 
two inputs and two outputs [20]. The first and second inputs are
connected to PV cells and a rechargeable battery, respectively.
The battery is charged when the PV’s energy level is high. The 
double-conversion rejection technique is introduced in [19]. It
transfers power from the three input sources if the energy level 
of each has reached its maximum. Also, if the output load 
requires power, the power from the source with a high energy 
level is transferred to it. Otherwise, the energy of these sources 
is transferred to the battery. Implementing these systems to
harvest energy requires a specific control scheme. Since the
energy level at the inputs is inherently low in these MISIMO

Fig. 3.  Timing diagram of the MISIMO converter in the DCM operation.

                    (a)                                               (b)                                  
Fig. 1.  Power management system: (a) MISIMO switching converter 
and (b) the three-input, three-output MISIMO converter in this paper.  
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Fig. 2.  Converter with the TMC control scheme in three different 
conversion methods—D1β and D2β correspond to the inductor’s charging 
and discharging duty cycles assigned to the second output by a single 
input, respectively.
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converters, the converter must be implemented via integrated
designs—which require higher costs [19]–[22]. However, the 
design of MISIMO converters presented in [17], [23]–[25] is 
discrete, which indeed demands lower implementation costs. 
The amount of output and input power and voltage compared to 
MISIMO converters in [19]–[22] is high, so using such a design 
for low-power applications makes many challenges.

A deadbeat-based method has been proposed in order to 
improve the tuning performance in [23], regulating the input 
current and the output voltage. However, these methods require 
a slightly more complex algorithm.  Most of these converters 
use the time-multiplexing control method, thus limiting the 
combination of the desired number of input sources. Since these 
converters have an inductor, the problem of cross-regulation 
cannot be ignored. Diminishing it has been addressed in [25].

The reasons detailed above have made the control method 
more complicated in MISIMO converters. In order to address 
this challenging complexity, this paper proposes a novel and
simple yet control. Without loss of generality, it is designed for 
a three-input, three-output MISIMO converter connected to a 
battery; see Fig. 1(b). Depending on the mode, certain switches 
are turned on/off. Fig. 2 shows the inductor current waveforms 
(IL for three different modes) and the signals applied to the first 
input switch and the second output switch of the circuit in Fig. 
1(b) when the second output is charged by the first input in three 
different modes. Fig. 3 shows its typical timing diagram.

Compared to state of the art elaborated in the literature 
reviewed earlier, this paper’s contributions are as follows.
1) Multiple inputs are simultaneously employed, the algorithm 

control is digitally and discretely implemented. Also, the 
controller’s central processing unit (CPU) is turned on at a 
minimum. The proposed algorithm is such that the battery is 
deployed as little as possible.

2) Due to the low-power design of the converter introduced in 
this article, it is able to perform in a good power range with 
relatively high efficiency. This converter works in buck, 
buck-boost, and boost modes.

3) The maximum switching frequency is relatively low—i.e., 
10 kHz. The capability of adjusting the frequency of the 
pulse-width modulation (PWM) makes it feasible to control 
the ripple of the supply voltages for different loads and 
achieve maximum efficiency.

4) The proposed technique for zero-current switching (ZCS) is
also digitally and discretely implemented; it is employed to 
determine the optimal value of the inductor discharge duty 
cycle according to the inductor’s left-side voltage.

5) The use of the timer/counter, as well as minimal CPU usage, 
has caused the power consumption of this converter’s 
controller to be reduced as much as possible—thus making 
it an excellent alternative to the whole integrated design.

The rest of this paper is organized as follows. Section II 
describes the circuit implementation. Section III explains the 
control algorithm, and Section IV presents the MATLAB 
simulation results. Section V exhibits experimental results.
Finally, Section VI draws this article’s conclusions.

II. PROPOSED DC–DC CONVERTER’S STRUCTURE

A. MISIMO Converter Topology
The detail of the dc–dc converter circuit design is shown in 

Fig. 4. The third input is connected to the battery, and the third 

output is employed to charge the battery. For the first output, 
which should have the highest voltage, a p-type switch (SO1) has 
been employed to be turned on  simply by reducing its gate 
voltage. A higher voltage than the output voltage is required to 
turn on n-type switches, for which the first output voltage is 
deployed. In such a dc–dc converter system, one of the outputs 
can supply the microcontroller itself. For this purpose, the 
second output is assumed to be equal to 1.8 V. When the circuit 
starts working, the second output is zero and requires a start-up 
circuit. Therefore, in order to turn on the microcontroller at the 
system start-up, a low-dropout (also known as LDO) regulator
connected to the battery (VBAT) can be used, as shown in Fig. 4.
B. ZCS

The output switches must be turned off when the inductor 
current reaches zero. If the output switches are switched off too 
early (i.e., when the inductor current is positive), passing this 
current through the Sx switch body’s diode, the voltage of the 
node Vx will be equal to –Von of the diode. As a result, some of 
the energy remaining in the inductor will pass through the p-
type switch’s diode of the first output. This matter will cause a 
considerable loss and an unwanted slight increase in the first 
output voltage. In the opposite case, when the switches are 
turned off too late and when the inductor current is negative, the 
current is drawn from the output, thereby reducing efficiency.
This current passes through the input switch’s diode and causes 
the voltage Vx to be equal to Vin + Von (Vin means the desired 
input). Thus, the zeroing moment of the inductor current should 
be detected as correctly as possible.
C. Design of the Driver for Power Switches

First, the typical structure with a capacitive load equal to the 
input capacitor of the power switches connected to the output is 
simulated in order to design the desired driver; see Fig. 5(a).
Considering the drivers’ transistors, the driver’s current 
consumption, in this case, is about 120 for an 8-V power 
supply and the 5-kHz switching frequency.

Fig. 4.  Simplified diagram of the proposed MISIMO converter—LDO 
stands for low-dropout regulator.
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The reason for this relatively high current is due to the rise 
time and fall time of the microcontroller signal; the one side’s
switches [see Fig. 5(a)] stay “ON” for a short time, which 
creates a path from the driver’s supply to the ground. Fig. 5(b)
shows how a 100-Ω RD reduces this so-called short circuit 
current, so the driver’s current consumption reaches 40 .

III. CONTROL ALGORITHM

This paper proposes and discusses several algorithms
implemented in order to control this converter. Fig. 6 shows an 
overview of these algorithms detailed below.
A. First Algorithm

The first algorithm is named “fixed time step - fixed 
frequency” and is initially discussed—where the CPU turns on 
and begins adjusting the duty cycle within a fixed time interval,
i.e., t1 called “time step” hereinafter. Also, in this algorithm, the 
frequency is constant. As shown in Fig. 6, the red and blue 
blocks are inactive in this algorithm. Analog-to-digital 
converters (ADCs) sample the output and input voltages 
without the CPU turning on and stored in memory.

1) Charging Duty Cycle Calculation: When the CPU gets
turned on, the error value is first obtained by using the last value 
of the sampled output voltage. Also, the inductor charging duty 
cycle [i.e., D1α, D1θ, D1β, D1τ, D1φ, and D1γ denoted by                
D1α, θ, β, τ, φ, & γ] is determined by using the error value described 
via (1). The inductor charging and discharging duty cycles for 
each output’s inductor of the first part of the paper is also shown 
in Fig. 3.

,= ref OSerror V V and = × +1 K ×erroriD K error .p (1)

The coefficients Kp and Ki are determined by the percentage 
of error considered for the output voltages. If any of these 
outputs are inside or outside the range (1 ± x%)×Vref, the 
coefficients of Kp and Ki will be different based on their mode 
(buck, boost, buck-boost). In this article, 3% error is taken into 
account. Due to the high energy level in the inputs intended for 
battery charging, and since the third output is regarded as a
battery charger, the switching frequency of the third output is 
constant and equal to the maximum circuit frequency (10 kHz).
Additionally, because the load equivalent to the battery charger 
does not change rapidly, the corresponding Kp and Ki
coefficients only change based on the third output mode (buck, 
boost, buck-boost).

2) Desire Input Selection: Every Z minute, the input voltages 
are compared to their nominal values (Vnom). The considered 
algorithm avoids using the battery as much as possible. Thus, 
when the values of the first and second input voltages (Vin1 and
Vin2) are larger than their minimum value, they can charge the 
first and second outputs. When each of the first, second, or even 

both inputs is simultaneously employed to charge the outputs, 
the battery is no longer used in order to charge the outputs. Also, 
when the values of the first and second input voltages are larger 
than their maximum value, they have a high energy level. In 
addition to charging the first and second outputs, they can also 
be utilized to charge the battery by the third output. The 
maximum and minimum values are regarded as the percentages 
of the nominal voltage.

3) Battery Charging Method Determination: Charging the 
battery is done with constant current (CC) and constant voltage 
(CV) methods. The constant current method is applied when the 
battery voltage is less than 80% of the nominal battery voltage 
(VnomBAT), determined by the battery datasheet. Otherwise, the 
battery charging method would be constant voltage. The third 
output is selected to charge the battery; therefore, the third 
output reference voltage (Vref3) in the CC method is greater than 
the battery voltage as much as C, which is a constant value. The 
third output voltage in the CV method is constant and equal to
VnomBAT.

4) Converter Mode and Signal Generator: In order to
determine the dc–dc converter mode (buck, boost, or buck-
boost) according to the status of the input switches and the third 
output switch, the reference voltages of each output compare 
with the active input voltages. The converter mode is specified
for each output relative to the input that charges it.

The switching frequency of the third output is constant and 
equal to 10 kHz and may be different from the switching 
frequency of the other two outputs. Therefore, dead time must 
be considered intelligently; for example, suppose the first and 
second inputs are active, three outputs are being charged 
simultaneously, and the switching frequency of the first and 
second outputs is 5  kHz. Fig. 7(a) has shown the considered 
dead time that the inductor’s total charge and discharge time for 
the first and second outputs is about 15 s and for the third 
output is about 20 s, which in practice is less than this 
considered time.

For the case where the power of the first and second outputs 
is lower than the previous case, the switching frequency 
considered for them is equal to 1 kHz, and the dead times are 
taken into account, as shown in Fig. 7(b). When the outputs 
have equal switching frequency, the phase shift value can be 
determined in terms of the power drawn from each of them.

5) ZCS: Since there is a maximum of 6 charge and discharge 
phases, 6 ZCSs are considered. Each of these ZCSs works so
that it reads and samples the value of V'x (shown in Fig. 4) in 
the corresponding phase and stores them in six memory cells.
The corresponding phase relates to the falling edge of signals 
whose falling edge is far from that of the signals given to the 
output switches as much as t3. Fig. 8 illustratively explains the 
ZCS employed in the control algorithm—in which D2pw is the 
initial value of the discharge duty cycle. D2pw is deployed to 
enforce V'x to get close enough to the area in which the current
is zero, as indicated in Fig. 8.

For example, PWM-SO1α is a signal that is only active in the
α phase, and its falling edge is far from the falling edge of the 
PWM-SO1 signal in the same phase as much as t3, where t3 is 
considered to be about 100 ns. As it turns out, the output logic 
level of the inverter is one or zero. When the CPU is on, the last 
value read by each of these ZCSs is checked. As detailed in 

              (a)                                      (b)
Fig. 5.  Power switch’s driver: (a) a typical schematic of the level shifter 
and (b) the proposed driver.
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Subsection II-B, if its logic level was zero, i.e., the output 
switch is turned off late, in this case, the discharge duty cycle is 
reduced. Additionally, if the logic level was one, it means that 
the output switch is turned on early, in which case the discharge 
duty cycle increases. 
B. Second Algorithm

The second algorithm is named “variable time step - constant 
frequency.” Only the blue block in Fig. 6 is inactive in this 
algorithm. The controller’s comparator contrived for the ADC 
considers a high limit and a low limit for the output voltages.
Considering the time step value, switching frequency, and 
output voltage mode, the Kp and Ki values should be determined 
in order to ensure the closed-loop system’s stability, which is 
discussed in the next section.

The reason for using this algorithm is that voltage changes in 
the small range caused by sudden current changes are essential 
for this category of applications. t1 is equal to 10 ms, and t2 is 
equivalent to 1 ms. When each output voltage is out of range, 
the CPU starts adjusting the duty cycle for 100 ms with a time 
step of 1 ms. In other words, it acts as hysteresis. Additionally, 
if the voltages are within the allowable range, the CPU starts 
again with the same time step of 10 ms, which can be changed, 
depending on the application. Even in low-power applications, 
the CPU can be turned off and only be turned on with a 
specified time step in the short interval when the voltage of each 
output is out of range.
C. Third Algorithm

The third algorithm is named “constant time step - variable 
frequency.” The time step is fixed, but the frequency is variable.
The switching frequency value is determined based on the 
amount of current drawn from the output impacted by the 
inductor charge time. The red block in Fig. 6 is disabled, and 
the blue block is active in this algorithm.

The logic level of the pin denoted by the symbol f in the 
algorithm shown in Fig. 6 determines whether or not the system 
operates at a variable frequency; see Figs. 4 and 6. Initially, 

Fig. 6.  Proposed control algorithm.
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according to the present frequency of the circuit in each phase, 
the maximum and minimum values of the inductor charge duty 
cycles are determined by the maximum and minimum ripple 
values, respectively. By changing the circuit’s frequency, it is 
necessary to update the maximum and minimum values of the 
duty cycles. In single input mode, after calculating the inductor 
charge duty cycle in each phase, its value is compared with the 
maximum and minimum values of the duty cycle. If it is less 
than the minimum duty cycle, the frequency decreases, and if it 
is higher than the maximum duty cycle, the frequency increases.

For the proposed converter, approximations have been made 
in ripple calculation through (2) and (3) for different modes, and
K is equal to 2Lfs/RO. The maximum duty cycle is obtained in 
terms of ROmin (high load), and the minimum amount of duty 
cycle in terms of ROmax (light load) is obtained. It is noteworthy
that the switching frequencies of the first and second outputs do 
not necessarily change in the same way; only the output 
switching frequency whose duty cycle value is out of the range 
mentioned earlier is altered. Also, the switching frequency of 
the third output is constant.

For the buck mode,

2× (1 )
Δ

Δ =

IOIO II OLV
f × C f × Cs s

IO
f × C

,     and     
4

1 2 2in( 1) 1

K
D = .

V

VO

(2)

For the boost mode and the buck-boost mode,

×[1 ]
Δ = =

I K I VO O OV
f × C f × C R × f × Cs s O s

IO
f × C

, (3)

2 2= [( 1) 1]1 4in

V KOD
V

, =1
in

VOD K
V

, (4)

=max Δ min

VORO V × C× fs
, and  =min Δ max

VORO V × C× fs
. (5)

For the case where two inputs are simultaneously used, there 
are two types of ripples since there are two phases to charge and 
discharge each output. Each ripple results from charging the 
output by each input. If one or both of the duty cycles assigned
for charging the inductor is out of range, there will be several 

modes, only four of which cause the frequency to change. The 
switching frequency decreases if both duty cycles are less than 
the corresponding minimum duty cycle. Also, in cases where 
one or both of the duty cycles are higher than the corresponding 
maximum duty cycle, the frequency increases.

The maximum and minimum of two output ripples are 
considered the same. After obtaining ROmin and ROmax through 
(5), they are placed in the inductor charge duty cycle formula.
Afterward, the maximum and minimum inductor charge duty 
cycle in each phase is obtained based on the desired Vin. The 
maximum and minimum ripple values are considered 3% and 
1% of the final output voltage, or Vref, respectively. Now,
suppose voltage changes in a small interval due to sudden 
changes in current are essential in some applications. In that 
case, similar to the second algorithm, the time step can be 
considered variable in addition to frequency. This algorithm can 
be regarded as the fourth algorithm, named “variable time step 
- variable frequency.” The red and blue blocks are shown in 
Fig. 6 are active in this algorithm. Because the frequency 
change is discrete, a step must be considered and selected for 
its variation depending on the application. The minimum and 
maximum switching frequencies are 100 Hz and 10 kHz.

IV. MATLAB SIMULATION RESULTS 

This section provides simulation results of the proposed 
MISIMO in the MATLAB/Simulink environment. One of the 
input voltages is 4 V, and the output voltages for boost and buck 
modes are 7.2 V and 1.8 V, respectively. The inductance of the 
inductor is equal to 33 H. The first, second, and third output 
voltages are filtered with 22- F, 32 F, and 100- F
capacitors—see the Appendix section for the reasoning behind 
parameter selection and the switching frequencies utilized.
A. Boost Mode Analysis of the Proposed Converters

Since the three outputs are independent, each needs a
separate transfer function. Therefore, each output’s Kp and Ki
values [for the proportional-integral (PI) controller] are 
calculated so that the phase margin of the system is about 60°
for the maximum power value considered in each frequency and 
sampling time of the system. Next, a lookup table can be 
deployed for each output voltage mode based on the frequency 
and sampling time. The output voltage check time is modeled 
with a delay in the transfer function modeling.

Fig. 8.  ZSC employed in the algorithm—in which D2pw is the initial value of the discharge duty cycle.
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For example, for the first output that works in the boost 
mode—with the switching frequency of 5 kHz, the sampling 
time of 1 ms, and the output voltage of 7.2 V working at the
power of 72 mW and the input voltage of 4 V—the Kp and Ki
values are equal to 0.009 and 0.001, respectively. They induce
a 73.4° phase margin for the closed-loop system stability, as
shown in Fig. 9 simulated in the MATLAB software. The 
appendix section details the derivation.
B. MATLAB Simulation Results of the Desired MISIMO 

In Fig. 10, only one of the inputs is active. As shown in       
Fig. 10(a), when the current drawn from the first output
doubles, the voltage sag at the beginning of the range is about 
0.7 V. Every 10 ms, the output voltages are read and compared 
to the corresponding Vref, then the duty cycles are adjusted. The 
switching frequency value is constant with 5 kHz and 1 kHz for 
the first and second outputs, respectively.  Typically, the first 
and second output currents are 10 mA and 1 mA, respectively.  
If the duty cycles are set with a time step of 1 ms, the voltage
drop at the beginning of the current doubling interval is 0.4 V;
see Fig. 10(b).

Another test examines the third output with the voltage of 4.2 
V, the switching frequency of 10 kHz, and the load current of 
40 mA in the buck-boost mode. Two inputs with 3.2 V and 3.8 
V are simultaneously active in this test. Fig. 11(a) shows the
output voltages waveform, and Fig. 11(b) the ripple of the 
output voltages and the inductor current. The time step is equal 
to 10 ms, and by drawing the current twice from the first output, 
there is no cross-regulation between the outputs according to 
the dead time.

V. DYNAMIC PERFORMANCE AND EXPERIMENTAL RESULTS

A. Dynamic Performance
As shown in Fig. 12, a printed circuit board (also known as

PCB) is built in order to implement the proposed MISIMO 
converter and test its performance. The STML476VRET6 
microcontroller, the ZXM61N03F NMOS power switches, and 
the FDC6506P PMOS power switches are used.

The efficiency measured versus the total output power of the 
proposed converter is shown in Fig. 13. The amount of output 
loads and input voltages vary in order to get the power range in 
Fig. 13. The low proportional frequency is one of the primary 
reasons for having high efficiency at low powers. Also, a brief 
comparison between the proposed converter and the previously 
proposed converters is presented in Table I to further illustrate 
the key features of the proposed MISIMO converter.
B. Experimental Results

Figs. 14–16 show the waveforms of the output voltage, 
inductor current, and the inductor’s right-side voltage (VL).
Some extra tests are performed while the controller employs the 
proposed method to validate the algorithms. In the first test, 

(a)

(a)
Fig. 11.  MATLAB simulation results: (a) output voltages and (b) outputs’ 
ripple and inductor current in some periods.
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ZCS is examined; see Fig. 17. In the second test, a double 
current is drawn from the first output, and the microcontroller 
adjusts the duty cycle by the first, second, and fourth 
algorithms. Fig. 18 shows the waveform of the output voltages 
corresponding to each algorithm. In the third test, Vref is 
changed for the second output, and as shown in Fig. 19(a), the 
controller performs satisfactorily, and VO2 perfectly tracks Vref2.
This test indicates that the proposed converter functions in three 

modes—i.e., buck, buck-boost, and boost modes. In the fourth 
test, the input voltage has a dc level with a sinusoidal peak-to-

Fig. 13.  Power efficiency measured.
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-peak amplitude of 0.9 V; as depicted in Fig. 19(b), the 
converter works suitably. In the fifth test, two inputs with 
voltages of 3.8 V and 3.2 V simultaneously charge the first and 
the second outputs with a constant frequency of 5 kHz; see Fig. 
19(c).

VI. CONCLUSION

This article has proposed a new control methodology for the 
MISIMO converter. It has been implemented via a discrete 
design and has been able to have the capabilities that an analog 
controller can have by using a digital controller. The proposed 

approach has been employed in low-power, high-efficiency 
applications due to making the switching frequency low and 
using the microcontroller’s timer/counters by the least amount 
of CPU turning on so that the microcontroller can be in the 
standby state most of the time. It has relatively high efficiency
at a low-power range; it has 92.5% efficiency at 10 mW.
Therefore, it is very economical. Due to the low-power outputs, 
the four digital algorithms implemented have operated in the 
DCM operation. Also, through the time-multiplexing control 
and variable-frequency PWM with the dead time intelligently 
employed, the outputs have been independently regulated with 
the capability of having different switching frequencies. Thus,
cross-regulation has been reduced. The proposed algorithms 
have been simulated via MATLAB and examined practically.

APPENDIX
This converter can work at higher switching frequencies, for 

example, 1 MHz, 500 kHz, 100 kHz, etc. Suppose the 
microcontroller clock frequency is set at 10 MHz. If the 
converter operates at a switching frequency of 500 kHz, the 
number of the duty cycle steps will be 20 (10 MHz/500 kHz = 

                   (a)                                (b)                             (c)
Fig. 18.  Experimental results of the MISIMO converter outputs with 
load step using the: (a) first algorithm with time step =10 ms, (b) second 
algorithm with time step = 1 ms, and (c) forth algorithm, in which the 
frequency is doubled during the doubling current.
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20). If the same converter operates at a switching frequency of 
5 kHz, the number of the steps equals 2000. Due to the low 
power consumption of the outputs, the microcontroller clock 
frequency and the switching frequency are impossible to be set 
to large values because the power consumption of the 
microcontroller and drivers is directly related to the frequency. 
The CV2f equation (with f indicating either the clock or
switching frequency) attests to that relation.  The inductor and 
the capacitor values of each output must be selected so that the 
ripple values for each output are between 1% to 3% based on 
the voltage range and the load amount of each output; see (2) 
and (3). Fig. 20 shows the boost mode operating in DCM, and 
below is the derivation of its transfer function T(s)—it is the 
same for the buck and buck-boost modes, as detailed in [26].

B = 1 ms, 10 ms, …, 1( ) = .
+ +1 2 1 2

R
H s

R R C s R R
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