FluidSMR: Adaptive Management for Hybrid SMR Drives

FENGGANG WU, University of Minnesota, Twin Cities, USA
BINGZHE LI, Oklahoma State University, USA
DAVID H. C. DU, University of Minnesota, Twin Cities, USA

Hybrid Shingled Magnetic Recording (H-SMR) drives are the most recently developed SMR drives, which
allow dynamic conversion of the recording format between Conventional Magnetic Recording (CMR) and
SMR on a single disk drive. We identify the unique opportunities of H-SMR drives to manage the tradeoffs
between performance and capacity, including the possibility of adjusting the SMR area capacity based on
storage usage and the flexibility of dynamic data swapping between the CMR area and SMR area.

We design and implement FluidSMR, an adaptive management scheme for hybrid SMR Drives, to fully
utilize H-SMR drives under different workloads and capacity usages. FluidSMR has a two-phase allocation
scheme to support a growing usage of the H-SMR drive. The scheme can intelligently determine the sizes of
the CMR and the SMR space in an H-SMR drive based on the dynamic changing of workloads. Moreover, Flu-
idSMR uses a cache in the CMR region, managed by a proposed loop-back log policy, to reduce the overhead
of updates to the SMR region.

Evaluations using enterprise traces demonstrate that FluidSMR outperforms baseline schemes in various
workloads by decreasing the average I/O latency and effectively reducing/controlling the performance impact
of the format conversion between CMR and SMR.

CCS Concepts: « Information systems — Record and block layout; Magnetic disks; Storage
management;

Additional Key Words and Phrases: Hybrid SMR drive, data management, format conversion

ACM Reference format:

Fenggang Wu, Bingzhe Li, and David H. C. Du. 2021. FluidSMR: Adaptive Management for Hybrid SMR Drives.
ACM Trans. Storage 17, 4, Article 32 (October 2021), 30 pages.

https://doi.org/10.1145/3465404

1 INTRODUCTION

With the ever-increasing demand for storage capacity, Shingled Magnetic Recording (SMR)
drives were introduced in which consecutive disk tracks are written overlapped in a shingled fash-
ion to achieve a higher areal density when compared with Conventional Magnetic Recording
(CMR) drives. However, the increased capacity of SMR comes with a price that updating these

This work was partially supported by NSF I/UCRC Center Research in Intelligent Storage and the following NSF awards
1439622, 1525617, 1536447, and 1812537.

Authors’ addresses: F. Wu and D. H. C. Du, University of Minnesota, 200 Union St SE, Minneapolis, Minnesota 55455; emails:
{wuxx0835, du}@umn.edu; B. Li, Oklahoma State University, 215 General Academic Building, Stillwater, Oklahoma 74078;
email: bingzhe li@okstate.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1553-3077/2021/10-ART32 $15.00

https://doi.org/10.1145/3465404

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



https://doi.org/10.1145/3465404
mailto:permissions@acm.org
https://doi.org/10.1145/3465404

32:2 F. Wu et al.

CMR Disk Platters SMR

114 == [l

Fig. 1. H-SMR Drive.

SMR tracks will cause expensive read-modify-write overhead (SMR update overhead). To reduce
SMR update overhead and have predictable performance, three types of SMR drives are developed,
including Drive-Managed, Host-Managed, and Host-Aware drives. However, the tradeoffs between
performance and space capacity in SMR drives remain to be managed.

Recently, Google introduced the idea of Hybrid SMR (H-SMR) drives [20]. As shown in
Figure 1, a single H-SMR drive can have both CMR and SMR areas, and the recording format
can be converted from one type to the other using H-SMR APIs. Both Seagate and Western Digital
plan to produce H-SMR drives [6, 15]. H-SMR enables a promising way of combining and exploring
the benefits of both CMR and SMR formats. To the best of our knowledge, other than the prelimi-
nary version of this article [52], there is no existing work specially addressing the data and space
management issues of H-SMR drives.

We identify unique opportunities in H-SMR drives to strike favorable tradeoffs between space
capacity and performance. First, unlike pure SMR and CMR drives, H-SMR drives can adjust the
proportion of SMR and CMR areas based on storage capacity usage. When a drive is less than 100%
full, some of the disk areas can be formatted into CMR to avoid the SMR update overhead. Second,
when there is a mix of CMR and SMR areas in the same drive, hot (frequently updated) data can
be dynamically swapped to the CMR area to alleviate the SMR update overhead. Third, different
from the existing SMR implementations that use a fixed configuration of the on-disk cache, CMR
space, and SMR space [1, 51, 54], H-SMR has the flexibility to adaptively adjust the size of each of
such disk components to fit the changing workload.

However, there are still many challenges before we can leverage these opportunities of H-SMR.
First, a growing capacity requires converting some disk area from CMR into SMR. Such a format
conversion will destroy the existing data in the disk area to be converted. Therefore, these data
need to be migrated before the conversion. Such data migration will degrade the I/O performance
of on-going applications. Second, to reduce the SMR update overhead, ideally frequently updated
data (hot data) should be placed in the CMR area, while less frequently or no updated data (cold
data) are more suitable to be stored in the SMR area. Designing effective criteria for performing
data relocation and zone format conversion is challenging, considering the SMR-specific zone up-
dating and data migrating cost. Third, it is difficult to determine a favorable configuration of the
on-disk cache, CMR space capacity, and SMR space capacity, given the intricate relations between
the CMR area, SMR area, and the capacity usage. The dynamically changing workload further
complicates the design choices about when/how to perform the data migration and zone format
conversion.

In this article, we propose FluidSMR to address all of the challenges above. First, FluidSMR sup-
ports the growing usage by a two-phase allocation scheme that distinguishes high and low usage
to conduct allocation differently. We propose a proactive and quantized migration scheme in Flu-
idSMR, which carries out the data migration beforehand during idle time to further reduce the
performance impact of format conversion and valid data migration. Second, by formalizing and
solving the H-SMR format configuration problem, we design an adaptive format conversion algo-
rithm in FluidSMR that can intelligently adjust the format of zones and the sizes of the CMR, SMR,
and Cache space capacities and identify an ideal format configuration best fitted the changing

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:3

workload. Finally, FluidSMR uses a proposed loop-back log policy to manage a CMR cache, and a
novel cache-occupancy-based algorithm to manage the zone swapping.

Evaluations using Microsoft Research (MSR) Cambridge traces [37] show that the proposed
FluidSMR outperforms several baseline schemes by reducing the average I/O latency in various
workloads with different disk usages. It can also decrease the space re-allocation response time
and limit the application I/O’s performance during the space re-allocation.

The rest of the article is organized as follows. Section 2 provides the background and motivates
our design. We give an overview of FluidSMR in Section 3. Section 4 describes how FluidSMR
handles a growing space usage with a proposed two-phase allocation scheme. The adaptive H-SMR
format configuration algorithm is presented in Section 5. The CMR cache replacement algorithm
and the occupancy-based zone-swapping scheme are discussed in Section 6. Evaluation results
are shown in Section 7. We summarize the related works in Section 8 and conclude the article in
Section 9.

2 BACKGROUND AND MOTIVATION
2.1 SMR Background

The increase of areal data density in SMR comes with the cost of amplified updates on existing
SMR data tracks. When updating data on a shingled track, the data on one of its adjacent tracks
may have to be read out and re-written back to avoid data loss. Re-writing the adjacent tracks will
destroy the data tracks further away, creating a domino effect (considered as SMR update overhead)
with data on many adjacent tracks to be updated [51, 54]. Therefore, to reduce this domino effect,
SMR tracks are partitioned into zones (typically 256 MB) with guard tracks introduced between
zones. As a result, any update on one zone can be independently handled without interfering data
on other zones. Nevertheless, updating existing data in one SMR zone will still cause SMR update
overhead within the zone.

Traditionally, there are three models of SMR drives: drive-managed, host-aware, and host-
managed [26, 27]. Drive-managed SMR drives can be used as a “drop-in” replacement for CMR
disks by hiding all SMR features behind a mapping layer (Shingled Translation Layer). By contrast,
host-aware and host-managed SMR drives expose zone information (such as the write pointers)
to the host so that the host can query such information from the drive to make better decisions
about where to issue write requests. The write pointer of a zone is the LBA location where the next
write should go. This write pointer can be considered as a log head pointer in a sense that one
SMR zone is abstracted into a log-structured model. A write request targeting at the write pointer
is considered as a sequential write. Data will be written to the disk begin with the current write
pointer location, and the write pointer will be advanced accordingly after the write. Otherwise, a
write operation not beginning at the write pointer is called a non-sequential write (NSW).

SMR zones in a host-aware SMR drive are sequential write preferred zones. When an NSW comes
to such type of zones, the data will be redirected to an on-disk SMR area called Media Cache in
a log-structured manner. Media Cache has a fixed location and capacity. When the Media Cache
capacity is used up, the redirected data will have to be migrated back to its targeted locations
with a read-modified-write manner (called blocking cleaning). Such read-modify-write operations
introduce many extra IOs, resulting in a severe SMR update overhead and deficient performance
during cleaning. In a host-managed SMR drive, the SMR zones are sequential write required zones.
The host should ensure the write aims at the write pointers of such zones or else the write will be
rejected. Therefore, when an NSW comes, if the NSW targets on a location before the write pointer,
then the host should read the zone data, write the zone data back combined with the change. If the
NSW aims to an LBA after the write pointer, then the host should perform extra effort, including

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:4 F. Wu et al.

CMR Logical Domain SMR Logical Domain
Logical Disk Space | = == ‘ ‘ [ [X] CMR/SMR zones (offline)
i ]:’ CMR zones (online)
Physical Disk Area t(r):éle(rs FMR‘ SMR ‘ CMR ‘ SMR ‘ tlrr:la?:il; D SMR zones (online)

Fig. 2. Logical and physical view of Hybrid SMR drive. Only online CMR/SMR zones are backed with physical
zones, so that they can accept I/O requests from the host.

filling in garbage between the write pointer and the beginning address of the NSW and updating
the write pointer. Such a read-modify-write operation introduces a lot of extra IOs, also resulting
in serious SMR update overhead. Both host-aware and host-managed SMR drives can optionally
have a fixed CMR area.

H-SMR drives are very close to the host-aware and host-managed types, since they enable hosts
to take action on SMR drives based on available APIs. These SMR drives gain increasing popularity
and adoption in both academia and industry [13, 33-35, 51, 54, 60, 61]. SMR zones in H-SMR drive
can be either the sequential write preferred or required zones [44].

2.2 Hybrid SMR Preliminaries

Compared with SMR drives, CMR drives have better performance as it has no SMR update over-
head. However, SMR drives have a higher areal density where more data can be stored in the
same physical disk area to reduce the Total Cost of Ownership. To better address the tradeoffs
between space capacity and performance, a new SMR model is proposed recently, namely H-
SMR [6, 15, 16, 20, 42, 46], where one drive can have both CMR and SMR formats and can dy-
namically convert between these two formats based on workload and space requirements.

According to Reference [15] (Figure 2), the host can convert any number of zones from one
format to the other format using H-SMR APIs, which take an extent of zones from one format
offline and bring the corresponding zones in the other format online. Here “online” means the
zone is backed with the physical disk area and vice versa. Only online zones can accept I/O requests
from the host while offline zones cannot. Due to the different areal densities of CMR and SMR, the
number of zones will usually be different before and after the conversion. For example, supposing
an SMR to CMR areal density ratio is 1.5:1 (i.e., an SMR density gain of 1.5X compared with that
of SMR), 2 GB of CMR space (8 zones) can be converted into 3 GB of SMR space (i.e., 12 zones).
Note that these conversion APIs will destroy the stored data in the zones being converted. Thus
the host is responsible for protecting the valid data in these zones by migrating the data first to
other persistent locations (valid data migration).

2.3 H-SMR Opportunities and Challenges

Dynamic Formatting Based on the Growing Usage - Different from the existing SMR products,
the H-SMR drive has the flexibility to convert a portion of CMR area into SMR or SMR back to
CMR depending on the capacity usage. Such flexibility gives an excellent opportunity to optimize
performance when the capacity usage is not high (less than 100% full), because part of the disk can
be formatted into CMR that is free of the SMR update overhead. When the usage increases, more
disk areas will be gradually converted to SMR to achieve a higher space capacity. However, there
are two challenges, along with this opportunity: how to design the data layout and mapping to
support a growing space usage and how to reduce/control the performance overhead due to valid
data migration when increasing storage capacity is necessary.

Dynamic Data Placement. When there is a mix of SMR and CMR areas on the disk, we have
the opportunity of putting frequently updated data (hot data, hereafter) in the CMR area, while
allocating update-light data (cold data, hereafter) in the SMR area. Such a data allocation can reduce

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:5

the SMR update overhead, because we can directly update in-place in the CMR area, which does
not incur SMR update overhead. However, it is still challenging to make allocation and relocation
decisions due to the SMR-specific zone-cleaning cost. As described in Section 2.4, a simple NSW-
Frequency-based swapping scheme still incurs severe performance degradation, especially in a
higher space capacity usage.

Adaptive Format of Disk Components. We make the design choice to have a CMR-format
Cache in H-SMR drive as it can redirect SMR updates and accumulate many subsequent updates
before eviction. Such a cache can reduce SMR update overhead without swapping the whole zone,
as does in the Dynamic Data Placement described above.

Leveraging H-SMR’s unique format-conversion ability, Fluid-SMR creates the extra space capac-
ity by changing a small portion of the CMR area into SMR format and allocating more data into
the SMR region. Because SMR has a higher storage density, the same disk area will have a larger
space capacity than needed by the user data, and therefore the surplus CMR space can be used as
the on-disk Cache. Given specific workloads, it is challenging to determine the CMR, SMR, and
Cache spaces’ right sizes. When the workload dynamically changes, it is even more challenging
to decide how to perform necessary data migration and format conversion to fit a new workload
phase.

2.4 Evaluating NSW-Frequency-based Zone-Swapping

To inspire the FluidSMR design, we start from a simple version of the H-SMR management problem:
zone-swap-only management for H-SMR drives. In other words, given an H-Partition with CMR
and SMR zones both filled with user data, the problem is to find an efficient zone swapping schemes
for better performance.

NSW-Frequency-based zone swapping. One simple approach is to leverage popular schemes
used in hybrid storage systems or cache policies, such as recency-based or frequency-based
schemes. These policies are well studied and can be easily adopted. However, such generic re-
placement policies do not consider the unique SMR write properties. First, SMR zones have the
read/write asymmetry, i.e., only write will potentially cause the performance overhead because
of the update constraint, while there is no constraint on reading existing data on the SMR zones.
Second, there are two types of write operations, sequential write and non-sequential write, where
only NSW incurs performance overhead. Therefore, in this scheme, we use an NSW-Frequency-
based zone swapping, where only the number of NSWs is used to calculate the frequency, which
in turn is used to aid the zone swapping decisions.

Preliminary Test Result. We carried out a preliminary test to compare the performance of
the recency and frequency baseline with our the NSW-Frequency-based swapping scheme. In the
recency baseline, when an SMR zone is accessed, it will be swapped into the CMR area with least
recently accessed CMR zone. Here “access” includes both read and write. In the frequency baseline,
we use a counter for each zone (including CMR and SMR) to record the number of accesses, includ-
ing reads and writes. Then, during each time window (24 hours), we rank the zones based on the
counter (i.e., access frequency) and put low-frequency zones in the SMR area and high-frequency
zones in the CMR area by swapping zones between CMR and SMR areas. The counter is reset at
the beginning of each 24-hour time window. Our NSW-Frequency-based scheme keeps a record
on the number of NSWs occurred in each zone, and those zones in SMR space with a large number
of NSWs are considered as hot zones and will be swapped with the zones in the CMR space with
fewer NSWs during a 24-hour observation period. Other details about the test setup can be found
in the evaluation section (Section 7). The results show NSW-Frequency-based swapping scheme
reduces the average latency of the recency and frequency baselines by 22.4% and 29.4%, respec-
tively (workload ts_0, usage = 0.9), because it considers the SMR-specific SMR update overheads.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:6 F. Wu et al.

128

=¢<usr 0 —A—ts 0

Performance
Degradation
[ee]

60% 70% 80% 90% 100%
Usage

Fig. 3. Performance degradation using NSW-Frequency-based zone-swapping scheme. Here the perfor-
mance degradation is defined as the average latency normalized to the pure-CMR average latency. For both
traces, the average latency increases sharply as usage increases. (Note the logarithm scale in the y-axis).

However, even using this NSW-Frequency-based zone swapping, the H-SMR performance still de-
grades seriously in higher space usages where most of the disk space is in the SMR format. As
shown in Figure 3, when the usage is beyond 80%, the average latency rockets up exponentially.

Observations. We have three observations based on this zone-swapping scheme. First, usage-
aware formatting is the H-SMR’s unique advantage over the traditional fix-formatted SMR drives.
By only formatting the necessary amount of disk area into SMR, we can effectively reduce the
SMR update overhead. When the usage is low (below 70%, Figure 3), the zone-swapping scheme
achieves no performance degradation from the ideal pure-CMR case, which is not possible in the
traditional SMR models where all the disk area is permanently formatted into SMR format. Sec-
ond, NSW plays an important role in the H-SMR scenario in addition to commonly used factors
such as recency or frequency. The preliminary result analysis shows that an SMR-specific zone
swapping that considers the NSW-specific characteristics has more advantages than those generic
cache eviction algorithms that ignore the NSW factor. This motivates the NSW-based conversion
in Section 5.2. Third, only using a zone-swapping scheme is not sufficient. Figure 3 shows a serious
performance degradation in the high storage usage situations for those swap-only schemes. The
main problem of a zone-swapping-only scheme is that in some cases if only a small portion of an
SMR zone gets NSWs, then the other blocks of the SMR zone that do not experience NSWs are still
swapped to CMR. A whole-zone swap is inefficient as it introduces a large swapping overhead but
only benefits a small number of blocks (ones that have NSWs). Such inefficiency of whole-zone
swapping motivates us to create a more effective on-disk CMR-format cache that only redirects
the NSWs into the CMR (the cache) instead of swapping the whole zone to the CMR (the CMR
zones).

3 ASSUMPTIONS AND FLUIDSMR OVERVIEW
3.1 Assumptions

We assume a physical space partitioner will partition the whole physical area of the disk into mul-
tiple physical partitions (namely H-Partition with H standing for H-SMR). The partitioner specifies
the size of the H-Partition. How to implement this physical space partitioner is out of the scope of
this article. We focus on space management within one H-Partition.

The physical area of one H-Partition is further divided into CMR area and SMR area (Figure 4).
When the size of CMR areas is zero, the H-Partition is in a pure-SMR state that presents the maxi-
mum space capacity the H-Partition can support. However, when the SMR areas’ size is zero, the
H-Partition is in a pure-CMR state that exhibits the least space capacity with no SMR update over-
head. Generally, the higher the space usage, the higher the SMR area ratio is needed to create

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:7

[| CMR Area | SMR Area ”

Our Focus / /
/ /
/ /

L AY
H-Partition ‘ ‘ H-Partition H ‘ H-Partition
C J
outer track inner track

Hybrid SMR Drive

Fig. 4. Disk Layout and H-Partition.

enough capacity for the user data. With a given space usage, FluidSMR may choose to convert
some extra CMR area to SMR than required by the space usage to create an on-disk cache (Sec-
tion 5) in the CMR area. In other words, moving more data into the SMR area and some extra free
space in CMR can be used for caching. When one H-Partition is newly created, the space usage is
zero, and the H-Partition is in the pure-CMR state [16].

3.2 Design Overview

FluidSMR has three managing components: usage growth management, adaptive format configura-
tion management, and caching and swapping management.

FluidSMR’s usage growth management (Section 4) handles the application’s space allocation
requests to fulfill a growing usage of the application. The format configuration management (Sec-
tion 5) adjusts the disk’s CMR/SMR format by adaptive conversion according to the workload. The
caching and swapping management (Section 6) makes decisions on how the CMR cache handles
the NSWs and how to swap the zones between the CMR and SMR areas.

4 USAGE GROWTH MANAGEMENT
4.1 Growing Usage in H-Partition

The maximum capacity of an H-Partition (i.e., its pure-SMR capacity) is fixed once created. We
assume the application has an increasing demand for space and will request new storage space
from FluidSMR by issuing space allocation requests at a granularity of chunks. Here we set the
chunk size as 256 MB to match the underlying zone size. So one chunk is also called one logical
zone, or zone for short in this article. Each time the application will request one or multiple zones
of space in the space allocation request. FluidSMR fulfills such space allocation request until the
usage reaches 100% of the H-Partition’s maximum capacity. We define the capacity usage (or usage
for short) of the H-Partition as the ratio between the total accumulated size used by the user and
the maximum capacity of the H-Partition. The usage of the H-Partition increases as the application
extends its logical space for more capacity.

As a referencing example, one H-Partition with a maximum capacity of 150 GB (i.e., 150 GB
in pure-SMR, or 100 GB in pure-CMR, or any space capacity between 100 GB and 150 GB with
a combination of CMR and SMR assuming an SMR density gain of 1.5X) is serving a file system
with an initial size of 20 GB. Initially, FluidSMR will map 80 physical zones of the H-Partition to
80 logical zones, presenting a continuous 20 GB LBA space to the file system. Later, when the file
system’s usage space expands to 50 GB, FluidSMR will make necessary operations (more details
in the following sections) within the H-Partition and append another new 30 GB space to the
original 20-GB LBA space. The file system can then be enlarged to utilize the new 30 GB space
using commands like resize2fs. FluidSMR can continuously append new space to the LBA space
to be consumed by the file system until the H-Partition’s maximum capacity is used up (150 GB).
Besides file systems, FluidSMR can expose the LBA space directly to applications too, as long as

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:8 F. Wu et al.

] CMR zone (online) Before Format Conversion After Format Conversion
1 SMR zone (online) Application Application
] CMR/SMR zone (offline) <L read/write, extend size Lus CMR <~ read/write, c)ﬁt_cnd size
Extendable Space [A[B[C[D[E[F[G[H[T] -+ :E?c)gu;sed as  [A[B|CID[E[F|GIH[T|J E"' nf:/ulggegafgsrgﬂgc
on-disk Cache [ -] <liN_ space allocation
one mapping mapping update:
Logical Disk Space |[0[1]2[3]4[5[6]7]  [sToftoN2pap4hafieasNiof0) | W 1[2[3[4]s]6]7] 14[15[16[17[18[19]20
CMR Space -~ ___SMRSpace - CMR Space__- B'g\j.'?aary-__SMRSpace/,,,,—"""

" " outer 1 inner outer =57 inner

Physical Disk Area tracks CMR Area S‘MR tracks tracks [ CMRArea [T7SMRArca Wtralcks
H-Partition Area H-Partition

Fig. 5. Zone mapping and format conversion.

the applications can request to enlarge the LBA space when needed. When making LBA extension,
the file system or application can optionally specify an “SMR-hint,” which indicates the newly
allocated space can be in SMR format (e.g., intended for read-only data) for internal optimization
in FluidSMR (see Section 4.3).

4.2 Zone Mapping

As illustrated in Figure 5, FluidSMR has a two-level mapping. The address space exposed to the
application is called extendable space. The extendable space is mapped to a logical disk space, which
is a logical view of the address space of the H-SMR drive. The logical disk space is then mapped
to a physical disk area. The extendable space is divided into user zones, and each zone matches the
H-SMR zone size (256 MB). Each user zone is mapped to either a CMR logical zone or an SMR
logical zone, and eventually to a CMR physical zone or an SMR physical zone. By a CMR/SMR
zone, we refer to both an online CMR/SMR zone in the logical disk space and its counterpart in
the physical disk area.

The logical disk space in an H-Partition consists of three logical components: the CMR space,
the SMR space, and the Cache space (or Cache in short). Please note the Cache is located in the
CMR area and controlled by users/applications, not in an SMR area, as in other types of SMR drives.
Underneath, the physical disk area is divided into two types of areas, the SMR-format area and the
CMR-format area (outer track portion). Please note that modern disk drives may have the CMR
portion in the middle of the disk due to head geometry. In this design, we simplify the H-SMR
model and follow the practices in Reference [20] and Reference [16] to lay the CMR area in the
outer track portion for high throughput, but the design can be easily extended to more complex
cases (for example, CMR is in the middle track portion, or spread in several locations).

When an application uses more storage space, empty (i.e., unused) CMR or SMR zones from the
H-Partition will be considered new logical zones, and these logical zones can be used as available
user zones. The zone mapping is updated accordingly to ensure a linear logical data space with
no LBA gaps. The zone-mapping entry for each zone is also stored in this zone’s first sector for
recovery purposes.

In the simplified example illustrated in Figure 5, the left figure shows the current format and
zone-mapping status before the format conversion. When the application request to allocate one
more zone of space, a format conversion happens on the H-Partition, converting four CMR zones
(4-7) into six SMR zones (14-19). In this process, the user zones E-H are migrated to the newly
formatted SMR zones 16—19 from the original CMR zones. The SMR zone 15 is mapped to the
new user zone J and appended to the current extendable space to fulfill the application’s allocation
request. In this example, FluidSMR migrates user zone A from CMR zone 0 to the newly formatted
SMR zone 14, resulting in one CMR zone 0 as the on-disk cache. Finally, the zone mappings for
user zones A, E-H, and J are updated and persisted accordingly.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:9

= Outer Track H-Partition Inner Track
S A
= r 1
153
£ initial empty | — ‘ [ |CMR Area
=
= . . . . .
£ direct allocation: no conversion, no migration
U » 110 mig . [ ISMRArea
> * Ow usage used ’ unused used
2 § light allocation: conversion w/o migration
= =
A allocation frontiers meet
e mid usage ‘ used l used l
—
v 2
@3
Q5
=2
&~ T high usage‘ Cache ‘ used lﬁ used ]
< heavy allocation: conversion + migration
<
B
=

Fig. 6. Two-phase allocation.

FluidSMR persists the zone-mapping table to the disk after each zone allocation (also after each
zone swapping and conversion operation, which will be introduced later in Section 5 and Section 6).
A copy of the zone-mapping table is kept in memory. With each zone number taking 8 Bytes, the
space overhead of a 20 TB H-SMR drive is 320 KB. Or equivalently, this zone-mapping table’s
memory overhead is 16 KB per TB of disk capacity.

4.3 Phase I: Direct Allocation and Light Allocation

As the usage grows from low to high, FluildSMR has two allocation phases (Figure 6). In the first
allocation phase, the H-SMR partition starts as all CMR format [16]. As the second figure of Figure 6
shows, two types of allocation can happen, from the opposite side of the H-Partition. Allocation
from the out track is called direct allocation, while the allocation from the inner track is called light
allocation.

Direct allocation allocates CMR zones from the outer track. It is the default type of allocation
when a new allocation request comes. FluidSMR maps new user zones to CMR zones from outer
to inner tracks for higher performance. Direct allocation does not involve any format conversion.

Light allocation allocates SMR zones from the inner track. It is performed when the application
specifies the SMR-hint (Section 4.1) to indicate the incoming data will not be updated at least in the
near future. FluidSMR will format a portion of CMR from inner track portion into SMR to fulfill
the allocation request. This will shift the CMR/SMR area boundary toward the outer track portion
and increase the SMR area portion. Light allocation involves CMR to SMR conversion but does not
introduce any data migration.

In light allocation, the overhead depends on the number of times that format conversions are
carried out (about 50 ms per conversion command execution). Therefore, such conversion over-
head can be further reduced if the user allocates a bigger SMR space at one time or specify an
initial SMR space at the inner track portion during the H-Partition initialization. Such SMR-hint
is suitable for archival files, backup files, or other data that are not expected to be updated soon.
This user-provided SMR-hint will help FluidSMR make a better initial data placement decision and
reduce the zone-swapping cost (zone-swapping will be introduced in Section 6).

4.4 Phase Il: Heavy Allocation

In the second phase when usage is high (bottom figure in Figure 6), heavy allocation is used to cre-
ate new capacity. In such high usage, both the CMR and SMR spaces are almost used up with user
data, and conversion from CMR to SMR is needed to create more space capacity to fulfill subse-
quent space allocation requests. FluidSMR performs a CMR-to-SMR conversion at the CMR/SMR

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:10 F. Wu et al.

space boundary, moving the boundary toward the outer track portion. Therefore, heavy allocation
involves both format conversion and data migration.

FluidSMR takes a proactive approach to make extra space for this space allocation request by
making a guard range in preparation for future requests. In this case, the application’s future
allocation requests can be fulfilled right away if there are enough empty zones from the guard
range. Such a guard range avoids a future allocation request wait for data migration to complete.
The user can configure the size of this guard range. It depends on how many future allocations
may occur in a short duration. If the user/application does not specify enough guard range for one
allocation, then some future allocations may have to wait for the conversion to finish and introduce
a long latency. When the unused area’s size falls below a user-defined guard range size, FluidSMR
will grow the space of the unused area by converting more CMR space to SMR until the unused size
is above a pre-defined guard range again. The conversion and the subsequent valid data migration
are performed at a pace matching the allocation intensity. FluidSMR uses a quantized migration
(Section 4.5) as a knob to balance the migration I/Os with other application I/Os.

FluidSMR will choose “cold” CMR zones to convert to SMR zones. Such “cold” CMR zones are
defined as the CMR zones with small ranges of LBAs that are updated since the last allocation. We
have more discussion in Section 5.4.

4.5 Quantized Migration

There is an intrinsic tradeoff between the performance of the application I/Os and the migration
efficiency. Theoretically, the task of valid data migration can be broken down into small piecemeal
migrations and opportunistically inserted into the time intervals between consecutive application
I/Os (i.e., idle intervals). In this case, the application I/Os will experience less performance degrada-
tion. However, it will take a longer time for the conversion to finish, especially when the workload
is intensive and does not have large time intervals between consecutive IOs. Such piecemeal and
fractional migration is inefficient, because more time is spent on the seek time and rotational de-
lay than migrating data. Worse still, a prolonged migration task is forced to share time with more
application IOs, which further increases the end to end migration time.

Based on this observation, we propose a quantized migration mechanism in FluidSMR that helps
the application find a favorable spot in the tradeoff space. We define a migration quantum as the
smallest-size unit of data to migrate that will carry to completion even other application I/Os arrive
(Figure 7). A small migration quantum will have less impact on the application, since the migration
is done at a finer granularity, therefore, causing less increase of latency to other application I/Os.
In contrast, a large migration quantum gives priority to the migration I/O so that the conversion
will finish sooner, but other application I/Os will have an increased latency.

The key insight here is that the maximum latency increase is proportional to the migration quan-
tum’s size. Therefore, adjusting the migration quantum’s size provides a mechanism that helps
the application ensure a controllable performance degradation while conducting a conversion and
valid data migration.

An application can specify how much the increase of latency is tolerable for the application
10s (acceptable increase of latency) based on its requirement of quality of services. How does the
application translate the quality of service into the acceptable increase of latency is out of the scope
of this article. FluidSMR only deals with how to calculate the right size of migration quantum to
ensure that the acceptable increase of latency is not violated.

Note that the quantized migration is not only useful in the conversion during usage growth.
It is also helpful in the valid data migration during format configuration adaption in the next
section.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:11

issue  complete issue complete
latency
10 time 0 time time
[Japplication io issue  complete issue complete

latency increase,
b sk o
10 time | time 10 time time
small migration quantum

issue  complete issue . complete
latency increase
seek

io time |time io time time

large migration quantum

[l valid data migr. io

Fig. 7. Impact of the size of migration quantum on the application performance. The larger the migration
quantum, the greater the increase of latency the application experiences, but the sooner the valid data mi-
gration completes.

5 ADAPTIVE FORMAT CONFIGURATION DESIGN IN H-SMR

In this section, we want to answer the key question:
Given certain workload, how to adapt the zone format of the H-Partition to improve the perfor-
mance?

5.1 Problem Definition

In the heavy allocation phase, the H-Partition consists of three components: CMR space, SMR
space, and Cache space (in CMR format). The space usage is beyond the pure-CMR capacity yet
below the pure-SMR capacity of the H-Partition. There is no “unused” space for a direct or light
allocation. The sizes of the CMR space, SMR space, and the CMR cache space need to satisfy the
following two constraints:

e physical size constraint: The total sum of the physical H-Partition areas of the CMR space,
SMR space, and the CMR Cache should be equal to the H-Partition’s physical space capacity.

e user data size constraint: The total logical space capacity of the CMR space and the SMR
space together should be equal to the total size of the user data.

We formally illustrate such intrinsic inter-dependencies among the size of Cache (Scache), CMR
space (Semr) and SMR space (Sspr) as follows.

(Scache + Scmr) *a+ Ssmr = C, (1)
Semr + Ssmr = U, (2)

where: @« = SMR density gain,
Sp = size of [-] space,
C = full SMR capacity of H-Partition,
U = user data size.

We denote a format configuration of an H-Partition as one feasible combination of the CMR
Cache, CMR data space, and SMR data space that satisfies the equations above. There are many
challenges in determining how to adapt to an “ideal” format configuration best suited for the
current workload. For example, how many and which CMR zones are going to be converted to
SMR? However, how many and which SMR zones need to be converted back to CMR? How can
we tell if the performance is improved after the conversion?

In the remainder of this section, we first analyze the impact of two-directional conversions and
discuss the criteria to determine the conversion direction (Section 5.2), and then introduce our
adaptive conversion algorithm (Section 5.3).

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:12 F. Wu et al.

Zone #i: NSW B

o 0 O o

NSW A NSW C

Fig. 8. An example of the range of non-sequential writes (NSW-Range). The NSW-Range is the total amount
of gray areas.

CMR toS
Logical Zones Loglcal
Physical éMRtO—CMRI Physical
Fig. 9. Two-directional Conversion. FluidSMR has the ability to perform conversion in two directions to
adjust the size of the Cache.

SMR D NSW Range
Zones | 7] CMR Area

I:l SMR Area

5.2 NSW-Range and Two-directional Conversion

NSW-Range. Motivated by the observation from Section 2.4, we define ranges of non-sequential
writes or NSW-Ranges as the total covered ranges of NSWs in one zone during a time window (e.g.,
24 hours, and FluidSMR has an adaptive time window design in Section 5.3) as shown in Figure 8.
In Figure 8, the ranges of NSWs A, B, and C are the gray areas of @, @, @, and @. The gray area @
is the overlapping portion of NSWs A and B, and thus it is only counted once in the NSW-Ranges.
The metric indicates how much cache size will be occupied by the NSWs happening to an SMR
zone.

Two-directional Conversion. In one H-Partition, we can create a CMR-format Cache by con-
verting more CMR space to SMR space. It may sound counter-intuitive to create a CMR cache by
converting away from CMR format. However, when converting some CMR space to SMR format,
the logical space capacity of one H-Partition increases, and thus the “surplus” space can be used
as a Cache to hold NSWs to the SMR zones. Such process of CMR-to-SMR conversion is illustrated
in Figure 9 (right arrow). Supposing that an SMR density gain is 1.5, then two CMR zones can
be converted into three SMR zones. So the user data from the three CMR zones in the left figure
of Figure 9 can be migrated to the newly formatted SMR zones as shown in the right figures of
Figure 9, resulting in one extra CMR-format Cache zone.

Such extra CMR cache can hold in-coming NSWs to the SMR zones, then subsequent updates
to whose data can happen in-place without incurring any SMR update overhead. In an ideal case,
if the total size of the NSW-Ranges of the three SMR zones is smaller and can fit into the newly
created extra Cache zone, then such a CMR-to-SMR conversion is beneficial as it does not introduce
new SMR update overhead but creates more available Cache space that can help to hold the NSWs
of other SMR zones. In the example of the right figure of Figure 9, the newly available Cache space
is the grey area of the Cache.

However, such a conversion can happen in the reverse direction by converting the three SMR
zones back to two CMR zones (see the right to left conversion in Figure 9). In this case, we lose
one zone of the Cache space, and the data in two SMR zones can be migrated to these two newly
created CMR zones such that the NSWs to the two migrated zones will not incur SMR update
overhead anymore, because they are now stored in CMR zones. Such an SMR-to-CMR conversion
is beneficial when the total NSW-Ranges for these two SMR zones cannot fit in one Cache zone.
By converting the SMR zones into CMR zones, the overall Cache space contention is alleviated.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:13

To avoid fractionalizing the physical space, a minimum number of three SMR zones needs to be
converted together to get three CMR zones (Figure 9). In general, we define the basic conversion
batch size Scony as the minimum number of zones needed to be migrated (e.g., three) without
creating fractions of physical zones. Given the SMR density gain is &, Scony = 755

Criteria of the Conversion Direction. The criteria to determine if a zone should be in either
SMR or CMR depends on the size of NSW-Ranges and the SMR density gain. In the example in
Figure 9, converting three CMR zones creates one extra CMR cache space. If the total size of NSW-
Ranges is smaller than the size of one zone, then converting CMR to SMR is beneficial and vice
versa. In general, supposing the SMR density gain is «, if one chunk of data takes N CMR zones,
then the same physical space could hold « N SMR zones. Denoting r as the NSW-Range ratio among
the data, then fraction r of the data (i.e., the data the experiences NSW) will be redirected to the
CMR cache. To hold all the redirected NSWs, the cache will take up rN CMR zones, i.e., a physical
space equivalent of ra N SMR zones. At the break-even point, one physical space can hold N CMR
zones, and it can also hold N SMR zones plus a CMR cache that can keep all NSW- Range of data.
Let the r* be the NSW-Range ratio at the break-even point, then r*N = N + r*aN, i.e., r* = “—1

An NSW-Range ratio r > r* indicates that in the SMR + CMR cache configuration, the CMR
cache cannot hold all the NSWs, and thus the extra NSW will incur cache eviction and SMR up-
date overhead. Another way to interpret is that to hold the NSWs in Cache, the SMR space and
CMR cache will take up more physical space than using pure CMR format to hold the same data.
Therefore, the data should be stored in CMR format (converting following left arrow in Figure 9).
However, if r < r*, then storing the data in SMR plus CMR cache configuration takes less physical
space than storing the same data in CMR format, and therefore the conversion should follow the
right arrow, converting from pure CMR to the SMR + CMR cache setting. This analysis leads to
the adaptive conversion algorithm in the next section.

5.3 H-SMR Adaptive Conversion Algorithm

Based on these observations, we introduce a format configuration algorithm (Algorithm 1). We in-
troduce several principles to guide the format conversion while cross-referencing the correspond-
ing lines in the pseudo-code in Algorithm 1.

Two-directional Conversion. Format conversions in both directions can adjust the current
format configuration of the H-Partition toward a better configuration. According to the discussion
in Section 5.2, converting CMR zones with NSW-Range ratio below r* into SMR increases the
relative Cache size (lines 17-23, Algorithm 1). Similarly, converting SMR zones with NSW-Range
ratio above r* also decreases the relative Cache size (lines 24-30, Algorithm 1).

Early Termination. In some cases, we do not need to convert all the CMR zones with r < r*
to SMR format, neither do we need to convert every SMR zone with r > r* into CMR. As long as
the Cache size is greater than the total size of NSW-Ranges (i.e., the relative Cache size is positive),
the format configuration reaches the ideal state, and the adjustment can be early terminated (line
23 and 30 in Algorithm 1). Otherwise, the algorithm should keep adjusting until all the CMR zones
have r > r* and all the SMR zones with r < r* (however, as the number of zones to be converted
should be multiple of Ccopy, there can be some zones left unconverted when the remaining number
is less than Ceony). In such cases, any additional conversion will not increase the relative CMR size,
and the gap between the Cache size and total size of NSW-Ranges is minimized.

Swapping before Conversion. When there exist both candidates SMR zones and CMR zones
identified to be converted into the opposite format, we can directly swap the user data between
a CMR-SMR zone pair. Using swapping instead of conversion saves data migration for the format
adjustment procedure. We keep on swapping until one type of conversion candidate zones (CMR
or SMR) is exhausted (lines 7-16, Algorithm 1). Then we perform the format conversion for the

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:14 F. Wu et al.

ALGORITHM 1: H-SMR Adaptive Conversion Algorithm

1: procedure CONVERSION PROCEDURE
2: Riotal < total NSW-Range

3 Ciotal < Cache size
4 exit procedure if Cyoa] > Ryotal > early termination
5: insert all CMR zones into queue gemr
6: insert all SMR zones into queue gsmr
7: while gemyr is not empty and ggmy is not empty do
8: Zemr < remove one CMR zone from gemr with min NSW-Range
9: if r > r* for z¢r then
10: break from the while-loop
11: Zsmr < remove one SMR zone from gy with max NSW-Range
12: if if r < r* for zgpm,, then
13: break from the while-loop
14: swap Zemr and zgmr
15: update Cyo1a) and Rygpal
16: exit procedure if Cioa] = Riotal > early termination
17: while g¢mr has more than Ceony CMR zones do
18: lemr < remove Ceony CMR zones from gemr with smallest NSW-Ranges > lemyr: candidate list
19: if avg r > r* for Iy then
20: exit procedure
21: convert CMR zones in leyy to SMR
22: update Cyota1 and Ryotal
23: exit procedure if Cioa) = Riotal > early termination
24: while ggmr has more than Ceony SMR zones do
25: lsmr < remove Ceony SMR zones from gspmr with largest NSW-Ranges > [gmr: candidate list
26: if avg r < r* for lgpy, then
27: exit procedure
28: convert SMR zones in lgmy to CMR
29: update Cyota1 and Ryotal
30: exit procedure if Cioa] = Riotal > early termination

remainders zones (either line 17-23 or lines 24-30 will happen in Algorithm 1). Swapping can also
be early terminated if the Cache space can grow above the total size of NSW-Ranges (lines 4 and
16, Algorithm 1).

Please note that it is not safe to swap two zones by just reading their data into memory and
write back to the other zone’s location, because such data will be lost if a crash happens before
it is written back. In current design and evaluation, we assume the future H-SMR product will be
equipped with a small amount of nonvolatile memory (NVM) to hold the in-flight zone data
temporarily. However, if future H-SMR hardware does not have extra NVM for this purpose, then
we can always reserve at least one free zone on the disk to hold one copy of the data temporarily
before it is overwritten.

Prioritizing for a Larger Gain of Relative Cache Size. Not every zone is created equal. The
smaller NSW-Range ratio for a CMR zone, the more gain we will get if we convert this CMR zone
into SMR format. Similarly, the larger NSW-Range ratio for an SMR zone, the more gain will be
there if we convert it to CMR format. Therefore, CMR zones with the largest NSW-Range ratios
and SMR zones with the smallest NSW-Range ratios are prioritized to be swapped or converted

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:15

(lines 8, 11, 18, and 25 in Algorithm 1). A better configuration can be achieved in these cases using
less swapping and conversion, incurring less data migration.

More Details about Conversions. According to Reference [15], the host can convert any ex-
tent of physically consecutive zones from one format to the other using H-SMR APIs. However,
the number of zones to be converted should not be too small, because the new format’s physical
zone boundary may not necessarily align with the other format’s boundary and will, therefore,
potentially waste some physical space at the “seam” between the two formats. In the example
shown in Figure 9 where the SMR density gain is 1.5%, the number of consecutive CMR zones to
be converted should be multiple of two, and similarly, the number of consecutive SMR zones to
be converted should be multiple of three. Therefore, when converting SMR candidate zones into
CMR format, a triplet of SMR zones with the largest total size of NSW-Ranges will be converted.
The conversion will stop when the relative Cache size does not increase if the conversion were
performed. If the three SMR zones are scattered in the H-Partition and are not consecutive, then
swapping is needed during the conversion to create the candidate zones to be consecutive, and
then conversion is performed. Please note that one zone of the Cache space will be reclaimed by
migrating the cached data back to the SMR zones. However, the conversion from CMR to SMR
follows a similar procedure. Two consecutive CMR zones are needed to re-format into three SMR
zones. The third CMR zone, which does not need to be physically adjacent to the CMR zone be-
ing converted, will migrate is data to one of the newly formatted SMR zone, and this CMR zone
becomes a new zone of the Cache.

Periodical Format Adjustment. Zone conversions will be performed periodically after each
time window. Such zone format adjustment does not happen frequently. That is, the time window
will not be too small for two reasons. (1) The statistics accumulated should be sufficient and accu-
rate to make the right decisions. (2) A Conversion is an expensive operation, as it includes valid
data migration and necessary Cache eviction if the size of Cache needs to shrink. FluidSMR sets the
length of the time window as one hour by default. If the number of zones of the CMR/SMR/Cache
space remains the same after one time window, then FluidSMR considers that the format configu-
ration is ideal and the workload is stable, and it will double the duration of the next time window.
The time window is at a maximum of 24 hours to match the diurnal pattern commonly observed
in workloads [4, 8]. However, other schemes can also be explored, such as using real-time CPU
cost or IO intensity to determine a reasonable timing to perform the conversion. Once the number
of zones changes across two time windows, FluidSMR considers that there is a phase change of
the workload, the time window is reset to the default value of one hour to speed up the adaption
to the new phase of workload.

5.4 Remarks on Supporting Heavy Allocation

FluidSMR handles heavy allocation (Section 4.4) in a similar logic as the aforementioned CMR-
to-SMR conversion. When FluidSMR needs to create more capacity by CMR-to-SMR conversion,
CMR zones with r < r* are prioritized to be converted as they reduce the relative Cache size
by the least amount. Similarly to the two-directional conversion described above, necessary zone
swapping is needed to make the CMR candidate zones physically consecutive before converting
to SMR as a group. Unlike the CMR-to-SMR conversion that creates a new Cache zone, here, such
a conversion increases the logical capacity and will be used to store more user data.

5.5 Memory Requirement of NSW-Range Tracking

The adaptive conversion algorithm needs to track the NSW-Range of each zone. For every zone,
FluildSMR maintains an NSW-Range counter (4 Byte/zone, counting the number of NSW sectors)
and a sector bitmap (8 KB/zone, tracking if a sector has experienced NSW before). For a 20-TB

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:16 F. Wu et al.

H-SMR drive, the counters’ total size is 320 KB, and the bit map will take roughly 650 MB. In
other words, the memory overhead for NSW-Range tracking is 32.5 MB per TB of disk capacity.
Please note that the NSW-Range counters and bitmaps do not need to be persisted and will be
re-accumulated if any crash or power loss happens.

There can be various approaches to reduce this memory overhead. For example, FluidSMR can
track the NSW-Range with a coarse granularity of 32 KB chunks instead of 4 KB sectors. Bloom
filters [5] can be used instead of a sector bitmap to determine if a sector has been written before.
Interval trees [12] is also a good candidate to represent NSW-Ranges within each zone. We leave
the investigation into the tradeoffs among memory/computation/accuracy of these optimizations
as future work.

6 CACHING AND SWAPPING MANAGEMENT
6.1 Cache Replacement Algorithm

We have tried out the following cache replacement schemes to manage the redirected NSW data
in the CMR on-disk cache. If an SMR write targets the write pointer, then it will be directly issued
to the SMR zone without entering the Cache.

Improved Block-based LRU. A first intuition is to leverage existing caching policies designed
for the main memory (e.g., LRU) to “cache” frequently updated blocks in the Cache. Consequently,
subsequent updates to those data will happen in the CMR zones without introducing additional
SMR update overhead. However, directly adopting those caching policies results in poor perfor-
mance, because cache eviction frequently happens at the block granularity, and each eviction re-
claims one block of free space but triggers one expensive zone read-modify-write. Therefore, we
designed an improved block-based LRU policy that evicts the whole zone containing the victim
block out of the Cache instead of only evicting the victim block. Here evicting a zone means evict-
ing all blocks from the Cache that belongs to that zone. In this case, we pay the same price to
read-modify-write one zone but reclaim more space, and thus the eviction happens less frequently.
The idea of evicting a whole zone instead of individual blocks is seen in the Seagate translation
layer described in Skylight. However, this Improved Block-based LRU follows the recency to de-
termine which zone to evict instead of the logging sequence in the persistent Cache.

In-place FIFO Log. The improved block LRU policy will fragment the Cache’s free space, caus-
ing random IOs that are not friendly to disk drive accesses. To avoid fragmenting the cache space,
we design an in-place FIFO log policy (upper figure in Figure 10) that organizes the redirected data
in a log structure. If already buffered in the log, then redirected data will be in-place updated, be-
cause the Cache is in CMR format. Otherwise, it will be allocated to the log head pointer. Free
space is reclaimed from the log tail pointer by log cleaning, which evicts the zone containing the
tail block (the block at the tail pointer) and advances the tail pointer. Note that if the tail block
has already been evicted, then the tail pointer will be advanced. However, the drawback of an
in-place FIFO log is that it strictly follows the FIFO ordering and does not distinguish different
types of zones. We observe that frequently updated data blocks will come back to the Cache soon
after they were evicted and take up the space that was just freed. In this case, the time consumed
to read-modify-write the original SMR zone is wasted. Therefore, it is beneficial to distinguish
different zones when making eviction decisions.

Loop-back Log. To improve the in-place FIFO policy, we propose a loop-back log policy for
the Cache that identifies hot zones and “re-queues” the data of hot zones from the log tail to
the log head without evicting them (called “loop-back,” see the bottom figure in Figure 10). Similar
techniques to retain hot data in the log is used in FLT design, too [31]. Here we first define an epoch
as the time for the log head pointer to go through a full cycle and come back to the beginning of the

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:17

In-place FIFO Log . hot [
TAIL da

Loop-back Log — evict
e -
clean[c) ] THON "W [ oedw [T

Cache SMR Zones

Fig. 10. Cache Policies: In-place FIFO log allocates redirected NSWs to the head and cleans from the tail by
evicting every block belonging to the same zone as the tail block; Loop-back log distinguishes hot and cold
SMR zones and only evicts data of cold zones out of Cache while keeping hot data in Cache by “re-queuing”
it to the head of the log (loop-back).

Cache. Then if the cached NSW blocks of one SMR zone during the current epoch will be updated
again in the next epoch, then we define this SMR zone as a “hot zone.” In this case, evicting this
hot zone (i.e., migrating the NSW blocks from CMR cache back to the SMR zone) pays the price
of one read-modify-write but gains little space back, so it is better to keep it in the Cache instead
of evicting it. Please note this hot-zone concept is in a posterior sense, because it is impractical
to identify hot zones without knowing the future. However, we can design zone selection policies
based on history to estimate which zones will be the hot zones. Although alternatives exist, we
find that block LRU is simple yet effective in predicting hot zones. Specifically, the block numbers
of all blocks in the Cache are organized into an LRU list. At the beginning of each epoch, zones
that have the blocks only appearing in the MRU half of the list are considered hot.

While the LBA-PBA mapping is cached in the memory for fast lookup, new mapping entries are
periodically persisted to the disk for reliability purposes. The persistent period is set to 30 seconds,
consistent with the Linux pdflush period [40]. Each mapping entries is a triplet of (1ba, pba,
length). We limit the CMR mapping table size overhead (mapping table size/total disk capacity)
to be 25 MB/1 TB. For example, a 20 TB H-SMR drive will at most use 500 MB of the memory
space to keep the mapping entries. If the cache map is full, then CMR cache will trigger cleaning
to make room for new mapping entries to be inserted to the in-memory mapping table. In other
words, cache cleaning will be triggered when CMR Cache is full or the in-memory mapping table
is full, whichever happens first. Such a cache cleaning triggering mechanism based on both the
Cache’s capacity and the Cache’s mapping table capacity is also seen in Seagate SMR drives. One
possible optimization to reduce the memory footprint of the CMR cache mapping table it to only
keep hot caching table entries in the memory, while having an index to find cold mapping entries
that is on disk. The investigation about the performance tradeoft is left as future work.

6.2 Cache Occupancy-based Swapping

As an optimization, in complement to the zone swapping described in Section 5, FluidSMR also
enables a more frequent but light-weight zone swapping within each format adjustment period.
Such swapping introduces less migration overhead than the whole format adjustment procedure
introduced in Section 5 and can fine-tune the performance by swapping the user data between
“hot” SMR zones with “cold” CMR zones.

FluidSMR uses the cache occupancy to determine the swapping priority. Here the cache occu-
pancy of one SMR zone is defined as the actual space taken by the NSWs from the SMR zone in
the Cache. SMR zones taking more space in the Cache will be selected to swap. Different from the
NSW-Range statistics used in Section 5, the space occupancy of a zone in the Cache captures timely
information of the space taken by one zone, and such ephemeral statistics is more suitable for a

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:18 F. Wu et al.

evicted blocks 571 SMR swap candidate
L]

LI ™[ [T 1]

Cache CMR S SMR §;
pace CMR swap candidate pace
o

"« * I A o v o o

Cache CMR Space Lol SMR Space

Fig. 11. Zone-Swap: CMR and SMR swap candidate zones are read out, combined with the updated blocks
evicted from Cache, and written back to each other’s location.

Table 1. MSR Trace Configurations

Total Op. | Write Op. | Write Size | Write Ratio | Max Offset
(Million) | (Million) (GB) (%) (GB)
hm_0 4.0 2.6 20.5 64.50 15.0
prn_1 11.2 2.7 30.8 24.66 413.6
proj_o0 4.2 3.7 144.2 87.52 17.4
proj_1 23.6 2.5 25.6 10.56 880.9
prxy 0 | 125 12.1 53.8 96.94 22.2
srcl_1 45.7 2.2 30.3 4.74 293.6
srcl_2 1.9 1.4 44.1 74.63 8.6
src2_2 1.1 0.8 39.2 69.67 182.1
stg 0 2.0 1.7 15.1 84.81 11.6
ts_0 1.8 1.5 11.3 82.42 23.6
usr_0 2.2 1.3 13.1 59.58 17.1
web_0 2.0 1.4 11.7 70.12 36.4

near-future fine-tuning. The occupancy-based swapping scheme evaluates all zones in the Cache
at the beginning of each epoch (epoch as defined in the loop-back log) and labels the zones with
occupancy above a threshold as “SMR swap candidates” Such SMR zones will be evicted when
encountered by the log tail pointer in log cleaning. CMR zones that were not updated during the
last epoch become “CMR swap candidates” When an SMR swap candidate zone is evicted, it will
be paired up with a CMR swap candidate if available. Then the data in the CMR and SMR candi-
date zones will be read and written back to each other’s location after combining the updated data
evicted from the Cache (Figure 11). Here the zone swapping is integrated with the Cache eviction
such that the write operations of the data evicted from the Cache are saved.

7 EVALUATION
7.1 Experiment Setup and Overall Performance Evaluation

As there are no H-SMR products available, we built an H-SMR simulator (3.0 K LOC C++ and
1.9 K LOC python) with disk models extracted from DiskSim [7]. We followed Ruemmler and
Wilkes [41] to configure the seek time formula. The RPM for this simulated disk is set to be 10025,
and the rotation delay is calculated based on this RPM. The average track size is 2 MB, and the
maximum data transfer rate is set to 300 MB/s. The SMR density gain is 1.5:1, and the zone size is
256 MB. In all the tests, the write/read caches are disabled, and the queue size is set to one.

We use traces from the MSR Cambridge traces [37] that have a write footprint greater than 10
GB and large number of operations for evaluation (Table 1). This is because traces with a smaller

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:19

write footprint and fewer operations do not fill up the cache and will not show a difference in
performance. Traces are replayed as fast as the device can go without referring to the timestamps.

We test the performance of the workload on one H-Partition. To compensate the relative small
LBA ranges of the MSR traces, the physical size of the hybrid partition and the usage is set dif-
ferently according to each experiment’s requirements. We use the max LBA as the basis and use
the usage required by the experiment to calculate the H-Partition’s size. For example, for trace
prn_1 with a max LBA of 413.6 GB, if we want to test the performance under a 90% usage, then
the H-Partition size used in the evaluation would be 413.6 GB/0.9 = 460.0 GB, which is 1840 SMR
zones. Given the mapping size overhead is set to 25 MB per TB of disk capacity (Section 6.1), the
H-Partition’s mapping table quota is 460.0 GB x 25 MB/1 TB = 11.5 MB. Adding the memory
overhead of the zone-mapping table (460.0 GB X 16 KB/1 TB = 7 KB, Section 4.2), and that of
the NSW-Range tracking (460.0 GB X 32.5 MB/1TB = 15.0 MB, Section 5.5), the total memory
requirement is 26.5 MB for this example. Similarly, in each test, all those parameters are set ac-
cording to the corresponding max LBA and the disk usage. As a side note, in this prn_1 example,
the max LBA range is 413.6 GB, whereas the write size is about 10 times smaller (only 30.8 GB, see
Table 1), imposing a relatively light pressure on the NSW handling.

The following schemes are evaluated as follows:

e swap-only: The scheme where only zone-swapping is used to re-locate user data as de-
scribed in Section 2.4;

e +cache-fix:In addition to swap, convert 20% of the remaining CMR area into SMR to create
surplus capacity for a CMR-format on-disk cache, and use block LRU to manage the cache
space, with the format configuration fixed;

e format-adapt: On top of +cache-fix, add adjustment format conversion (Section 5);

e fluid-smr: The final FluidSMR scheme that improves from format-adapt by using the
loop-back caching policy and the occupancy-based zone-swapping;

e pure-cmr: The workload is running against a pure CMR partition, which is free from the
SMR update overhead. Note that this is an ideal case and is not possible in high storage
usage.

7.1.1  Overall Performance under Different Workloads. We test the performance of the compet-
ing schemes under different traces, with the storage usage fixed at 90%. The result is shown in
Figure 12. We can see although swap-only remedies the in-place SMR update overhead by mi-
grating more frequently updated zones to CMR space, the average latencies are still higher than
100 ms. Such a high latency is due to the high overhead of the zone-swapping operation. Besides,
the gain of swapping a zone is that further writes to this zone will not suffer from any SMR up-
date overhead. However, in high storage usage, the benefit of swapping a zone may not be able
to negate the swapping cost, making the performance even worse. In +cache-fix, by introduc-
ing CMR cache, more user data have to reside in SMR zones due to that some CMR area is con-
verted to the SMR area to reserve extra CMR space for caching, but the performance is increased
from swap-only. The performance improvement is because the cache space stores the hot data
(frequently-updated) more efficiently, especially when hot data are distributed in a large number
of zones where swap-only has no way to fit all the zones in the limited CMR space. format-adapt
applies the adjustment format conversion scheme where the format of each zone is no longer
fixed and will be dynamically converted according to the current situation of workload. We can
see for most traces format-adapt outperforms +cache-fix, because the adaptive algorithm can
find a better format configuration that fits the workload. We note that for some of the traces,
e.g., prn_1, format-adapt has longer latency than +cache-fix. This is because the adaptive algo-
rithm involves expensive format conversions and data migration, which may hurt the performance.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:20 F. Wu et al.

Oswap-only O+cache-fix Oformat-adapt ®fluid-smr @all-cmr

prxy_O srcl_1 srcl_ 2 src2 2 stg O ts_0 usr_0  web_0

Avg. Latency (ms)

Trace

Fig. 12. Overall performance of FluidSMR compared with baselines. Note that the log scale in the y-axis.

oswap-only @+cache-fix O format-adapt mfluid-smr mall-cmr
1000 —

100

e e e

70% 80% 90% 99%
Usage

—_

Avg. Latency (ms)
)

Fig. 13. Performance of FluidSMR compared with baselines under different utilization (using trace prn_1).
Note that the log scale in the y-axis.

Besides, the adaptive algorithm takes time to converge to a better configuration, so during
the convergence process, the disk configuration may be unfavorable to the performance. Fi-
nally, fluid-smr outperforms the format-adapt scheme because of the more efficient loop-back
caching algorithm and the fine-tuning by the occupancy-based zone-swapping scheme in between
the format conversion period. Sometimes fluid-smr can perform even better than the ideal pure-
CMR case (e.g., in trace hm_0). This is because fluid-smr has the log-structured Cache that can
convert random writes into sequential ones.

We compared the average latency as the top-line metrics and did not measure the indirect factors
such as write amplification. Write amplification focuses on write performance but cannot capture
the read performance. Besides, write amplification comes with different flavors (number of 10s
versus data amount), emphasizing different factors but not a combined effect. Instead, we choose
to use average latency to show the combined, end-to-end effects of all these factors. Still, the
write amplification can be reflected by the results of write-dominate workloads. For example, in
Figure 12, the workload prxy_0 has a write ratio of 99.94% and still outperforms other schemes.
The average latency of fluid-smr is close to that of all-cmr, the write amplification free baseline,
indicating a very small write amplification.

7.1.2  Overall Performance under Different Usages. We compare the performance of the schemes
with different usages using the trace prn_1 (Figure 13). The performance of swap-only,
+cache-fix, and format-adapt gets degraded as the usage increases. For swap-only, at higher
storage usages, there is less CMR space for swap-only to swap. One zone may get only a few write
hits before it is swapped out of CMR again. For +cache-fix and format-adapt, the performance
decreases at higher usages, since more NSWs are happening but relatively less cache space to oper-
ate, so more Cache replacement occurs. By contrast, the average latency of fluid-smr stayslow as
the usage increases, because its loop-back cache replacement algorithm and the occupancy-based
zone-swapping are more efficient. Therefore, FluidSMR can introduce a small overhead during
eviction even when CMR cache space is relatively small in high storage usages.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:21

Bavg. lat. DOavg. lat. (stable)

EMMMH

fix0.2 fix0.4 fix0.6 fix0.8 adapt
Cache Size Configuration

N
[9)}

— N
wn O

W

(=)

Avg. Latency (ms)
=)

Fig. 14. Comparing fixed cache size vs adaptive cache size via conversion.

7.2 Evaluation of Adaptive Format Configuration

This subsection evaluates the adaptive format configuration’s performance by comparing the adap-
tive format configuration with a series of fixed-format configurations. In the experiment setup, we
first calculate the minimum portion of the SMR area to fulfill the usage. Then as baselines of fix
size configuration, we convert 20%, 40%, 60%, and 80% of the remaining CMR area to make some
extra space for Cache. We denote fix 0.2 for the case where 20% of the remaining CMR area
is converted to the SMR format. Please note that although these baselines’ format configurations
are fixed, the zone data can still be swapped. For a fair comparison, both the fix and adaptive size
configuration schemes use block LRU as the cache replacement policy and adopt the NSW-Range-
based zone-swapping scheme. The adaptive scheme (adapt) starts from an initial configuration
with the minimum SMR area with no Cache space. We set the usage as 90%, and the trace used
here is prn_1.

In Figure 14, we can see from the left bars that fix 0.2 has inferior performance than the
other fixed configurations (fix 0.4, fix 0.6, and fix 0.8), indicating fix ©.2 is not a good
configuration for this workload. Also we found that configurations ranging from fix 0.4 to fix
0.8 all exhibit similar good performance. This is because in some cases, a wide range of configu-
rations can fit the NSW-Range entirely into the cache space. The adapt scheme is able to reduce
the average latency of fix 0.2 by 59%. However, it is still higher than those of the other fixed
configurations (fix 0.4, fix 0.6, and fix 0.8). The reasons are as follows. First, the initial
disk size configuration (i.e., minimum SMR area and no Cache) is not favorable where each NSW
triggers one read-modify write of a whole zone, and thus creates a higher SMR update overhead.
Second, the configuration adaption involves extra I/Os for format conversion and data swapping.
However, when the disk configuration converges to a favorable state, and the adaption operation
is less frequently triggered (Section 5.3), the stable performance (right bars in Figure 14 that mea-
sures the average latency since the fourth day) shows a low latency similar to that of fix 0.4,
0.6, and fix 0.8, indicating the adaptive algorithm can adjust the format configuration of the
H-Partition into a favorable state.

To show direct evidence of the size adaption, we monitor the sizes of SMR space, CMR space,
and Cache space (in a unit of zones) and plot them in Figure 15. In the first 24 hours, there are
more frequent adjustments where CMR space decreases. FluidSMR gradually converts CMR area
to SMR area and creates more Cache space. After 36 hours, the adaption converges and the adjust-
ment frequency is decreased to reduce the adjustment overhead. The adjustment in the beginning
introduces more overhead, but this is necessary for the disk configuration to move away from the
adverse configuration (i.e., no Cache) quickly. Still, there is more research issue on how to pick
a good adjustment frequency that considers the fluctuation of the workload, and we leave the
investigation to future work.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:22 F. Wu et al.
«ox:+CMR —e—SMR -—a—Cache

1000

Num. Zones

W
[
S

¢X.,
AR R - KB 2
0 24 48 72 96 120 144 168
Time (h)

Fig. 15. Real-time size (in #zones) of CMR zones, SMR zones, and CMR Cache during the adaptive process
for trace prn_1.

Another observation from this experiment is that, for tested traces, using a CMR cache with a
fractional size of the H-Partition can produce a quite good performance, and our adaptive config-
uration does not show a great advantage over the fixed configurations. Figure 15 shows a wide
range of optimal configurations (i.e., fix ©.4, fix 0.6, and fix @.8). Such a wide range indi-
cates the write traffic is not intensive so that the NSW-Range is relatively small to be totally fit
in the CMR cache even with some room to wiggle. Given the trace has a small NSW-Range ratio,
the adaptive conversion Algorithm 1 will convert toward the SMR+CMR cache direction. The con-
version direction can be verified in Figure 15, where the CMR zones’ count is shrinking while the
counts of SMR zones and the CMR cache are growing.

Although the fixed configuration has a good performance on the tested traces, such a fixed
configuration is not generic to fit other potential workloads. For write-intensive traces (say, NSW-
Range ratio r is way larger than the break-even point r*, Section 5.2), the adaptive conversion
algorithm will convert in the opposite direction of Figure 15, i.e., it will convert toward the CMR
direction. Otherwise, converting to the SMR+Cache direction will create a cache space that is
not big enough to hold the NSW data, increasing the intensity of the cache eviction and SMR
update overhead. Therefore, FluidSMR can fit both the CMR-favorable workload and the Cache-
favorable workload. Further, FluidSMR can deal with a changing workload by adapting the format
accordingly.

Figure 16 demonstrates how FluidSMR adaptively converts the recording format under a syn-
thesized phase-changing workload. In this experiment, the H-Partition has a total capacity of 428
GB and a usage ratio of 90%, the same as the settings of Figure 15. This workload is write-only
with four phases (100 hours each). The first and the third phases are Cache-favorable, where every
zone has a 20-MB NSW Range (thus a low NSW Range ratio of 7.8%, given a 256-MB zone size).
The second and the fourth phases are CMR-favorable, where the first 80G of zones has an NSW
Range of 240 MB per zone (thus a high NSW-Range ratio of 93.8%). Please note that in the second
and fourth CMR-favorable phase, the 80 GB of zones can fit into the size of the CMR region (85
GB) if the CMR region is not converted into SMR+Cache. However, even if all the CMR region is
converted into SMR+Cache, the total NSW ranges (75 GB) cannot fit into the Cache (30 GB). In
the figure, we can see FluidSMR successfully identifies the changes of workload and adapts the
sizes of CMR, SMR, and Cache accordingly. In the first and third phases, the H-Partition converts
toward the SMR+Cache direction, whereas in the second and fourth phases, the H-Partition is con-
verting in the opposite direction toward the CMR region. To evaluate the performance, we also
run the same phase-change workload against fix-sized baselines fix 0.2, fix 0.4, fix 0.6, and
fix 0.8 (fix-sized baselines are defined in the same way as that in Figure 14). The average latency

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:23

...e--CMR ——SMR —A— Cache

2000

Num. Zones

P .
(9,1 () (9]
S S S
S (=) (=)

0 50 100 150 200 250 300 350 400
Time (h)

Fig. 16. Real-time size (in #zones) of CMR zones, SMR zones, and CMR Cache during the adaptive process
in a four-phase synthesized workload. The first and third phases favor a large cache, and the second and
fourth phases favor a large CMR region.

Oformat-adapt 'impv-lru Ofifo ©loop-back ®fluid-smr
1000

100 f

Nom llen s

hm_0 src2_2 stg 0

—_—

Avg. Latency (ms)
S

Trace

Fig. 17. Cache Optimization performance of FluidSMR compared with baselines. Please note the log scale
in the y-axis.

numbers of fix 0.2, fix 0.4, fix 0.6, and fix 0.8 are all higher than that of FluidSMR, by
11.2%, 5.3%, 17.5%, and 33.8% respectively. This is because a fixed format can fit at most one of the
two types—CMR-favorable or Cache-favorable workload—but cannot fit both. Therefore, a fix for-
mat configuration leads to sub-optimal performance. On the contrary, FluidSMR can change the
recording format with the workload and find the sweet-spot in both cases, and thus can produce
better performance than any fix-format configuration.

Besides the benefit of being generic for various Hybrid SMR workloads, for the traditional non-
Hybrid SMR drives without the conversion capability, the adaptive conversion algorithm can also
help to figure out a reasonable CMR/SMR/Cache configuration for SMR disk vendors when design-
ing the disk product for customers with their particular workload.

7.3 Performance Analysis Comparing FluidSMR and FormatAdapt

In this section, we evaluate the effectiveness of each of the optimization in FluidSMR (fluid-smr)
compared to format-adapt. First, on top of format-adapt we apply the improved block-based
LRU policy, denoted as imprv-1ru). Then we optimize the improved LRU to in-place FIFO pol-
icy (fifo), and then to loop-back log policy (Loop-back). Finally, we adopt the more efficient
occupancy-based zone-swapping to get the final scheme fluid-smr. The the usage is set to 99.9%
for a stress test. In such usage, the majority of the H-Partition is going to be in SMR format
to hold the user data. The representative results (trace hm_0, src2_2, and stg_0) are plotted in
Figure 17.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:24 F. Wu et al.

,,,,, improved-lru = fifo ®loop-back

O

hm 0 pm 1 proj 0 proj 1 prxy O srcl 1 srcl 2 src2 2 stg 0 ts O usr 0 web 0

—_
(=
(=]

Avg. Latency (ms)
=)

—

Fig. 18. Caching policy evaluation of FluidSMR. Zone-swapping and format conversion are disabled to rule
out irrelevant influencing factors. Please note the log scale in the y-axis.

As seen in the figure, imprv-1ru has a better performance for the workloads of src2_2 and
stg_0 (27% and 7% reduction in average latency). This is because the improved block-based LRU
reclaims more space using one zone re-write. However, imprv-1ru has a slightly inferior perfor-
mance in trace hm_0, because the evicted blocks are accessed again in a short time and get fetched
back to the cache. So, it does not create extra free cache space but increases the migration cost.
fifo reduces the average latency from the improved block-based LRU by 1.9%, 2.0%, and 1.7X in
the traces hm_0, src2_2, and stg_0 respectively, because it does not fragment the on-disk caching
space. While the loop-back log (1oop-back) performs similar to fifo in workloads hm_0 and stg_o,
it is able to reduce the latency by 3.8% for trace src2_2. Finally, although fluid-smr has a similar
performance with loop-back for stg_0, it reduces the latency by 3.9% and 20.5% for traces hm_0
and src2_2 respectively, because it leverages the occupancy-based zone-swapping for fine-tuning
the data allocation during the time between two format conversion processes.

7.4 Caching Policy Evaluation

In this section, we evaluate the loop-back log caching policy (Loop-back) against two caching
baselines: the improved block-based LRU (impr-1ru), and the in-place FIFO policy (fifo). Zone-
swapping and format conversion are disabled to rule out irrelevant influencing factors. The usage
is set to 99% for stress test (same as Section 7.3), and the Cache size is set to 0.02% of the SMR
region size. The average latency is measured and summarized in Figure 18.

As seen in the figure, compared with impr-1ru, fifo reduces the average latency by from 1.4x
(rsrch_o, write footprint 10 GB) to 45X (proj_o, write footprint 144 GB). The difference in per-
formance improvement is due to the difference in write footprint: The larger the write footprint,
the more data are redirected to Cache, and the greater potential for the Cache to improve the per-
formance. Comparing loop-back and fifo, loop-back shows positive overall impact (average
latency reduction of 1.1% among all traces). loop-back is able to reduce the latency from fifo
in 75% of the traces (with max improvement at prn_1, a 4.4% reduction of average latency and
7% decrease in the zone read-modify-writes). There are three (out of twelve) traces show a slight
regression in performance, because the loop-back policy requires more resource to predict the
hot zones than the simple FIFO scheme and the extra cost offsets the benefit in these cases. How-
ever, the greatest regression is still small—an 0.75% increase in average latency (ts_0). Overall,
loop-back policy shows positive impact, and further investigation on better ways to distinguish
hot zones in loop-back policy and how to adaptively fall back to standard FIFO according to the
workload characteristics are left as future work.

7.5 Quantized Migration Evaluation

In this subsection, we evaluate the quantized migration’s effectiveness by comparing the perfor-
mance of the application I0s with and without concurrent valid migration IOs using trace proj_1.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:25

200

300

- T T — T T -
£ 150 | normal I/0, no conversion 1/0 latency 1 200 §
3 100 o
g 50l 4100 2
za " . ’ N
— 0 0
3600 3800 4000 4200 4400 4600
& 200 ; — ! : : 300
£ 150 | acceptable incr. of lat. 60ms 1/0 latency 5
= Zones to Convert —&— +{ 200 Q
3 100 o
5 | 4100 2
£ 50 S
8 0 e 4 > 1o N
3600 3800 4000 4200 4400 4600
—. 200 . — | ; ; 300
g 150 | acceptable incr. of lat. 100ms I/O latency - 5
= . Zones to Convert —&— - 200 8
100 - M
S s0l & & 1 100 2
© . . Q
s N

. A : . .. ad
3600 3800 4000 4200 4400 4600
Time (second)

Fig. 19. Evaluating the quantized migration mechanism. Larger acceptable increase of latency leads to
shorter conversion time.

In Figure 19, the latency of every request (left y-axis) is depicted as a black dot. The top figure
shows the normal IO performance without a space extension request (hence no conversion or
data migration happening), and the middle and bottom figures show the cases where the applica-
tion IO is affected by the zone conversion and valid data migration. Specifically, the application
has requested 25 GB of new space and the new 25 GB of empty guard range has to be created by
converting 200 CMR zones into SMR format and migrating the valid data along. The application
specifies acceptable increase of latency for every application IO based on their requirement of qual-
ity of services (Section 4.5). We test out two cases with the acceptable increase of latency set to 60
ms and 100 ms by the user. We also plot the number of remaining zones to convert and migrate
(red line, right y-axis) to indicate the start and the end of the conversion.

The results show that FluidSMR performs the conversion and migration efficiently while con-
trolling the increase of latency within the given bound. With a lower acceptable increase of latency
(60 ms, middle figure), FluidSMR finishes the conversion and migration in a longer time (601 s). In
contrast, the conversion time reduces to 432 s when the acceptable increase of latency rises to
100 ms. This is quite efficient given the fact that a blocking guard range repletion (meaning the
drive blocks application IOs and exclusively performs conversion and valid data migration) also
takes ~400 s to convert and migrate the same number of zones but blocks the application IOs for
over 6 minutes.

8 RELATED WORK
8.1 Device-level Design for SMR

Caveat-Scriptor [29] exploits the interference model of SMR update in a finer-granularity. Amer et
al. [2, 3] focused on various design dimensions to consider regarding SMR data layout management
such as band usage and cleaning options. H-SWD [32, 38] introduces hot/cold data identification
in data placement decisions using a circular log layout. Besides sector level solutions, static [24]
and dynamic [25] track-level mapping are also exploited to improve SMR performance. The even-
tual establishment of a standard zoned block device interface [26, 27] enables the investigation of
three SMR models, namely, drive-managed (DM), host-managed (HM), and host-aware (HA).
Skylight [1] studies the internals of the DM-SMR model using a unique hole-drilling technique to
observe the disk arm movements inside the SMR drive. ZEA [35] explored the data management
and application design of the HM-SMR model in storage systems and created a simplified file sys-
tem to interface with LevelDB to demonstrate the effectiveness of the design. FluidSMR differs

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



32:26 F. Wu et al.

from these existing studies in that it handles the unique H-SMR issues, such as the conversion
between CMR and SMR format in a hybrid SMR drive.

8.2 Caching Schemes in Magnetic Recording and Flash

Several studies use write cache inside the drive to reduce the SMR write overhead. An indirection
system [10] proposed to use a shingled region as a set-associative cache for SMR writes and used
a collection of algorithms to maintain an LBA-to-PBA mapping. Hall et al. [23] designed an E-
region to serve as a buffer for accepting non-sequential writes that were originally targeted to the
larger I-region. The Seagate translation layer manages a persistent cache as a log structure and
each time evict the FIFO block and all the other block from the same SMR zone. Host Controlled
Buffer [51, 54] and Virtual Persistent Cache [58, 59] leverage SMR zones to buffer and reform the
write workload into SMR friendly write stream for HA-SMR drives. FluidSMR differs from these
works in that it uses the CMR area instead of the SMR area as the cache. This has the benefit of
updating in-place during write-hits, and has more flexibility when making eviction decisions. In
the Flash setting, FASTer FTL [31] exploited the write requests’ skewness and used the second-
chance policy to retain hot data in the log instead of merging them back to their corresponding
data blocks. FluidSMR’s CMR cache differs in that one NSW can be repetitively updated in the
same CMR location to reduce the SMR update overhead, while Flash’s block-based log in FASTer
cannot leverage such benefit of in-place updates. Interlaced Magnetic Recording (IMR) has
update issues similar to SMR, and caching schemes for IMR has been investigated in References
[17, 18, 22, 53, 55]. For example, TrackLace [53] leveraged unallocated top tracks as a write cache
to indirect the updates aiming at the bottom tracks. Hajkazemi et al. [22] designed track-based
translation layers for IMR drives and used a small range of non-interlaced bottom-only tracks
as a persistent cache. Our work differs from the existing work in that we focus on the unique
conversion characteristic and 10 handling issues of the incipient hybrid SMR technology. Besides,
existing caching schemes do not consider an on-disk cache with dynamic sizes.

8.3 Designs of SMR-based Applications

Filesystem-based solutions like HISMRfs[28] use Solid State Drives (SSDs) to store frequently up-
dated file system metadata and stores data in SMR drives. ext-lazy optimizes the ext4 file system
by reducing the NSWs due to metadata updates. There are also investigations about using SMR
drives in key-value stores. SMRDB [39] is a filesystem free, direct-on-disk solution that manages
the underlying disk in an SMR-friendly manner. Yao et al. designed GearDB [60] that leverages
the gear compaction technique to achieve a GC-free Key-Value Store. SMR drives are also used in
object stores such as SMORE [33, 34], which writes data and metadata in a log-structured format
across multiple SMR drives, and stores object index on a flash device. FluidSMR can be adapted to
those SMR-based applications if they use the emerging H-SMR drives.

8.4 Data Migration in Hybrid Storage System and RAID Systems

A hybrid storage system, consisting of both fast yet expensive storage devices and slow but in-
expensive ones, can provide cost-effectiveness and high-performance [11, 14, 21, 30, 43]. Ge et al.
analyzed enterprise block IO traces and proposed ChewAnalyzer that does data chunk placement
across multiple storage pools [19]. TDDEFS [9] is a two-tier storage system where data is dedupli-
cated before migrating to the slower tier. As SMR drives are especially sensitive to workloads with
updates, people try to team them up with SSDs to alleviate the performance impact of NSWs by
relocating hot data to the SSD tier [45, 56]. ZoneTier [57] uses the SSD as both a faster storage
tier and a cache to reduce the NSWs to SMR drives. FluidSMR differs in that it leverages H-SMR’s
unique property to create CMR caching space and does not require additional fast storage devices.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



FluidSMR: Adaptive Management for Hybrid SMR Drives 32:27

Data migration is also widely used in the RAID systems [47-49, 63, 64]. Zhang et al. [62] designed
SLAS the uses both the reordering window and the sliding window to manage data migration. To
speed up the data migration during RAID-5 capacity expansion, Mao et al. [36] proposed parity-
based migration that only migrates blocks from a special parallelogram with one side consisting
of only parity blocks. Code 5-6 [50] focused on the RAID level migration that converts an existing
RAID-5 to a RAID-6. Code 5-6 used a novel MDS code to combine a new dedicated parity column
with the original RAID-5 layout. FluidSMR differs in that it makes data placement decisions based
on the CMR/SMR difference instead of the RAID-specific data layout.

9 CONCLUSION

The emerging hybrid SMR drives with a mixture of CMR and SMR zones provides the flexibil-
ity to convert the disk format on demand. We design and implement FluidSMR, an adaptive data
and space management scheme that hides the H-SMR details and presents an extendable space to
the application. FluidSMR supports a growing usage by a two-phase allocation design. With the
proactive and quantized migration mechanisms, FluidSMR can reduce the response time of space
allocation and limit the impact on the application IOs. Besides, FluidSMR can adjust the format
configuration dynamically by adaptive conversion according to a workload’s current situation. Fi-
nally, FluidSMR leverages the proposed loop-back caching and occupancy-based zone-swapping
scheme to further reduce the overhead of handling NSWs. Evaluations show that FluidSMR can
effectively adjust the cache size and reduce the average IO latency compared with the baseline
schemes under different scenarios. It also demonstrates that FluidSMR can perform a space allo-
cation request efficiently with a controllable tradeoff between the valid data migration and the
application IOs.

REFERENCES

[1] Abutalib Aghayev, Mansour Shafaei, and Peter Desnoyers. 2015. Skylight—A window on shingled disk operation. ACM
Trans. Stor. 11, 4, Article 16 (Oct. 2015), 28 pages. https://doi.org/10.1145/2821511

[2] Ahmed Amer, JoAnne Holliday, Darrell D. E. Long, Ethan L Miller, Jehan-Francois Paris, and Thomas Schwarz. 2011.
Data management and layout for shingled magnetic recording. IEEE Trans. Magn. 47, 10 (2011), 3691-3697.

[3] Ahmed Amer, Darrell D. E. Long, Ethan L. Miller, J.-F. Paris, and S. J. T. Schwarz. 2010. Design issues for a shingled
write disk system. In Proceedings of the IEEE Conference on Mass Storage Systems and Technologies (MSST’10).

[4] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan. 2013. LinkBench: A database
benchmark based on the Facebook social graph. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. 1185-1196.

[5] Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 7 (1970),
422-426.

[6] Bill Boyle and Curtis E. Stevens. [n.d.]. Realms APL Retrieved from http://www.t10.org/cgi-bin/ac.pl?t=d&f=17-158r1.
pdf.

[7] John S. Bucy, Jiri Schindler, Steven W. Schlosser, and Gregory R. Ganger. 2008. The disksim Simulation Environment
Version 4.0 Reference Manual (cmu-pdl-08-101). Parallel Data Laboratory (2008), 26.

[8] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. 2020. Characterizing, modeling, and benchmarking
RocksDB key-value workloads at Facebook. In Proceedings of the 18th USENIX Conference on File and Storage Technolo-
gies (FAST’20). 209-223.

[9] Zhichao Cao, Hao Wen, Xiongzi Ge, Jingwei Ma, Jim Diehl, and David H. C. Du. 2019. TDDFS: A tier-aware data
deduplication-based file system. ACM Trans. Stor. 15, 1 (2019), 1-26.

[10] Yuval Cassuto, Marco A. A. Sanvido, Cyril Guyot, David R. Hall, and Zvonimir Z. Bandic. 2010. Indirection systems
for shingled-recording disk drives. In Proceedings of the IEEE Conference on Mass Storage Systems and Technologies
(MSST’10).

[11] Feng Chen, David A. Koufaty, and Xiaodong Zhang. 2011. Hystor: Making the best use of solid state drives in high
performance storage systems. In Proceedings of the International Conference on Supercomputing. ACM, 22-32.

[12] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf. 1997. Computational geometry. In Com-
putational Geometry. Springer, 1-17.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.


https://doi.org/10.1145/2821511
http://www.t10.org/cgi-bin/ac.pl?t=d&f=17-158r1.pdf

32:28 F. Wu et al.

[13] Dropbox. 2018. Extending Magic Pocket Innovation with the First Petabyte Scale SMR Drive Deployment. Retrieved
November 2019 from https://blogs.dropbox.com/tech/2018/06/extending-magic-pocket-innovation-with-the-first-
petabyte-scale-smr-drive-deployment/.

[14] Ziqi Fan, Fenggang Wu, Jim Diehl, David H. C. Du, and Doug Voigt. 2018. CDBB: An NVRAM-based burst buffer
coordination system for parallel file systems. In Proceedings of the High Performance Computing Symposium. Society
for Computer Simulation International, 1.

[15] Timothy Feldman. [n.d.]. Flex Overview. Retrieved from http://t13.org/Documents/UploadedDocuments/docs2018/
f17156r0-Flex_Overview.pdf.

[16] Tim Feldman. 2018. Flex dynamic recording. USENIX ;login: 43, 1 (2018).

[17] Kaizhong Gao, Wenzhong Zhu, and Edward Gage. 2016. Write management for interlaced magnetic recording devices.
US Patent 9,508,362.

[18] Kaizhong Gao, Wenzhong Zhu, and Edward Gage. 2017. Interlaced magnetic recording. US Patent 9,728,206.

[19] Xiongzi Ge, Xuchao Xie, David H. C. Du, Pradeep Ganesan, and Dennis Hahn. 2018. Chewanalyzer: Workload-aware
data management across differentiated storage pools. In Proceedings of the IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’18). IEEE, 94-101.

[20] Google. [n.d.]. Dynamic Hybrid-SMR: An OCP Proposal to Improve Data Center Disk Drives. Retrieved from https:
//blog.google/products/google-cloud/dynamic-hybrid-smr-ocp-proposal-improve-data-center-disk-drives/.

[21] Jorge Guerra, Himabindu Pucha, Joseph S. Glider, Wendy Belluomini, and Raju Rangaswami. 2011. Cost effective stor-
age using extent based dynamic tiering. In Proceedings of the USENIX Conference on File and Storage TechnologiesFAST,
Vol. 11. 20-20.

[22] Mohammad Hossein Hajkazemi, Ajay Narayan Kulkarni, Peter Desnoyers, and Timothy R. Feldman. 2019. Track-
based translation layers for interlaced magnetic recording. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC’19). 821-832.

[23] David Hall, John H. Marcos, and Jonathan D. Coker. 2012. Data handling algorithms for autonomous shingled magnetic
recording hdds. IEEE Trans. Magn. 48, 5 (2012), 1777-1781.

[24] Weiping He and David H. C. Du. 2014. Novel address mappings for shingled write disks. In Proceedings of the HotStor-
age’l4.

[25] Weiping He and David H. C. Du. 2017. SMaRT: An approach to shingled magnetic recording translation. In Proceedings
of the 15th USENIX Conference on File and Storage Technologies (FAST’17).

[26] INCITS T10 Technical Committee. 2015. Information Technology—Zoned Block Commands (ZBC). Retrieved from
http://www.t10.org/drafts.htm.

[27] INCITS T13 Technical Committee. [n.d.]. Zoned-device ATA Command Set (ZAC) working draft.

[28] Chao Jin, Wei-Ya Xi, Zhi-Yong Ching, Feng Huo, and Chun-Teck Lim. 2014. HiSMRfs: A high performance file system
for shingled storage array. In Proceedings of the 30th Symposium on Mass Storage Systems and Technologies (MSST’14).
1-6. https://doi.org/10.1109/MSST.2014.6855539

[29] Saurabh Kadekodi, Swapnil Pimpale, and Garth A. Gibson. 2015. Caveat-scriptor: Write anywhere shingled disks. In
Proceedings of the ACM Workshop on Hot Topics in Storage and File Systems (HotStorage’15).

[30] Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Piotr Berman, and Anand Sivasubramaniam. 2011. HybridStore: A
cost-efficient, high-performance storage system combining SSDs and HDDs. In Proceedings of the IEEE 19th Annual
International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems. IEEE,
227-236.

[31] Sang-Phil Lim, Sang-Won Lee, and Bongki Moon. 2010. FASTer FTL for enterprise-class flash memory SSDs. In Pro-
ceedings of the International Workshop on Storage Network Architecture and Parallel I/Os (SNAPI'10). IEEE, 3-12.

[32] Chung-L Lin, Dongchul Park, Weiping He, and David H. C. Du. 2012. H-SWD: Incorporating hot data identification
into shingled write disks. In Proceedings of the 20th IEEE International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS’12).

[33] Peter Macko, Xiongzi Ge, John Haskins Jr, James Kelley, David Slik, Keith A. Smith, and Maxim G. Smith. 2017. SMORE:
A Cold Data Object Store for SMR Drives (Extended Version). arXiv:1705.09701. Retrieved from https://arxiv.org/abs/
1705.09701.

[34] Peter Macko, Xiongzi Ge, J. Kelley, D. Slik, et al. 2017. SMORE: A cold data object store for SMR drives. In Proceedings
of the 33rd International Conference on Massive Storage Systems and Technology (MSST’17).

[35] Adam Manzanares, Noah Watkins, Cyril Guyot, Damien LeMoal, Carlos Maltzahn, and Zvonimr Bandic. 2016. ZEA,
A data management approach for SMR. In Proceedings of the 8th USENLX Workshop on Hot Topics in Storage and File
Systems (HotStorage’16).

[36] Yu Mao, Jiguang Wan, Yifeng Zhu, and Changsheng Xie. 2014. A new parity-based migration method to expand
RAID-5. [EEE Trans. Parallel Distrib. Syst. 25, 8 (2014), 1945-1954.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.


https://blogs.dropbox.com/tech/2018/06/extending-magic-pocket-innovation-with-the-first-petabyte-scale-smr-drive-deployment/
http://t13.org/Documents/UploadedDocuments/docs2018/f17156r0-Flex_Overview.pdf
https://blog.google/products/google-cloud/dynamic-hybrid-smr-ocp-proposal-improve-data-center-disk-drives/
http://www.t10.org/drafts.htm
https://doi.org/10.1109/MSST.2014.6855539
https://arxiv.org/abs/1705.09701

FluidSMR: Adaptive Management for Hybrid SMR Drives 32:29

(37]
(38]
(39]
(40]

[41]
[42

—

(43]
(4]

[45]

[47]
(48]

[49]

(50]
[51]

[52]

(53]
(54]

(55

[

[56]

[57]

(58]

(59]

[60]

(61]

(62]

Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008. Write off-loading: Practical power management
for enterprise storage. ACM Trans. Stor. 4, 3 (2008), 10.

Dongchul Park, Chung-I Lin, and David H. C. Du. 2012. H-SWD: A novel shingled write disk scheme based on hot
and cold data identification. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’12).
Rekha Pitchumani, James Hughes, and Ethan L. Miller. 2015. SMRDB: Key-value data store for shingled magnetic
recording disks. In Proceedings of the 8th ACM International Systems and Storage Conference. ACM, 18.

Goldwyn Rodrigues. 2014. Flushing out pdflush. Retrieved from https://lwn.net/Articles/326552/.

Chris Ruemmler and John Wilkes. 1994. An introduction to disk drive modeling. Computer 27, 3 (1994), 17-28.
Seagate Technology. [n.d.]. New Flex Dynamic Recording Method Redefines the Data Center Hard Drive. Retrieved
from https://blog.seagate.com/intelligent/new-flex-dynamic-recording-method-redefines-data-center-hard-drive/.
John D. Strunk. 2012. Hybrid aggregates: Combining SSDs and HDDs in a single storage pool. ACM SIGOPS Operat.
Syst. Rev. 46, 3 (2012), 50-56.

Timothy Feldman. 2017. Flex Device Interface. Retrieved March 2020 from http://t13.org/Documents/Uploaded
Documents/docs2018/f18101r0-Flex_Device_Interface.pdf.

Chunling Wang, Dandan Wang, Yupeng Chai, Chuanwen Wang, and Diansen Sun. 2017. Larger, cheaper, but faster:
SSD-SMR hybrid storage boosted by a new SMR-oriented cache framework. In Proceedings of the IEEE Symposium
Mass Storage Systems and Technology(MSST’17).

Western Digital. [n.d.]. Dynamic Hybrid SMR. Retrieved from https://blog.westerndigital.com/dynamic-hybrid-smr/.
John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. 1996. The HP AutoRAID hierarchical storage system.
ACM Trans. Comput. Syst. 14, 1 (1996), 108-136.

Chentao Wu and Xubin He. 2012. GSR: A global stripe-based redistribution approach to accelerate RAID-5 scaling. In
Proceedings of the 41st International Conference on Parallel Processing. IEEE, 460-469.

Chentao Wu, Xubin He, Jizhong Han, Huailiang Tan, and Changsheng Xie. 2012. SDM: A stripe-based data migration
scheme to improve the scalability of RAID-6. In Proceedings of the IEEE International Conference on Cluster Computing.
IEEE, 284-292.

Chentao Wu, Xubin He, Jie Li, and Minyi Guo. 2015. Code 5-6: An efficient MDS array coding scheme to accelerate
online RAID level migration. In Proceedings of the 44th International Conference on Parallel Processing. IEEE, 450-459.
Fenggang Wu, Ziqi Fan, Ming-Chang Yang, Baoquan Zhang, Xiongzi Ge, and David H. C. Du. 2017. Performance
evaluation of host aware shingled magnetic recording (HA-SMR) drives. IEEE Trans. Comput. 66, 11 (2017), 1932-1945.
Fenggang Wu, Bingzhe Li, Zhichao Cao, Baoquan Zhang, Ming-Hong Yang, Hao Wen, and David H. C. Du. 2019.
ZoneAlloy: Elastic data and space management for hybrid SMR drives. In Proceedings of the 11th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage’19).

Fenggang Wu, Bingzhe Li, Baoquan Zhang, Zhichao Cao, Jim Diehl, Hao Wen, and David HC Du. 2020. Tracklace:
Data management for interlaced magnetic recording. IEEE Transactions on Computers 70, 3 (2020), 347-358.
Fenggang Wu, Ming-Chang Yang, Ziqi Fan, Baoquan Zhang, Xiongzi Ge, and David H.C. Du. 2016. Evaluating host
aware SMR drives. In Proceedings of the 8th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’16).
Fenggang Wu, Baoquan Zhang, Zhichao Cao, Hao Wen, Bingzhe Li, Jim Diehl, Guohua Wang, and David H. C. Du.
2018. Data management design for interlaced magnetic recording. In Proceedings of the 10th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage’18).

Wenjian Xiao, Huanging Dong, Liuying Ma, Zhenjun Liu, and Qiang Zhang. 2016. HS-BAS: A hybrid storage system
based on band awareness of Shingled Write Disk. In Proceedings of the IEEE 34th International Conference on Computer
Design (ICCD’16). IEEE, 64-71.

Xuchao Xie, Liquan Xiao, and David H. C. Du. 2019. ZoneTier: A zone-based storage tiering and caching co-design to
integrate SSDs with SMR drives. ACM Trans. Stor. 15, 3 (2019), 19.

Ming-Chang Yang, Yuan-Hao Chang, Fenggang Wu, Tei-Wei Kuo, and David H. C. Du. 2017. Virtual persistent cache:
Remedy the long latency behavior of host-aware shingled magnetic recording drives. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’17). IEEE, 17-24.

Ming-Chang Yang, Yuan-Hao Chang, Fenggang Wu, Tei-Wei Kuo, and David H. C. Du. 2018. On improving the write
responsiveness for host-aware SMR drives. IEEE Trans. Comput. 68, 1 (2018), 111-124.

Ting Yao, Jiguang Wan, Ping Huang, Yiwen Zhang, Zhiwen Liu, Changsheng Xie, and Xubin He. 2019. GearDB: A
GC-free key-value store on HM-SMR drives with gear compaction. In Proceedings of the 17th USENIX Conference on
File and Storage Technologies (FAST’19). 159-171.

B. Zhang, M. Yang, X. Xie, and D. H. C. Du. 2020. Idler: I/O workload controlling for better responsiveness on host-
aware shingled magnetic recording drives. IEEE Trans. Comput. (2020), 1-1. https://doi.org/10.1109/TC.2020.2966194
Guangyan Zhang, Jiwu Shu, Wei Xue, and Weimin Zheng. 2007. SLAS: An efficient approach to scaling round-robin
striped volumes. ACM Trans. Stor. 3, 1 (2007), 3—es.

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.


https://lwn.net/Articles/326552/
https://blog.seagate.com/intelligent/new-flex-dynamic-recording-method-redefines-data-center-hard-drive/
http://t13.org/Documents/UploadedDocuments/docs2018/f18101r0-Flex_Device_Interface.pdf
https://blog.westerndigital.com/dynamic-hybrid-smr/
https://doi.org/10.1109/TC.2020.2966194

32:30 F. Wu et al.

[63] Guangyan Zhang, Weiman Zheng, and Jiwu Shu. 2009. ALV: A new data redistribution approach to RAID-5 scaling.
IEEE Trans. Comput. 59, 3 (2009), 345-357.

[64] Weimin Zheng and Guangyan Zhang. 2011. Fastscale: Accelerate raid scaling by minimizing data migration. In Pro-
ceedings of the USENIX Conference on File and Storage Technologies (FAST’11). 149-161.

Received May 2020; revised February 2021; accepted May 2021

ACM Transactions on Storage, Vol. 17, No. 4, Article 32. Publication date: October 2021.



