
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022 559

FineDIFT: Fine-Grained Dynamic Information Flow
Tracking for Data-Flow Integrity Using Coprocessor
Kejun Chen, Orlando Arias, Qingxu Deng , Member, IEEE, Daniela Oliveira , Xiaolong Guo , Member, IEEE,

and Yier Jin , Senior Member, IEEE

Abstract— Dynamic Information Flow Tracking (DIFT) is a
technique that facilitates run-time data-flow analysis on a running
process, allowing a system to overcome the limitations of finding
data dependencies statically at compilation time. DIFT serves
as the backbone for applications including data-flow integrity
(DFI). However, previous uses of DIFT towards DFI often have
large overhead in terms of hardware, software or both, and often
cannot provide fine-granularity tracking for software object, such
as variables. To address these limitations, we present FineDIFT as
a DFI framework which utilizes DIFT to generate a live data-flow
graph of a running process and perform hardware-based assisted
analysis at fine-granularity, thus being able to enforce the
application’s Data-Flow Graph (DFG). We provide a sample
implementation on a RISC-V core with a performance overhead
of 5.03% for BEEBS benchmarks and hardware overhead of
6% LUTs and 8% Flip-Flops in the FPGA implementation,
if excluding the Content-Addressable Memory (CAM) like struc-
ture used for metadata storage. With CAM-like structure being
synthesized using FPGA logic, the total hardware overhead is
≈2× LUTs and 33% Flip-Flops compared to the original RISC-V
core. We also use the real-world application and customized
vulnerable application to demonstrate the effectiveness of the
proposed framework in protecting computing systems.

Index Terms— RISC-V, information flow tracking, data-flow
integrity.

I. INTRODUCTION

DATA-FLOW integrity (DFI) is a general purpose defense
to enforce that data usage in an application follows the

intended data-flow graph (DFG) [1]. This ensures that data is
not misused as the program executes. For example, a memory
vulnerability can be exploited to alter a code pointer or a

Manuscript received July 29, 2021; revised November 7, 2021 and
December 26, 2021; accepted January 7, 2022. Date of publication Janu-
ary 19, 2022; date of current version February 8, 2022. This work was
supported in part by the National Science Foundation under Grant CNS-
1801599 and Grant CCF-2019310, in part by the National Natural Science
Foundation of China under Grant 62072085 and Grant U1908212, and in part
by the Liaoning Revitalization Talent Program under Grant XLYC1902017.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Georg Sigl. (Corresponding author: Yier Jin.)

Kejun Chen and Qingxu Deng are with the Department of Computer Science
and the Engineering School, Northeastern University, Shenyang 110169,
China (e-mail: kejunchen@stumail.neu.edu.cn; dengqx@mail.neu.edu.cn).

Orlando Arias, Daniela Oliveira, and Yier Jin are with the Depart-
ment of Electrical and Computer Engineering, University of Florida,
Gainesville, FL 32611 USA (e-mail: orlandoa@ufl.edu; daniela@ece.ufl.edu;
yier.jin@ece.ufl.edu).

Xiaolong Guo is with the Department of Electrical and Computer Engi-
neering, Kansas State University, Manhattan, KS 66506 USA (e-mail:
guoxiaolong@ksu.edu).

Digital Object Identifier 10.1109/TIFS.2022.3144868

critical variable which would affect the execution of a process.
By enforcing the DFG, DFI presents such data corruption.

A DFI policy can be static, where the DFG of the
application is obtained by performing analysis on the
application [2]–[4]. These approaches instrument software to
aid with the tracking of data-flow by inserting static checks as
the code executes. Unfortunately, static analysis has limitations
that result from the approach ultimately having to solve the
decision problem resulting from pointer analysis [5]. As a
result, dynamic DFI policies aim to construct an application’s
DFG dynamically. For this purpose, Dynamic Information
Flow Tracking (DIFT) provides a promising avenue for build-
ing a DFG at runtime.

The software instrumentation required by software-based
DIFT approaches introduce large performance
overheads [2], [3]. Meanwhile, hardware-assisted designs
have been introduced to alleviate the performance penalty.
However, previous hardware-based DIFT designs suffer
from some limitations such as expensive modifications to
the processor’s pipeline [6]–[10], utilization of inefficient
memory systems [6], [8], [10], or implementing inaccurate
DFI policies [7], [10], [11]. For example, the single bit tag
used in [4], [6], [7], [12] results in ambiguity at runtime.
Different regions of memory cannot be differentiated from
each other creating, in effect, a taint map of the application.
An adversary is then capable of using a memory vulnerability
to change data in an already tainted area of memory while
the policy is unable to detect it.

To address these shortcomings, we present FineDIFT,
a hardware-based DFI framework which DIFT to generate a
live data-flow graph. We implement FineDIFT in a coproces-
sor, avoiding expensive modifications to existing architectures.
FineDIFT is intrinsically designed to individually identify
memory regions and enforce per-region rules on how they
are utilized. To handle the amounts of metadata required for
identification and tracking of memory regions, FineDIFT uses
a novel storage mechanism which reduces the size of the
storage element required to keep live data-flow information by
keeping range information instead of tracking each individual
address. Further, our storage element is also capable of fast
lookups and checks of metadata at runtime, eliminating the
need to stall the main processor while checks take place.
We implement and evaluate FineDIFT as a coprocessor for
a RISC-V core, demonstrating its functionality, performance,
and security provisions in a Digilent Arty-7 FPGA board.

1556-6021 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



560 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

The main contributions of the paper are listed as follows:
• A thorough examination of previous DFI approaches and

a discussion of their limitations.
• The introduction of FineDIFT, a fine-grained DFI frame-

work to detect security violation at runtime. This frame-
work incorporates a coprocessor to support all proposed
DIFT operations. The coprocessor also provides flexible
tag management for programmers to protect data usage.

• We propose a novel range-based metadata allocation
technique to reduce storage demands, and per-region
identifiers as well as rules to facilitate dynamic analysis.

• Demonstration and evaluation of FineDIFT on a RISC-V
based system on chip (SoC) with the hardware imple-
mentation on an FPGA board. We also test our approach
on a real-world application showing the effectiveness and
the low performance overhead of the proposed scheme.

The rest of the paper is organized as follows. We provide
background information in Section II. Section III presents
threat models and assumption of our work. Section IV dis-
cusses related work. Section V discusses the design of the
coprocessor. Section VI gives our implementation of the
framework. Section VII and Section VIII provide an evalu-
ation of the security features, performance, and cost. Finally,
Section IX gives the limitation of our work. Section X con-
cludes the paper.

II. BACKGROUND

A. Dynamic Flow Information Tracking

Dynamic Flow Information Tracking (DIFT) [6] is a tech-
nique for tracking information flow of a process or system,
allowing for state information to be restored and runtime
analysis to take place. DIFT can be performed online (as the
program executes) or offline, where information flow metadata
is recorded to be later analyzed.

DIFT serves as the backbone for various mechanisms such
as fuzzing, dynamic taint analysis, and data-flow integrity.
In fuzzing, randomly crafted inputs are given to a program
and execution is tracked to build a coverage map. Inputs are
then mutated and changes in execution are then observed to
allow bug discovery. Dynamic taint analysis tracks changes
in memory due to store operations constructing a map of
accessed addresses as well as their relations. Lastly, data-
flow integrity is a general purpose defense which can be
employed to prevent the effects of memory vulnerabilities
in software. Those memory vulnerabilities can be exploited
towards control-data and non-control-data style attacks.

B. Data-Flow Integrity

Data-flow integrity (DFI) is a defense mechanism to enforce
that data usage in an application follows the intended data-flow
graph (DFG) [1]. A DFG can be defined through reaching
definitions analysis [13], where an instruction that writes to
a memory location defines the value and an instruction that
reads the value uses it. When performing reaching definition
analysis, we see that there is an intrinsic relationship between
the control-flow graph of an application as well as its DFG.

For example, the value of a variable may indicate which path
on a conditional jump is taken, a use, for the taken path to
determine the initial value, or definition, of a different variable.

A DFG can be computed statically or dynamically. How-
ever, approaches for static computation of the DFG are unable
to solve the decision problem which arises from pointer alias-
ing [5]. This often results in an overestimated DFG. Dynamic
techniques applied to the computation of the DFG can result
in improving its accuracy. However, sourcing multiple inputs
to perform analysis is limited by the undecidable nature of the
halting problem.

Incompleteness of the DFG of an application, as well as
deficiencies in the enforcing policy result in weaknesses in
defense solutions leveraging DFI. We purpose to define a
framework that utilizes DIFT to dynamically construct the
data-flow graph of a running program.

C. Application Binary Interface

The Application Binary Interface (ABI) is a set of
agreed-upon conventions on how software allocates CPU
and memory resources for program usage. Among the rules,
we find the calling conventions of a particular platform, how
stack frames are used, and how registers are used between
functions.

In an ABI, registers can be defined as caller saved, callee
saved, or preserved. The former category are saved by func-
tions performing a call if they are later to be used by the
function. Callee saved registers are saved by the function being
called if they are to be used. Lastly registers that are preserved
across function are saved by a function and their value is
restored before the function exits, either through a return or
calling another function, if it is used.

Saved registers are saved in a function’s stack frame. The
minimum size and alignment constraints of the stack frame are
defined by ABI rules. A function creates its stack frame during
the execution of its prologue. Stack frames are deallocated by
the function’s epilogue, as it is about to return.

III. THREAT MODEL AND ASSUMPTIONS

We aim to protect embedded devices running freestanding
programs. Application software in these devices manage all
on-device resources without assistance of operating system
(OS). Although our system is currently designed and tested
with freestanding programs in mind, it can be extended to
support rich OS-based systems. We consider an adversary
that has two goals. First, the attacker may wish to acquire
sensitive data from target program by launching a series of
software-based attacks. Second, the attacker may wish to
corrupt the internal data and state of the program by changing
the program’s normal execution. The attackers may achieve
their goals by utilizing memory vulnerabilities that allow for
arbitrary reads and writes to the memory map of the program.
These vulnerabilities may be exposed through the input/output
system of the victim process which the attacker has direct
access to, either locally or remotely.

We further assume that software running on the device
is immutable, and that it is not inherently malicious. Also,



CHEN et al.: FineDIFT: FINE-GRAINED DIFT FOR DFI USING COPROCESSOR 561

we assume that all hardware components are trustworthy and
bug-free. We do not protect against invasive attacks, such as
those using a JTAG probe to extract memory contents, nor do
we protect against physical side-channel attacks.

IV. RELATED WORKS

Various software-based DIFT applications have been
proposed [3], [4], [14]–[16]. Software-based methods often
introduce large performance overhead through statically instru-
menting application’s source code and compiled binary or
transforming program code to identify potential data source
and definitions. Further, static analysis cannot capture the
runtime behavior effectively. Hardware-based methods [9],
[10], [17], [18] improve not only the performance, but also
the reliability. These mechanisms extend CPU, Caches, and
memory system providing an avenue for metadata to flow
alongside data being used, and for rule checks to be performed
in parallel to data usage. Table I summarizes and compares
different DIFT designs.

Xu et al. follow on the same premise by providing a
taint-enhancement policy enforcement mechanism [19]. Pro-
gram code is transformed to identify potential data sources
or definitions which are then tracked under different security
constructs. Policies are checked at the time of usage of these
values. The authors implement a tagmap by dynamically
allocating regions of memory and initializing metadata as it is
used. Security policies are defined in a similar fashion to that
of TaintCheck [20], but applications can run natively.

A. Tag Design

Some approaches adopt single bit tag [4], [6], [7], [12].
Single bit tag based design will not introduce high perfor-
mance overhead on tag storage. But it may not be helpful
for complex attack scenarios because it cannot differentiate
multiple security property at the same time. In order to support
flexible tag based security policy, the authors in [23], [24]
support variable tag sizes. The user and programmer can
define different security policy to detect and prevent low-level
memory corruption attacks and high-level semantic attacks.
The design of tag needs to strike a balance between flexibility
and scalability. The fine-granularity tag will incur high storage
overhead, such as byte-level tags. On the other hand, the
coarse-granularity tag cannot provide enough information for
security analysis. Also, the design needs to consider the
waste of tag storage. Longer tag sizes will incur more waste
on storage space when every memory word or byte has a
tag. Offload based design needs a communication channel,
e.g., shared memory and hardware based buffer, to store and
transmit the execution information. At the same time, the
synchronization between processor cores and dedicated core
may introduce extra performance overhead.

B. Previous DIFT Design

We examine previous DIFT design and analyze the existing
works according their implementation type (see Table I).
We compare different DIFT designs from the tag granular-
ity, design types, performance overhead and design goals.

We also analyze the security policies used in these works.
The security policies include control-flow integrity (CFI),
data-flow integrity (DFI) and pointer integrity (PI). The CFI
mainly focuses on ensuring the program’s control flow is not
redirected by malware attacks. The DFI is used to prevent
unauthorized access to data and malicious corruption, modifi-
cation and disclosure on data. PI guarantees all code pointers
which are not maliciously modified by attackers.

Figure 1 shows an overview of common DIFT methods. For
hardware based methods, the information flow tracking logic
is implemented in processor core, coprocessor and multiple
processors. In processor core, the general-purpose registers
and pipeline stages need to be extended to support metadata
information processing logic. Also, the memory system needs
to be modified to support metadata tracking. In addition,
the information tracking logic and metadata storage can
be implemented as dedicated hardware module such as a
coprocessor attached to processor to extract runtime informa-
tion including instructions related information and machine
states. On multi-processors platform, extra processor can be
used to track the information flow on target program. Extra
information communication channels between two processors
is needed, including share memory and special hardware infor-
mation queues. For software based methods, target program is
pre-processed to add extra information checking operations.
The original source code is adjusted to support information
flow tracking using compiler-aided methods, e.g., inserting
extra instructions or adding metadata information. Differently,
in binary instrumentation based methods, executable binary
will be modified using specific instrumentation tools.

1) Software Based DIFT Framework: Various software-
based DIFT applications have been proposed [2]–[4],
[11], [12], [14], [15], [19], [20]. Newsome and Song in
TaintCheck [20] ensure that data in a trusted source is not
used if it was illegitimately overwritten by an untrusted source.
For this purposes, the authors develop a framework on top
of Valgrind [32] and DynamicRIO [33] providing a way
to examine data-flow without having to statically instrument
an application’s source code or compiled binary. Based on
TaintCheck [20], Cheng et al. in [11] use the dynamic binary
instrumentation to reduce the performance overhead of the
taint analysis. Xu et al. follow on the same premise by provid-
ing a taint-enhancement policy enforcement mechanism [19].
Program code is transformed to identify potential data sources
or definitions which are then tracked under different security
constructs. Policies are checked at the time of usage of these
values. Chen et al. in [12] treat the tainted state as speculative
state and use the existing architectural support for speculation
execution to track the tainted state. Vachharajani et al. in [2]
provide a software based DIFT framework from user’s per-
spective. Furthermore, the user empowered the ability to define
the security policy instead of relying on the programmer.
Kemerlis et al. in [21] propose a practical dynamic data flow
tracking tool which can be used for commodity software. This
implementation is also suitable for shared library. Also, this
user can use the provided API to monitor the data of interest.
The authors in [3], [4], [14], [15] implement DIFT framework
on smart phones and IoT system to support taint analysis on



562 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

TABLE I

CLASSIFICATION AND COMPARISON ON INFORMATION FLOW TRACKING TECHNIQUES. TAG IN OUR WORK REPRESENTS THE AUXILIARY INFORMATION
AND SECURITY ATTRIBUTES OF CORRESPONDING DATA. TAG GRANULARITY MEANS THE SIZE OF TAG ATTACHED TO DATA. SW, SW AND

H&W REPRESENT THE SOFTWARE BASED, HARDWARE BASED AND CO-DESIGN BASED DIFT FRAMEWORK RESPECTIVELY. ALSO,
WE DISCUSS THE PERFORMANCE OVERHEAD AND HARDWARE OVERHEAD CAUSED BY THESE DIFT WORKS. CFI, DFI, PI,

AND NI ARE THE ABBREVIATION OF CONTROL-FLOW INTEGRITY, DATA-FLOW INTEGRITY, POINTER INTEGRITY AND
NEW INFRASTRUCTURE, RESPECTIVELY. THE NEW INFRASTRUCTURE MEANS THE NEW MICROARCHITECTURE

OR IMPLEMENTATION DIFT MECHANISMS. WE REPRESENT SYSTEMS THAT OFFER NO PROTECTION IN A

CATEGORY WITH �, SYSTEMS THAT OFFER WEAK PROTECTION IN A CATEGORY WITH ��, AND SYSTEMS
THAT OFFER FULL PROTECTION ON A CATEGORY WITH �

sensitive information usage. The sensitive data will be tracked
to analyze whether the data is used in an illegal manner.

The main difference among existing DIFT software
approaches lies in how tagged data is identified, and the rules
that are followed during propagation. The software approaches
provide flexibility and scalability for security policy definition.
However, software based DIFT methods use the binary instru-
mentation and compiler aided tools to insert the tag related
operation. As expected, performance overhead suffers in these
approaches due to the required instrumentation or the wrappers
that allow examination of the software to run.

2) Hardware Assisted DIFT Architecture: Hardware
assisted DIFT solutions can be divided into three categories:

1) In-core based designs [6]–[10], [22], [27] where tag-
ging and related operations are implemented within the
processor core and memory system;

2) Off-core based designs [9], [18], [23], [25], [26], [30],
[31] where DIFT operations are implemented in dedi-
cated hardware unit outside the processor core;

3) Offload-based design [28], [29] where a dedicated
processor core is responsible for all DIFT operations.

In-core based design needs modification or extension on
processor pipeline to support tag tracking and propagating.

However, this method is not feasible for modern commer-
cial processor under industry-standard licensing norms, where
licensees of a processor IP are unable to make changes to
it. Off-core based design mainly focuses on attack detection.
This type of system works well with the current IP licensing
model, as long as the processor IP provides a mechanism to
tap into the instruction pipeline or provide a way to extend
the instruction set architecture (ISA). Offload based design is
an alternative approach. The target application runs on one
processor core, while DIFT related operations run on another
processor core. One synchronization mechanism needed to
support communication between target application and DIFT
operation, e.g., shared memory, special hardware channel.

Suh et al. in [6] leverage architectural support to track the
data from I/O inputs. Operating system will tag the data from
inputs. Furthermore, the tag will be tracked in parallel with
the data processing. Crandall and Chong in Minos [7] modify
both operating system and out-of-order processor to prevent
complex semantic attacks, e.g., format string attacks, buffer
overflow and heap globbing. Dalton et al. in [8] extend the
processor pipeline stages and modify the operating system to
support full-system DIFT framework. This work first adopt
global rule registers in security check enforcement. Similarly,
Palmiero et al. in [10] adopt the DIFT design on RISC-V based



CHEN et al.: FineDIFT: FINE-GRAINED DIFT FOR DFI USING COPROCESSOR 563

Fig. 1. Overview of different kinds of DIFT methods. Hardware based DIFT methods include in-core, off-core and offload based designs. Software based
DIFT methods include compiler-aided designs and binary instrumentation based designs.

processor core. Different to in-core designs, Dhawan et al.
in [17], [22] aim at providing general architecture for metadata
processing. This architecture support unbounded metadata and
fully software-defined policies. The authors in [28], [29]
adopt offload based design which use one thread running
on another processor core to enforce DIFT related check.
Nagarajan et al. in [28] use a hardware FIFO to serve as
communication channel between main thread and DIFT thread.
Ozsoy et al. in [29] modify the processor to generate the
DIFT operation related instructions after the corresponding
instruction committed. Furthermore, the generated DIFT oper-
ation related instructions is running on another processor core.
Siddiqui et al. in [27] propose a runtime protection framework
which use Trusted Platform Module (TPM) to support secure
boot and protect data from leakage. At runtime, the framework
uses information flow tracking models to protect memory
corruption and runtime attacks such as buffer overflows and
format strings.

Venkataramani et al. in FlexiTaint [9] employ a packed array
in a protected memory area within the process’s address space.
Regular data addresses in the process have a corresponding
entry in the array. Taint analysis is done by a modified
processor back-end which includes verification rules keeping
the performance critical data-flow engine of the CPU largely
unchanged. Similarly, works in [18], [23], [25], [26] extend the
processor pipeline to extract the committed instructions and
machine states. Coprocessor is introduced to serve as a runtime
verifier to challenge the software state. Muhammad et al.
attempt to further decoupling from the architecture [30],

[31]. These works remove DIFT-related components from the
processor’s pipeline but use ARM CoreSight debug compo-
nents to extract the essential signals and adopt static analysis
to guide the DIFT operation.

In addition to the above three types of hardware based
design, WHISK [24] provides a slightly different infrastructure
for tag management on SoC. The tag mapping and fetching
are processed through bus interconnect or bridge. This serves
as an off-core design, but does not rely on a coprocessor to
examine data-flow. Instead, the interconnect is responsible for
differentiating between data accesses and instruction accesses.

In-core methods improve not only performance, but also
reliability. These mechanisms extend CPU, caches, and mem-
ory system providing an avenue for metadata to flow alongside
data being used, and for rule checks to be performed in
parallel to data usage. However, efforts have been made to
reduce the number of changes required in the architecture.
The off-core designs receive information flow from the proces-
sor and maintains tag metadata information. Synchronization
between the processor and co-processor occur at the time of
system calls or custom instructions execution, reducing the
latency requirements in the system as the processor no longer
stalls while waiting for the coprocessor to finish multi-cycle
operations such as accessing tag metadata from main memory.

C. Data-Flow Integrity

To provide a proper framework for DFI, it is necessary to
uniquely identify data in memory, as well as associate a policy



564 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

for the propagation and usage of that data. However, a static,
compiler-based approach will lead to an overestimation. That
is, the compiler is limited to the types of tracking it can
perform during the static single assignment passes. As a result,
it may lead to an explosion of states [34] or the incapability of
solving the pointer aliasing problem for the general case [5].

Previous DFI approaches mainly utilize dynamic taint
analysis to identify when data affects other data in mem-
ory [19], [20]. Employing this method results in data being
classified as tainted or untainted, aliasing all different data
types into two groups without regards of usage. Other
approaches provided mechanisms to uniquely identify data
groups through tagging and allow programmer-defined checks
to take place at certain places during code execution [18].
We find these approaches to be limited. Dynamic taint analysis
does not provide a reliable way to determine if tainted data is
still valid. For example, a variable can be indirectly modified
from a user-controlled input which results in it being flagged as
tainted. Thereafter the same variable can be modified through
a write-anywhere vulnerability, which would go undetected.

Storage of metadata is also of concern. Existing solutions
often utilized a shadow memory or extended memory words
to allocate memory metadata. We find this approach to be
inefficient for storage. For example, to cover a 32 bit address
space with a 1 bit tag, 512 MiB of RAM needs to be added
into the system. Using wider tags requires larger amounts of
memory, increasing the area overhead. Under this scheme,
tagging and untagging large memory areas requires software
to utilize constructs such as loops, or the additions of new
instructions to the CPU to accelerate the process. This results
in detrimental performance overhead, as workloads must be
halted until the memory tagging operations are completed.

V. FINEDIFT DESIGN

We propose a DIFT-based hardware-based mechanism to
accelerate the enforcement of DFI policies, i.e., a set of
data-flow rules are enforced during the program execution.
Our solution introduces minor changes to the processor’s
architecture while providing a flexible programming model.
A software developer is able to utilize intrinsics and attributes
defined by an instrumenting compiler to mark the variables
or memory regions which will be tracked, and what policy
to utilize for each of those regions. The compiler issues
the necessary instructions to enable FineDIFT’s hardware
tracking mechanism. To make the approach generic to all
architectures, we choose a coprocessor based solution which
can be integrated into different architectures.

A. FineDIFT Overview

Figure 2 shows how the policy is enforced. We use unique
tags to identify data and track its movement. An associated set
of flags dictate the rules of the policy to be enforced. As the
processor executes store operations, tag and flag information
belonging to the source register as well as the store instructions
related information including target address and store size are
used by the coprocessor to create or update memory regions
in the metadata memory. On loads, the coprocessor uses the

Fig. 2. Basic system operation.

address and load size to find the proper region in the metadata
memory. The coprocessor uses flags and tag information from
the region and the target register to determine if the load
is allowed. Rules defined in the flags determine whether an
exception should be triggered or not.

Figure 3 shows the architecture of our design where a
coprocessor is used to track the data flow at runtime. The
coprocessor has its own instruction decoder to receive instruc-
tions which include a custom ISA extension, memory, ALU,
and branch instructions. The custom instructions are added as
part of the program.

For memory and branch operations, the coprocessor also
obtains the targeted address. We process this information in
the metadata controller, which performs the necessary lookups
for register and address rules in their respective storage pools.
Metadata information is then forwarded to the rule check
engine. The latter will raise an exception if a violation in the
set policies is detected, or instruct the metadata controller on
how to modify the stored information.

Our system is capable of tracking multiple variables or
data ranges independently. Furthermore, our system automates
the checks performed on data without having to explicitly
rely on the programmer. Every time a new memory region
or allocation is created, it is assigned a new identifier. Our
coprocessor module tracks data movements from and to these
regions using the assigned identifier, creating a taint map of
each initial data allocation. This allows us to disambiguate
data contexts, disallowing for aliasing of distinct data sets to
occur at runtime. We attach a series of flags to the tagged data
dictating how it can be propagated and used. The coprocessor
automatically performs the necessary checks when the data is
copied or used in computations, raising an exception when a
data region is used in a way conflicting with the set rules.

B. Metadata Storage

Figure 4 shows the basics of our storage mechanism.
Instead of identifying memory addresses using a direct map-
ping between memories, we use a storage system similar to
a ternary Content Addressable Memory (CAM). For each
identified memory region, we keep the base address of the
allocation and its size. Each defined region is accompanied
with an identification, or tag, and usage information, or flags.
On a memory access, we check the contents of the storage for



CHEN et al.: FineDIFT: FINE-GRAINED DIFT FOR DFI USING COPROCESSOR 565

Fig. 3. Overview of the proposed coprocessor architecture. Instructions and register values are received through the coprocessor interface, and perform checks
on the requested operations using internally stored metadata. If a policy violation is detected on an operation, an exception will be raised.

Fig. 4. Metadata storage system for addresses in memory.

potentially matching regions to the address being accessed and
the size of the access. Matches are performed in parallel. This
avoids stalling execution until a matching region is found at the
cost of more overhead in hardware. We find this trade-off to be
acceptable especially when considering realtime and timing-
critical applications. The Allocation Finder returns whether a
particular allocation exists that fully matches as well as regions
that share a bound with the access being performed.

Metadata for registers, like identifier, tag, flags and usage
rules, is stored using a direct-mapped memory with one entry
on the memory corresponding to a register in the core. This
strategy is chosen because the number of registers in the core is
known, and the total number of registers small compared to the
overhead of a ternary CAM-like structure. Register metadata
can be automatically inherited from memory regions when the
program performs a load instruction, and create new memory
regions when the program executes a store instruction.

Both the storage elements for registers and the allocation
finder are not directly accessible via standard load and store
instructions. These instructions are only capable of indirectly
modifying the contents of these areas based on the meta-
data associated to the registers or memory regions (direct
manipulation of the contents of these areas are discussed in
Section VI-A). In order to deal with data hazard caused by
metadata update, we have specific logic to forward the updated
metadata to subsequent memory instructions.

C. Metadata Generation

As shown in Figure 3, the decoded instructions are sent
to CAM-like structure according to instruction type. Custom
instructions are used to configure the tag and flag of CAM-like

structure line and register. Meanwhile, the standard instruc-
tions will update the metadata at runtime. After tag and flag
update, the security check will be performed.

Software developers utilize hints in code to indicate the
compiler which data should be tracked. The developer does
not need to know vulnerabilities in the code, only variables
that carry sensitive information. The compiler generates code
which signals the coprocessor of memory regions creation.
When memory instructions related to this area are committed,
the corresponding tag and flag check operation are executed
by the coprocessor based on the instruction type.

D. Metadata Usage and Rule Checks

We utilize the flag field in our metadata to indicate the
type of data, how it can be used, and how the metadata is
propagated. We also provide a field to indicate whether a
particular memory region or register contains a pointer, and
if so the type of pointer (data or code). We provide fields to
determine copy rules, allowing or disallowing copying data
between regions with different tags or flags. Lastly, for ALU
operations, we provide rules stating if the data in two regions
can be mixed as well as specifying the resulting metadata of
the operation. By combining the flag field and the tag field, the
programmer can define policies to enforce data-flow integrity
and prevent malicious data execution, data leakage and buffer
overflow based attacks.

We include different subfields in the flags area, as shown
in Figure 4. These are utilized to determine the policy that
corresponds to the allocation. The P field represents whether
the current data is a pointer value and the PT field is used
to indicate whether we are in presence of a code or data
pointer. The whole memory area consists of pointers if this
area is tagged using the P field. This is useful to indicate the
location of constructs like string tables, jump tables, or virtual
function tables. The former are an array of pointers to data,
the latter two are internally arrays of pointers to regions of
code. According to the P field of one memory area, we can
differentiate whether it can be executed. In addition, malicious
read and write operations on specific memory area will be
checked. When the memory area is used as source, the R
field is used to decide whether it will be propagated to



566 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

destination. The C field focuses on ALU instructions and it
is used to indicate the mixing and propagation rule between
register operations. The X field is used to force checks on
matching metadata information in the source and destination.
This allows us to constrain writes to memory regions from
only properly tagged registers.

Algorithm 1 On Memory Accesses, the Coprocessor Entries
That Match and/or Border the Address Being Accessed
Require: target address addr
Require: access size si ze
1: for line ∈ allocs do
2: if addr ∈ line′range then
3: line → match
4: end if
5: if addr == line′end + 1 then
6: line → a f ter
7: end if
8: if addr + si ze == line′star t then
9: line → bef ore

10: end if
11: end for
12: return (match, a f ter, bef ore)

Whenever software makes a memory access, the coproces-
sor attempts to match the address being accessed with the
contents of the metadata memory. Through a series of com-
parators, the coprocessor examines all allocations following
the steps outlined in Algorithm 1. Note that the usage of
these matches depend on whether the access was on a load
or a store instruction. This operation is done in parallel for all
storage entries. If the access is due to a load instruction, the
coprocessor utilizes the matched line in the rule check engine
to determine if the access can take place, and if any metadata
associated with the memory region must be propagated to the
registers. If the access is deemed to be illegal, the coprocessor
raises an exception. If metadata is required to be transfered to
registers, then the coprocessor updates the register’s metadata
in the register metadata storage. If the access was due to a
store instruction, the coprocessor uses the match to determine
whether or not the access can take place, raising an exception
if it is deemed illegal. However, if the access lies in at the
edge of an existing allocation and the allocation has the same
metadata as the one in the access, the coprocessor will utilize
the bef ore or a f ter to update the allocation start address
or size as needed. In the event where both bef ore and a f ter
are valid and have matching metadata to the store taking place
the coprocessor will merge the two allocations into one, saving
precious storage resources.

E. Handling Application Binary Interface

The Application Binary Interface is a set of agreed-upon
conventions on how software allocates CPU and memory
resources for program usage. Among the rules, we find the
calling conventions of a particular platform, how stack frames
are used, and how registers are used between functions.
Table II shows the ABI for the RISC-V platform. Note that

TABLE II

RISC-V CALLING CONVENTIONS AND REGISTER USAGE FOR THE INTE-
GER FILE. THE PRESENCE OF A FRAME POINTER IS OPTIONAL.

IF A FRAME POINTER EXISTS IT MUST RESIDE IN X8 (S0), THE

REGISTER REMAINS CALLEE-SAVED

although the proposed FineDIFT framework can be applied
to any ISAs, we implement it on the RISC-V core for
demonstration in this paper. Registers are divided into caller
saved and callee saved. The former group of registers have
their value saved by a function before it calls another function.
The latter group are registers that are saved by a function
before it uses them. Furthermore, we see that arguments to
functions are passed in registers. In RISC-V, the first eight
arguments are passed in registers and the rest are put in the
stack. This holds true for the ABI of other modern platforms,
as it alleviates the need of writing to and reading from memory.

We tie our solution to the platform’s application binary
interface while still trying to be architecture and platform
agnostic by defining a configurable register mask which
defines which registers are caller saved. On function calls
and returns, the register mask is applied to the register
metadata store, clearing metadata for caller saved registers.
This ensures that the callee or return target can utilize the
registers without any metadata conflicts.

When a function call occurs, the value of a caller saved
registers are stored in the caller’s stack frame. The store
operation has the side effect of creating a new memory region
in our coprocessor’s memory metadata storage containing any
tag and flag information associated with the register. Once the
callee returns, the caller restores the value of the registers
by performing load operations from its stack frame. As a
side effect of this operation, any metadata associated with the
memory region is automatically associated by the coprocessor
to the register. This restores any metadata context held by the
caller function.

The configurable mask can be overridden between function
calls and returns, allowing parameter passing on registers
to have associated metadata, as well as preserving regis-
ter metadata during a function return. This allows the use
of functions that take arguments with associated metadata,
and for that metadata to be used internally. When a func-
tion is called, we issue instructions to temporarily over-
ride the register mask indicating which of the caller-saved
and argument registers should keep metadata on the call.
On function returns, we also set the mask to indicate whether
a return value on a register should keep its associated
metadata.



CHEN et al.: FineDIFT: FINE-GRAINED DIFT FOR DFI USING COPROCESSOR 567

Lastly, a function may store temporary data into its stack
frame which may have associated metadata. The stack frame
is deallocated as part of the function epilogue. As part of our
information flow tracking framework, we discard any metadata
associated with the function’s stack frame from the memory
metadata store. This allows for clean reuse of the stack region
by other functions without triggering an exception.

VI. FINEDIFT DEMONSTRATION

A. FineDIFT on Rocket-Chip

The Rocket-Chip and associated SoC generator are base-
line implementations of the RISC-V ISA [35]. Particular
to the Rocket-Chip, a coprocessor interface called RoCC is
a non-standard extension to the RISC-V architecture which
allows for the addition of custom coprocessors. It transmits
instructions and data from the processor to the coprocessor and
vice versa. The RISC-V ISA specifies instructions dedicated
for custom extensions which can be leveraged by an RoCC
coprocessor. These instructions are treated as nop by the
processor.

We developed a test implementation of our framework
using the Rocket core. We utilize the Control and Status
Register (CSR) area as means of configuring the coprocessor
and exposing exception information to software. An extended
RoCC provides the means of collecting instructions being
executed, as well as addresses being targeted by load, store,
or branch instructions. We decouple the logic of the metadata
controller and rule check engine from the interfaces to the
processor and the instruction decoder. In this way, our imple-
mentation becomes portable across different ISAs.

1) Extended RoCC Interface and RoCC Custom Instruc-
tions: We extended the RoCC interface to expose signals
from the write-back interface to our coprocessor. These signals
include the encoding of the committed instruction, as well as
the address it targets. This allows to synchronize memory and
ALU instructions with their addresses and their used registers,
respectively.

We further use the RoCC to provide an extension to
the RISC-V ISA. We show our new instructions and their
usage in Table III. The new instructions can directly modify
the metadata in both metadata storage units. Based on the
microarchitecture of our design, these new custom instructions
do not stall the processor’s pipeline because the security
checks are executed in parallel with the instructions executed
in the main processor. Once the instruction is committed
in the processor, the related information, such as instruction
encoding, the program counter and the memory address to be
accessed are transmitted to the coprocessor for further security
check. An exception is raised once the security check fails in
the coprocessor. In Section IX.B, we discuss the possible cases
on more complex CPUs which adopt out-of-order execution
and speculative execution. We added two main categories of
instructions. Some instructions act directly on the memory
metadata controller and its storage unit. These instructions can
create, configure, enable, and disable memory regions. Others
directly interact with the register metadata unit, allowing us
to fine-tune register usage.

Any additional information needed by these instructions is
gathered from the write-back stage of processor core since at
this point the address is readily available and does not need to
duplicate any existing logic. The program counter associated
with every executed instruction is also extracted from the
processor core. It is utilized to provide accurate exception
information in case a data violation is detected by the rule
check engine. Exception cause and location in program code
is exposed through the CSR file, allowing a trap handler to
perform further analysis.

For ISA extension, we use the reserved ISA space to
define the custom coprocessor instructions. RISC-V is a
new and open ISA which provide support for extensions
and customisation. Also, we use the Rocket Chip Coproces-
sor (RoCC) interface to implement our coprocessor. The RoCC
interface also reserves four custom opcodes for developer to
define their coprocessor instructions. Besides, Rocket Chip
also provide Simple Custom Instruction Extension (SCIE)
interface for extending the custom instructions. It allows
us to implement instructions with two source and one des-
tination register in the custom-0/1 opcode spaces. There-
fore, there is no conflict between existing ISA and custom
instructions.

2) Extended Control and Status Register (CSR): We extend
the CSR file to support the global coprocessor configuration
and provide exception handling capabilities. The RISC-V ISA
specifies a series of areas in the CSR space for custom
extensions. We place the configuration and exception registers
in the system mode access region, while placing the register
masks in the user CSR file. This allows us easy migration to
extend the system to a full OS stack. Only the OS is capable
of controlling the status of the coprocessor while the userland
processes can set register masks freely.

B. Toolchain Support

For experimentation, we modified the GNU Binary Utilities
version 2.34 adding a custom extension to the RISC-V back-
end which defines all our new instructions and additions to
the CSR file. We also modified GNU Compiler Collection
version 10.1 to add our extension as part of the multilib
environment, and allowing the compiler to emit the necessary
changes to the epilogue to clear any temporary allocations
from the metadata store pool. We added attributes to func-
tions and parameters which can be used by a programmer
to indicate whether or not ABI register metadata should
be preserved alongside the function call. Lastly, we provide
a small library with common functions which are used to
enable the coprocessor and to create static memory regions at
runtime.

We provide a set of extensions to GCC’s variable and
function attributes to allow for the instrumentation of func-
tion calls and returns. The former allows a programmer to
define which variables should be instrumented and how to
instrument the program. The latter allows for fine-grained
control of the register mask, allowing for instrumented
parameters to be passed to functions and for instrumented
returns.



568 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

TABLE III

NEW COPROCESSOR INSTRUCTIONS ADDED BY FINEDIFT. THESE INSTRUCTIONS CAN BE USED TO MANIPULATE DIFT METADATA. INSTRUCTIONS
THAT RETURN A HANDLE PROVIDE A HARDWARE-SPECIFIC DESCRIPTOR OF A REGION FOR SUBSEQUENT MODIFICATION BY OTHER INSTRUC-

TIONS. INSTRUCTIONS THAT READ OR WRITE DATA FROM SHADOW STORAGE ACT ON THE COPROCESSOR’S METADATA MEMORY

VII. HARDWARE AND SOFTWARE OVERHEAD

A. Area and Timing Overhead

We synthesized coprocessor alongside a baseline Rocket-
chip E300 core targeting the Xilinx Artix-7 FPGA with a total
of 16 CAM-like structure lines. The CAM-like structure size is
sufficient to accommodate the largest datasets in BEEBS [36],
a benchmark suite representative for embedded devices.

FineDIFT introduces hardware overhead with 6% LUTs
and 8% Flip-Flops compared to the original RISC-V core
(see Table IV). We note an increase of ≈2× in the use of
lookup tables and ≈0.34× in flip-flops when using CAM-like
structure as the metadata storage. The main overhead comes
from CAM-like structure as it is implemented using FPGA
logic. Note that the overhead can be reduced significantly with
a dedicated CAM-like structure in ASIC designs.

The overhead is in fact much smaller compared to the
scheme where a similar-size tag for every memory address
is used with a shadow memory for tag storage. Such system
would require a massive 2 GiB of storage, if covering the
entire address map. Even when removing tag storage from
unused memory addresses, hundreds of megabytes storage
space is still needed. If we adopt the block memory as the
metadata storage, it will introduce extra clock cycles to finish
the inquiry and update of metadata. In addition, we need to
add a FIFO queue to store the committed instructions and extra
coprocessor stalls will be introduced.

Our design was tested against the target frequency of the
Rocket-chip E300 core of 32.5 MHz and no timing violations
were reported with standard synthesis settings. By itself, the
maximum frequency of our FineDIFT is 33.5 MHz, which is
above the requested frequency for the E300. We use compara-
tors to ensure the quick inquiry and update for the metadata.
Thus, the CAM-like structure is the major limitation in terms
of clock frequency increasing.

B. Performance Overhead

For software performance overhead evaluation, we compiled
benchmarks from BEEBS [36] which emphasizes on memory

accesses. The programs which have frequent memory access
are more sensitive to our design. In order to test the worst
case in our design, we choose the benchmarks which have
heavy memory I/O access. Other benchmarks in the suite
focus on computation rather than memory access. We show
the normalized results of the benchmarks in Figure 5. The
average observed overhead is of 5.03%, with 10.8% average
increase in binary sizes. The binary size increase is mostly
due to library routines added to fully support our framework,
with smaller binaries being the most noticeably affected.

The crc benchmark computes a cycling redundancy check
of a dataset. The duff benchmark moves data from a
memory location to another using a mechanism called Duff’s
Device. The fir benchmark filters a dataset based on a set
of coefficients. The lcdnum benchmark drives a memory
mapped general purpose I/O file which is connected to the
lamps of a 7-segment display. The matmult benchmark
performs multiplication of two square matrices. Lastly, the
nettle-sha256 computes the SHA256 checksum of a
dataset. This subset of benchmarks perform a significant num-
ber of memory operations over datasets and are representative
for embedded devices. Other benchmarks in the BEEBS suite
gear more towards computational aspects, which FineDIFT
has little or no impact. As such, this group of benchmarks
was chosen to illustrate a worst case scenario.

Through our experiment, we note that the larger the original
uninstrumented binary is the less noticeable the performance
and binary size overheads incurred are. An increase on binary
size does not linearly translate into a higher overhead. As such,
the smallest binary, lcdnum suffers from over 40% binary
size increase, with a performance overhead of ≈15%, whereas
the largest benchmark, nettle-sha256, exhibits an over-
head that is barely noticeable.

The added coprocessor instructions are the cause of the per-
formance overhead. Instructions need to traverse the Rocket-
chip’s pipeline. This comes at the cost of 1 clock cycle which
is needed to propagate the instruction from one stage to the
next. For instructions which obtain data from the coprocessor,
the RoCC halts the pipeline for 7-cycle until the requested



CHEN et al.: FineDIFT: FINE-GRAINED DIFT FOR DFI USING COPROCESSOR 569

TABLE IV

HARDWARE OVERHEAD OF FINEDIFT ON THE RISC-V CORE

Fig. 5. Normalized performance and binary size overhead on memory
intensive BEEBS benchmarks.

data becomes available. Further, instructions that access the
CSR file incur a 5-cycle delay, as the pipeline stalls for the
effects of reading and writing to a CSR to take effect.

The observed overhead is largely dependent on the program
instrumentation. The tested scenarios were chosen in part
because their instrumentation requirements were different. For
example, duff required only the declaration of a memory
region, whereas we instrumented matmult to allow us to
perform inter-procedural data-flow using registers.

VIII. SECURITY ANALYSIS

To evaluate the security capabilities of FineDIFT, we further
test our framework on two programs with security vulnera-
bilities, a customized program and a real-world application.
FineDIFT successfully detected all attacks including data
leakage, code-reuse attacks and data corruption. This section
discusses how our framework is used to protect programs.

A. Customized Vulnerable Application

For the first test, we design a program vulnerable to data
corruption and information leakage. By giving different inputs
to the program, different vulnerabilities were exploited. The
basics of the program is shown in Listing 1.

When the function executes, it collects user input at ❶ and
prints that information in ❷. However, examination of the call
to scanf() reveals that the buffer where the input data is stored
can easily be overflown if the input is more than 24 characters.
Overflowing the buffer results in the corruption of the code
pointer adjacent to it, giving an adversary the possibility to
deploy a code reuse attack. Moreover, inspection of the call
to printf() in ❷ shows that user input is directly used as
the format string. This allows for format string vulnerabilities
to occur. This class of vulnerability can be exploited to both
corrupt memory through the use of the %n format string
specifier, and to leak memory through a combination of %s,
%c, %x, %i, and similar format string specifiers.

Listing 1. Reduced example of a sample vulnerable program.

Knowing that attacks were possible, we gave the program
the minimal instrumentation required to enforce the protection
in our platform. We tagged the code pointer region within the
struct as such, and set up a policy that allows the combination
of op\_a and op\_b as long as these share the same kind of tag
and flag information, propagating the metadata as required.

1) Data Corruption Detection: Our first test consisted of
corrupting the second operand to the function. By overflowing
the buffer, the corresponding metadata of op1.op\_b will be
overwritten by a malicious one. As metadata is propagated to
add(), the coprocessor raises an exception when both operands
are combined within the function.

2) Code-Reuse Attack Detection: Return-oriented program-
ming (ROP) [37] was developed to bypass Data Execution
Prevention (DEP). Attackers link the program gadget to form
arbitrary computation and gain control of the target program.
In order to deal with ROP attacks, different kinds of defense
mechanisms to protect return instructions in program. The
authors in [38] use jump instructions to bypass the defense
mechanisms which aim at protecting return instructions.
According to the above two works, we develop our attack
vectors. Specifically, we attempted a code reuse attack by
overflowing the buffer so that we wrote data over the code
pointer area of struct operation. This resulted in the metadata
for the region being overwritten with the input metadata. As a
result, when performing the indirect call in ❸, the coprocessor
threw an exception indicating that a code pointer was being
utilized without being flagged as such.

Even without instrumentation, we were still able to detect
a possible code-reuse attack. We crafted an input which
overwrites the return address in the stack. Without instrumen-
tation, our coprocessor still creates a region of memory in the
CAM-like structure for stored return addresses. The region
is lost when writing over this location. We reserve a tag for
code pointers and automatically attach it to the link register.
Whenever the link register is saved to the stack in a non-leaf
function, a memory region is automatically created, providing
safeguards against overwriting of that area through a stack



570 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

buffer overflow. The region is automatically removed when
the function returns. When reloading a maliciously modified
return address into the return address register an exception will
be raised by the coprocessor.

3) Data Leakage Detection: We attempted to use the format
string vulnerability in ❷ to leak the second operand to the
add() function. By using repeated applications of %x, we are
able to run through the arguments on printf() until reaching
the one we need. The printf() function requires the use
of a temporary buffer where converted data is stored. When
reaching the location of op1.op\_b in memory, metadata is
propagated into the buffer. However, we enforced that copying
data from op1.op\_b into a region of memory that shares
the same type of metadata. The buffer in printf() has no
metadata, thus the coprocessor raises an exception.

B. Real-World Application: OpenSyringePump

We further tested FineDIFT using an open-source appli-
cation, OpenSyringePump.1 This program is often used as
a sample real-world application in security applications for
embedded systems [39]–[41].

OpenSyringePump is an open-source electric pump which
uses a syringe as the means of moving fluid. The device
makes use of a stepper motor to move a threaded rod which
moves a metal piece that is attached to the syringe’s plunger.
A microcontroller drives the stepper motor and provides the
user the means of interaction through a series of push buttons,
an LCD module, and a serial terminal. Commands can be
entered to the microcontroller’s software through the push
buttons, or the serial terminal. The microcontroller responds
to these commands by moving the stepper motor, causing the
syringe to either dispense or absorb a bolus.

The software in OpenSyringePump is written using the
wiring set of libraries and Hardware Abstraction Layer
(HAL) [42] targeting Arduino-like platforms. All the low-level
peripheral handling is delegated to the HAL, with the control
system being implemented directly by the programmer. Due
to the lack of availability of a HAL for our test platform,
we ported the necessary functions to run in the RISC-V core.

We instrumented and evaluated OpenSyringePump with our
DIFT framework, including HAL functions. Our instrumenta-
tion gated access to the GPIO file to GPIO specific functions,
such as digitalWrite() and digitalRead(), by creating a
region over the addresses held by the GPIO registers dis-
allowing access to the GPIO files outside the instrumented
functions, as shown in Figure 6. We also instrumented the
String class to ensure that characters can only be stored in
the string buffer.

We tested for both binary size and cycle accurate perfor-
mance overhead. We measured an increase of 13% in the
binary’s code and data segments. Most of the overhead comes
from the associated initialization routines used by our DIFT
framework. For performance overhead, we ran a total of 100
iterations of the main control loop with an emulated serial
input. The provided input caused the software to rotate the
stepper motor clockwise, then counter clockwise, simulating

1https://github.com/shoreofwonder/OpenSyringePump

the actuator moving the syringe’s plunger. We measured a
performance overhead of about 6%. The main cause to this
overhead is the extra instructions needed for set up of registers
in the instrumented functions, and the clearing of metadata of
registers used by the compiler when doing arithmetic with the
stack pointer in some functions. We believe that the effects of
the latter can further be optimized by changing the way the
compiler utilizes registers within a function. However such
analysis is outside the scope of this work.

We then introduced a vulnerability in OpenSyringePump
that allowed us to overflow a buffer from the UART’s input.
This required us to change code in the HAL libraries to
introduce the vulnerability. When attempting to overflow the
buffer with a mock UART input and corrupt variables in the
control system, the DIFT framework was capable of detecting
the overflow and halting the corruption.

IX. DISCUSSIONS

A. Limitations

FineDIFT is not without limitation. First, we rely on the
programmer to notify the compiler on which variables should
be tracked and how the tracking should occur. Moreover,
the programmer is also responsible for adding attributes to
functions which should take parameters that contain metadata,
and functions that return metadata. Although the system is
easy to use, programmers still need to be familiar with the
management of registers and memory used in the program, and
manually set appropriate tags and flags for the corresponding
variables.

Variadic functions, those taking a variable number of argu-
ments, present a challenge for our instrumentation approach,
like the format string output function printf(). The argument
list cannot be readily indicated to carry metadata as all
parameters are not part of the function definition. For this,
we provide an compiler intrinsic which allows programmers
to indicate which parameters of a variadic function contain
metadata that must be kept on calls.

Library functions that allocate temporary buffers on the
heap also present issues. If any data that is copied into this
buffer has associated metadata, a new region of memory will
be created. When the buffer is deallocated, the function may
have no way of identifying and removing metadata from the
coprocessor. There is no straightforward process to overcome
this limitation other than providing alternate functions with the
necessary instrumentation.

Lastly, aggregates such as C struct which contain con-
tiguous members that are tagged and flagged with the same
metadata will be merged into a single allocation by the
coprocessor, similar to how an array are handled. As this is
a desired functionality of the coprocessor to reduce storage
requirements, we opted to rewrite the aggregate so that mem-
bers that would alias are not contiguous in memory to avoid
the unintended merging. This is why our code in Listing 1
places op\_a at the start of the struct, being separated from
op\_b using a buffer. This limitation is similar to those found
in other frameworks, such as AddressSanitizer [43]. Because
of the way compilers treat structs, extra padding may be



CHEN et al.: FineDIFT: FINE-GRAINED DIFT FOR DFI USING COPROCESSOR 571

Fig. 6. Instrumented code example.

added between members to ensure word alignment usually to
increase performance in loads and store instructions. When
reordering is not possible, the compiler may be written to add
extra padding between members by introducing dummy entries
in the struct at the cost of memory usage. At this point, this
must be done manually.

Another concern is that recursive function calls and nested
function calls may not be protected efficiently due to the
limited number of CAM-like entries. Instead of simply adding
more CAM-like entries, we can either design a new subsystem
to handle deep recursion or securely copy the contents of the
CAM-like structure to a larger memory.

B. Towards Multicore and Rich OS Systems

Our current work focus on the scenario of single processor
and single thread program. For multi-core systems, multiple
coprocessors are needed to support the DIFT mechanism.
In order to support multi-core and multi-thread applica-
tions, the coherency issues between multiple DIFT supported
coprocessors need to be solved. An extra coherency protocol
need to be added for tag storage (like CAM-like structure and
register-files) to ensure the coherency of tag. For example,
the coherency protocol of Snoop Control Unit (SCU) [44]
in ARM and UltraPath [45] Interconnect (UPI) in Intel are
used to deal with this problem. Therefore, extra coherency
control unit needs to be added to ensure the coherency of tag
between multiple processors. Every coprocessor will reserve
one coherency interface to connect the coherency control unit.
The coprocessor will raise the request and transmit the tag
related information to coherency control unit once the tag in
one coprocessor is updated. The coherency control unit will
route the related information to other coprocessors to maintain
the coherency of tags among multiple coprocessors.

For Out-of-Order (OOO) processor core, the current
coprocessor implementation need to be modified to support
OOO execution. The coprocessor need to receive the instruc-
tions executed out-of-order and committed instructions from
processor. Extra hardware components are needed in order to
store the instructions that have not committed in processor,
like load and store buffer. The security check on speculative
instructions and out-of-order instructions will not raise the
exception before the corresponding instruction is committed.
Also, the coprocessor will determine whether the influenced

states need to be rolled back and when these states can
be committed to the CAM-like structure according to the
committed instructions.

In order to solve the high hardware overhead caused by
CAM-like structure, the normal memory will serve as a
dictionary or hashmap for the entries of CAM-like structure.
Furthermore, the CAM-like structure will act as Cache which
makes the contents accessible for OS kernel. The access from
processor will be routed to coprocessor through coherency
control unit which exposes a slave interface for processor.
Also, extra memory protection mechanisms need to be pro-
vided to protect the tag storage. In addition, the OS kernel
need to be modified to support the above mentioned hardware
features. The coprocessor states need to be backed up at
context switch. The Process Control Block (PCB) also needs
to be modified to save the coprocessor states.

C. Security Policies

The conservative or radical security policies cause different
problems, such as false negative rates, false positive rates and
taint pollution. The taint tag will be propagated to general
purpose registers according to data flow. The situation will
be much worse under radical policies. For example, when
special registers like stack pointer register are tainted, it will
cause taint pollution because many data will be tainted in an
unexpected manner. In addition to taint pollution, false positive
and false negative cases may happen. In our work, we provide
custom coprocessor instructions to untaint the registers and
memory. However, the false positive cannot be solved using
the automatic method. Some taint related operations need
to consider the software context. For example, the tainted
index might be used in translation tables. If the index in
translation table is tainted, whether or not the corresponding
data is tainted in translation table will have different conse-
quences. When more conservative policies are adopted, the
false negative case might be triggered because the data in
the translation table is not tainted. The false positive case
may be caused when radical policies are utilized and thus
the data in translation table is tainted. In summary, the taint
operation need to be combined with the specified software
context. In order to deal with false positive cases and false
negative cases, we require the software developer to write
hints so that the compiler can generate custom instructions
to instruct the security check operations.



572 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

X. CONCLUSION

In this work, we first examined previous DFI approaches in
terms of implementation and their security. We then presented
FineDIFT as a method of applying DIFT principles to DFI in
embedded devices. In designing FineDIFT, we considered the
storage requirements for metadata and its use, minimizing the
storage and instrumentation requirements of software while
still offering a flexible programming model. We examined the
overhead of FineDIFT in terms of hardware and software as
well as its security benefits. As future work, we will extend
FineDIFT to support for multicore platforms for general
computing system protections.

REFERENCES

[1] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proc. 7th Symp. Operating Syst. Design Imple-
ment., 2006, pp. 147–160.

[2] N. Vachharajani et al., “RIFLE: An architectural framework for user-
centric information-flow security,” in Proc. 37th Int. Symp. Microarchi-
tecture (MICRO), Dec. 2004, pp. 243–254.

[3] B. Gu et al., “D2Taint: Differentiated and dynamic information flow
tracking on smartphones for numerous data sources,” in Proc. IEEE
INFOCOM, Apr. 2013, pp. 791–799.

[4] M. Sun, T. Wei, and J. C. S. Lui, “TaintART: A practical multi-level
information-flow tracking system for Android RunTime,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 331–342.

[5] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in
Proc. ACM SIGPLAN-SIGSOFT Workshop Program Anal. Softw. Tools
Eng. (PASTE), 2001, pp. 54–61.

[6] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” ACM Sigplan Notices,
vol. 39, no. 11, pp. 85–96, 2004.

[7] J. R. Crandall and F. T. Chong, “Minos: Control data attack prevention
orthogonal to memory model,” in Proc. 37th Int. Symp. Microarchitec-
ture (MICRO), Dec. 2004, pp. 221–232.

[8] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible informa-
tion flow architecture for software security,” ACM SIGARCH Comput.
Archit. News, vol. 35, no. 2, pp. 482–493, Jun. 2007.

[9] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Flexi-
Taint: A programmable accelerator for dynamic taint propagation,” in
Proc. IEEE 14th Int. Symp. High Perform. Comput. Archit., Feb. 2008,
pp. 173–184.

[10] C. Palmiero, G. D. Guglielmo, L. Lavagno, and L. P. Carloni, “Design
and implementation of a dynamic information flow tracking architecture
to secure a RISC-V core for IoT applications,” in Proc. IEEE High
Perform. Extreme Comput. Conf. (HPEC), Sep. 2018, pp. 1–7.

[11] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “TaintTrace: Efficient
flow tracing with dynamic binary rewriting,” in Proc. 11th IEEE Symp.
Comput. Commun. (ISCC), Jun. 2006, pp. 749–754.

[12] H. Chen, X. Wu, L. Yuan, B. Zang, P.-C. Yew, and F. T. Chong,
“From speculation to security: Practical and efficient information flow
tracking using speculative hardware,” in Proc. Int. Symp. Comput.
Archit., Jun. 2008, pp. 401–412.

[13] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd ed. London, U.K.: Pearson, 2006.

[14] Z. B. Celik et al., “Sensitive information tracking in commodity
IoT,” in Proc. 27th USENIX Secur. Symp. (USENIX Secur.), 2018,
pp. 1687–1704.

[15] W. Enck et al., “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” ACM Trans. Comput.
Syst., vol. 32, no. 2, pp. 1–29, 2014.

[16] M. S. Lam, M. Martin, B. Livshits, and J. Whaley, “Securing web
applications with static and dynamic information flow tracking,” in
Proc. ACM SIGPLAN Symp. Partial Eval. Semantics-Based Program
Manipulation (PEPM), 2008, pp. 3–12.

[17] U. Dhawan et al., “Architectural support for software-defined metadata
processing,” in Proc. 20th Int. Conf. Architectural Support Program.
Lang. Operating Syst., Mar. 2015, pp. 487–502.

[18] H. Kannan, M. Dalton, and C. Kozyrakis, “Decoupling dynamic infor-
mation flow tracking with a dedicated coprocessor,” in Proc. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., Jun. 2009, pp. 105–114.

[19] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement: A
practical approach to defeat a wide range of attacks,” in Proc. USENIX
Secur. Symp., 2006, pp. 121–136.

[20] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software,” in Proc. NDSS, vol. 5, 2005, pp. 3–4.

[21] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “Libdft:
Practical dynamic data flow tracking for commodity systems,” in Proc.
8th ACM SIGPLAN/SIGOPS Conf. Virtual Execution Environ., 2012,
pp. 121–132.

[22] U. Dhawan et al., “PUMP: A programmable unit for metadata process-
ing,” in Proc. 3rd Workshop Hardw. Architectural Support Secur. Pri-
vacy, Jun. 2014, pp. 1–8.

[23] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh, “Flex-
ible and efficient instruction-grained run-time monitoring using on-
chip reconfigurable fabric,” in Proc. 43rd Annu. IEEE/ACM Int. Symp.
Microarchitecture, Dec. 2010, pp. 137–148.

[24] J. Porquet and S. Sethumadhavan, “WHISK: An uncore architecture for
dynamic information flow tracking in heterogeneous embedded SoCs,”
in Proc. Int. Conf. Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS),
Sep. 2013, pp. 1–9.

[25] J. Lee, I. Heo, Y. Lee, and Y. Paek, “Efficient security monitoring with
the core debug interface in an embedded processor,” ACM Trans. Design
Autom. Electron. Syst. (TODAES), vol. 22, no. 1, pp. 1–29, 2016.

[26] K. Chen, Q. Deng, Y. Hou, Y. Jin, and X. Guo, “Hardware and software
co-verification from security perspective,” in Proc. 20th Int. Work-
shop Microprocessor/SoC Test, Secur. Verification (MTV), Dec. 2019,
pp. 50–55.

[27] A. S. Siddiqui, G. Shirley, S. Bendre, G. Bhagwat, J. Plusquellic, and
F. Saqib, “Secure design flow of FPGA based RISC-V implementation,”
in Proc. IEEE 4th Int. Verification Secur. Workshop (IVSW), Jul. 2019,
pp. 37–42.

[28] V. Nagarajan, H.-S. Kim, Y. Wu, and R. Gupta, “Dynamic information
flow tracking on multicores,” in Proc. Workshop Interact. Between
Compil. Comput. Archit., 2008, pp. 1–11.

[29] M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri, “SIFT: A
low-overhead dynamic information flow tracking architecture for SMT
processors,” in Proc. 8th ACM Int. Conf. Comput. Frontiers (CF), 2011,
pp. 1–11.

[30] M. A. Wahab, P. Cotret, M. N. Allah, G. Hiet, V. Lapotre, and
G. Gogniat, “ARMHEx: A hardware extension for DIFT on ARM-
based SoCs,” in Proc. 27th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2017, pp. 1–7.

[31] M. A. Wahab et al., “A small and adaptive coprocessor for information
flow tracking in ARM SoCs,” in Proc. Int. Conf. ReConFigurable
Comput. FPGAs (ReConFig), Dec. 2018, pp. 1–8.

[32] N. Nethercote and J. Seward, “Valgrind: A program supervision frame-
work,” Electron. Notes Theor. Comput. Sci., vol. 89, no. 2, pp. 44–66,
2003.

[33] D. Bruening, E. Duesterwald, and S. Amarasinghe, “Design and imple-
mentation of a dynamic optimization framework for windows,” in Proc.
4th ACM workshop Feedback-Directed Dyn. Optim. (FDDO), 2001,
pp. 1–12.

[34] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model checking
and the state explosion problem,” in LASER Summer School on Software
Engineering. Berlin, Germany: Springer, 2011, pp. 1–30.

[35] Sifive’s Freedom Platforms. Accessed: Jan. 2022. [Online]. Available:
https://github.com/sifive/freedom

[36] J. Pallister, S. Hollis, and J. Bennett, “BEEBS: Open benchmarks for
energy measurements on embedded platforms,” 2013, arXiv:1308.5174.

[37] M. Prandini and M. Ramilli, “Return-oriented programming,” IEEE
Secur. Privacy, vol. 10, no. 6, pp. 84–87, Nov. 2012.

[38] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-oriented programming without returns,” in Proc.
17th ACM Conf. Comput. Commun. Secur. (CCS), 2010, pp. 559–572.

[39] T. Abera et al., “C-FLAT: Control-flow attestation for embedded systems
software,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2016, pp. 743–754.

[40] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “LiteHAX:
Lightweight hardware-assisted attestation of program execution,” in
Proc. Int. Conf. Comput.-Aided Design, Nov. 2018, pp. 1–8.

[41] I. D. O. Nunes, S. Jakkamsetti, and G. Tsudik, “Tiny-CFA: A mini-
malistic approach for control-flow attestation using verified proofs of
execution,” 2020, arXiv:2011.07400.

[42] H. Barragán, Wiring: Prototyping Physical Interaction Design. Ivrea,
Italy: Interaction Design Institute, 2004.



CHEN et al.: FineDIFT: FINE-GRAINED DIFT FOR DFI USING COPROCESSOR 573

[43] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in Proc. USENIX Annu. Tech.
Conf. (USENIX ATC), 2012, pp. 309–318.

[44] Snoop Control Unit on Arm SoC. Accessed: Jan. 2022. [Online].
Available: https://developer.arm.com/documentation/ddi0407/e/snoop-
control-unit/ab%out-the-scu

[45] Intel Ultrapath Technology. Accessed: Jan. 2022. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/
xeon-processor-scalable-family-technical-overview.html

Kejun Chen received the B.S. degree in com-
puter engineering from Liaoning Shihua University,
Liaoning, China, in 2015, and the M.S. degree in
computer engineering from Northeastern University,
Liaoning, where he is currently pursuing the Ph.D.
degree. His research interests include hardware secu-
rity, secure computer architectures, and IP core
design and integration.

Orlando Arias received the B.S. and M.S. degrees
in computer engineering from the University of Cen-
tral Florida, Orlando, FL, USA. He is currently pur-
suing the Ph.D. degree in computer engineering with
the University of Florida, Gainesville, FL, USA.
His research interests include device security, secure
computer architectures, network security, IP core
design and integration, and cryptosystems. He was a
recipient of the Best Paper Award in the 52nd Design
Automation Conference. He was awarded the NSF
GRFP in 2015.

Qingxu Deng (Member, IEEE) received the Ph.D.
degree from Northeastern University, Shenyang,
China, in 1997. He is currently a Full Professor
with the School of Computer Science and Engineer-
ing, Northeastern University. His research interests
include multiprocessor real-time scheduling and for-
mal methods in real-time system analysis.

Daniela Oliveira received the B.S. and M.S. degrees
in computer science from the Federal University of
Minas Gerais, Brazil, in 1999 and 2001, respectively,
and the Ph.D. degree in computer science from
the University of California at Davis in June 2010,
where she specialized in computer security and
operating systems. She is a NAE Frontiers of Engi-
neering Alumni and a NAS Kavli Fellow. She was
a recipient of the NSF CAREER Award 2012 and
the 2012 United States Presidential Early Career
Award for Scientists and Engineers (PECASE) from

President Obama. She was also a recipient of the 2017 Google Security and
Privacy Research Award.

Xiaolong Guo (Member, IEEE) received the Ph.D.
degree in electrical and computer engineering from
the University of Florida (UF) in 2019. He is cur-
rently an Assistant Professor with the Department
of Electrical and Computer Engineering, Kansas
State University (KSU). His research focuses on
detecting hardware or computer vulnerabilities using
formal verification and program analysis. He has
been recognized with the Best Paper Awards at
AsianHOST 2020 and DATE 2019 and the Best
Paper Candidate at ASP-DAC 2021.

Yier Jin (Senior Member, IEEE) received the Ph.D.
degree in electrical engineering from Yale University
in 2012. He is currently an Associate Professor and
an IoT Term Professor with the Department of Elec-
trical and Computer Engineering (ECE), University
of Florida (UF). His research focuses on the areas
of hardware security, embedded systems design and
security, trusted hardware intellectual property (IP)
cores, and hardware-software co-design for modern
computing systems. He was a recipient of the DoE
Early CAREER Award in 2016 and the ONR Young

Investigator Award in 2019. He received the Best Paper Award at DAC’15,
ASP-DAC’16, HOST’17, ACM TODAES’18, GLSVLSI’18, DATE’19, and
AsianHOST’20. He is also the IEEE Council on Electronic Design Automa-
tion (CEDA) Distinguished Lecturer.


