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We propose nanoscale magnetometry via isolated single-spin qubits as a probe of superconductivity in two-
dimensional materials. We characterize the magnetic field noise at the qubit location, arising from current and
spin fluctuations in the sample and leading to measurable polarization decay of the qubit. We show that the noise
due to transverse current fluctuations studied as a function of temperature and sample-probe distance can be used
to extract useful information about the transition to a superconducting phase and the pairing symmetry of the
superconductor. Surprisingly, at low temperatures, the dominant contribution to the magnetic noise arises from
longitudinal current fluctuations and can be used to probe collective modes such as monolayer plasmons and
bilayer Josephson plasmons. We also characterize the noise due to spin fluctuations, which allows probing the
spin structure of the pairing wave function. Our results provide a noninvasive route to probe the rich physics of
two-dimensional superconductors.

DOI: 10.1103/PhysRevB.105.024507

I. INTRODUCTION

Recent years have witnessed a surge of activity on two-
dimensional (2D) superconductors on both experimental and
theoretical fronts. On the experimental side, robust super-
conductivity has been observed in transport measurements in
several 2Dmaterials, including van derWaals heterostructures
such as magic-angle graphene and transition metal dichalco-
genides (TMDs) [1–6]. On the theoretical side, analytical and
numerical studies have predicted both new material candi-
dates and new physical mechanisms for 2D superconductivity
[7–14]. However, for some exciting prospective 2D materi-
als such as TMDs, it is experimentally challenging to make
electric contacts that are necessary to carry out transport mea-
surements to detect a superconducting phase transition [15].
For magic-angle twisted bilayer or trilayer graphene, resistiv-
ity measurements do show a superconducting transition at low
temperatures. However, the nature of the superconductivity
there, as well as the symmetry of the gap function, remains
unknown, as it is not unambiguously accessible with con-
ventional probes. Therefore, it is highly desirable to devise
complementary experimental probes that can efficiently detect
and characterize 2D superconductivity.

Quantum sensing has established itself as a rapidly grow-
ing area of research, with tremendous technological prospects
[16]. In particular, isolated impurity qubits, such as nitrogen-
vacancy (NV) or silicon-vacancy (SiV) centers in diamond,
have enabled measurements of local magnetic fields with high
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precision and accuracy [17–21]. While such qubits have broad
applications ranging from quantum computation to biological
imaging [22], very recently, they have also proven useful
in understanding the behavior of condensed matter systems.
Both static sensing of local magnetic fields and dynamic
detection of magnetic noise have been used to study interest-
ing physics, including topological magnetic textures such as
skyrmions [23], nonlocal transport in metals [24], pressure-
driven phase transitions [25,26], and scattering of magnons
in magnetic thin films [27], to name a few. Bolstered by this,
there have been theoretical proposals to use magnetic noise
sensors to probe a variety of phenomena, such as symmetry-
protected one-dimensional edge modes [28], hydrodynamic
sound modes in magnon fluids [29], dynamic phase transi-
tions via magnon condensation [30], and exotic long-range
entangled states such as quantum spin liquids [31]. The qubit
sensors offer several advantages compared to traditional con-
densed matter probes. Their optical initialization and read-out
capabilities, high degree of tunability with both frequency and
momentum resolution, and minimally invasive nature make
them ideal for characterizing the physics of correlated elec-
tronic systems.

In this work, we propose nanoscale noise magnetometry by
impurity qubits as a probe of 2D superconductivity. When an
isolated qubit is placed in proximity to a 2D superconductor, it
couples to the noisy magnetic field generated by both current
and spin fluctuations in the sample. If the qubit is initialized
in a polarized state, the polarization will decay due to mag-
netic noise. It is convenient to distinguish transverse current
fluctuations, where the current density jT(q) is perpendicu-
lar to the in-plane momentum q, from longitudinal current
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fluctuations, with jL(q) ‖ q. The latter are accompanied by
charge density fluctuations, as follows from the continuity
equation, and, thus, are suppressed by strong Coulomb forces.
For this reason, the longitudinal sector can be safely neglected
in metals [32]. In superconductors, this is no longer true at
low temperatures, where the presence of superconductivity
suppresses transverse current fluctuations, thus providing a
gateway to probe the longitudinal ones. In Sec. II, we discuss
how one gains independent access to both transverse and
longitudinal sectors by varying the direction of the initial qubit
polarization.

In Sec. III, we demonstrate that within the two-fluid model
of superconductors, the transverse magnetic noise is essen-
tially determined by the transverse conductivity σ T

n (q,�) of
the normal fluid. The frequency � is set by the probe splitting
and can be tuned by external fields, while the in-plane mo-
mentum q ∼ 1/z0 is set by the inverse sample-probe distance.
Typically, the qubit energy splitting � is in the gigahertz
range, being the smallest energy scale in the system, allow-
ing approximating � ≈ 0. At the same time, what makes
qubit sensors distinct compared to conventional probes is the
tunability of the sample-probe distance z0, giving access to
various transport regimes, as encoded in σ T

n (q ∼ 1/z0,� →
0). These possible transport regimes are determined by the
rich interplay of four length scales in superconductors: (i) the
quasiparticle mean-free path �MF, (ii) the qubit-sample dis-
tance z0, (iii) the quasiparticle thermal wavelength λT , and (iv)
the superconducting coherence length ξT . In Sec. III, to inves-
tigate these transport regimes as well as crossovers between
them that occur upon tuning experimental knobs (for instance,
the temperature T ), we compute the transverse normal con-
ductivity within the mean-field BCS theory using the Kubo
formula. This one-loop calculation neglects the long-range
Coulomb interaction, which, however, is not expected to affect
σ T
n . We examine both singlet and triplet superconductors, with

different symmetries of the superconducting order parameter,
in both clean and disordered limits. The main result of Sec. III
is the demonstration that qubit sensors can be used to detect
the superconducting phase transition and to uncover the nature
of the pairing function.

Deep in the superconducting phase, quasiparticle excita-
tions become thermally suppressed due to the superconduct-
ing gap, leading to the suppression of the transverse noise. At
such low temperatures, one no longer can neglect longitudinal
current fluctuations. In Sec. IV, we investigate the longitu-
dinal noise and show that it allows us to probe longitudinal
collective modes, such as gapless plasmons in monolayers and
gapped Josephson plasmons in bilayers.

In addition to current fluctuations, spin fluctuations can
also contribute to the magnetic noise. The suppression of the
transverse current fluctuations at low temperatures requires us
to address the question of spin noise carefully, which we do
in Sec. V. We find that in contrast to metals, spin noise is not
parametrically suppressed as a function of the sample-probe
distance, but its magnitude is still quite small. It may become
comparable to the current noise in systems with flat bands
or with bands having large Berry curvature relevant to some
moiré materials, in which case the anisotropy of noise can be
used to determine the nature of triplet pairing.

FIG. 1. Schematic of the experimental setup, showing an isolated
impurity qubit placed at a distance z0 from the two-dimensional
superconducting sample in the x-y plane. A fluctuating magnetic field
due to both supercurrent js and normal current jn in the sample results
in relaxation of the qubit polarization.

We conclude and give a brief outlook for future work in
Sec. VI. Technical calculations are relegated to Appendixes.
Some highlights of this work can be found in the shorter paper,
Ref. [33].

II. RELAXATION RATE OF QUBIT

We begin by characterizing the depolarization of the qubit
in the presence of a nearby superconducting sample. For
concreteness, we consider a single isolated qubit at r0 =
(0, 0, z0), i.e., at a distance z0 above the two-dimensional
homogeneous sample in the xy plane. The qubit Hamiltonian
is given by a splitting � along a quantization axis n̂q and
a coupling to the local magnetic field B(r0, t ) at the qubit
location:

Hq = �

2
(n̂q · σ) + gμBB(r0, t ) · σ. (1)

The magnetic field B(r0, t ) comes from charge and spin
fluctuations in the sample. Once the qubit is initialized in a
polarized state, the qubit polarization will decay due to the
coupling to this noisy field. This can be characterized by the
magnetic noise tensor Nab(�):

Nab(�) = 1

2

∫ ∞

−∞
dt ei�t 〈{Ba(r0, t ),Bb(r0, 0)}〉, (2)

where 〈 . . . 〉 denotes equilibrium ensemble average at tem-
perature T . By a standard application of Fermi’s golden rule
(see Refs. [28,31] for details), the relaxation rate of the qubit
polarization can be related to the noise tensor as

1

T1
= (gμB)

2N+−(�), (3)

where B± = Bx′ ± iBy′ , and (x̂′, ŷ′, n̂q ) form a mutually or-
thogonal triad (the qubit quantization axis n̂q need not to
coincide with the z axis, as depicted in Fig. 1).

Useful constraints on the magnetic noise tensor can be de-
rived from symmetry considerations. Assuming the rotational
symmetry about the z axis, we get Nxx = Nyy and Nxy =
−Nyx. On additional imposition of reflection symmetry in the
xz (yz) plane, we find that Nxz(yz) = 0. Therefore, the noise
tensor at a given frequency � is completely characterized
by two independent numbers, namely, the transverse noise
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FIG. 2. Definition of s- and p-polarized waves. Subscripts
“in,”“r,” and “t” denote “incoming,” “reflected,” and “transmitted”
waves, respectively. The s polarization generates transverse currents
jT, while p polarization generates longitudinal currents jL.

NT = Nxx + Nyy = 2Nxx and the longitudinal noise NL =
Nzz. From Eq. (3), we note that the orientation of n̂q tells
us what kind of noise the qubit is sensitive to. Specifically,
setting n̂q = ẑ makes the qubit sensitive to NT, while setting
n̂q = x̂ results in a relaxation time governed by NL + NT/2.
Therefore, both transverse and longitudinal noise can be ex-
tracted independently by appropriate alignment of the qubit
quantization axis.

What remains is to relate the noise tensor Nab to cor-
relations within the sample. As discussed in Ref. [32], this
can be done by solving Maxwell’s equations, which relate
the magnetic field at r0 to fluctuating sources in the super-
conductor. Neglecting retardation effects (since the speed of
light c is much larger than typical velocity scales, such as
Fermi velocity vF , in condensed matter systems), most of the
noise comes from evanescent electromagnetic (EM) modes. In
particular, the transverse noise NT is given by

NT(�) = μ0kBT

16π�z30

∫ ∞

0
dx x2e−xIm

[
rs
( x

2z0
,�
)]

, (4)

where rs(q,�) is the reflection coefficient for s-polarized EM
waves which couple to transverse currents [q · jT(q) = 0] (see
Fig. 2). Here q is the in-plane momentum and the out-of-plane
momentum is substituted with qz ≈ iq (so that we consider
only evanescent waves). Therefore, if we decompose the con-
ductivity tensor into transverse and longitudinal components
as σab(q,�) = σ T(q,�)(δab − qaqb

q2 ) + σ L(q,�) qaqbq2 , the re-
flection coefficient rs can be written in terms of the transverse
conductivity σ T(q,�) as follows [32]:

rs(q,�) = −
(
1 + 2iq

μ0�σ T(q,�)

)−1

. (5)

In an analogous manner, the longitudinal noise NL is related
to the reflection coefficient rp(q,�) of p-polarized electro-
magnetic waves (see Fig. 2):

NL(�) = μ0kBT

8π�z30

(
�z0
c

)2 ∫ ∞

0
dx e−xIm

[
rp
( x

2z0
,�
)]

, (6)

where rp is related to σ L(q,�) according to [32]

rp(q,�) =
(
1 + 2εε0�

iqσ L(q,�)

)−1

. (7)

The additional suppression factor of (�z0/c)2 for longitudinal
noise is due to the fact that p-polarized waves couple to

longitudinal currents, and hence charge density fluctuations,
which are efficiently screened if the 2D sample is a good
conductor. For typical values of � ≈ 10GHz and z0 ≈ 100
nm, �z0/c ≈ 10−5. In metals, one therefore expects NL to be
highly suppressed relative to NT, so that it is safe to neglect
its contribution to the qubit relaxation rate, as was done in
Ref. [32]. Contrary to this intuition, we will find that this is
no longer the case at low temperatures in superconductors,
when NT becomes suppressed due to the spectral gap, while
NL can be resonantly enhanced by collective modes. The task
at hand is now clear from Eqs. (4)–(7): we need to compute the
nonlocal conductivity σ T/L(q,�) for the 2D superconducting
sample we are interested in. To do so, we need to model super-
conductivity to account for both quasiparticle and superflow
contributions, as we discuss in Sec. III.

Before switching to a detailed evaluation of the magnetic
noise due to current fluctuations, we attempt to gain some
intuitive understanding of how it scales with the qubit-probe
distance z0 [32]. The magnetic noise sensed by the qubit
probe is proportional to |B(r0)|2. This local magnetic field is
related to the current in the sample through the Biot-Savart
kernel Kj (z0) ∼ 1/z20. The qubit probe is most sensitive to
current fluctuations occurring at length scales of z0 (at higher
momenta they are suppressed by the evanescent nature of EM
waves carrying the signal, whereas at lower momenta they are
suppressed due to low phase space in 2D). This approximately
corresponds to seeing an areaA ∼ z20 of the sample. Thus, we
can estimate the noise due to current fluctuations as (defining
r0i = r0 − ri, i = 1, 2, and using |r0i| ≈ z0)

NT/L ≈ μ2
0

∫
A
d2r1

∫
A
d2r2Kj (r01)Kj (r02)

× 〈{ jT/L(r1), jT/L(r2)}〉

≈ μ2
0

z40

∫
A
d2R

∫
A
d2r〈{ jT/L(r), jT/L(0)}〉

= μ2
0

z20

∫
A
d2r〈{ jT/L(r), jT/L(0)}〉. (8)

In the last step, we have used the translational invariance
of the current correlations to separate the integration into
center-of-mass and relative coordinates [R = (r1 + r2)/2 and
r = r1 − r2, respectively], both of which are integrated over
areas of linear dimensions z0 of the sample. In the simplest
scenario, the correlation length is smaller than z0, so that the
r integral yields a finite value independent of z0, implying
thatN ∼ 1/z20. More broadly, the noise scaling with distance,
which is generically different from ∼1/z20, contains essen-
tial information about the current-current correlation function
and, thus, the conductivity, as we will encounter in the subse-
quent sections. We remark that similar analysis as in Eq. (8)
will prove useful to understand the noise due to spin fluctua-
tions in the sample, as we demonstrate in Sec. V.

III. NOISE IN TRANSVERSE SECTOR

We turn to discuss the transverse noise, which is deter-
mined by the transverse conductivity σ T(q,�), via Eqs. (4)
and (5). To evaluate σ T(q,�), we employ the two-fluid model
of superconductors [34], which divides the total electron
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density into a superfluid density ns and a normal-fluid den-
sity nn, as illustrated in Fig. 1. Accordingly, the total current
density j is given by the sum of the normal-fluid contribu-
tion jn = σnE and the superfluid contribution js = σsE, so
that the net conductivity is σ T(q,�) = σ T

s (q,�) + σ T
n (q,�).

The superfluid response is reactive, as follows from London’s
equation:

jTs = −
AT ⇒ σ T
s (q,�) = − 


i�
, (9)

where AT is the vector potential in the London gauge,
satisfying q · AT(q,�) = 0. Within the phenomenological
Landau-Ginzburg theory of superconductivity, we identify


 ∝ ns ∝ |�(T )|2 ∝ Tc − T, for T < Tc. (10)

Here ns = d|ψ |2 is the 2D superfluid density (d being the
sample thickness and ψ being the superconducting order pa-
rameter), and � = gBCS|ψ | is the quasiparticle gap related
to the order parameter through the effective attractive BCS
electron-electron coupling gBCS. The net transverse electrical
conductivity is therefore given by

σ T(q,�) = σ T
n (q,�) − 


i�
. (11)

Before turning to the computation of the normal conductivity
σ T
n , we first discuss the effect of the superflow on the trans-

verse noise. Plugging in Eq. (11) into Eqs. (4) and (5), we
obtain

NT(�) ≈ μ2
0kBT

16πz20

∫ ∞

0
dx

x3e−x Re
{
σ T
n

(
x
2z0

,�
)}

(
μ0z0�σ T

n

)2 + (x + μ0z0
)2

≈ μ2
0kBT

16πz20

∫ ∞

0
dx x3e−x

Re
{
σ T
n

(
x
2z0

,�
)}

(x + μ0z0
)2
, (12)

where we approximated � ≈ 0 in the denominator in the first
line since the probe splitting is much smaller than all other
energy scales in the problem. The form (12) allows distinction
of two limits. The first one corresponds to μ0z0
 � 1, the
regime we call weak superconductivity (
 ∝ ns → 0). In this
case, the transverse noise is determined by the normal-fluid
contribution

NT(�) ≈ μ2
0kBT

16πz20
Re

{
σ T
n

( 1

2z0
,�
)}

. (13)

The same expression is known for the simple metallic phase
[32]. The second limit corresponds to μ0z0
 � 1, the regime
of strong superconductivity, in which case

NT(�) ≈ 3kBT

8πz40

2
Re

{
σ T
n

( 3

2z0
,�
)}

. (14)

In contrast to the metallic behavior (13), the presence of the
superflow gives additional 1/z20 suppression. Further, from
Eqs. (13) and (14), we note that in both limits, NT is es-
sentially set by the nonlocal quasistatic conductivity of the
normal fluid σ T

n (q ∼ 1/z0,� → 0). We remark that this re-
verse order of limits compared to the usual probes such as
dc conductivity, where one takes q → 0 first and then � →
0, renders qubit sensors promising to study novel transport
regimes, determined by a complicated interplay of various

length scales in the superconductor. We also note that the
length scale μ0
, which is used to separate the weak and
strong superconducting regimes, is the well-known “Pearl
length” [35], which is the characteristic length scale associ-
ated with the magnetic field distribution around a vortex in a
thin-film superconductor.

For the remainder of this section, we focus on calculating
the transverse quasiparticle conductivity σ T

n (q ∼ 1/z0,� →
0) in both clean and disordered superconductors, with dif-
ferent pairing symmetries and different spin structures of
the superconducting order parameter. We compute σ T

n within
the linear response formalism using the standard Kubo for-
mula [36,37], which relates the normal conductivity σ T

n to
the imaginary-time correlation function of transverse normal
currents jT(q, τ ) = (ẑ × q̂) · jn(q, τ ). Specifically, we obtain
σ T
n (q,�) from �T(q, τ ) = − 1

A 〈Tτ ( jT(q, τ ) jT(−q, 0))〉 via
analytic continuation from imaginary to real frequency:

Re
[
σ T
n (q,�)

] = − Im[�T(q, i�n → � + i0+)]
�

, (15)

where�T(q, i�n) = ∫ β

0 dτ ei�nτ�T(q, τ ) andA is the area of
the 2D sample. For simplicity and physical transparency, we
evaluate the transverse quasiparticle conductivity within the
mean-field BCS theory. We remark that the BCS Hamiltonian
already takes into account the effective short-range attrac-
tive interaction between the pairing electrons but neglects
the long-range Coulomb repulsion. On the other hand, this
long-range interaction is not expected to modify the trans-
verse conductivity because transverse current fluctuations do
not perturb local charge density, which experiences strong
Coulomb forces. Hence, it is legitimate to evaluate the trans-
verse conductivity to the one-loop level for the Bogoliubov
quasiparticles. (In contrast, if one is interested in the longitu-
dinal quasiparticle conductivity, then the long-range Coulomb
interaction might play a major role.) Below we focus on
presenting the main physical picture and relegate tedious cal-
culations to Appendix A.

A. Singlet superconductors

The BCS Hamiltonian for singlet superconductors is given
in terms of electron operators ck,σ , their bare dispersion ξk =
εk − μ, and gap function �k as (we assume ξk = ξ−k and
work in the gauge with �k ∈ R)

HBCS =
∑
k

�
†
khk�k, hk =

(
ξk �k
�k −ξk

)
, (16)

where �k = (ck,↑, c†−k,↓)
T is the Nambu spinor. Within this

model, the quasiparticle excitation energy is Ek =
√

ξ 2
k + �2

k.
Introducing a phenomenological lifetime via an electron self-
energy �(k, iωn), the Matsubara Green’s function (it is a
2 × 2 matrix in the Nambu space) is given by [ωn = (2n +
1)πkBT ]

G(k, iωn) = (iωn − �k,iωn − hk )
−1. (17)

Within a simple model of isotropic disorder scattering, the
retarded self-energy �R(k, ω), obtained from �(k, iωn) by
analytic continuation to real frequencies, can be approximated
as �R(k, ω → 0) ≈ −i�0, where �0 is simply the isotropic

024507-4



CHARACTERIZING TWO-DIMENSIONAL … PHYSICAL REVIEW B 105, 024507 (2022)

scattering rate of electrons at the Fermi surface [we assume
that the real part of �R(k, ω) just renormalizes the bare
dispersion]. To evaluate the dissipative part of the normal
conductivity Re[σ T

n (q,�)], one needs to consider only the
paramagnetic part of the current operator, which is given
in terms of the spinor �k and quasiparticle velocity v(k) =
∂kξk ≈ vF k̂ (simplifying to a circular Fermi surface) as

jα (q) = e
∑
k,σ

vα (k)c
†
k−,σ

ck+,σ = e
∑
k

vα (k)ψ
†
k−ψk+ ,

where k± = k ± q/2. As we show in Appendix A, the real
part of σ T

n can be conveniently written in terms of the spectral
function A(k, ω) = − 1

π
Im[GR(k, ω)] as

σ T
n (q,�) = e2π

∫
d2k

(2π )2

∫
dω v2

T

(
−∂nF (ω)

∂ω

)

× Tr[A(k−, ω)A(k+, ω + �)]. (18)

Here vT = vF (q̂ × k̂) is the transverse component of the
electron velocity and nF (ω) = [exp(βω) + 1]−1 is the Fermi
function (β = 1/kBT ). Further analytical progress in un-
derstanding the transverse quasiparticle conductivity can be
achieved by separately considering the clean and disordered
limits.

In the clean limit, �0 → 0, the mean-free path �MF =
vF/2�0 � λT and the disorder smearing of the spectral
function vanishes (the Pauli matrices τα act in the particle-
hole/Nambu space):

A(k, ω) = ω + ξkτ
z + �kτ

x

2Ek
[δ(ω − Ek ) − δ(ω + Ek )].

In this case, the transverse normal conductivity is dominated
by resonant particle-hole excitations across a shell of width�,
with a relative momentum q (see Appendix A for additional
discussion):

σ T
n (q,�) ≈ − e2

2π

∫
d2k v2

T n′
F (Ek ) δ(� + Ek+ − Ek− ).

(19)

We note that the contributions to σ T
n (q,�) due to simultane-

ous excitation of two quasiparticles (i.e., for � = Ek+ + Ek− )
are suppressed by an additional factor of q2 due to super-
conducting coherence factors, as discussed in Appendix A.
Accordingly, such two-particle contributions can be neglected
not only for fully gapped superconductors (where � � 2� �
Ek+ + Ek− ), but also for nodal superconductors, as long as q
is much smaller than the Fermi momentum kF .

In the disordered limit, the spectral function A(k, ω) is
smeared out by the disorder-induced self-energy �0, so that
A(k, ω) acquires a Lorentzian form for ω � kBT :

A(k, ω � kBT ) ≈ �0

π
(
�2
0 + E2

k

)(1 0
0 1

)
.

The smooth behavior of the spectral function at small ω makes
it legitimate to approximate the Fermi function derivative
−n′

F (ω) in Eq. (18) by a delta function δ(ω), leading to

σ T
n (q,�) ≈ e2

2π3

∫
d2k v2

T

�0

�2
0 + E2

k+

�0

�2
0 + E2

k−

. (20)

(a) (b)

FIG. 3. (a) Phase space of the quasiparticle excitations in s-wave
superconductors, showing that the angular extent scales as 1/q.
(b) Banana-shaped anisotropic quasienergy contours (yellow lines)
of Dirac cones near the nodal points (brown dots) of a d-wave
superconductor. The blue dotted lines denote the underlying Fermi
surface ξk = 0.

Below we apply the results in Eqs. (19) and (20) to in-
vestigate and contrast the properties of s-wave and d-wave
superconductors in various regimes.

1. s-wave superconductors

We begin by considering the case of clean s-wave super-
conductors with �k = � so that the quasiparticle excitations
are gapped and have zero gap velocity. Numerical analysis
of Eq. (19) (cf. Fig. 5) indicates that σ T

n (q,� → 0) scales as
1/q (up to nonessential logarithmic corrections), both deep in
the superconducting phase and near the transition temperature
where the superconductivity is suppressed. This behavior can
be understood as follows. Approximating ξk ≈ vF (k − kF ),
we observe that the angular integral over k in Eq. (19) is rather
restricted for fixed values of q and �. Figure 3(a) shows the
phase space of quasiparticle excitations that contribute to the
transverse conductivity, where for visibility we broadened the
outer energy circle to have a finite width δε. Specifically, for
a given momentum q, as follows from the geometry of the
Fermi surface, this phase space scales as 1/vFq, explaining
the behavior of the transverse normal conductivity.

To gain further insight into the properties of σ T
n , we now

focus on the physically relevant limit� → 0 and consider low
temperatures first. In this case, we get

σ T
n (q,� → 0) = e2vFkF

πTqξT
I (β�), (21)

where

I (β�) =
∫ ∞

0
dt

√
1 + 1/t2

4 cosh2[(β�/2)
√
t2 + 1]

. (22)

This integral contains a weak logarithmic divergence due
to the singular quasiparticle density of states ν(E ) =
E/

√
E2 − �2 near the gap threshold E ≈ �. In practice,

I (β�) is regularized by either a small disorder strength or
by small �/qvF (see Appendix A for additional discussion).
Therefore, for realistic experimental parameters, we do not
expect this divergence to play a crucial role (see Fig. 5), and
we focus on the physically important feature of I (β�), its
temperature dependence. Deep in the superconducting phase,
with kBT � �(T ), thermal gapped quasiparticle excitations
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(a) (b)

FIG. 4. Phase space of the quasiparticle excitations that con-
tribute to σ T

n (q, 0) in the disordered limit, at small sample-probe
distance q�MF � 1. (a) s wave: k+ and k− lie in an annular strip
(shaded yellow) of circumference 2πkF and thickness q. (b) d wave:
k+ and k− lie in a patch of area∼q2 around the node k0 (only a single
node/quarter of the first Brillouin zone is shown).

that carry the transverse normal current are suppressed, man-
ifesting as I (β�) ∼ exp(−β�) in Eq. (22). Therefore, both
the transverse normal conductivity σ T

n [cf. Eq. (21)] and the
transverse noise NT become exponentially suppressed at low
temperatures. We conclude that a hallmark of the supercon-
ducting phase transition in qubit-based experiments is the
exponential suppression of the transverse noise NT with de-
creasing temperature below Tc.

In the regime of weak superconductivity with small quasi-
particle gap �(T ) � kBT , corresponding to temperatures
close to Tc, the transverse noise displays a different behavior
with T . Upon increasing T towards Tc, the superconducting
coherence length ξT = vF/�(T ) increases, while the ther-
mal wavelength λT = vF/kBT decreases. Within the BCS
mean-field theory with �(T ) ≈ 3kBTc

√
1 − T/Tc, these two

length scales cross each other near T ≈ 0.8Tc. For tempera-
tures above this crossing point, one replaces ξT with λT in
Eq. (21) and sets I (β�) ≈ 1, thereby obtaining temperature-
independent normal conductivity σ T

n , just as in a Fermi liquid
[38]:

σ T
n (q,� → 0) = e2vFkF

πTqλT
= e2kF

πq
. (23)

Accordingly, NT ∝ T , reminiscent of the Johnson-Nyquist
noise in metals. We remark that Eq. (23) might not be en-
tirely correct for a narrow temperature window near Tc, where
fluctuation effects become essential.

To conclude the discussion of clean s-wave supercon-
ductors, by considering σ T

n (q ∼ 1/z0, 0), we now examine
distance scalings of NT in both regimes. In the strong super-
conducting regime, as follows from Eq. (14), we have NT ∼
1/z30, while in the weak superconducting regime, NT ∼ 1/z0
[cf. Eq. (13)]. This latter behavior can be simply understood
by replacing the scattering time τ in the Drude formula σ =
ne2τ/m with the time τ ′ = z0/vF , taken by a ballistic quasi-
particle at the Fermi surface to travel a linear distance z0 that
the qubit can see [24]. In this argument, we have implicitly
used z0 � �MF, which is valid for clean superconductors with
�MF → ∞. If z0 is larger than the mean-free path �MF, the
qubit becomes sensitive to multiple scattering events, in which

case the conductivity σ T
n saturates to a nonsingular constant as

q → 0. As such, the transverse noise will display 1/z40 (1/z
2
0)

scaling in the strong (weak) superconducting regime, as we
show next.

We turn to discuss properties of disordered s-wave super-
conductors and consider first the case of large sample-probe
distance z0 � �MF, equivalent to q�MF � 1. In this limit, we
can explicitly carry out the integral in Eq. (20), with the result
(see Appendix A for details)

σ T
n (q → 0, 0) = e2kFvF

4π

�2
0(

�2
0 + �2

)3/2 . (24)

We note that Eq. (24) reproduces the Drude formula σ =
ne2τ/m, valid in the metallic limit with � = 0. Here n =
k2F/2π is the electron density (including spin), τ = 1/2�0 is
the electron lifetime, and m = kF/vF is the effective electron
mass. The fact that σ T

n (q → 0, 0) approaches a finite constant
explains the mentioned dependence of the transverse noise
NT on the sample-probe distance z0. On lowering T below
Tc, the transverse normal conductivity becomes algebraically
suppressed with temperature due to the onset of the supercon-
ducting gap �(T ) ∼ √

1 − T/Tc, leading to a corresponding
algebraic suppression of NT. Deep in the superconducting
phase, where �(T ) depends weakly on T , the transverse con-
ductivity (almost) becomes temperature independent, leading
to NT ∝ T .

Remarkably, by tuning the sample-probe distance z0, qubit-
based experiments can gain access to probe the transverse
normal conductivity at large momenta. For disordered s-
wave superconductors, a new transport regime emerges for
max{�−2

MF, ξ
−2
T } � q2 � k2F , where we have

σ T
n (q, 0)

v2F q
2��2

0+�2

−−−−−−−→ 8e2kF�2
0

π2v2
Fq

3
. (25)

This result is obtained from both numerical analyses of
Eq. (20) (cf. Fig. 5), together with analytical calculations
outlined in Appendix A. In practice, since q ∼ 1/z0, to probe
this transport regime, one needs to choose the sample-probe
distance z0 � min{�MF, ξT } to be smaller than both the mean-
free path �MF and the superconducting coherence length ξT .
The behavior σ T

n (q, 0) ∼ 1/q3 can be intuitively understood
by a careful consideration of the phase space of relevant
quasiparticle excitations, similar to our discussion of the clean
limit. The momentum integral in Eq. (20) is dominated by
processes with |k| ≈ kF , so that both |k+| and |k−| lie in
a momentum window of size q around kF . In this region,
the product of spectral functions A(k+, 0)A(k−, 0) scales as
1/ξ 2

k+ξ 2
k− ∼ 1/(vFq)4. The annular strip in momentum space,

where this contribution comes from, has width q and cir-
cumference 2πkF , as shown in Fig. 4(a). This results in an
additional factor of 2πkFq to the integral, and, therefore,
the transverse normal conductivity scales as 2πkFq/(vFq)4 ∼
1/q3. For the transverse noise, we find that NT ∼ 1/z0 in
the regime of strong superconductivity for small qubit-probe
distance z0, while it decreases linearly with z0 in the weak
superconducting regime.
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TABLE I. Summary of possible transport regimes, as encoded in
the normal-fluid transverse conductivity σ T

n (q, 0), for s- and d-wave
superconductors, in clean (�0 � kBT ) and disordered (�0 � kBT )
limits. The asterisk implies up to logarithmic corrections, and the
dagger also requires qξT � 1. Compare with the numerical scalings
in Fig. 5.

s wave d wave

σ T
n (q, 0) q�MF � 1 q�MF � 1 q�MF � 1 q�MF � 1

Clean q0 q−1 (∗) q0 q−1

Disordered q0 q−3 (†) q0 q−2 (∗)

2. d-wave superconductors

We turn to investigate superconductors with d-wave sym-
metry of the order parameter. For concreteness, we consider
a square lattice and assume �k = �(T )(cos kx − cos ky). The
key feature of d-wave superconductors is the presence of gap-
less quasiparticles, located near the four Dirac points, given
by kx = ±ky and |k| = kF . We note that the Fermi velocity
vF = ∇kξk and the gap velocity v� = ∇k�k are orthogonal
to each other at each node k0, which allows us to approxi-

mate the quasiparticle energy as Ek =
√

v2
Fk

2
‖ + v2

�k
2
⊥, where

k − k0 = (k‖, k⊥).
We begin by considering the clean limit first, in which

case the transverse conductivity is determined by resonant
quasiparticle excitations across energy shells of width � [cf.
Eq. (19)]. These excitations take place on each of the Dirac
cones (rather than on the Fermi surface), and geometrical
considerations here are identical to our discussion of clean
s-wave superconductors. For the d-wave case, we also find

σ T
n ∼ 1/q (see Appendix A for more details):

σ T
n (q,� → 0) = e2vF ln(2)

βπqv�

. (26)

The key difference compared to the s-wave case is the
presence of a nonzero gap velocity v�, which is typically
much smaller than the Fermi velocity vF and leads to very
anisotropic (banana-shaped) constant-energy contours [see
Fig. 3(b)].

We find that the transverse noise for clean d-wave super-
conductors is given by

NT = 2μ2
0e

2 ln(2)

(2π )3β2z0v�

[
K

(
1 − v2

�

v2
F

)
+ vF

v�

K

(
1 − v2

F

v2
�

)]

v��vF−−−−→ 4μ2
0e

2(kBT )2 ln(2)

(2π )3z0v�

ln

(
4vF
v�

)
, (27)

where K (x) = ∫ π/2
0 dθ (1 − x sin2 θ )−1/2 is the elliptic inte-

gral. The distance scaling of NT here is the same as in
the s-wave situation: it scales as 1/z30 (1/z0) in the strong
(weak) superconducting regime. The temperature dependence
is different: In contrast to the s-wave case with exponentially
suppressed transverse noise, here we have NT ∝ T 2 for T �
Tc. This is a consequence of the regular power-law density of
states of gapless quasiparticles. Another significant difference
is the appearance of v−1

� ln(4vF/v�) in Eq. (27) which has
a twofold effect. First, it gives notable enhancement since
v�/vF is typically small. Second, it affects the temperature
dependence of the transverse noise close to the critical tem-
perature. Since within the mean-field theory v� ∼ (T − Tc)1/2

near Tc, it gives a sharper increase of the transverse noise
for the d-wave case, as T approaches Tc from below. We
remark that this apparent divergence for T → Tc is in practice
smoothed out when the gap magnitude �(T ) becomes smaller

FIG. 5. Momentum dependence of σ T
n (q, � → 0) in various superconductors, obtained by numerical analyses of Eqs. (19) and (20). These

results demonstrate the scalings summarized in Table I.
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than kBT . In this limit, the description in terms of Dirac cones
is no longer appropriate, as quasiparticle excitations all around
the Fermi surface start to contribute to conduction.

We switch to discuss disordered d-wave superconductors,
in which case we obtain (see Appendix A for details)

σ T
n (q,� → 0) = e2vF

π2v�

4�2
0 sinh−1

( Eq

2�0

)
Eq

√
4�2

0 + E2
q

, (28)

where Eq =
√

v2
Fq

2
‖ + v2

�q
2
⊥. When the qubit is placed far

from the sample �MF � z0 (equivalently, Eq � �0 for qz0 �
1), we recover the universal Durst-Lee result for the conduc-
tivity that is independent of the disorder strength [39,40]:

σ T
n (q → 0, 0) = e2vF

π2v�

. (29)

We remark that in obtaining this result, we neglected disor-
der ladder corrections to conductivity, which are expected to
be nonzero for d-wave superconductors but not expected to
qualitatively affect the conductivity (see Ref. [40] for a related
discussion). In this regime, the distance scaling of the trans-
verse noise is identical to the s-wave scenario. In the opposite
limit corresponding to z0 � �MF, we find that σ T

n (q, 0) ∼ 1/q2

(up to logarithmic corrections):

σ T
n (q, 0)

q��−1
MF−−−→ e2vF

π2v�

(
2�0

Eq

)2

ln
(Eq

�0

)
. (30)

Intuitively, one can again understand this 1/q2 scaling by ex-
amining the phase space of relevant quasiparticle excitations.
For the d-wave case, the integral in Eq. (20) is dominated
by processes near the Dirac cones, such that k+ and k−
lie in a momentum window of size q around each of the
nodes k0. In these regions, the product of spectral func-
tions A(k+, 0)A(k−, 0) behaves as 1/E2

k+E
2
k− ∼ 1/q4, while

the area of the patches, where this contribution comes from,
is roughly q2, as shown in Fig. 4(b). We, therefore, conclude
that the transverse normal conductivity scales as 1/q4 × q2 ∼
1/q2, consistent with Eq. (30) up to logarithms. For the trans-
verse noise, we obtain thatNT is independent of z0 (decays as
1/z20) in the weak (strong) superconducting regime.

Table I summarizes our findings of possible transport
regimes, as encoded in σ T

n (q, 0), for both clean and disordered
superconductors, with different order-parameter symmetries.
Numerical analyses of Eqs. (19) and (20) are presented in
Fig. 5. From these, one directly infers the distance scalings
of the transverse noise NT.

B. Triplet superconductors

We turn to address the question of noise signatures of
triplet superconductors in qubit-based experiments, where the
order parameter breaks both time-reversal and spin-rotational
symmetries. Here we restrict to p-wave superconductiv-
ity, corresponding to � = 1 orbital angular momentum of
Cooper pairs, so that the vectorial order parameter �k links
spatial and spin degrees of freedom. The mean-field BCS
Hamiltonian can be conveniently expressed in terms of the
Balian-Werthamer (BW) spinor [37] �k = (ck, iσ yc†−k )

T , de-
fined in terms of electron operators ck = (ck,↑, ck,↓)T and
their time-reversal counterparts, as HBCS =∑k∈ 1

2 BZ
�

†
khk�k

with

hk = ξkτ
3 + (�k · σ)τ+ + (�∗

k · σ )τ−. (31)

Here τ± = 1
2 (τ

x ± iτ y) act in the Nambu (particle-hole)
space. It is conventional to define the gap function in the spin
space as �k = � dk, where dk is appropriately normalized
over the Fermi surface (assumed to be circular here):∫

dθk

2π
|dk|2 = 1. (32)

Physically, dk denotes the direction normal to the plane of
quadrupolar fluctuations of the Cooper-pair spin. The quasi-
particle excitation energy can be shown to be given by Ek,± =√

ξ 2
k + �2(|dk|2 ± |dk × d∗

k|). The normal current operator in
terms of the BW spinor reads as

jα (q) = e
∑

k∈ 1
2 BZ

vα (k)�
†
k−q/2�k+q/2.

Given a pairing function �k, we use Eq. (18) to evaluate the
transverse quasiparticle conductivity σ T

n (q,�) for triplet su-
perconductors, again assuming isotropic disorder scattering.

Here we consider the case of unitary pairing functions,
corresponding to dk and d∗

k being parallel to each other.
Specifically, we choose the form of dk to be analogous to
either Balian-Werthamer (BW) or Anderson-Brinkman-Morel
(ABM) phases [41] of superfluid He3, except in two spatial
dimensions. The latter might be relevant [42], for instance,
to Sr2RuO4. Our explicit calculations in Appendix A indi-
cate that for both kinds of pairing functions, the transverse
normal conductivity reduces to that of fully gapped isotropic
s-wave superconductors, considered above. This conclusion
holds for both clean and disordered limits. Even though the
transverse current correlation function for p-wave supercon-
ductors behaves similarly to the s-wave case, the nature of
spin fluctuations can distinguish singlet and triplet pairings,
as we discuss in Sec. V.

IV. NOISE IN LONGITUDINAL SECTOR

The results of the previous section show that the presence
of superconductivity suppresses the noise due to transverse
current fluctuations at low temperatures. Does this mean that
longitudinal current fluctuations, neglected above, can start to
dominate? To address this question, we study coupled dynam-
ics of the order parameter and the electromagnetic field, which
allows us to determine the spectrum of longitudinal collective
modes and their contribution to NL. Below we investigate
both monolayer and bilayer geometries.

A. Longitudinal conductivity and collective modes in
monolayers

We describe spontaneous symmetry breaking via the
Ginzburg-Landau free energy:

F[ψ] = d
∫

d2r
[

1

2m∗ |(−ih̄∇ − e∗A)ψ |2

+ α|ψ |2 + β

2
|ψ |4

]
, (33)
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where d is the thickness of the film (along this thickness the
order parameter remains homogeneous). A(r) is the in-plane
vector potential at z = 0, and m∗ is the effective Cooper pair
mass. We assume overdamped order-parameter dynamics,
captured by a time-dependent Ginzburg-Landau (GL) equa-
tion [34]:

τ

[
∂

∂t
+ ie∗(δμ + φ)

]
ψ (r, t ) = − δF

dδ ψ∗(r, t )
, (34)

where τ is a dimensionless parameter characterizing the
order-parameter relaxation time. φ is the scalar potential,
and we choose the gauge where φ = 0. δμ = χ−1ρ is
the electrochemical potential describing the coupling be-
tween the order parameter and charge fluctuations (ρ is the
two-dimensional charge density). χ−1 is the inverse com-
pressibility, a phenomenological parameter in our approach.
The two-dimensional superconducting current density reads
as

js = de∗

2m∗ ψ∗(−ih̄∇ − e∗A)ψ + c.c. (35)

We also have the current density due to quasiparticles, which
we write as

jn(q, ω) = σ L
n (q, ω)[E(q, ω) − iqδμ(q, ω)], (36)

where E is the in-plane electric field at z = 0, q is the in-plane
momentum. The conservation of charge is expressed in the
continuity equation

∂tρ + ∇ · ( js + jn) = 0. (37)

We turn to linearize the above equations of motion on top
of the equilibrium state, which has a homogeneous order-
parameter expectation value ψ0 = √−α/β. The dynamics of
the order-parameter amplitude decouples from the rest of the
system and turns out to be overdamped. For this reason, we
focus on the dynamics of the order-parameter phase θ . The
linearized supercurrent reads as

js = 

(�0

2π
∇θ − A

)
, (38)

where �0 = h/2e is the magnetic flux quantum. The total
longitudinal current density is the sum of the normal and
superfluid contributions:

jL(q, ω) = σ L
n

(
iωA‖ − iqρ

χ

)
+ 


(�0

2π
iqθ − A‖

)
. (39)

The linearized GL equation for the phase reads as

−iωθ + e∗

χ
ρ = − h̄2�̄

2m∗
(
q2θ + 2π i

�0
qA‖

)
, (40)

where �̄ = τ−1. By using Eqs. (39) and (40), together with the
continuity equation ωρ = q jL, one can (numerically) com-
pute the full longitudinal conductivity. We note that the terms
with compressibility χ−1 start to play a role only for k � kTF,
where kTF is the Thomas-Fermi screening momentum [34].
For a noninteracting two-dimensional Fermi gas, we estimate
kTF ∼ a−1

0 , where a0 is the Bohr radius. Since this is a large
momentum scale, we now specialize on the case χ−1 = 0,
i.e., we focus on low momenta k � kTF, in which case, the

net longitudinal conductivity can be calculated analytically:

σ L(q, ω) = σ L
n (q, ω) − 


iω − �̄h̄2q2

2m∗

. (41)

To derive the spectrum of collective modes, we also need
to consider the dynamics of the electromagnetic field via
Maxwell’s equations (we assume that μ = μ0):

ε∇ · E = ρ

ε0
δ(z), (42)

∇ × B = ε

c2
∂E
∂t

+ μ0( js + jn)δ(z). (43)

In the gauge with zero scalar potential, one writes B = ∇ × A
and E = −∂tA. For a thin sample, Eqs. (42) and (43) can be
represented as an interface problem with the following bound-
ary conditions [+ (−) refers to the top (bottom) boundary]:

ε+E+
z − ε−E−

z = ρ

ε0
, B+

z = B−
z , (44)

ẑ × (B+ − B−) = μ0 j, E+
t = E−

t , (45)

where Et = Exx̂ + Eyŷ is the tangential component of the
electic field and ε± are the dielectric constants of the media
just above and below the xy plane. Equivalently, the boundary
conditions can be written solely in terms of the vector poten-
tial:

A+
‖ = A−

‖ , ∂zA
+
‖ − ∂zA

−
‖ = −μ0 jL + iq(A+

z − A−
z ),

A+
⊥ = A−

⊥, ∂zA
+
⊥ − ∂zA

−
⊥ = −μ0 jT,

ε+A+
z − ε−A−

z = ρ

iε0ω
,

where we decomposed A(q, z) = A‖q̂ + A⊥q̂ × ẑ + Az ẑ.
In this system, a collective excitation represents a mode

that couples three-dimensional fluctuations of light to two-
dimensional fluctuations of the order-parameter phase. We
anticipate such a mode to be an evanescent wave:

A(q, z;ω) =
{
A+(q, ω)e−κz, z > 0
A−(q, ω)eκz, z < 0 (46)

where κ =
√
q2 − εω2/c2. By solving the Maxwell equa-

tions, we obtain

A‖(q, ω) = − κ

2εε0ω2
jL(q, ω). (47)

Provided one knows the longitudinal conductivity, the spec-
trum of the longitudinal collective modes is then defined
through

1 + iκ

2εε0ω
σ L(q, ω) = 0, (48)

which we note is nothing but the usual condition of the vanish-
ing of the (2D) dielectric function εL(q, ω) = 0. Anticipating
the development of gapless plasmons, let us now focus on
low frequencies and low momenta, where one can substitute
κ ≈ q (we will ignore the light cone, which starts to play a
role at negligibly small momenta ∼ω/c). In this regime, as
it follows from Eq. (48), by expanding in powers of q, one
can replace σ L(q, ω) with σ L(q = 0, ω) = σ T(q = 0, ω) =
σn − 


iω . Interestingly, this argument is generic and does not
require explicit computation of the longitudinal conductivity,
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(a) (b)

FIG. 6. Noise in monolayers. (a) Reflection coefficient Im(rp(q, qz,�)), evaluated for evanescent waves with qz ≈ iq, is resonantly
enhanced when crossing the plasmon dispersion ω‖(q) [cf. Eq. (49)]. (b) In a monolayer geometry at low temperatures, the transverse noise
NT(�, z0) is suppressed compared to NL(�, z0). More specifically, for z0 � z∗

0 (�) (z∗
0 is defined in the main text), the longitudinal collective

modes do not contribute, which also results in suppressed NL. Once z0 � z∗
0 , the plasmon branch starts to contribute, and the noise NL(�, z0)

shows a quick saturation at a finite value. At even shorter distances, depending on parameters,NT(�, z0) can develop and overcomeNL(�, z0).

i.e., one only needs the conductivity at q = 0, which is the
same for both longitudinal and transverse cases. This result is
consistent with Eq. (41) at q = 0. From Eq. (48), we obtain
the dispersion of the longitudinal collective modes at small
momenta q:

ω‖(q) =
√

q


2εε0
−
( qσn

4εε0

)2
− i

qσn

4εε0
. (49)

We note that the primary role of σn is to provide damping and
redshift otherwise coherent gapless plasmon excitation.

B. Longitudinal noise in monolayers

We now use the conductivity in Eq. (41) to estimate the
longitudinal noise NL via Eqs. (6) and (7). Importantly, we
observe that for evanescent modes with qz = iq, the reflection
coefficient rp(q,�) can become resonantly enhanced upon
crossing the longitudinal spectrum [cf. Eq. (48)]. To clarify
this point, let us compute rp(q,�) for �̄ = 0 since this term
is relevant only at large momenta, or equivalently at short
distances z0:

Im{rp(q,�)} = (2εε0�2)
(
q�σ L

n

)
(2εε0�2 − q
)2 + (q�σ L

n

)2
≈ π�2 δ

(
�2 − q


2εε0

)
, (50)

where in the last step, we assumed that the longitudinal quasi-
particle conductivity is suppressed at low temperatures. This
resonant enhancement is clearly visible in a numerical evalu-
ation of Im{rp(q,�)} in Fig. 6(a). Therefore, the noise in this
limit is given by

NL(�) ≈ kBT ε2�3

4
c4
exp

(
−4εε0z0�2




)

≡ N ∗(�) exp

(
−4εε0z0�2




)
, (51)

where N ∗(�) = kBT ε2�3/4
c4. While at low temperatures
when σ L

n is (exponentially) small, the longitudinal noise can
be finite due to collective plasmon modes. We demonstrate
this in Fig. 6(b) by plotting the ratio NL(�)/N ∗(�) as a
function of 1/z0. If we tune the sample-probe distance z0 at
a fixed �, this ratio is suppressed for large qubit distances.
It subsequently saturates to a finite value upon crossing the
plasmon branch, i.e., for z0 � z∗0, where z∗0 is defined via
� = ω‖(q = 1/2z∗0 ), as shown in Fig. 6(a). As pointed out
in [33], longitudinal noise can be enhanced by considering
a high-ε encapsulating materials such as SrTiO3 [43]. An-
other possible route to enhancing the signal is to increase the
probe frequency �. As the noise varies with the cube of �,
even a modest increase yields a significant enhancement. The
magnetic fields corresponding to heightened frequencies may
become large, say, on the order of a few Tesla, but destruction
of superconductivity can be avoided by orienting the field in
the plane of the 2D material, so long as the field strength
remains below the Pauli limit.

C. Two-fluid model in bilayers

A special feature of a bilayer geometry is the Josephson
coupling between the layers which leads to the development
of two distinct longitudinal collective modes: (i) a symmetric
mode that arises from in-phase oscillations of the charge den-
sity (this mode is gapless and closely resembles monolayer
plasmons studied above); (ii) an antisymmetric mode that
arises from out-of-phase oscillations of the charge density
(this mode is gapped). We anticipate that this gap size is
significantly lower compared to �, giving the possibility to
detect this level splitting at low temperatures with impurity
qubits. Below, we derive the spectrum of longitudinal col-
lective modes in bilayer superconductors, and compute their
contribution to the longitudinal noise.

As for the monolayer case, we disregard the fluctuations of
the order-parameter amplitude: this is justified either due to
the choice of the overdamped order-parameter dynamics, as
above, or, more broadly, in the low-frequency limit � � �.
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We then write the free energy only for the order-parameter
phases and adopt notations commonly used to describe lay-
ered superconductors [44–46]:

F = E0

2

∫
d2r
[(

∇θ1 − 2π

�0
A1

)2
+
(
∇θ2 − 2π

�0
A2

)2
+ 2

λ2
J

[1 − cos(θ1 − θ2 − ϑ )]
]
. (52)

In Eq. (52), θi are the order-parameter phases in the two
layers assumed to be at z = ±l/2. Ai are the corresponding
in-plane projections of the vector potential A(r, z). The order-
parameter phase stiffness E0 is given by

E0 = �2
0l

4π2μ0λ
2
ab

=
(

�0

2π

)2


, (53)

where λab is the penetration depth for in-plane currents, and
l is the spacing between the layers. We also defined the
Josephson length λJ = γ l , where the anisotropy parameter
γ = λc/λab � 1 captures the weak coupling between the lay-
ers. Finally, we have

ϑ = e∗

h̄

∫ l/2

−l/2
dz Az, (54)

so that the free energy in Eq. (52) is gauge invariant. The su-
percurrent densities can be derived by varying the action with
respect to the vector potential. The in-plane two-dimensional
current-density is given by

jL,i=1,2 = 

(�0

2π
∇θi − Ai

)
+ σ L

n

(
E i − ∇ρi

χ

)
. (55)

In addition to in-plane currents, we also have a three-
dimensional current density between the layers, which can
again be written as a sum of superfluid and normal-fluid
contributions:

Jz = J0 sin(θ1 − θ2 − ϑ ) + 1

ρc

∫ l/2

−l/2

dz

l
Ez, (56)

where J0 = �0
/2πλ2
J represents the Josephson coupling

between the layers, while the second term describes the
quasiparticle contribution to interlayer cuurent. The latter is
expected to be suppressed, both due to anisotropy effects in
layered superconductors (typically, ρc � ρab) and due to the
quasiparticle excitation gap. We assume the current density
(56) to arise only from quantum tunneling events between the
two layers and allow for charge fluctuations to occur only in
the superconducting films. Because of the coupling between
the layers, the charge conservation is now expressed as

∂tρ1 + ∇ · j1 − Jz = 0, (57)

∂tρ2 + ∇ · j2 + Jz = 0. (58)

To investigate collective modes in a bilayer, we need to
consider dynamics of both the order-parameter phases and the
electromagnetic field that couples to them. Similarly to the
monolayer case, we assume the dynamics of the phases to be
overdamped:

∂tθ1 + e∗

χ
ρ1 = −�E0

[(
− ∇2θ1 + 2π

�0
∇ · A1

)

+λ−2
J sin(θ1 − θ2 − ϑ )

]
, (59)

∂tθ2 + e∗

χ
ρ2 = −�E0

[(
− ∇2θ2 + 2π

�0
∇ · A2

)

−λ−2
J sin(θ1 − θ2 − ϑ )

]
, (60)

where the damping coefficient � is related to the monolayer �̄

by �̄ = 2�|ψ0|2. The dynamics of the electromagnetic field is
governed by the Maxwell equations

ε∇ · E = ρ1(r)
ε0

δ
(
z − l

2

)
+ ρ2(r)

ε0
δ
(
z + l

2

)
, (61)

∇ × B = μ0

[
j1(r)δ

(
z − l

2

)
+ j2(r)δ

(
z + l

2

)
+ ẑJz f (z)

]

+εμ0
∂E
∂t

, (62)

where f (z) = 1 for − l
2 < z < l

2 and zero otherwise. To deal
with the generic scenario, we have allowed for the dielectric
constant of the outside medium ε to differ from the dielec-
tric constant εl of the material in-between the layers [inset
of Fig. 7(b)]. To obtain collective modes, we need to find
solutions to the coupled dynamics, which we turn to discuss
next.

Like in the monolayer case, a longitudinal collective mode
represents an evanescent wave. The reflection symmetry about
the plane z = 0 allows us to decompose the solutions into
symmetric and antisymmetric modes. The calculation of the
spectrum of the longitudinal collective modes in a bilayer is
similar to the one for a monolayer. For this reason, we relegate
the details to Appendix C, and outline the main results here.
We find that the symmetric mode is insensitive to the Joseph-
son coupling between the layers. It is gapless and resembles
the monolayer plasmons:

ωs(q) ≈
√
q


εε0
−
( qσ L

n

2εε0

)2
− i

(
qσ L

n

2εε0

)
. (63)

In contrast, the antisymmetric mode is gapped:

ωa(q = 0) =
√

δ2 + ω2
ab

εlγ 2
−
(

�E0

λ2
J

)2

− i

(
�E0

λ2
J

)
, (64)

where δ = √
2e∗J0/χ arises due to the Josephson coupling

between the layers, while the second term (ωab = c/λab) orig-
inates from the interlayer Coulomb interaction that penalizes
an imbalance of charge. We note that the antisymmetric mode
represents a coherent excitation at low momenta as long as
the damping � is small enough. The spectra of both symmet-
ric and antisymmetric modes are illustrated in Fig. 7(a). We
remark that the presented framework, which is based on the
time-dependent Ginzburg-Landau formalism, is not expected
to be quantitatively correct at low temperatures (for a related
discussion of low-temperature plasmons in layered supercon-
ductors, see Ref. [45]). However, our results qualitatively
agree with a more microscopic calculation of the low-energy
collective modes of Ref. [47]. In the following subsection, we
discuss the impact of the longitudinal collective modes on the
magnetic noise.
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(a) (b)

FIG. 7. Noise in bilayers. (a) Reflection coefficient Im(rp), as a function of q and ω, gets resonantly enhanced upon crossing the
longitudinal collective modes. For bilayer, one observes symmetric branch, similar to the monolayer plasmon, and antisymmetric branch,
which exhibits opening of the Josephson gap due to both the Josephson coupling between the two layers and the interlayer Coulomb interaction.
(b) Longitudinal noiseNL/N0 as a function of the qubit distance z0 for the three cuts in (a). HereN0 = εμ0kBT/8πcλ2

ab. The middle cut near
the Josephson gap indicates that one can detect the antisymmetric branch via qubit sensors. Inset: schematic of bilayer setup. Parameters used:
ε = εl = 1, γ = 5, l = 0.01λab, χ = 103/2πλab (the values of other parameters are negligible).

D. Longitudinal noise in bilayers

As it follows from Eq. (6), to obtain the longitudinal noise,
one needs to evaluate the reflection coefficient rp(q, qz, ω)
of the p-polarized waves. To this end, we solve below the
scattering problem for the bilayer:

Bin = B0(ẑ × q̂)eiq·r−iqε
z (z−l/2),

Br = rpB0(ẑ × q̂)eiq·r−iqε
z (z−l/2),

Bt = tpB0(ẑ × q̂)eiq·r−iqε
z (z+l/2), (65)

where Bin, Br, and Bt denote incoming, reflected, and trans-
mitted waves, respectively [see Fig. 2 (right panel)]. Here B0

is the amplitude of the incoming wave, assumed to be small.
tp(q, qz, ω) is the transmission coefficient. Since the magnetic
noise is essentially determined by the evanescent waves, we
substitute qε

z =
√

εω2/c2 − q2 ≈ iq. The evaluation of rp is
analogous to our analysis of the longitudinal collective modes,
and we provide the computational details in Appendix C.
Figure 7(a) shows the final result for rp(q, qz = iq, ω). Sim-
ilar to monolayers, we find that this quantity gets resonantly
enhanced upon crossing of either of the two longitudinal col-
lective modes.

We now discuss how qubit sensors can be used to probe
the antisymmetric mode in bilayer systems. To this end, we
consider three cuts corresponding to fixed-qubit frequency,
shown in Fig. 7(a). For the lowest frequency cut below the
Josephson gap, the qubit response is similar to the monolayer
case: upon crossing the symmetric branch, the longitudinal
noise NL(z0)/N0 shows a quick saturation. For the highest
frequency cut, we observe that the symmetric and antisym-
metric modes are notably separated from each other. This
results in the noise that seems to almost saturate just upon
crossing the symmetric mode, which has notably larger mo-
mentum compared to the previous cut. In fact, the actual
saturation happens much later, only after crossing the anti-
symmetric branch. Most remarkably, for the cut that passes

just at the Josephson gap, the noise is significant at the small-
est momenta due to the contribution from the antisymmetric
mode and then gradually saturates on crossing the symmetric
mode. This peculiar behavior is the signature of the gapped
antisymmetric branch.

V. SPIN STRUCTURE OF THE
SUPERCONDUCTING PAIRING

In this section, we turn to investigate spin fluctuations
in the superconductor. Like current fluctuations, these also
contribute to the magnetic noise, which according to Eq. (3), is
related to the qubit depolarization rate. Except for a few rather
exotic experimentally relevant systems, which we mention be-
low, we find that the spin noise is often suppressed compared
to the current noise. Importantly, by varying the orientation
of the qubit quantization axis n̂q, it is possible to sense the
anisotropy of the spin noise, which can furnish useful infor-
mation about the spin structure of the pairing wave function.
Below we first discuss some broad qualitative features of the
spin noise and then turn to the results of detailed microscopic
calculations that justify our conclusions.

We start with crude estimates, similar to our discussion in
Sec. II of the current noise, and show that the spin noise is
expected to be suppressed in metals compared to the current
noise [32]. Spin fluctuations in the sample contribute to the
local magnetic field B(r0) through the kernel KS (z0) ∼ 1/z30,
arising from the long-range dipolar interaction between the
impurity spin and the sample spins. We estimate the spin noise
then to be

Nspin ≈ μ2
0

∫
A
d2r1

∫
A
d2r2KS (r01)KS (r02)〈{S(r1), S(r2)}〉

= μ2
0

z40

∫
d2r〈{S(r), S(0)}〉, (66)

where we have used |r01| ≈ z0 ≈ |r02| and translational
invariance of the spin-spin correlation function. Assuming
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the spin correlation length is smaller than the sample-probe
distance z0, one gets Nspin ∼ 1/z40. This suggests that the spin
noise is suppressed by an extra factor of 1/z20 relative to the
current noise [cf. Eq. (8)]. For systems with a Fermi surface,
the proper dimensionless ratio is 1/(kF z0)2, which is typically
small.

In superconductors, a more careful analysis is required
because of two observations. First, one might worry that
our qualitative argument misses an enhancement of the spin
noise for T � Tc due to a conspiracy of coherence factors,
which manifests as the Hebel-Slichter peak in NMR mea-
surements [34,37]. In the NMR case, one probes spatially
local (or momentum-integrated) spin-spin correlations, which
effectively results in an energy integral over the square of the
density of states [37]. In case of clean s-wave superconduc-
tors, while ν(E ) = E/

√
E2 − �2 has a weak singularity at

E = �, ν2(E ) has a much stronger nonintegrable singularity,
which is responsible for the development of the Hebel-Slichter
peak. In contrast to the NMR probe, the impurity qubit is sen-
sitive to nonlocal spin-spin correlations at momenta q ∼ 1/z0.
Hence, one needs to integrate only over ν(E ), which gives
a nonsingular result (up to logarithmic corrections, which
are also present in NT). Therefore, there is no anomalous
enhancement of the spin noise.

Second, according to Eq. (14), at low temperatures the
presence of a superflow suppresses the transverse current
noise by an additional 1/z20 factor. We find that there is no
analogous suppression of the spin noise, which could give a
gateway for Nspin to develop in the regime of strong super-
conductivity. If so, the anisotropy of the spin noise provides
rich information about the pairing wave function. Still, as
we demonstrate below in this subsection, the dimensionless
ratio of the spin noise to the current noise is (μ0μB
/evF )2,
which is also typically quite small. It can become notable in
superconductors emerging from flat bands with small Fermi
velocities.

We now turn to a microscopic evaluation of the magnetic
noise arising from spin fluctuations in a 2D material. Here we
address only the question of clean superconductors and leave
the disordered case for future work.1 The spin noise is related
to the spin-spin correlation function as [29,31] (we fix n̂q = ẑ
and assume β� � 1)

Nspin(�) = (μ0μB)2kBT

128πa2z40�

∫ ∞

0
dx x3e−x

{
C′′
zz

( x

2z0
,�
)

+ 1

4

[
C′′

−+
( x

2z0
,�
)

+C′′
+−
( x

2z0
,�
)]}

. (67)

Here a is the microscopic lattice spacing and C′′
αβ (q,�) ≡

−Im[Cαβ (q,�)], where the retarded spin-spin correlator is
defined as

Cαβ (r, t ) = −i�(t )〈[σα (r, t ), σ β (0, 0)]〉 (68)

1In contrast to the computation of the current response, the eval-
uation of the spin response for disordered superconductors requires
taking into account disorder ladder diagrams.

and Cαβ (q,�) = 1
A
∫∞
−∞ dt ei�t

∫
d2r e−iq·rCαβ (r, t ) repre-

sents the Fourier transform. Using Eq. (67), we now switch to
evaluate the spin noise for singlet and triplet superconductors
with different pairing wave functions. Below we focus on the
main physical picture and relegate the computational details
to Appendix B.

A. Singlet superconductors

The spin noise in singlet superconductors reminds
the transverse current noise, which we investigated in
Sec. III. We note that due to the spin-rotational symmetry,
Cαβ (q,�) = δαβ C(q,�). Hence, it is sufficient to compute
only Czz(q,�), which is proportional to the correlation func-
tion of mz(q, ω) = gμBSz(q, ω) ≈ μBσz(q, ω):

mz(q) = μB

∑
k

(c†k−q/2,↑ck+q/2,↑ − c†k−q/2,↓ck+q/2,↓)

= μB

∑
k

�
†
k−q/2�k+q/2. (69)

We note that the operator mz(q) is similar to the current
operator jα (q), with the only difference that the vertex factor
μB is replaced by evT. The correlator C(q,�) is then given by

C ′′(q,�) = π�μ2
Ba

2
∫

d2k

(2π )2

∫
dω

(
−∂nF (ω)

∂ω

)
×Tr[A(k−, ω)A(k+, ω + �)]. (70)

Using the analysis of the transverse normal conductivity in
Eq. (18), we conclude that momentum and temperature scal-
ings of C ′′(q,�)/� are the same as for σ T

n (q,�) (up to
numerical prefactors). In the regime of weak superconductiv-
ity, comparing Eqs. (13) and (18) with Eqs. (67) and (70),
we deduce that the dimensionless ratio that determines the
relative noise Nspin/NT is (μB/evF z0)2 = h̄2/(2mevF z0)2 ∼
1/(kF z0)2, where we have assumed that me ∼ effective elec-
tron mass m. Typically, kF z0 � 1, so that the spin noise
is expected to be suppressed. For the regime of strong
superconductivity, we obtain that the distance scalings of
both types of noise are the same. To determine the ra-
tio of their magnitudes, we now compare Eqs. (14) and
(18) with Eqs. (67) and (70) and find that Nspin/NT ≈
(μ0μB
/evF )2 ∼ (μ0μBns/m∗vF )2. Plugging in some typi-
cal values, m∗ = 2me, vF = 105 m/s, and ns = 1020 m−2, we
getNspin/NT ∼ 10−6. Our analysis, therefore, shows that it is
legitimate to disregard the spin noise compared to the one due
to current fluctuations. We remark that the spin noise might
be notable for systems with small Fermi velocity or with
additional contributions to superfluid stiffness arising from
bands with significant Berry curvature [48]. In such flat-band
systems with topological character [49], Nspin may be used to
probe the spin structure of superconducting correlations.

B. Triplet superconductors

For triplet superconductors, the spin-spin correlation func-
tion becomes anisotropic and depends on the orientation of
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the order-parameter vector �k = �dk (see Appendix B for additional discussion):

Cαβ (q, i�n) = 1

βV

∑
k,iωn

{
[2iωn(iωn + i�n) + 2ξk+ξk− + �2(dk− · d∗

k+ + c.c.)]δαβ[
(iωn)2 − E2

k−

][
(iωn + i�n)2 − E2

k+

]

+ �2
[[
dα
k−

(
dβ

k+

)∗ + dα
k+

(
dβ

k−

)∗ + c.c.
]− 2δαβ (dk− · d∗

k+ + c.c.)
]

[
(iωn)2 − E2

k−

][
(iωn + i�n)2 − E2

k+

]
}

. (71)

The first isotropic term in Eq. (71) is analogous to the con-
tribution from a singlet superconductor, while the second
anisotropic term is special to a triplet superconductor and
arises as a consequence of the broken SO(3) symmetry. By
probing this term, for instance, by tuning the qubit quanti-
zation axis nq, one can distinguish different types of triplet
superconductivity. Furthermore, one can distinguish triplet
from singlet superconductors. However, the anisotropic part
of spin correlations does not contain any additional singularity
in the coherence factors (see Appendix B). Similar to the
above discussion of singlet superconductors, the spin noise
is expected to give a parametrically small contribution to the
magnetic noise relative to the one from fluctuating currents,
both in the weak and strong superconducting regimes.

VI. CONCLUSIONS AND OUTLOOK

We have discussed isolated impurity qubits, such as NV
centers in diamond, as probes of superconductivity in two-
dimensional materials. The qubit relaxation rate provides
spatiotemporally resolved information about current correla-
tions in the sample, the behavior of which sheds light on
important intrinsic properties of the 2D sample of interest.
We have shown the temperature dependence of the noise can
signal the onset of superconductivity and can further be used
to distinguish different superconducting gap structures. We
have also demonstrated that the dependence of noise on the
sample-probe distance probes different transport regimes in
the superconducting state. By exploiting the suppression of
transverse noise at low temperatures, we have shown how the
qubit can be used to detect both spin noise and longitudinal
collective modes. The former provides important additional
information about the spin structure in the superconducting
state, while the latter allows for the study of plasmonlike
excitations.

The qubit probe provides a novel route by which to
investigate the rich physics associated with 2D supercon-
ductivity. Various interesting fluctuation phenomena, such as
the interplay between superconducting fluctuations and dis-
order [50,51], superconducting phase fluctuations [52], Higgs
modes [53], and Bardasis-Schrieffer modes [54], could also
conceivably be probed via qubit noise measurements, and the
mean-field calculations presented here serve as a starting point
for the more sophisticated analyses that would be required to
model such effects. The local nature of the qubit probe may
make it a useful tool in addressing questions of granular super-

conductivity, as is relevant, for instance, in the description of
“anomalous metals” [55]. Superconductivity under pressure
[3,56] can also be readily probed via techniques described
here, as certain qubits, such as NV centers, can be integrated
into diamond anvil cells [25,26].
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APPENDIX A: COMPUTATION DETAILS FOR NORMAL
FLUID CONDUCTIVITY

In this Appendix, we provide a detailed derivation of the
normal-fluid transverse conductivity σ T

n (q,�) for 2D super-
conductors, in clean and disordered limits. We remark that
the screening effects due to the long-range Coulomb interac-
tion affect the longitudinal normal conductivity, but not the
transverse one (this can be easily seen within the two-fluid
model in the main text). This justifies to compute the trans-
verse conductivity within the BCS mean-field theory using
the standard one-loop Kubo formula, which relates σ T

n (q,�)
to the transverse current-current correlation function of the
normal fluid:

�T(q, τ ) = − 1

V
〈Tτ ( jT(q, τ ) jT(−q, 0))〉T , (A1)

where jT(q, τ ) = (ẑ × q̂) · jn(q, τ ) is the transverse current,
V is the system volume (area in two dimensions), and 〈. . . 〉T
denotes a thermal average in an equilibrium ensemble at tem-
perature T . The real part of the conductivity can be obtained
via analytic continuation of the Matsubara current-current
correlation function as follows:

Re
[
σ T
n (q,�)

] = − 1

�
Im[�T (q,�)], where �T(q,�)

i�n→�+i0+
−−−−−−−→ �T(q, i�n) =

∫ β

0
dτ ei�nτ�T(q, τ ). (A2)
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To capture the electromagnetic response of superconductors, we employ the two-fluid model. Within this framework, the
normal fluid contribution to conductivity comes from quasiparticle excitations above the superconducting ground state, which
we describe via the BCS mean-field theory [34,37]. The mean-field BCS Hamiltonian of a singlet superconductor is given in
terms of electron creation and annihilation operators c†k,σ and ck,σ , dispersion ξk = εk − μ, and gap function �k as (we assume
inversion or time-reversal symmetry, so that ξk = ξ−k, and choose a gauge such that �k ∈ R)

H =
∑
k

�
†
khk�k, where �k =

(
ck,↑
c†−k,↓

)
and hk =

(
ξk �k
�k −ξk

)
. (A3)

Denoting the quasiparticle excitation energy by Ek =
√

ξ 2
k + �2

k and introducing a phenomenological lifetime via a self-energy
�(k, iωn), one obtains the Matsubara Green’s function [ωn = (2n + 1)π/β]

G(k, iωn) = (iωn − �k,iωn − hk
)−1

= 1

[iωn − �(k, iωn)]2 − E2
k

(
iωn − �(k, iωn) + ξk �k

�k iωn − �(k, iωn) − ξk

)
. (A4)

The evaluation of the pair correlator is conveniently carried out via the spectral function representation of the Green functions
[36]:

G(k, iωn) =
∫ ∞

−∞
dω′ A(k, ω′)

iωn − ω′ , A(k, ω) = − 1

π
Im[GR(k, ω)], (A5)

where GR(k, ω) is the retarded Green function (it can be obtained from the Matsubara one by proper analytical continuation
[36]). Within a simple model of isotropic disorder scattering, the self-energy �R(k, ω) can be approximated as �R(k, ω →
0) ≈ −i�0, where �0 is the isotropic scattering rate of electrons at the Fermi surface [we assume that the real part of �R(k, ω)
just renormalizes the bare dispersion]. In this limit, we have

A(k, ω) = −
(
ω2 − �2

0 − E2
k

)
�0

π
[(

ω2 − �2
0 − E2

k

)2 + (2ω�0)2
]
(
1 0
0 1

)
+ 2ω�0

π
[(

ω2 − �2
0 − E2

k

)2 + (2ω�0)2
]
(

ω + ξk �k
�k ω − ξk

)
. (A6)

To evaluate the dissipative part of the conductivity Re[σαβ (q,�)] within linear response, we need to consider only the
paramagnetic part of the current operator, which is given in terms of the spinor �k by

jα (q) = e
∑
k

vα (k)c
†
k−q/2,σ ck+q/2,σ = e

∑
k

vα (k)�
†
k−q/2�k+q/2, where v(k) = ∂εk

∂k
. (A7)

Using k± = k ± q/2, we find

�αβ (q, i�n) = e2

βV

∑
k,iωn

vαvβTr[G(k−, iωn)G(k+, iωn + i�n)]

= e2

V

∑
k

∫
dω1

∫
dω2vαvβTr[A(k−, ω1)A(k+, ω2)]

(
nF (ω1) − nF (ω2)

i�n + ω1 − ω2

)
. (A8)

Accordingly, the conductivity is given by (taking the continuum limit)

σαβ (q,�) = − Im[�αβ (q, i�n → � + i0+)]
�

= e2π

�

∫
d2k

(2π )2

∫
dω1

∫
dω2vαvβTr[A(k−, ω1)A(k+, ω2)][nF (ω1) − nF (ω2)]δ(� + ω1 − ω2) (A9)

= e2π
∫

d2k

(2π )2

∫
dω vαvβTr[A(k−, ω)A(k+, ω + �)]

(
nF (ω) − nF (ω + �)

�

)
. (A10)

Let us introduce t̂ = ẑ × q̂. Then the transverse conductivity is defined as σ T(q,�) = t̂ασαβ (q,�)t̂β . In the clean limit, it is
more convenient to use Eq. (A9) to carry out the computation, while in the dirty limit, Eq. (A10) is more convenient.

Simplifications in the clean limit. The expression for conductivity can be further simplified in the clean limit (�0 → 0), where
the first term in Eq. (A6) vanishes, while the second term reduces to a sum of delta functions:

A(k, ω) = 1

2Ek
[δ(ω − Ek ) − δ(ω + Ek )]

(
ω + ξk �k

�k ω − ξk

)
. (A11)
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Plugging this into Eq. (A9) and evaluating the trace and the integrals over ω1 and ω2, we get

σαβ (q,�) = e2π

2�

∫
d2k

(2π )2
vαvβ

[(
1 + ξ+ξ− + �+�−

E+E−

)
[nF (E+) − nF (E−)][δ(� + E+ − E−) − δ(� − E+ + E−)]

+
(
1 − ξ+ξ− + �+�−

E+E−

)
[1 − nF (E+) − nF (E−)][δ(� − E+ − E−) − δ(� + E+ + E−)], (A12)

where by ± we have indicated momenta k ± q/2. For the physically reasonable case of small q � kF , we can further
approximate ξ+ξ− + �+�− ≈ E+E− + O(q2), so the terms in the second line of Eq. (A12) can be neglected. The energy
constraint further simplifies to

E− − E+ = −
[
q · v(k)

(
ξk

Ek

)
+ q · v�(k)

(
�k

Ek

)]
, (A13)

where v�(k) = ∂k�k is the gap velocity. Further assuming inversion symmetry, we can reduce Eq. (A12) to the following form:

σαβ (q,�) = e2

2π

∫
d2k vαvβ

nF (Ek ) − nF (Ek + �)

�
δ

[
� + q · v(k)

(
ξk

Ek

)
+ q · v�(k)

(
�k

Ek

)]
. (A14)

Equation (A14) is the most general expression for the conductivity tensor in the clean limit, which we will subsequently use to
evaluate the transverse conductivity for different types of superconductors.

Simplifications in the dirty limit. In the dirty limit (�0 � kBT � ω), the spectral functions are smooth on the scale of ω due
to disorder smearing. Hence, in the physically relevant regime of β� � 1, we can make the following approximation:

nF (Ek ) − nF (Ek + �)

�
≈ −∂nF

∂ω
≈ δ(ω). (A15)

In this limit, the expression for conductivity in Eq. (A10) reduces to

σαβ (q,�) = e2π
∫

d2k

(2π )2
vαvβTr[A(k−, 0)A(k+, 0)]. (A16)

We note from Eq. (A6) that in the ω → 0 limit, the second term vanishes, and the first term acquires a particularly simple
Lorentzian form

A(k, 0) = �0

π
(
�2
0 + E2

k

)(1 0
0 1

)
. (A17)

Accordingly, the simplified expression we will use for the conductivity tensor in the disordered limit is

σαβ (q,�) = e2

2π

∫
d2k vαvβ

�0

π
(
�2
0 + E2+

) �0

π
(
�2
0 + E2−

) . (A18)

1. s-wave superconductors

We now focus on s-wave superconductors with �k = � and zero gap velocity. For the transverse conductivity, we need
the component of velocity perpendicular to q. If we assume a circular Fermi surface (arising from a quadratic dispersion ξk =
k2

2m − μ) with vF = vF k̂ and take θ as the angle between vectors k and q, we get vT(k̂) ≈ vF sin θ . Thus, in the clean limit, we
can simplify Eq. (A14) as follows:

σ T(q,�) = e2v2
F

2π

∫ ∞

0
dk k

(
nF (Ek ) − nF (Ek + �)

�

)∫ 2π

0
dθ sin2 θ δ

(
� + qvF ξk

Ek
cos θ

)

= e2v2
Fβ

πqvF

∫ ∞

0
dk

kEk

4|ξk| cosh2(βEk/2)

√
1 −

(
�Ek

qvF ξk

)2

�

( |ξk|vFq
Ek

− �

)
. (A19)

Approximating ξk ≈ vF (k − kF ), we see that the angular integral over θ requires vFq > � and places further restrictions on
allowed momenta k for a given �:

� � qvF |ξk|
Ek

= qv2
F |k − kF |√

v2
F |k − kF |2 + �2

⇒ vF |k − kF | � ��√
v2
Fq

2 − �2
. (A20)

It is convenient to introduce a dimensionless variable α ≡ �/qvF , which is typically small α ∼ �d/vF � 1. We can also scale
all dimensionful quantities out of the k integral using y ≡ (k − kF )ξT , where ξT = vF/�(T ) is the superconducting coherence
length. The lower limit for the y integral is −kF ξT , which can be approximated by −∞ as the coherence length is typically much
larger than k−1

F . Further, at low temperatures, much smaller than the Fermi energy, the derivative of the Fermi function constrains
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us to remain close to the Fermi surface. Therefore, we can replace the factor of k in the numerator of Eq. (A19) by kF , and we
find the following approximate expression for the transverse conductivity:

σ T(q,�) ≈ e2vFkFβ�(1 − α)

πqξT

∫
|y|� α√

1−α2

dy

√
(1 + y2)[1 − α2(1 + y2)/y2]

4|y| cosh2(β�
√
1 + y2/2)

. (A21)

We carefully note that as α → 0 (corresponding to � → 0), there is a weak logarithmic divergence of σ T in α. This arises
from the singular density of states at the gap threshold, and we expect such a divergence to be cured by the presence of a small
disorder. At low temperatures, the integral scales as e−β�(T ), as can be seen by approximating the cosh2 in the denominator by
an exponential:

σ T(q,�) ≈ e2vFkFβe−β��(1 − α)

πqξT

∫
|y|� α√

1−α2

dy

√
(1 + y2)[1 − α2(1 + y2)/y2]

|y| e−β�y2/2. (A22)

We also note that as we increase temperature T to approach Tc, the gap goes to zero and ξT diverges. In this limit, the integral
should not be nondimensionalized with y = (k − kF )ξT , but rather just evaluated from Eq. (A19) directly in the metallic limit
where ξk = Ek. Doing so leads to the following expression for the transverse conductivity of the normal metal:

σ T(q,�) ≈ e2kF
√
1 − α2 �(1 − α)

πq
= e2vFkFβ

√
1 − α2 �(1 − α)

πqλT
. (A23)

The static (� = qvFα → 0) limits of Eqs. (A21) and (A23) appear in Eqs. (21) and (23), respectively, in the main text.
In the dirty limit, we employ Eq. (A18) to evaluate the transverse conductivity (defining γ 2 ≡ �2

0 + �2 to simplify notations):

σ T(q,� → 0) = e2

2π3

∫
d2k v2

T

(
�0

�2
0 + E2+

)(
�0

�2
0 + E2−

)

≈ e2v2
F�2

0

2π3

∫ ∞

0
dk k

∫ 2π

0
dθ

sin2 θ[
γ 2 + ξ 2

k + ξkvFq cos θ + (vFq/2)2
][

γ 2 + ξ 2
k − ξkvFq cos θ + (vFq/2)2

]

= e2v2
F�2

0

4π2

∫ ∞

0
dk k

γ 2
0 + ξ 2

k + (vFq/2)2 −
√[

ξ 2
k − (vFq/2)2

]2 + 2
[
ξ 2
k + (vFq/2)2

]
γ 2 + γ 4

ξ 2
k (vFq/2)

2
[
γ 2 + ξ 2

k + (vFq/2)2
]

= e2v2
F�2

0

π2

∫ ∞

0
dk k

1[
γ 2+ ξ 2

k+ (vFq/2)2
]{

γ 2+ ξ 2
k+ (vFq/2)2+

√[
ξ 2
k − (vFq/2)2

]2+ 2
[
ξ 2
k+ (vFq/2)2

]
γ 2+ γ 4

} .
(A24)

While the above expression is quite opaque, substantial simplifications can be made in two limits. The first limit is γ 2 = �2
0 +

�2 � (vFq)2, which corresponds to z0 � �MF, ξT or a small sample-probe distance (but still much larger than the average
electron separation scale ā so that q/kF ∼ ā/z0 � 1). In this limit, the conductivity can be evaluated by setting γ 2 = �2

0 + �2 =
0 in Eq. (A24) [we also set ξ = vF (k − kF ) and k = kF in the numerator]:

σ T(q,� → 0) ≈ e2vFkF�2
0

π2

∫ ∞

−kF vF

dξ
1

{ξ 2 + (vFq/2)2 + |ξ 2 − (vFq/2)2|}[ξ 2 + (vFq/2)2]

≈ e2vFkF�2
0

π2

∫ ∞

−∞
dξ

1

2max{ξ 2, (vFq/2)2}[ξ 2 + (vFq/2)2]

= e2vFkF�2
0

π2

[
1

(vFq/2)2

∫ vF q/2

0
dξ

1

ξ 2 + (vFq/2)2
+
∫ ∞

vF q/2
dξ

1

ξ 2[ξ 2 + (vFq/2)2]

]

= e2vFkF�2
0

π2(vFq/2)3
. (A25)

Thus, we have analytically derived the 1/q3 scaling of σ T(q, 0) that we expected from arguments in the main text. The other
limit where we can evaluate expression (A24) is the large sample-probe distance scenario with z0 � �MF. In this case, we can
neglect all q dependence in the denominator and we find that

σ T(q,� → 0) = e2v2
F

2π3

∫ ∞

0
dk k

�2
0(

�0 + �2 + ξ 2
k

)2
∫ 2π

0
dθ sin2 θ ≈ e2vFkF�2

0

2π2

∫ ∞

−∞
dξ

1

(�2
0 + �2 + ξ 2)2

= e2vFkF�2
0

4π (�2
0 + �2)3/2

, (A26)
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which is Eq. (24) in the main text.
A simple interpolating function σ̃ which captures both these limits may be guessed by looking at the expressions for σ T(q, 0)

in Eqs. (A25) and (A26):

σ̃ (q) = e2vFkF�2
0

4π

1[
�2
0 + �2 + (π

4

)2/3( vF q
2

)2]3/2 . (A27)

In practice, σ̃ (q) approximates σ T(q,� → 0) remarkably well for a large range of parameter values (we checked this numeri-
cally). Since a naive substitution of σ T(q ∼ 1/z0) in Eq. (13) gives an unphysical result that the NT increases with increasing z0
(a consequence of the integral being highly singular as q → 0), we instead use σ̃ (q) to deduce the behavior of NT for small z0.

We find that in the weak superconducting regime, NT ∼ const − z0 ln(z0
√

�2
0 + �2/vF ) for small z0 � �MF, ξT , justifying the

distance dependence discussed in the main text.

2. d-wave superconductors

Let us now consider a d-wave superconductor, with �k = �(T )(cos kx − cos ky). The quasiparticle dispersion then has
nodal points along kx = ±ky, and at each nodal point, the Fermi velocity vF = ∇kξk (or the normal to the Fermi surface) is
perpendicular to the gap velocity v� = ∇k�k. Therefore, at each node k0, vF and v� form a local orthogonal basis, and we can

write the quasiparticle energy as Ek =
√

v2
Fk

2
‖ + v2

�k
2
⊥, where k − k0 = (k‖, k⊥). To evaluate the conductivity, it is convenient

to scale out the anisotropy of the Dirac cones by rescaling the momenta at each node, as was done in Ref. [40]. Defining vectors
k̃ ≡ (vFk‖, v�k⊥) and q̃ ≡ (vFq‖, v�q⊥), the integral measure around k0 is given by∫

d2k →
∫

dk‖dk⊥ →
∫

d2k̃

vFv�

. (A28)

We first consider the clean limit, given by Eq. (A14). Energy conservation takes a convenient form in the rescaled coordinates:

� = E− − E+ = −
[
q · vF

(
ξk

Ek

)
+ q · v�

(
�k

Ek

)]
= −q̃ cos(θq̃ − θk̃ ). (A29)

One might worry that rescaling momenta in this way results in added complications for the transverse component of velocity
vα (k̂). A nice simplification occurs in the angular integral by noting that vα (k̂) is entirely set by the angle between q and k0 at
the node k0. Since k0 rotates by π/2 as we cycle through the four nodes, for fixed q the angle θk0,q also increases by π/2 and
therefore we have ∑

nodes

v2
T(k̂) = 2v2

F

(
sin2 θk0,q + cos2 θk0,q

) = 2v2
F . (A30)

Therefore, after summing the contributions from all four nodes, the conductivity in the clean limit is given by (noting that k̃ = Ek
and q̃ = Eq)

σ T(q,�) = e2vF
πv�

∫ ∞

0
dk̃ k̃

βeβ k̃

(eβ k̃ + 1)2

∫ 2π

0
dθk̃δ[� + q̃ cos(θq̃ − θk̃ )]

= 2e2vF
πv�

∫ ∞

0
dk̃ k̃

βeβ k̃

(eβ k̃ + 1)2
�(q̃ − �)√
q̃2 − �2

= 2e2vF ln(2)

βπv�

�(q̃ − �)√
q̃2 − �2

�→0−−→ 2e2vF ln(2)

βπv�Eq
. (A31)

Therefore, the transverse noise in this limit is given by [approximating coth(x) = 1/x for small x]

NT(� → 0) = 2μ2
0e

2vF ln(2)

2πβ2v�

∫
d2q̃

(2π )2vFv�

e−2|q|z0

q̃

= 2μ2
0e

2T 2 ln(2)

(2π )3v2
�

∫ 2π

0
dθq̃

∫ ∞

0
dq̃ exp

⎡
⎣−2q̃z0

√(
sin θ

v�

)2

+
(
cos θ

vF

)2
⎤
⎦

= 2μ2
0e

2T 2 ln(2)

(2π )3z0v�

[
K

(
1 − v2

�

v2
F

)
+ vF

v�

K

(
1 − v2

F

v2
�

)]
v��vF−−−−→ 4μ2

0e
2T 2 ln(2)

(2π )3z0v�

ln

(
4vF
v�

)
, (A32)

where K (x) = ∫ π/2
0 dθ (1 − x sin2 θ )−1/2 is the elliptic integral. Equations (A31) and (A32) correspond to Eqs. (26) and (27) in

the main text.
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In the dirty limit, we once again resort to Eq. (A18) to evaluate the transverse conductivity. Just like in the clean case, we can
sum over the transverse velocity squared over all nodes:

σ T(q,� → 0) ≈ e2v2
F�2

0

π3

∫ ∞

0

dk̃ k̃

vFv�

∫ 2π

0
dθ

1(
�2
0 + k̃2 + q̃2/4

)2 − k̃2q̃2 cos2(θ )

= 2e2vF�2
0

v�π2

∫ ∞

0
dk̃

k̃(
�2
0 + k̃2 + q̃2/4

)√(
�2
0 + k̃2 + q̃2/4

)2 − k̃2q̃2

= 2e2vF
π2v�

�2
0 ln
(
1 + q̃(q̃+

√
4�2

0+q̃2 )

2�2
0

)
q̃
√
4�2

0 + q̃2
= e2vF

π2v�

4�2
0 sinh−1

( q̃
2�0

)
q̃
√
4�2

0 + q̃2
. (A33)

For q̃ = (q2‖v
2
F + q2⊥v2

�)
1/2 → 0 limit, we recover the Durst-Lee result of a constant universal conductivity e2vF/π2v�, indepen-

dent of the disorder strength [40]. In the opposite limit for large q̃/�0, we have

σ T(q,� → 0) ≈ e2vF
π2v�

4 ln(q̃/�0)

(q̃/�0)2
. (A34)

This 1/q2 scaling of conductivity leads to a sample-probe distance-independent noise (up to logarithmic corrections) in the weak
superconductor. To show this, we carry an approximate integral over momenta q [using Eqs. (4) and (5) in the main text], with a

lower cutoff on q set by �0/

√
v2
F + v2

�:

NT(�) ∼ �2
0 Ei

⎛
⎝ 4�0z0√

v2
F + v2

�

⎞
⎠, (A35)

where Ei(x) = ∫∞
x dt e−t

t . For small x, Ei(x) ∼ ln(x), indicating that the transverse noise in the weak superconducting phase is
independent of z0 up to logarithmic corrections, as discussed in the main text.

3. Triplet superconductors

In this section, we turn to fill in a few missing details regarding the transverse conductivity calculation in triplet superconduc-
tors. We recall that the BCS Hamiltonian for a p-wave triplet superconductor [37] can be written in terms of the four-component
BW spinor �k = (ck, iσ yc†−k )

T = (ck,↑, ck,↓, c†−k,↓, −c†−k,↑)
T as

HBCS =
∑

k∈ 1
2 BZ

�
†
khk�k, hk = ξkτ

z + (�k · σ )τ+ + (�∗
k · σ)τ−. (A36)

Here τ± = 1
2 (τ

x ± iτ y) act in the Nambu (particle-hole) space. �k = � dk represents the superconducting order parameter,
with dk being appropriately normalized over the Fermi surface. Assuming unitary pairing with dk ‖ d∗

k, the Matsubara Green’s
function is given by

G(k, iωn) = (iωn − �k,iωn − hk )
−1 = iωn − �k,iωn + ξkτ

z + (�k · σ )τ+ + (�∗
k · σ)τ−(

iωn − �k,iωn

)2 − E2
k

, (A37)

where Ek =
√

ξ 2
k + �2|dk|2. Likewise in the discussion above, we again assume an isotropic disorder-induced scattering rate

of electrons at low energy, i.e., �k,ω ≡ �(k, iωn → ω + i0+) = −i�0. To evaluate the normal-fluid transverse conductivity
σ T (q,�), we employ Eqs. (A9) and (A10).

In the clean limit �0 → 0, �αβ (q, iωn) is given by (dividing by a factor of 2 so that we can extend the summation over k to
the entire BZ)

�αβ (q, i�n) = e2

2βV

∑
k∈BZ,iωn

vαvβTr[G(k−, iωn)G(k+, iωn + i�n)]

= e2

βV

∑
k,iωn

vαvβ

2iωn(iωn + i�n) + 2ξk+ξk− + �2(dk− · d∗
k+ + c.c.)[

(iωn)2 − E2
k−

][
(iωn + i�n)2 − E2

k+

] . (A38)

The key difference between a singlet and triplet superconductor is that the latter has a nontrivial spin structure of the pairing
function, as exemplified by (dk− · d∗

k+ + c.c.) in Eq. (A38). We consider two different kinds of p-wave pairings: dk = (kxx̂ +
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kyŷ)/kF and dk = ẑ(kx + iky)/kF . In both cases, we note that near the Fermi surface, where k ≈ kF and q � kF , we have

dk− · d∗
k+ + c.c. = 2

k2F

(
k2 − q2

4

)
≈ 2. (A39)

Therefore, in both cases, we have

�αβ (q, i�n) = 2e2

βV

∑
k,iωn

vαvβ

iωn(iωn + i�n) + ξk+ξk− + �2[
(iωn)2 − E2

k−

][
(iωn + i�n)2 − E2

k+

] . (A40)

Carrying out the Matsubara summation [36], we find that

�αβ (q, i�n) = e2

2V

∑
k

vαvβ

[(
1 + ξ+ξ− + �2

E+E−

)
[nF (E+) − nF (E−)]

(
1

i�n − E− + E+
− 1

i�n + E− − E+

)

+
(
1 − ξ+ξ− + �2

E+E−

)
[1 − nF (E−) − nF (E+)]

(
1

i�n − E− − E+
− 1

i�n + E− + E+

)]
. (A41)

Performing the analytic continuation to the real axis i�n → � + i0+ and taking the imaginary part of �αβ , we find that the
expression for the real part of the conductivity tensor reduces to that of a fully gapped isotropic s-wave superconductor, which
has already been computed above [cf. Eq. (A12)].

A similar conclusion also holds for the case with a finite disorder �0 �= 0, where the alternate representation (A10) is more
convenient to evaluate the resulting Matsubara sums.

APPENDIX B: COMPUTATION DETAILS FOR THE SPIN-SPIN CORRELATION FUNCTION

In this Appendix, we provide detailed derivation of the magnetic noise for singlet and triplet superconductors. We begin by
recalling the definition of the noise tensor:

Nab(�) = 1

2

∫ ∞

−∞
dt ei�t 〈{Ba(r0, t ),Bb(r0, 0)}〉, (B1)

where Ba(r0, t ) is the local, mediated by spin fluctuations in the sample, magnetic field at the location of the qubit. For
concreteness, we further assume that the qubit quantization axis n̂q ‖ ẑ; generalization to an arbitrary direction of n̂q is
straightforward. The qubit depolarization rate is then set by N−+(�), which is related to spin correlations in the sample as
[29,31]

Nspin(�)
n̂q=ẑ−−→ N−+(�) = (μ0μB)2

16πa2
coth

(
β�

2

)∫ ∞

0
dq q3e−2qz0

[
1

4
[C′′

−+(q,�) +C′′
+−(q,�)] +C′′

zz(q,�)

]
, (B2)

where C′′
αβ (q,�) ≡ −Im[Cαβ (q,�)], the latter being the equilibrium retarded spin-spin correlation functions at temperature T :

Cαβ (q,�) = − i

V

∫ ∞

0
dt ei�t

∫
d2r e−iq·r〈[σα (r, t ), σ β (0, 0)]〉T , (B3)

where σα are the Pauli matrices (we have assumed S = 1
2 ). The retarded spin-spin correlation function can be obtained by

analytic continuation of the corresponding Matsubara correlation function:

Cαβ (q, i�n)
i�n→�+i0+
−−−−−−−→ Cαβ (q,�). (B4)

Therefore, the task at hand is to compute Cαβ (q, i�n) for microscopic models of singlet and triplet superconductors.

1. Singlet superconductors

For singlet superconductors, SO(3) spin-rotational symmetry implies that Cαβ (q, i�n) = δαβC(q, i�n). Therefore, it is
sufficient to calculate Czz(q, i�n), which is given in terms of the Nambu spinors (cf. Appendix A) as

σ z(q, iωn) =
∑

k,σ=±
σc†k−q/2,σ ck+q/2,σ =

∑
k

�
†
k−q/2�k+q/2. (B5)

Using the Matsubara Green’s function G(k, iωn) for s-wave superconductors defined in Eq. (A4), the spin-spin correlator can be
expressed as

C(q, i�n) = Czz(q, i�n) = a2

βV

∑
k,iωn

Tr[G(k−, iωn)G(k+, iωn + i�n)]

⇒ C ′′(q,�)

�
= πa2

V

∑
k

∫
dω Tr[A(k−, ω)A(k+, ω + �)]

(
−∂nF

∂ω

)
. (B6)
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Using C+− + C−+ = 2(Cxx + Cyy) = 2C in Eq. (B2), we find that the spin noise is given by

Nspin(�) = (μ0μB)2

16πa2
coth

(
β�

2

)∫ ∞

0
dq q3e−2qz0 [2C ′′(q,�)]

β��1−−−→ (μ0μB)2

4πβa2

∫ ∞

0
dq q3e−2qz0

[C ′′(q,�)

�

]

= (μ0μB)2

4β

∫ ∞

0
dq q3e−2qz0

∫
d2k

(2π )2

∫
dω Tr[A(k−, ω)A(k+, ω + �)]

(
−∂nF

∂ω

)
. (B7)

We recall that in the weak superconducting regime, the noise due to transverse current fluctuations is given by

NT(�) = μ2
0e

2

4β

∫ ∞

0
dq qe−2qz0

∫
d2k

(2π )2
v2
T

∫
dω Tr[A(k−, ω)A(k+, ω + �)]

(
−∂nF

∂ω

)
. (B8)

We note that if we approximate vT ≈ vF in Eq. (B8), then barring constant factors, the k and ω integrals in Eqs. (B7) and (B8)
start to look identical, while the q integral sets the momentum scale to be ∼1/z0. Therefore, distance and temperature scalings
of the spin noise for singlet superconductors can be inferred directly fromNT discussed earlier, at least in the clean limit (where
one is not worried about the disorder ladder diagrams contributing to the spin noise). In particular, the temperature dependence
of the spin noise in singlets is identical to NT, while the distance scaling can be obtained by multiplying NT(z0) by a factor of
1/z20. To compare the magnitudes of the noises from spin and transverse current fluctuations, we scale all momenta by z0 so that
the momentum integrals become dimensionless. Approximating vT ≈ vF and me ≈ effective electron mass m, we find

Nspin

NT
�
( μB

evF z0

)2
=
(

h̄

2mevF z0

)2

≈
(

1

2kF z0

)2

. (B9)

In the regime of strong superconductivity, as a consequence of the noise suppression by the superflow [cf. Eqs. (13) and (14)],
NT contains an additional factor of 1/(μ0z0
)2 compared to the case of weak superconductors. Therefore, in this regime, the
ratio is given by

Nspin

NT
�
(

μ0μB


evF

)2

. (B10)

While Nspin and NT carry the same distance dependence in this regime, the overall dimensionless ratio is still quite small (see
the main text for estimates).

2. Triplet superconductors

For triplet superconductors, the spin-spin correlation function is anisotropic and depends on the orientation of �k that
transforms as a vector under SO(3) spin rotations. In the clean limit, the correlator Cαβ (q,�) can be computed using the Green’s
function from Eq. (A37):

Cαβ (q, i�n) = 1

2βV

∑
k∈BZ,iωn

Tr[σαG(k−, iωn)σ
βG(k+, iωn + i�n)]

= 1

βV

∑
k,iωn

{
[2iωn(iωn + i�n) + 2ξk+ξk− + �2(dk− · d∗

k+ + c.c.)]δαβ[
(iωn)2 − E2

k−

][
(iωn + i�n)2 − E2

k+

]

+ �2
{[
dα
k−

(
dβ

k+

)∗ + dα
k+ (d

β

k− )
∗ + c.c.

]− 2δαβ (dk− · d∗
k+ + c.c.)

}
[
(iωn)2 − E2

k−

][
(iωn + i�n)2 − E2

k+

]
}

, (B11)

where we have used the Pauli matrix identity: Tr[σ aσ bσ cσ d ] = 2(δabδcd − δacδbd + δadδbc). The first term in Eq. (B11) is
analogous to the contribution from a singlet superconductor, while the second term is special to a triplet superconductor: its
real part to be interpreted as the polarizability of the condensate. Using dk− · d∗

k+ + c.c. ≈ 2 for both kinds of triplet pairing we
consider [see Eq. (A39)], we can further simplify the expression in Eq. (B11) to

Cαβ (q, i�n) = 1

βV

∑
k,iωn

[2iωn(iωn + i�n) + 2ξk+ξk− + 2�2]δαβ + �2
[
dα
k−

(
dβ

k+

)∗ + dα
k+

(
dβ

k−

)∗ + c.c. − 4δαβ

]
[
(iωn)2 − E2

k−

][
(iωn + i�n)2 − E2

k+

] . (B12)

BW case. We first consider the BW pairing wave function with dk = (kxx̂ + kyŷ)/kF and quasiparticle energy Ek =√
ξ 2
k + �2. In this case, we have dα

k− (d
β

k+ )
∗ + c.c. ≈ 2k̂α k̂β ≈ dα

k+ (d
β

k− )
∗ + c.c., for k ≈ kF and q � kF . Here α, β = x, y
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(otherwise, we will get zero if either of α or β is equal to z). From this, we compute the imaginary part of the retarded spin-spin
correlation function, obtained from Eq. (B12) by analytic continuation i�n → � + i0+:

C ′′
αβ (q,�) = π

2

∫
d2k

(2π )2

{[(
1 + ξ+ξ− + �2

E+E−

)
δαβ + 2�2(k̂α k̂β − δαβ )

E+E−

]
[nF (E+) − nF (E−)]

× [δ(� − E− + E+) − δ(� + E− − E+)] +
[(

1 − ξ+ξ− + �2

E+E−

)
δαβ − 2�2(k̂α k̂β − δαβ )

E+E−

]

× [1 − nF (E+) − nF (E−)][δ(� − E− − E+) − δ(� + E− + E+)]

}
. (B13)

To evaluate the angular integral, it is convenient to choose an orthogonal set of in-plane directions with α = β = q̂ (we will call
this correlator Cq) and with α = β = ẑ × q̂ (we will call this correlator Ct ). Since we only need C ′′

q + C ′′
t to evaluateNspin (this is

because we chose n̂q = ẑ), we find that

C ′′
q (q,�) + C ′′

t (q,�) = π

∫
d2k

(2π )2

(
1 + ξ+ξ−

E+E−

)
[nF (E+) − nF (E−)][δ(� − E− + E+) − δ(� + E− − E+)]

+
(
1 − ξ+ξ−

E+E−

)
[1 − nF (E+) − nF (E−)][δ(� − E− − E+) − δ(� + E− + E+)]. (B14)

We now specialize on positive frequencies � > 0, so that the last delta function δ(� + E− + E+) does not contribute. The delta
function δ(� − E− − E+) only contributes when � � 2�, i.e., when the probe frequency is larger than twice the quasiparticle
gap. Therefore, this term can be neglected in the limit � → 0 (we remark that even though there is an inverse square-root
singularity at � = 2�, this regime is not expected to show up in experiments since � is typically much smaller than all other
energy scales). Further, using the inversion symmetry and neglecting terms of O(q2) in the numerator, we can reduce the integral
to a form similar to what we have already calculated for the transverse conductivity:

C ′′
q (q,�) + C ′′

t (q,�)

�
= 1

2π

∫ ∞

0
dk k

(
1 + ξ 2

k

E2
k

)
nF (Ek ) − nF (Ek + �)

�

∫ 2π

0
dθ δ

(
� + qvF ξk

Ek
cos θ

)

≈ βkF
πqvF

∫ ∞

0
dk

(
1 + ξ 2

k

E2
k

)
Ek

4|ξk| cosh2(βEk/2)

1√
1 − ( �Ek

qvF |ξk|
)2 �

( |ξk|vFq
Ek

− �

)

≈ βkF
πqv2

F

�(1 − α)
∫

|ξ |� �α√
1−α2

dξ
2ξ 2 + �2

ξ 2 + �2

√
ξ 2 + �2

4|ξ | cosh2(β
√

ξ 2 + �2/2)

1√
1 − α2(ξ 2 + �2)/ξ 2

= βkF
πξT qvF

�(1 − α)
∫

|y|� α√
1−α2

dy
2y2 + 1

|y|
√
(1 + y2)(1 − α2(1 + y−2))

1

4 cosh2(β�
√
1 + y2/2)

, (B15)

where we have defined y = ξ/� = (k − kF )ξT . We note that there is a weak logarithmic singularity in the correlation function as
α = �/(qvF ) → 0; it scales as 1/q (up to nonessential logarithms) and decays exponentially on decreasing T . Thus, the essential
aspects of the behavior of (C ′′

q + C ′′
t )/� are similar to the transverse normal conductivity of clean s-wave superconductors. Next,

we consider Czz(q,�):

C ′′
zz(q,�)

�
= 1

4π

∫ ∞

0
dk k

(
1 + ξ 2

k − �2

E2
k

)
nF (Ek ) − nF (Ek + �)

�

∫ 2π

0
dθ δ

(
� + qvF ξk

Ek
cos θ

)

≈ βkF
πqv2

F

�(1 − α)
∫

|ξ |� �α√
1−α2

dξ
|ξ |√

ξ 2 + �2

1

4 cosh2(β
√

ξ 2 + �2/2)

1√
1 − α2(ξ 2 + �2)/ξ 2

= βkF
πξT qvF

�(1 − α)
∫

|y|� α√
1−α2

dy
|y|√

(1 + y2)[1 − α2(1 + y−2)]

1

4 cosh2(β�
√
1 + y2/2)

. (B16)

The Czz correlator still scales as 1/q and decreases exponentially upon decreasing T , but there is no logarithmic singularity as
α → 0. Thus, the spin noise will be highly anisotropic at low frequencies. Combining the results for the in-plane and out-of-plane
spin correlators [cf. Eq. (B2)], one can deduce the spin noise for the BW triplet superconductor.

ABM case. Next, we consider the ABM pairing wave function with dk = ẑ(kx + iky)/kF and quasiparticle energy Ek =√
ξ 2
k + �2. For this pairing function, we have dα

k− (d
β

k+ )
∗ + c.c. ≈ 2 ≈ dα

k+ (d
β

k− )
∗ + c.c., for k ≈ kF and q � kF . Here α = β = z,
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and we get zero otherwise. Following the same steps as above, we arrive at

C ′′
αβ (q,�) = π

2

∫
d2k

(2π )2

{[(
1 + ξ+ξ− + �2

E+E−

)
δαβ + 2�2

E+E−
(δα,zδβ,z − δαβ )

]
[nF (E+) − nF (E−)]

× [δ(� − E− + E+) − δ(� + E− − E+)] +
[(

1 − ξ+ξ− + �2

E+E−

)
δαβ − 2�2

E+E−
(δα,zδβ,z − δαβ )

]

× [1 − nF (E+) − nF (E−)][δ(� − E− − E+) − δ(� + E− + E+)]

}
. (B17)

For α = β = x or y, neglecting terms of O(q2) and assuming � < 2�, we find that

C ′′
xx(q,�)

�
= C ′′

yy(q,�)

�
= 1

4π

∫ ∞

0
dk k

(
1 + ξ 2

k − �2

E2
k

)
nF (Ek ) − nF (Ek + �)

�

∫ 2π

0
dθ δ

(
� + qvF ξk

Ek
cos θ

)

= βkF
πξT qvF

�(1 − α)
∫

|y|� α√
1−α2

dy
|y|√

(1 + y2)[1 − α2(1 + y−2)]

1

4 cosh2(β�
√
1 + y2/2)

, (B18)

which is exactly identical to the expression for C ′′
zz(q,�)/� for the BW pairing [cf. Eq. (B16)] and, thus, shares all its features.

Finally, for α = β = z, we obtain

C ′′
zz(q,�)

�
= 1

4π

∫ ∞

0
dk k

(
1 + ξ 2

k + �2

E2
k

)
nF (Ek ) − nF (Ek + �)

�

∫ 2π

0
dθ δ

(
� + qvF ξk

Ek
cos θ

)

= 1

2π

∫ ∞

0
dk k

nF (Ek ) − nF (Ek + �)

�

∫ 2π

0
dθ δ

(
� + qvF ξk

Ek
cos θ

)

= βkF
πξT qvF

�(1 − α)
∫

|y|� α√
1−α2

dy

√
(1 + y2)

|y|
√
1 − α2(1 + y−2)

1

4 cosh2(β�
√
1 + y2/2)

. (B19)

The same expression holds for singlet superconductors, which we discussed in the previous subsection. In order to get the full
spin noise Nspin, one needs to sum all the contributions in accordance with Eq. (B2). Although the spin noise shares a lot in
common with the transverse current noise, Nspin turns out to be suppressed for both kinds of triplet pairings we consider (for
further discussion, we refer to the main text).

APPENDIX C: LONGITUDINAL COLLECTIVE MODES IN BILAYERS

1. Collective modes

In this Appendix, we provide computational details of the longitudinal collective modes in bilayer superconductors and
discuss their implications for noise. We decompose vectors as A(q, z) = A‖q̂ + A⊥q̂ × ẑ + Az ẑ. Since longitudinal modes couple
with p-polarized waves, it allows us to set A⊥ = 0 (we note that E = −∂tA lies in the plane perpendicular to ẑ × q̂). Therefore,
the solutions (evanescent waves) to Maxwell’s equations are given by

A‖(q, z;ω) =
⎧⎨
⎩
A1,‖e−κ(z−l/2), l

2 < z
αe−κl z + βeκl z, − l

2 < z < l
2

A2‖eκ(z+l/2), z < − l
2

, (C1)

where κ =
√
q2 − εω2/c2 and κl =

√
q2 − εlω2/c2. A1,‖(q, ω) and A2,‖(q, ω) are the longitudinal components of the in-plane

vector potentials. At this stage, α(q, ω) and β(q, ω) are yet unknown coefficients. Since there is no free charge density outside
of the two layers, we have

∇ · A = iqA‖ + ∂zAz = 1

iω
∇ · E = 0, z �= ±l/2. (C2)

Using this and the Maxwell equation relating A to the interlayer current density Jz, we obtain

Az =

⎧⎪⎨
⎪⎩

iq
κ
A1,‖e−κ(z−l/2), l

2 < z
iq
κl
(αe−κl z − βeκl z ) + μ0

κ
2
l
Jz, − l

2 < z < l
2

− iq
κ
A2,‖eκ(z+l/2), z < − l

2 .

(C3)
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Next, we use the continuity of the tangential component of the vector potential at the two boundaries to relate the coefficients α

and β to A1,‖ and A1,‖:

α = A2,‖eκl l/2 − A1,‖e−κl l/2

eκl l − e−κl l
, β = A1,‖eκl l/2 − A2,‖e−κl l/2

eκl l − e−κl l
. (C4)

From this result, we can relate ϑ to the in-plane vector potentials and the interlayer current density:

ϑ = 2π

�0

∫ l/2

−l/2
dz Az = 2πμ0l

�0κ
2
l

Jz + 2π iq

�0κ
2
l

(A2,‖ − A1,‖). (C5)

Finally, we use the integral forms of Maxwell’s equations across the two layers to relate the two-dimensional charge and current
densities to the in-plane vector potentials and the interlayer current density:

ρ1 = ε0ωq
[ εl

κl

A2,‖ − A1,‖ coshκl l

sinhκl l
− ε

κ

A1,‖
]

− iωεl

c2κ2
l

Jz, (C6)

ρ2 = ε0ωq
[ εl

κl

A1,‖ − A2,‖ coshκl l

sinhκl l
− ε

κ

A2,‖
]

+ iωεl

c2κ2
l

Jz, (C7)

j1,L = ε0ω
2
[ εl

κl

A2,‖ − A1,‖ coshκl l

sinhκl l
− ε

κ

A1,‖
]

− iq

κ
2
l

Jz, (C8)

j2,L = ε0ω
2
[ εl

κl

A1,‖ − A2,‖ coshκl l

sinhκl l
− ε

κ

A2,‖
]

+ iq

κ
2
l

Jz. (C9)

These results are consistent with the continuity equations (57) and (58). Using the above equations on 10 variables
{ρi, ji,L,Ai,‖, θi, ϑ, Jz}, one may compute the spectrum of the longitudinal collective modes, as we discuss below.

a. Symmetric mode

We consider the symmetric combinations: θs = θ1 + θ2, ρs = ρ1 + ρ2, js = j1,‖ + j2,‖, As = A1,‖ + A1,‖. We then obtain a
closed set of equations solely on these new symmetric variables:

ρs = ε0ωq

[
εl

κl

1 − coshκl l

sinhκl l
− ε

κ

]
As, js = ε0ω

2

[
εl

κl

1 − coshκl l

sinhκl l
− ε

κ

]
As,

−iωθs + e∗

χ
ρs = −�E0

(
q2θs + 2π i

�0
qAs

)
, js = 


(
�0

2π
iqθs − As

)
+ σ L

n

(
iωAs − iqρs

χ

)
.

To get the spectrum of the symmetric mode, one can solve this system of equations numerically. We turn to analyze two limits
of the most physical interest. First, in the limit ql → 0, we obtain

ωs(q) ≈ − iqσ L
n

2εε0
±

√√√√q


εε0
−
(
qσ L

n

2εε0

)2

,

where we have used additional approximations analogous to the monolayer case: χ−1 = 0 and the O(q2) term in the dynamics
of θs can be neglected at low momenta. For such small momenta, one can neglect the separation between the layers, giving
effectively twice stronger Coulomb forces and resulting in frequency being

√
2 times larger than in the monolayer case. In the

limit q → 0, l → ∞, and εl = ε, we reproduce the monolayer result

ωs(q) ≈ ±

√√√√ q


2εε0
−
(
qσ L

n

4εε0

)2

− i

(
qσ L

n

4εε0

)
.

b. Antisymmetric mode

We now turn to investigate the antisymmetric combinations: θa = θ1 − θ2, ρa = ρ1 − ρ2, ja = j1,‖ − j2,‖,Aa = A1,‖ − A1,‖.
We derive the following closed set of equations:

ρa = −ε0qω

[
εl

κl

1 + coshκl l

sinhκl l
+ ε

κ

]
Aa − 2iωεl

c2κ2
l

Jz, ja = −ε0ω
2

[
εl

κl

1 + coshκl l

sinhκl l
+ ε

κ

]
Aa − 2iq

κ
2
l

Jz,

ϑ = 2πμ0l

�0κ
2
l

Jz − 2π iq

�0κ
2
l

Aa, Jz = J0(θa − ϑ ) + iω�0

2πρcl
ϑ,
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−iωθa + e∗

χ
ρa = −

(
�E0

λ2
J

)[
λ2
J

(
q2θa + 2π i

�0
qAa

)
+ 2(θa − ϑ )

]
, ja = 


(
�0

2π
iqθa − Aa

)
+ σ L

n

(
iωAa − iqρa

χ

)
.

The spectrum of the antisymmetric modes can be obtained by numerically solving this system of equations. Let us now analyze
the limit q → 0 to the leading order in Jz, setting ρ−1

c = 0:

ωa(q = 0) ≈
√
2e∗J0

χ
+ ω2

ab

εlγ 2
−
(

�E0

λ2
J

)2

− i
�E0

λ2
J

, (C10)

i.e., the antisymmetric modes are coherent gapped excitations, with the gap size being much larger than the lifetime.

2. Calculation of reflection coefficient

In this subsection, we outline how to calculate the reflection coefficient rp(q, qz, ω) for p-polarized waves incident on a
Josephson-coupled superconducting bilayer. The steps are nearly identical to the derivation of longitudinal collective modes
presented earlier in this Appendix, and hence we just provide the essential steps. We start with the vector-potential corresponding
to the incident, reflected, and transmitted waves:

A‖(q, z;ω) = A0

{
e−iqε

z (z−l/2) − rpeiq
ε
z (z−l/2), z > l

2
tpe−iqε

z (z+l/2), z < − l
2

(C11)

Az(q, z;ω) = qA0

qε
z

{
e−iqε

z (z−l/2) + rpeiq
ε
z (z−l/2), z > l

2
tpe−iqε

z (z+l/2), z < − l
2 .

(C12)

Here A0 is the amplitude of the incoming wave, qε
z =

√
εlω2/c2 − q2, and tp is the transmission coefficient. The generic solution

to the Maxwell equations in the region − l
2 < z < l

2 reads as (with ql =
√

εlω2/c2 − q2)

A‖(q, z;ω) = αe−iql z + βeiql z, (C13)

Az(q, z;ω) = qα

ql
e−iql z − qβ

ql
eiql z − 4π

cq2l
Jz, (C14)

where the coefficients α(q, ω) and β(q, ω) are obtained by matching the tangential components of the vector potential at the two
boundaries:

α = A2,‖eiql l/2 − A1,‖e−iql l/2

eiql l − e−iql l
, β = A1,‖eiql l/2 − A2,‖e−iql l/2

eiql l − e−iql l
, (C15)

where A1,‖ = A0(1 − rp) and A2,‖ = A0tp. From this, we obtain (after linearizing the Josephson current)

ϑ = −2πμ0l

�0q2l
Jz − A0

2π iq

�0q2l
(tp + rp − 1), (C16)

Jz = J0(θ1 − θ2 − ϑ ) + iω�0

2πρcl
ϑ. (C17)

The remaining boundary conditions give

ρ1 = iωqε0A0

[
iεl
ql

tp − (1 − rp) cos ql l

sin ql l
+ ε

qε
z

(1 + rp)

]
+ iωεl

c2q2l
Jz, (C18)

ρ2 = iωqε0A0

[
iεl
ql

1 − rp − tp cos ql l

sin ql l
− ε

qε
z

tp

]
− iωεl

c2q2l
Jz. (C19)

Finally, the continuity equations (57) and (58) read as

j1,‖ = ωρ1

q
− iJz

q
, j2,‖ = ωρ2

q
+ iJz

q
. (C20)

Using the above equations together with the time-dependent Ginzburg-Landau dynamics of the order-parameter phases [cf.
Eq. (60)] and the expressions (55) for the in-plane current densities, we compute the reflection coefficient rp(q, qz, ω) numeri-
cally.
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