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Shubhayu Chatterjee ,1,* Pavel E. Dolgirev ,2,* Ilya Esterlis ,2 Alexander A. Zibrov,2 Mikhail D. Lukin,2

Norman Y. Yao,1,3 and Eugene Demler2,4
1Department of Physics, University of California, Berkeley, California 94720, USA

2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

4Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

(Received 28 June 2021; revised 3 December 2021; accepted 17 December 2021; published 10 January 2022)

A single-spin qubit placed near the surface of a conductor acquires an additional contribution to its 1/T1 relax-
ation rate due to magnetic noise created by electric current fluctuations in the material. We analyze this technique
as a wireless probe of superconductivity in atomically thin two-dimensional materials. At temperatures T � Tc,
the dominant contribution to the qubit relaxation rate is due to transverse electric current fluctuations arising
from quasiparticle excitations. We demonstrate that this method enables detection of metal-to-superconductor
transitions, as well as investigation of the symmetry of the superconducting gap function, through the noise
scaling with temperature. We show that scaling of the noise with sample-probe distance provides a window into
the nonlocal quasistatic conductivity of superconductors, both clean and disordered. At low temperatures the
quasiparticle fluctuations get suppressed, yet the noise can be substantial due to resonant contributions from
collective longitudinal modes, such as plasmons in monolayers and Josephson plasmons in bilayers. Potential
experimental implications are discussed.

DOI: 10.1103/PhysRevResearch.4.L012001

Introduction. A superconductor is a phase of matter char-
acterized by the dissipation-free flow of electrical current
owing to the intrinsic quantum coherence between electron
pairs [1]. The recent discovery of robust superconductivity in
a variety of two-dimensional (2D) materials, such as moiré
graphene [2–6], transition metal dichalcogenides (TMDs) [7],
and monolayer FeSe [8–10], has spawned immense theoreti-
cal and experimental interest. The experimental tunability of
2D materials, e.g., in situ varying of carrier density via gate
voltages, bandwidth using displacement fields, and dielec-
tric properties/screening with substrates, makes them highly
relevant for practical applications. However, while supercon-
ductivity in bulk solids and thin films has been extensively
studied [1], characterizing it in bona fide 2D materials poses
a significant challenge. In certain materials like TMDs, super-
conductivity itself can be hard to detect due to the difficulty of
making contacts for transport experiments [11]. Conventional
bulk probes of the nature of the superconducting gap, such
as specific heat or thermal conductivity, are dominated by the
contribution from the substrate. Local probes like STM, being
particularly sensitive to inhomogeneities in the sample, are of-
ten inconclusive about the symmetry of the gap function [12].
Measurements of the Meissner effect are also challenging in

*These authors contributed equally to this work.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

atomically thin superconductors and require local magnetom-
etry [13,14]. This calls for new experimental probes which
can be used to diagnose the onset of superconductivity and
elucidate the pairing symmetries in 2D materials.

In this Letter, we propose quantum noise spectroscopy by
impurity spin qubits, such as nitrogen-vacancy (NV) centers
in diamond, as a natural noninvasive wireless probe of 2D
superconductivity. The probe qubit is initialized in a fully po-
larized state at a distance z0 above our 2D sample [Fig. 1(a)].
Coupling to the noisy magnetic field created by thermal cur-
rent fluctuations in the sample causes the qubit polarization
to decay. The decay rate (1/T1), studied as a function of ex-
perimentally tunable parameters such as qubit-probe distance
z0, probe frequency �, and temperature T , furnishes valuable
information about the nature of superconductivity in the 2D
sample.

Specifically, we predict that the sharp reduction of noise
due to suppression of transverse current fluctuations, stem-
ming from the onset of a superconducting gap, allows one
to detect the phase transition from a normal metal to a su-
perconductor [Fig. 1(b)]. Second, we demonstrate that the
nature of the superconducting gap (nodal vs non-nodal) can
be deciphered by studying the noise as a function of tempera-
ture. Simultaneously, the scaling of the noise with probe-qubit
distance can be used to study the nonlocal conductivity in the
quasistatic limit (q �= 0,� → 0), a regime complementary
to existing probes (such as dc transport, THz spectroscopy,
etc.). We elucidate these distinct scaling regimes in both
clean and disordered superconductors, carefully accounting
for additional modifications arising from superflow. Third, we
illustrate that deep in the superconducting phase the noise
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FIG. 1. (a) Schematic of the setup, with qubit at a distance z0
from a 2D superconducting sample. The qubit polarization decays
due to magnetic field noise created by fluctuating normal currents jn
and supercurrents js in the film. (b) Drop in the transverse noise NT

when T falls below Tc for gapped and nodal superconductors (ex-
cluding effects of critical dynamics in narrow gray window around
T = Tc). (c) Schematic of NL/NT as a function of T , showing large
enhancement at low T , making it possible to detect longitudinal
collective modes.

is dominated by longitudinal current fluctuations [Fig. 1(c)],
in sharp contrast to metals [15]. This owes its origin to the
suppression of thermally excited quasiparticles at low temper-
atures, and allows us to detect collective longitudinal modes,
such as gapless plasmons in monolayers and gapped Joseph-
son plasmons in weakly interacting bilayer superconductors
[16–20]. We conclude by providing realistic noise estimates
for materials of recent interest, and argue that such measure-
ments lie within experimental reach.

Setup and model. To detect magnetic noise, we consider
an isolated impurity qubit placed at r0 = (0, 0, z0), i.e., at a
distance z0 above a homogeneous 2D sample in the x-y plane
[Fig. 1(a)]. The qubit Hamiltonian includes an intrinsic level
splitting � along quantization axis n̂q, and a linear coupling
to the local magnetic field B(r0, t ) (henceforth h̄ = 1):

Hq = �

2
(n̂q · σ ) + gμBB(r0, t ) · σ. (1)

The depolarization rate of the qubit is directly proportional
to the magnetic noise at the qubit location. This noise arises
predominantly due to current fluctuations in the sample, as-
sumed to be at thermal equilibrium at temperature T [21].
By analyzing the relaxation rate of the qubit for different
orientations of the quantization axis, one can isolate dif-
ferent components of the magnetic noise tensor Nab(�) ≡
1
2

∫ ∞
−∞ dt ei�t 〈{Ba(r0, t ), Bb(r0, 0)}〉T [15]. These in turn can

be used to investigate two qualitatively different types of
noise: (i) transverse noise NT, arising from transverse current
fluctuations [jT(q) ⊥ q] that do not create charge imbalance
in the sample, is related to the reflection coefficient rs(q,�)
for s-polarized electromagnetic (EM) waves; (ii) longitudi-
nal noise NL, arising from longitudinal current fluctuations
[jL(q) ‖ q], is related to the reflection coefficient rp(q,�)
for p-polarized EM waves (q is the in-plane momentum).
Reference [15] argued that the latter can be ignored in metals
because p-polarized waves create charge density modulations
that are disfavored by long-range Coulomb interactions. How-
ever, the presence of superconductivity can suppress rs at
low temperatures and thereby provide a gateway to probe
rp. In what follows, we characterize magnetic noise due to

FIG. 2. Distance scaling of noise in different physical regimes
in an s-wave superconductor, determined by the ratio of the thermal
wavelength λT or qubit-sample distance z0 to the mean-free path �MF.

transverse and longitudinal current fluctuations in 2D su-
perconductors and determine physical regimes where each
contribution dominates. Here, we present our main physical
results, but relegate computational details and additional dis-
cussion to a complementary paper [22].

Transverse noise. In the transverse sector, the noise is given
in the experimentally relevant limit � 
 kBT by [15,22]
(assuming in-plane rotational symmetry):

NT(�) ≈ μ0kBT

16πz30�

∫ ∞

0
dx x2e−xIm

{
rs

( x

2z0
,�

)}
, (2)

where rs(q,�) = −(
1 + 2iq

μ0� σT(q,�)

)−1
is determined by the

transverse conductivity σ T(q,�). Therefore, the computation
of noise reduces to evaluating σ T(q,�) for the 2D sample of
interest. For the sake of simplicity and physical transparency,
we treat the superconductor within the two-fluid model [1].
The transverse conductivity consists of a dissipative part σ T

n
due to the normal fluid (quasiparticle excitations) and a reac-
tive part due to transverse superflow, which can be computed
using London’s equation jT,s = −�AT = −( �

i� )ET:

σ T(q,�) = σ T
n (q,�) − �

i�
. (3)

Within the phenomenological Ginzburg-Landau approach,
� ∝ |�(T )|2 ∝ Tc − T , �(T ) being the superconducting
gap. Therefore, as T approaches Tc, the reactive part can be
neglected, and the conductivity is dominated by the quasipar-
ticle contribution:

NT(�) ≈ μ2
0kBT

16πz20
Re

{
σ T

n

( 1

2z0
,�

)}
. (4)

In contrast, deep in the superconducting phase (kBT 
 �(T ),
indicated by “strong SC” in Fig. 2) at small frequency �, the
quasiparticle contribution is suppressed and conductivity is
dominated by superflow1:

NT(�) ≈ 3kBT

8πz40�
2
Re

{
σ T

n

( 3

2z0
,�

)}
. (5)

1Strictly speaking, this formula is valid for z0 being greater than the
“Pearl length” 1/μ0� [23]. See Ref. [22] for details.
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We see that in both limits, the essential signatures of the
properties of the superconducting sample can be gleaned from
Re{σ T

n (q,�)}, which we discuss next.
To calculate σ T

n for the normal fluid, we resort to a mi-
croscopic description of the current-carrying quasiparticle
excitations via the mean-field BCS Hamiltonian HBCS. For
singlet superconductors, HBCS is given in terms of the Nambu
spinor 	k = (ck,↑, c†−k,↓)

T (where ck,σ are electron annihi-

lation operators), electron dispersion ξk = k2

2m − μ, and gap
function �k:

HBCS =
∑
k

	
†
khk	k, hk =

(
ξk �k
�k −ξk

)
. (6)

Accordingly, the retarded Green’s function is given
by GR(k, ω) = (ω + i0+ + i�0 − hk )−1, where �0 is
the isotropic scattering rate of electrons at the Fermi
surface due to uncorrelated quenched disorder, and
it accounts for the broadening of the quasiparticle
spectrum [24]. Denoting the transverse current density
by jT(q) = (ẑ × q̂) · j(q), the conductivity can be evaluated
within the standard linear response formalism [25], using
the retarded transverse current-current correlation function

R

T(q, t ) = −iθ (t )〈[ jT(q, t ), jT(−q, 0)]〉/A:

Re
[
σ T

n (q,�)
] = − Im

[

R

T(q,�)
]

�

β�
1−−−→ e2

2π

∫
k,ω

v2
TTr

[
A(k−, ω)A(k+, ω+)

](−∂nF

∂ω

)
, (7)

where vT(k̂) = vF (q̂ × k̂) is the transverse component of
Fermi velocity, k± = k ± q/2, ω+ = ω + �, A(k,�) =
−Im[GR(k,�)]/π is the spectral function, A is the area
of the sample, and nF (ω) = [exp(βω) + 1]−1 is the Fermi
function (β = 1/kBT ). A key point to note is that as a conse-
quence of momentum and energy selectivity, the qubit probe
is most sensitive to σ T

n (q ∼ 1/z0,� ≈ 0) since for realistic
experimental scenarios the relevant dimensionless variable
�/(vF q) ∼ �z0/vF 
 1. This is a completely distinct order
of limits from the usual computation of dc conductivity, where
one first takes q → 0 and then � → 0. As a consequence, our
qubit probe opens the door to studying the finite-momentum
low-frequency transverse conductivity, which yields infor-
mation about intrinsic behavior that is typically inaccessible
otherwise.

The behavior of σ T
n (q,�) is generally quite complex, and

is determined by the rich interplay of several different length
scales: (i) the quasiparticle mean-free path �MF = vF /(2�0),
(ii) the qubit-sample distance z0, (iii) the quasiparticle thermal
wavelength λT = vF /kBT , and (iv) the superconducting co-
herence length ξT ≡ vF /�(T ). Varying these parameters by
tuning z0 and T results in various crossovers in the behavior
of σ T

n (q ∼ 1/z0, 0), which can then be used to infer important
properties of the superconducting (SC) state. Before getting
into the details of these crossovers, we highlight the essential
gross features: Above Tc, σ T

n (q, 0) is approximately indepen-
dent of T , resulting in NT ∝ T . Upon cooling through Tc,
a significant suppression of noise occurs, providing a clear
indication of the superconducting transition. In an s-wave su-

perconductor, quasiparticle excitations are suppressed by the
gap, so that the noise decreases exponentially as e−�(T )/kBT . In
a d-wave supercondcutor, the presence of nodal quasiparticles
yields a T 2 behavior. Distinct temperature scalings of the
noise therefore provide a way to distinguish superconducting
order parameters.

In addition to temperature dependence, the scaling of noise
with distance is different for nodal vs non-nodal superconduc-
tors: In the temperature regime kBT � �0, we findNT ∝ 1/z0
in the s-wave case, while NT ∝ 1/z20 for the d-wave one. We
will now elaborate further on the behavior σ T

n (q ∼ 1/z0, 0),
appealing to physical arguments to demonstrate how the dis-
tance scaling of noise can be used to distinguish different
transport regimes. All our conclusions are verified by explicit
analytic and numerical evaluation of noise across arbitrary
parameter regimes [22].

We first consider 2D s-wave superconductors in the clean
limit, where the thermal wavelength λT is much smaller
than the mean-free path �MF, or equivalently �0 � kBT . In
this limit, the spectral function A(k, ω) is not sufficiently
smoothed out by disorder on the scale of |ω| � kBT , the
frequency range where n′

F (ω) is significant. Hence, it is useful
to think of the conductivity as arising from sharp transitions
of quasiparticles near the Fermi surface across an energy shell
of width � and a momentum transfer q. The phase space of
such excitations is constrained by the geometry of the Fermi
surface and grows as 1/q. Accordingly, at low tempera-
tures kBT 
 �(T ), the conductivity scales as σ T

n (q, 0) ∝
e−β�(qT ξT )−1. Considering additional suppression due to the
superflow in this regime, Eq. (5) predicts NT ∝ 1/z30. On
increasing T , as the Cooper pairs get loosely bound and ξT

crosses the thermal length λT , we recover the conductivity of
a ballistic Fermi liquid by simply replacing ξT by λT in the
above expression, i.e., σ T

n (q, 0) ∝ (qT λT )−1 = (qvF )−1 and
NT ∝ 1/z0 [26].

In the dirty limit �0 � kBT , the spectral function is smooth
on the scale of ω � kBT , and we can replace the Fermi-
function derivative by a delta function at ω = 0. In this
disordered superconductor, the conductivity is determined by
the product of spectral functions near the Fermi surface [see
Eq. (7)]. If we lower the sample-probe distance to probe large
momenta, i.e., q�MF and qξT are both large (but q 
 kF ),
then the product A(k+, 0)A(k−, 0) ∼ 1/(vF q)4 for |k| ≈ kF .
The dominant contribution to transverse conductivity comes
from an annular region of width q and circumference 2πkF

around the circular Fermi surface. Accordingly, the conductiv-
ity scales as 2πkF × q × 1/q4 ∼ kF /q3, and Eq. (5) predicts
the noise decreases as 1/z0. On approaching the opposite limit
z0 � �MF, the probe is sensitive to multiple scattering events,
resulting in the usual metallic behavior, where σ T

n (q, 0) is
independent of momentum andNT ∝ 1/z40. The noise scalings
in different regimes are summarized in Fig. 2, along with the
behavior in the regime �(T ) � kBT , which we refer to as the
“weak superconductor (weak SC).” In the latter regime, the
scaling is the same as that in the metallic phase above Tc.

Next, we consider d-wave superconductors with the gap
function �k(T ) = �0(T )(k2x − k2y ). We find that the distinct
temperature scaling of the noise carries signatures of gapless
Dirac quasiparticles at the nodes k = kF , kx = ±ky. In the
clean (ballistic) limit, at low kBT 
 �0(T ), the noise scales
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as T 2 due to the power-law low-energy density of states at
the Dirac cones. As T → T −

c , the noise increases steeply
as v−1

� ln(vF /v�), where the gap velocity v� = |∂k�k|node
decreases as |Tc − T |1/2 within mean-field theory. This log-
arithmic correction owes its origin to the anisotropy between
the Fermi velocity vF and the gap velocity v�: The dominant
contribution comes from the tips of anisotropic Dirac cones
with large density of states. In the dirty limit, the disorder-
induced finite density of states at zero energy leads to a linear
in T scaling of the noise, as the conductivity σ T

n (q,� = 0)
approaches a constant nonsingular value of e2vF /π2v� at
small q [24].

The physics of distance scalings remains roughly the same
as for the s-wave case, with the exception of dirty supercon-
ductors at sample-probe distances smaller than the mean-free
path. The available phase space for excitations constitutes a
patch of area q2 around each nodal point, implying σ T

n (q, 0) ∝
q2 × 1/q4 = 1/q2. In this limit, the noise scales as 1/z20, up to
logarithmic corrections, and can be used to differentiate nodal
and non-nodal superconducting gap functions.

Noise from longitudinal collective modes. As remarked,
at low temperatures, the quasiparticle noise in the transverse
sector is heavily suppressed, and longitudinal fluctuations can
dominate. Longitudinal noise is given by [22]

NL(�) = kBT εμ0�

16πc2z0

∫ ∞

0
dx e−xIm

{
rp

( x

2z0
,�

)}
, (8)

where rp(q,�) = (
1 + 2εε0�

iqσL(q,�)

)−1
and ε is the high-

frequency dielectric constant of the encapsulating medium.
The longitudinal conductivity σ L(q,�) can be evaluated by
considering longitudinal current fluctuations via Maxwell’s
equations and time-dependent Ginzburg-Landau theory for
the superconducting order parameter [1]. For a 2D sample,
such an analysis yields a collective plasmon mode with a
gapless dispersion: ω‖(q) ≈ √

q�/(2εε0) [22]. This collec-
tive excitation represents an evanescent wave that couples
three-dimensional fluctuations of the electromagnetic field to
two-dimensional quasiparticle currents and order-parameter
fluctuations. Interestingly, we find that the reflection coeffi-
cient rp, evaluated for evanescent waves, exhibits a sharp peak
at the resonance frequency� = ω‖(q). Therefore, the longitu-
dinal noise can become resonantly enhanced when the probe
distance z0 is decreased to cross the longitudinal spectrum
(one could also vary the probe frequency � at fixed z0):

NL(�) ≈ N ∗(�) exp

(
−4εε0z0�2

�

)
, (9)

where N ∗(�) = kBT ε2�3/(4�c4). We conclude that al-
though σ L

n can be vanishingly small at low temperatures
due to superconductivity, the noise still gets a substantial
contribution from the longitudinal collective modes. In par-
ticular, NL(�)/N ∗(�) is suppressed for large sample-probe
distances, whereas it saturates to a finite value for z0 � z∗(�),
defined by � = ω‖(1/2z∗), i.e., upon crossing the plasmon
branch, as illustrated in Fig. 3. We also note that, in bilayers,
interlayer Josephson plasmons lead to an additional resonance
in the longitudinal noise (see Ref. [22] for further discussion).

Experimental feasibility. To be concrete, let us consider
NV centers in diamond [27–31]. The intrinsic level splitting is

-5

-4

-3

-2

-1

0

FIG. 3. Plasmon contribution to the low-temperature noise.
Shown is ln[NL(�, z0)/N ∗(�)] as a function of � and z0. For
large z0 � z∗(�) ≡ 4εε0�/�2 [such that � = ω‖(1/2z∗)], the noise
is suppressed and it quickly saturates upon crossing the plasmon
dispersion (solid red line), i.e., for z0 � z∗(�).

�/2π = 2.87 GHz (≈0.1 K), the smallest energy scale in the
problem. This justifies taking � → 0 in our calculations. For
magic-angle moiré graphene, Tc ≈ 3–4 K [2,5,6]. Assuming
sufficient disorder (due to local strain [32]), we approximate
σ T(q) ≈ σ (q = 0) ≈ 10−2 S in the metallic state just above

Tc. For z0 = 5 nm, we can therefore estimateNT ≈ kBT μ2
0σ

T
n

16πz20
≈

120 pT2/Hz. Accordingly, the depolarization rate of the qubit
is given by [15] 1/T1 = √

S(S + 1)g2μ2
BNT/(2h̄2) ≈ 3.2 s−1

(S = 1 for NV). The lifetime in the presence of a sample is
therefore much shorter than the intrinsic lifetime of an isolated
NV center, which can exceed 102 s below 10 K [33,34].
Further, within mean-field theory �(T ) ≈ 3kBTc

√
1 − T/Tc

[1], implying that on decreasing T from Tc to Tc/2, 1/T1 drops
roughly by a factor of eβ�(T ) ≈ 70, making the change easily
detectable. Comparable parameters apply to TMDs, which ex-
hibit a variety of interesting superconducting behaviors [35],
such as “Ising superconductivity.” The foregoing estimates
show that the detection of the ordering transition is realistic
within the existing experimental tools. However, to detect the
longitudinal collective modes, one might need to use high-ε
materials, such as SrTiO3 with ε ≈ 10 000 [36]. Another way
to enhance this signal is to increase the probe frequency � via
the application of an in-plane magnetic field [22].

Discussion. Our work establishes a complimentary route to
detect and study 2D superconductivity via noise magnetome-
try and offers a window into the elusive Coulomb-interaction-
dominated longitudinal collective modes in superconductors.
The ability to probe across a wide range of length scales
allows our technique to investigate inhomogeneous materials
and to potentially understand how superconductivity differs
across samples. Our calculations are valid away from the
critical regime, where critical current fluctuations might lead
to an appreciable enhancement of noise, facilitating easier ex-
perimental detection. This exciting direction deserves further
investigation, though we note that this critical temperature
window is typically relatively narrow in superconductors.

While our qubit probe is also sensitive to noise arising
from spin fluctuations, spin noise in singlet superconduc-
tors is suppressed relative to charge noise by an additional
factor of 1/(kF z0)2 [15] in the nearly metallic regime and
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by (μ0μB�/evF )2 deep in the superconducting phase [22].
Further, in contrast to NMR, there is no anomalous enhance-
ment of spin noise (relative to current noise), as the nonlocal
response leads to smearing out the singular density of states
that is responsible for the Hebel-Slichter peak [22]. However,
in superconductors with spontaneously broken spin-rotation
symmetry (in materials with negligible spin-orbit coupling),
spin noise may receive resonant enhancement from spin waves
[37,38].

Previous works have developed theoretical underpinnings
of probing different regimes of electron transport in metallic
systems, as well as magnetic phases and their phase transitions
in insulators, using quantum impurity probes [15,37,39]. On
the experimental front, noise measurements using single-spin
qubits have recently been used to detect a plethora of novel
quantum phenomena, including nonlocal conductivity in
metallic silver [40], magnetic transitions in metallic Gd [41],
chiral magnons [42], spin diffusion in antiferromagnets [43],
and electron-phonon instabilities in graphene [44]. With the
discovery of superconductivity in several new 2D materials,
the qubit probe appears ideally suited to unravel their proper-
ties. The noninvasive nature of the qubit, with fully optical ini-

tialization and readout capabilities, adds to its appeal. Finally,
we note that current fluctuations in the sample also provide
electric field noise at the qubit location [45,46] and alternative
qubits [47,48] are more susceptible to this kind of noise. Their
response can be studied by a generalization of the theoretical
framework developed here and is left for future work.
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