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Information flow tracking was proposed more than 40 years ago to address the limitations of access control
mechanisms to guarantee the confidentiality and integrity of information flowing within a system, but has
not yet been widely applied in practice for security solutions. Here, we survey and systematize literature on
dynamic information flow tracking (DIFT) to discover challenges and opportunities to make it practical and
effective for security solutions. We focus on common knowledge in the literature and lingering research gaps
from two dimensions— (i) the layer of abstraction where DIFT is implemented (software, software/hardware,
or hardware) and (ii) the security goal (confidentiality and/or integrity). We observe that two major limitations
hinder the practical application of DIFT for on-the-fly security applications: (i) high implementation overhead
and (ii) incomplete information flow tracking (low accuracy). We posit, after review of the literature, that
addressing these major impedances via hardware parallelism can potentially unleash DIFT’s great potential
for systems security, as it can allow security policies to be implemented in a built-in and standardized fashion.
Furthermore, we provide recommendations for the next generation of practical and efficient DIFT systems
with an eye towards hardware-supported implementations.
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1 INTRODUCTION

Although classic access control mechanisms (via authentication and authorization) constrain the
access rights of a user, they do not guarantee the confidentiality and integrity of the information
flowing within a system or a program [9]. To address this limitation, information flow models
have been introduced in the 1970s [25, 26, 31, 32] with the key idea to taint certain instructions
and/or data with metadata tags, to propagate these tags based on a given confidentiality and/or
integrity policy, and to check these tags for specific policy(ies) compliance. Several techniques for
tracking information flow have been proposed, which fall into two major categories—static and
dynamic. Static approaches analyze a program prior to its execution (via source code) to verify all
possible execution paths. Dynamic approaches, on the other hand, control a program or system
information flow at runtime.

In the 2000s, information flow tracking was revisited as a promising approach to mitigate
control-flow hijacking attacks (e.g., buffer overflows) [19-22]. The research community at that time
was particularly interested in dynamic mechanisms, or Dynamic Information Flow Tracking
(DIFT), also denoted as Dynamic Taint Analysis (DTA) [66]. Since then, several DIFT implemen-
tations for security have been proposed for—(i) software, e.g., [19, 25, 26, 35, 52, 53, 56, 82], (ii) hard-
ware, e.g., [46, 47, 55, 58, 68, 79, 80], and (iii) a combination of the two, e.g., [21-23, 57, 61, 75, 76, 80].

Besides detection of control flow exploitation and in-memory-only injection attacks [4] (both
to assure integrity), DIFT has also been proposed to detect information leakage [59] and to locate
cryptographic keys in memory [30] (both to assure confidentiality).

DIFT has also been leveraged for non-security applications, such as program visualization
[51, 54] and performance improvement and benchmarking [40, 49, 67]. Despite being a relatively
mature computer science theory and a highly researched area since the mid-2000s, DIFT has mini-
mal adoption in real-world applications to protect the security of computer systems and the privacy
of their users for two main reasons, described below.

1. High Implementation Overhead: Several implementations of DIFT, particularly those in soft-
ware and encompassing the whole system, incur significant performance and memory overheads
(e.g., 56x performance slowdown for a QEMU based implementation [4]). Although software-based
DIFT offers high flexibility for implementation (e.g., tag sizes, format, and granularity), tailoring to
a variety of attacks and applications, the incurred performance costs make these systems imprac-
tical for real-world deployment [4]. This limitation called for investigating DIFT implementations
in hardware [46, 47, 55, 58, 68, 79, 80], as envisioned by early discussions by Denning [25, 26] and
Fenton [31, 32], or via software-hardware collaboration [23, 57, 61, 75, 76, 80]. These hardware-
oriented approaches have shown promising reduction in performance overhead in comparison to
their software-based counterparts, but they tend to lack flexibility and require significant modifi-
cations in the hardware (and even in the software) subsystem.

2. Low Accuracy (incomplete tracking of all information flows): Many DIFT systems only
address direct information flows (more details in Section 2) because these flows are straightfor-
ward to detect and such an approach leads to lower performance and memory overhead in taint
tracking operations (e.g., fewer tags and less tag metadata). This can lead to undertainting because
some information flows (e.g., the predicate in a conditional statement) might not be captured. To
be sound, a DIFT solution will taint both direct and indirect flows. Unfortunately, this can lead to
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potentially extraneous tag propagation, and can lead to taint explosion (overtainting) and high per-
formance/memory costs. While some works [4, 30, 65, 69] have attempted to address this dilemma,
the problem is still open.

Recognizing a high potential for real-world and practical implementations, in this article we
survey and systematize the literature on dynamic information flow tracking, with the goal to
discover challenges and opportunities to make DIFT practical. Specifically, we look at the com-
mon knowledge in the field and attempt to discern research gaps from two dimensions. First, the
layer of abstraction for DIFT implementation, i.e., software, hardware, and hardware-software (via
collaboration between these layers). Second, the security goal, i.e., confidentiality and/or integrity.
We also provide recommendations for the next generation of efficient hardware implementations
of DIFT, such as investing in hardware parallelism to allow addressing of both performance and
incomplete tracking of all information flows dilemma.

To the best of our knowledge, the only work that attempted to systematize DIFT based on the
literature of the time is that of Schwartz et al. [66], which is now a decade old, and does not consider
implications of the layer of abstraction for the DIFT implementation nor the policy models, two
key dimensions of DIFT considered in our article. Moreover, in this present article, we introduce a
comprehensive coverage and systematization of hardware proposals for DIFT not yet covered by
prior work. Our work makes the following scientific contributions:

(1) We systematize the DIFT literature with an eye towards making it practical and effective
for real-world deployment from two major dimensions— (i) the layer of abstraction for im-
plementation, i.e., software, hardware, and hardware-software and (ii) the security goal, i.e.,
confidentiality and/or integrity.

(2) We provide an exposition of common knowledge and formulate the research gaps in the
existing literature.

(3) We provide recommendations for the next generation of efficient and effective DIFT systems
that can bridge the research gaps identified in our survey.

2 BACKGROUND

Information flow refers to the way information moves within a system or program [25]. Research
on the topic started in the 1970s with the definition of the problem and the realization that au-
thentication methods alone cannot guarantee the confidentiality and integrity [25, 26, 31, 32] of
a system or program. Initial research centered on the definition of policies designed to protect
the confidentiality and/or integrity of information by determining the way the information moves
throughout the system.

2.1 Information Flow Model

An information flow model can be viewed as an extension to the concept of state machine that
comprises objects, state transitions, and flow policies (or lattice states) [34]. Entities involved in
information flows are categorized into either object or subject. An object denotes the location where
information is stored, e.g., files, memory segment, program variables, and so on. A subject denotes
an entity that causes (accesses) the flow of information from an object to another object, e.g., user,
system, program, process, and so on. More formally, an information flow model (FM) [34] is defined
by a quintuple [25],i.e., FM =< N, P,SC, ®, — >, where:

— N ={a,b,...} is a set of logical storage objects (e.g., files, memory segment, program vari-
ables, or a system user).

— P = {p1,p2, ...} is a set of processes (or any active agents) that are responsible for all infor-
mation flows.
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— SC = {A, B, ..} is a set of security classes corresponding to information that intends to cover
the notion of “security classification”, “security categories”, and “security clearance”. Each
object “a” is bound to a security class, denoted by a, which indicates the security class of the
information stored in the object “a”. Users can be bound to security classes, referred to as
“security clearances”. Processes can be bound to security classes, which may be determined
based on the security clearance of their owners or the history of security classes to which
they have had access. There are two methods to bind objects to security classes— static
binding, where the security class of an object remains constant throughout its life cycle and
dynamic binding, where the security class of an object changes based on its content.

— “@®” is a binary operator that combines the security classes of operands when any binary
function is applied on those operands. In other words, “®” specifies the security class of the
result obtained by applying a binary function based on the operands’ classes. The operator
“@” is associative and commutative in nature. Given this, the class of the result of n-ary
function f(ay, az, as,...,a,) is a, ® a, ® a, ® .... ® a,. Furthermore, the operator & is
independent of the function that is used to combine values.

— “>” indicates a flow relation between a pair of security classes. For classes A and B, A — B
indicates that information is permitted to flow from class A to class B. If information flows
from a function f(ay, az, as, . ..a,) to an object b that is statically bound to security class
ba ®a,®a, ®....®a, — bmust hold. If b is a dynamically bound object, then for
the above information flow, the class of b, i.e., b, must be updated (if necessary) to satisfy

a,®a,®a,®....0a, > b.

The goal of the information flow model is to prevent unauthorized and/or insecure flows of
information in any direction. An information flow model is typically implemented to enforce con-
fidentiality and/or integrity, two of the three pillars of the CIA triad. Confidentiality policies aim
to prevent the flow of information to an unauthorized entity, while integrity policies intend to
restrict unauthorized modification of data. The Bell-LaPadula model [7, 45] is the most prominent
model to address system security from a confidentiality perspective, while the Biba model [8] is
the most distinguished to address systems integrity. We here summarize both models.

2.1.1 The Bell-LaPadula Model [7, 45]. Intends to preserve confidentiality when information
flows from one secure state to another—“read-down, write-up”. Specifically, a subject at a confiden-
tiality level can only access (or read) an object of lower confidentiality level. Also, a subject at a
given confidentiality level can send (or write) information to an object of higher confidentiality
level, often referred to as Star (*) Security Property. For an instance, a layperson, say Mary, can
send (or write) sensitive information to the Federal Bureau of Investigation (FBI) because it
has higher confidentiality level than her.

2.1.2  The Biba Model [8]. Focuses on the principle of data integrity and is the dual of the Bell-
LaPadula’s model. The Biba model intends to prevent a subject from corrupting data in a level
ranked higher than that of the subject—“read-up, write-down”. A subject at a given level of integrity
is only permitted to access (or read) an object of equal or higher integrity level. Similarly, a subject
at a given level of integrity is only permitted to write to an object of higher integrity level. For
an example, only designated scientists and medical doctors can formulate guidelines to prevent
pandemics. These guidelines, in turn, can be read by people with a lower integrity label, e.g., a
layperson like Mary. However, a layperson should not write pandemic guidelines for the public.

2.2 Types of Flows

Given a program with a sequence of commands, information flows from an object to another if
the initial information stored in the former affects the information of the latter when the program
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is executed [9]. Information flows can be divided into two major categories— (i) direct flows and
(ii) indirect flows. In direct flows, the information in some variable is explicitly moved to another.
For example, in a command y = x; information flows from the variable x to the variable y. In
indirect flows, the program’s control flow or address indexing (e.g., into a data structure) affects
the information in a variable to another. For example, in the snippet of code below, information
flows from x to y without explicit assignment of the form y = f(x), where f(x) is an arithmetic
expression with the variable x. Here, the information stored in x defines the information of y.
if (x == 1)
y = 0;
else
y = 1

The work by Denning [25], however, does not consider two other important types of information
flows that have been exploited in recent attacks: covert channels and side channels. In contrast to the
channels that carry direct and indirect flows, covert and side channels are channels not explicitly
designed for valid communication and information exchange. The main distinction between side
channels and covert channels is whether the sender is in collusion with the receiver. An example
of exploiting a side channel would be an adversary stealing bits of information from a privileged
process because of the manner the process uses the cache, and not because the process intends
to be sending bits out of a proper channel. Conversely, if that process is leaking the bits to the
adversary on purpose (i.e., colluding with the adversary), information is flowing through a covert
channel.

2.3 Information Flow Tracking Mechanisms

Techniques for tracking information flow fall into two categories, as described below.

2.3.1 Static Mechanisms. Operate by examining whether a program’s information flows violate
a security policy prior to its execution, typically during program compilation. Static approaches
require the programmer to associate security classes for all the objects referenced in the system.
Since information flow analysis is performed prior to execution, static mechanisms do not impair
the program’s execution speed. Furthermore, the information flow examination process can be
specified in terms of high-level language, rather than low-level hardware instructions. However,
static mechanisms cannot examine (or verify) flows that are not specified by the program (e.g.,
language-specific defects, such as not checking array bounds, occurrences of dangling references).
Moreover, a program marked secure by static analysis might be vulnerable to hardware defects
and/or vulnerabilities [25]. Nevertheless, static mechanisms are often used to detect vulnerabilities
in the program source code (e.g., vulnerabilities in the IoT backend architecture [3, 36]) prior to its
execution.

2.3.2  Dynamic Mechanisms. Operate by examining whether information flowing within a pro-
gram execution conforms to the established security policies at runtime. Examining a direct flow,
eg.,b= f(ay,ay,...,a,),is straightforward. In direct flows, prior to the execution of the assign-
ment, runtime mechanisms verify a; ® a, ® ... ® a,, — b, where & is a binary operator combin-
ing (according to a policy) the security classes of the operands and — indicates a flow relation
between a pair of security classes. If the condition is satisfied according to the established secu-
rity policy(ies), the assignment succeeds, otherwise, it fails. Since dynamic analysis follows pro-
gram control flow, information flows that are not taken during the program execution are ignored.
Fenton [31, 32] explored this challenge and introduced a special abstract machine described below
(Data Mark Machine).
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2.4 Data Mark Machine

Fenton [31, 32] introduced an interesting runtime policy enforcement mechanism, called Data
Mark Machine. In Fenton’s machine, each object is bound with a security class, often called tag or
data mark. One important proposition of Fenton’s machine was to also bind the Program Counter
(PC) with a security class. Given that conditional statements (or branches) in a program are merely
assignments to the PC, binding of PC with a security class enables the machine to treat implicit
flows as direct flows. Of note: we will discuss in Section 4.4.2 that the term indirect flows is a
property of dynamic information flows, while the term implicit flows is used for static analysis
of information flows. Fenton’s machine, described below, is fundamentally a static approach. The
same rationale is valid for the use of direct vs. explicit flows.

Consider a conditional structure ¢ : S;,S,,S3,...,S,, conditioned on the values of k condi-
tioned variables ¢y, ¢z, cs, . . ., ck. Immediately prior to the execution of the conditional structure
¢, the machine pushes PC along with its current security class PC to the program stack, replaces
PC with the least upper bound of its own class PC and classes of the k condition variables, i.e.,
PC = PCoc,®c,®c,®. . .c,.. Once the conditional statement(s) S have been executed, the machine
restores the PC and PC by popping the top element and its security class from the program stack.

If statement S denotes an explicit flow from object ay, az, as, ..a, to statically bound object b, the
execution machine verifies if a; ® a, ® ... ® g, ® PC — b s satisfied, and prevents execution if
the condition is not satisfied. If b is a dynamically bound object, the class of b is updated to satisfy
al+ay + -+ +a, + PC — b. In other words, the execution-based mechanism forces the relation
to be true by updating the class of b, i.e., b. Fenton’s machine examines implicit flows in a way
similar to that of explicit flows, since the inclusion of the security class to the PC allows to treat
implicit flows as explicit flows.

Fenton defined five instructions—increment, conditional, return, branch, and halt instructions.
The snippet (taken from [9]) below shows an example of conditional instruction and its execu-
tion equivalent to classes of variables. skip denotes that the statement is not executed, push(x, x)
denotes to push variable x and its security class x onto the program stack, pop(x, x) denotes to
pop the top value and its security class and assign them to x and x, respectively. Please refer to
Bishop [9] [p.562-565] for further details on the relationship between remaining instructions and
their execution equivalent of classes of variables.

if (x = 0) {
push (PC, PC);
(PC, x);
PC = n;
}
else
if PC < = x
X = x — 1;

Both in Fenton’s seminal journal paper [32] and in his dissertation [31], Fenton describes a side
channel that completely subverts the security guarantees of the Data Mark Machine if the system
has variable data marks for registers. To compile a program for Fenton’s Data Mark Machine, or to
write an assembly language program for it, the compiler or the program’s author must effectively
analyze the program for all possible flows of information statically to know, for every program
point, what register (based on its mark) data can go into. The register and data must have the
same mark. Thus, the Data Mark Machine itself acts only as a (perhaps redundant) runtime check
to ensure that the static analysis of information flow does not violate the security of the system.
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Fenton’s Data Mark machine was more of a thought experiment about the difficulties of having
a perfect DIFT system than a practical system that could actually track information flow in a
useful way.

While it is tempting to treat DIFT as a special case of other information flow techniques and
controls, DIFT is a distinct technique with problems that are analogous to, but not the same as,
the problems that arise from other information controls. DIFT is distinguished from Denning’s
Lattice Model [25] not only in that the approach is dynamic rather than static, but also in that
DIFT operates on a trace and typically assumes no access to the source code, while Denning’s
Lattice Model operates on programs and assumes access to the full source code. Decentralized
Information Flow Control (DIFC) [44, 53] has an acronym that is similar to DIFT and sometimes
involves run-time checks, but is fundamentally a static approach that works on programs and
requires access to the full source code.

3 SYSTEMATIZATION METHODOLOGY

The focus of our work is systematizing the existing and prominent literature on DIFT after the
active revisiting of the field in the mid-2000s. Specifically, our systematization focuses on critical
aspects of DIFT systems that enhance (or constrain) its practicality. The goal of our work is to elu-
cidate common knowledge on DIFT, its applications, and the types of implementations in different
systems, as well as research gaps that hinder DIFT deployment. Another goal of our systematiza-
tion is to identify opportunities for enhancement of DIFT implementations in software, hardware,
or their combinations, so that it becomes practical for assuring the confidentiality and integrity of
general computer systems.

3.1 Research Questions

To aid in the identification, classification, and analysis of the literature used in our systematization,
our process was directed by the following research questions (RQ):

(1) What are the key attributes of a DIFT system that influence its performance and accuracy?

(2) What is the state of the art for DIFT solutions implemented exclusively in software?

(3) What is the state of the art for DIFT solutions implemented by leveraging both the software
and hardware subsystems?

(4) What is the state of the art for DIFT solutions implemented exclusively in hardware?

The systematization process followed the guidelines for systematization of knowledge papers
by Budgen et al. [11] and Kitchenham et al. [43]. We systematized the literature on DIFT that we
incorporated in this work following a general, three-phased process—(i) searching, (ii) filtering, and
(iii) categorization, as explained in the next subsections.

3.2 Searching and Identifying Relevant Works

The initial step for the identification of relevant related works was for us to identify specific key-
words related to DIFT, and to search for those keywords in academic databases or reputable pub-
lishers in computer science and engineering. The five major places we originally searched were
the IEEE, ACM, USENIX, ISCC, and Springer academic databases. Specifically, our base keywords
utilized were “information flow”, “DIFT”, and “taint tracking”.

Additionally, for each keyword, subsequent searches were performed individually appending
each of the terms: “Indirect Flows”, “Coprocessor”, “Hardware”, “IoT”, and “Applications”. All
papers considered in our systematization were peer-reviewed.
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3.3 Manually Filtering and Selecting Relevant Works

Next, six researchers (co-authors) manually reviewed the papers and removed any paper that
was not directly relevant to DIFT. To pare down the set of works that were initially collected
for use in our study, we manually filtered and selected relevant works according to the following
criteria:

— Inclusion Criteria. The article or work should include theory, practice, methods, imple-
mentations, limitations, or applications regarding DIFT or DTA. Additionally, relevant works
should include either discussions of the fundamental practices and methods of DIFT or de-
scriptions of implementations, methods, or techniques for DIFT. Furthermore, the relevant
works should be unique in their scope of discussing DIFT or should discuss a novel method
or technique for implementing DIFT. Lastly, most articles should be published between the
years 2000-2021.

— Exclusion Criteria. Articles that do not describe any unique method, technique, implemen-
tation, nor provide any new insight into theory or analysis of DIFT. Any article or work that
does not have any relevance to our RQs or background on DIFT. We also filtered articles that
proposed an information flow technique that exclusively relied upon static information flow
tracking or the ability to have prior knowledge of the program source code to determine
vulnerabilities. An example of an excluded article is Timber-V [81], because although the
proposal involved hardware tags, there was no concept of tag propagation, which is central
to information flow theory and dynamic information flow tracking.

After the filtering phase, we utilized the pool of relevant works to once more search for addi-
tional relevant works, by manually going through the references of each already designated related
work and the works that cited our already designated related works. This process left us with 50
designated relevant works, which were then submitted to the final phase, categorization.

3.4 Categorization and Sorting

The final phase of our systematic literature review was to compile data from each relevant work.
The initial step was, for each relevant work, conduct an in-depth reading of the manuscript to
determine the most relevant categories across all relevant works. A few examples of questions

»

used in this analysis are: “Software or Hardware Focus?”, “Tag Format”, “Tag Granularity”, “Whole
System or Application Specific”, “Tracks Indirect Flows?”, and “Collaboration between Hardware
and Software?”.

Table 1 includes a distilled set of the key properties and characteristics of all collected references
(excluding those that were filtered out), which were used to sort each relevant work into its respec-
tive category. Across all of the references chosen, four major categories of papers emerged: (i) DIFT
Fundamentals, containing works related to fundamental attributes of DIFT systems, such as tag size,
format, and how indirect flows are handled, (ii) DIFT in Software (SW-DIFT), capturing works imple-
menting DIFT purely in software, (iii) DIFT with Software-Hardware Collaboration (SW-HW DIFT),
containing works implementing DIFT by leveraging both the software and hardware subsystems,
and (iv) DIFT in Hardware (HW-DIFT), covering works implementing DIFT purely in hardware.
These categories were developed iteratively and unanimously agreed upon the researchers/coders
throughout careful article reviews.

Figure 1 shows the distribution of DIFT categories over the years. Across different implementa-
tions of DIFT, we found that 67% of the research works on DIFT focused on enforcement of security
policies—33% on confidentiality, 29% on integrity, and 5% on both. Although, a small fraction of
works have employed DIFT for both confidentiality and integrity, they did not investigate the
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Table 1. Reference Properties of the DIFT Works Reviewed in This Article

Works Theme Tag Tag System or Tracks Indirect Flow Run-time
Format Granularity App Specific Indirect Flows Method Increase
She et al. [67] DIFT Fund. 1-bit or 8-bit 1-byte Whole System  Addr. Dep. Only  Unspecified -4000% Libdft
Santos et al. [50] DIFT Fund. Split memory! N/Al Whole System  Yes No Negligible
Suh et al. [71] DIFT Fund. 1-bit byte/word/page Whole System No N/A 1.1% to 23%
Sapountzis et al. [64] DIFT Fund. Provenance List  1-byte App Specific  Yes, variably. Amnt. info added Unspecified
Sapountzis et al. [65] DIFT Fund. Provenance List  1-byte Whole System  Yes Parameterized Eqn.  3360%
Al Saleh et al. [1] DIFT Fund. 8-bit fixed point  1-byte App Specific  Yes Tunable tag Unspecified
Slowinska et al. [69] DIFT Fund. 32-bit 1-byte Whole System  Yes No N/A
Schwartz et al. [66] DIFT Fund.  N/AZ N/AZ N/A2 N/A? N/A N/A
Jietal [38] DIFT SW 1,8, or more bits  1-byte Whole System No N/A 4.84%
Egele et al. [28] DIFT SW 1-bit 1-byte Whole System No N/A 300%
Mazloom et al. [51] DIFT SW 4-bytes 1-byte Whole System No N/A Avg: 10000%
Mysore et al. [54] DIFT SW 4-bytes 1-byte Whole System No N/A 0% to 100% avg
Dolan-Gavitt et al. [27] DIFT SW Arbitrary Arbitrary Whole System Configurable App. Specific App. Specific
Kang et al. [40] DIFT SW 1-bit 1-byte Whole System  Yes Static Analysis App. Specific
Espinoza et al. [30] DIFT SW Vec. of 200 floats  1-byte App Specific  Yes Tag weights N/A
Newsome et al. [56] DIFT SW 1-bit 1-byte App Specific ~ No N/A 200%-3720%
Arefi et al. [4] DIFT SW Provenance List ~ 1-byte Whole System No N/A 5600%
Yin et al. [83] DIFT SW Data Struct. 1-byte Whole System No N/A 2000% slowdown
Clause et al. [18] DIFT SW Bit-vector 1-byte App Specific  Yes No 3000%
Chen et al. [15] DIFT SW Configurable Configurable App Specific  Yes No 5%-25%
Kemerlis et al. [42] DIFT SW 1-bit or 8-byte 1-byte App Specific ~ Addr. Dep. Only No 114% to 603%
Jietal [37] DIFT SW 1-bit or 8-bit 1-byte Whole System No N/A 4.84%
Ozsoy et al. [57] DIFT SW 1-bit or 1-byte Per-Address Whole System No N/A 26%
Qin et al. [62] DIFT SW 1-bite 1-byte Whole System No N/A Unspecified
Chang et al. [12] DIFT SW 32-bit 1-byte App Specific ~ No N/A 0.65%
Banerjee et al. [6] DIFT SW Bit-vector 1-byte App Specific ~ No N/A 1.07%-1.12%
Zhu et al. [85] DIFT SW 1-bit 1-byte App Specific ~ No N/A Unspecified
Costa et al. [19] DIFT SW 1-bit Per page Whole System  No N/A <1%
Townley et al. [76] DIFT SW-HW  1-word Per page Whole System  No N/A <1% to 60%
Dalton et al. [23]* DIFT SW-HW  4-bit Per word Whole System No N/A 1% to 3000%
Porquet et al. [61] DIFT SW-HW  Bit-vector Per word Whole System  Unspecified N/A 22% to 50%
Vachharajani et al. [78] DIFT SW-HW N/A3 N/A3 Whole System  Yes ISA + Bin. xlation 0% to 100%
Chow et al. [17] DIFT HW 1-bit 1-byte Whole System  No N/A N/A
Kannan et al. [41]* DIFT HW 4-bit 32-bit Whole System No N/A 1%
Lee et al. [47]" DIFT HW 1-bit Per word App Specific ~ No N/A 1.6%
Santos et al. [49] DIFT HW 1-bit 1-byte App Specific ~ Unspecified N/A 10%
Crandall et al. [21,22]  DIFT HW 1-bit Per word Whole System No N/A Negligible
Pilato et al. [60]* DIFT HW 1-bit Configurable App Specific  No N/A 0% to 100%
Joannou et al. [39]* DIFT HW 1-bit 64-bit ‘Whole System No N/A 1%
Wahab et al. [79]* DIFT HW 1-bit to 32-bit Configurable App Specific  Unspecified N/A 335%
Wahab et al. [80]* DIFT HW 1-bit Configurable Whole System  Yes ISA + Static Analysis  5.35% to 24.6%
Palmiero et al. [58]* DIFT HW 1-bit 1-byte Whole System  Yes No Negligible
Chen et al. [13]* DIFT HW 1-bit 1-byte Whole System  No N/A Negligible
Piccolboni et al. [59]*  DIFT HW 1-word 1-byte Whole System  Unspecified N/A 0% to 100%
Tiwari et al. [75]* DIFT HW 1-bit 1-bit Whole System  Yes ISA Design Unspecified
Bosman et al. [10] DIFT HW 1-bit 1-byte Whole System No N/A 150% to 300%
Tiwari et al. [74]* DIFT HW 1-bit 1-bit Whole System Unspecified N/A Unspecified

*represents the work was evaluated on actual hardware platform, e.g., FPGA prototype.

!These are N/A, as PIFT [50] splits tainted and untainted data into designation blocks of memory.

2These are N/A, as this work is an older survey of DIFT.

3These are N/A, as RIFLE [78] translates existing instructions into information flow security instructions that
propagate and store taint information equivalent to the existing size and format of data in memory.

scenario when these two policy models (one the dual of the other) were applied at the same time.
Approximately one third of the reviewed works leveraged DIFT for non-security purposes, such
as program visualization [51, 54]).

4 DIFT FUNDAMENTALS
ADDRESSING RQ1: WHAT ARE THE KEY ATTRIBUTES OF A DIFT SYSTEM THAT INFLUENCE ITS
PERFORMANCE AND ACCURACY?

In DIFT, certain inputs are tainted with metadata tags (Tag Insertion), which are propagated as
the program/system runs based on a given policy (Tag Propagation). These tags are subsequently
checked for program analysis and/or security policy enforcement (Tag Checking), as described
below:.
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Fig. 1. Category distribution of DIFT literature over the years.

4.1 Tag Basics

Size and Format: The research community has experimented with a diverse range of tag (some-
times denoted as “taint” in the literature) sizes and formats. Tags may be a single bit or multiple
bytes, and even data structures, depending on the layer of abstraction of the DIFT solution and
the security policy to be enforced. For example, Minos [21, 22] a microarchitecture for integrity
enforcement, Bitblaze [70], a whole-system DIFT architecture for binary analysis, and the whole-
system proposed by Suh et al. [71] are the earliest examples of DIFT variants that utilize single
bit tags. While the use of single bit tags can achieve good accuracy in detecting simple policy
violations (e.g., buffer overflows) with reasonable memory and runtime overheads, its simplistic
design lacks expressiveness. For instance, a system using 1-bit tags cannot differentiate between a
tag inserted at the network interface and one inserted via a system call invocation. The inability
to differentiate tags limits the information that can be collected and utilized for more rigorous
analysis.

To address this limitation, thus providing higher expressive power compared to that of one-bit
schemes, subsequent DIFT systems, such as Dytan [18], WHISK [61], and that by Kannan et al.
[41], proposed tags of multiple bits (or variable bit sizes). Dytan utilizes variable length bit vectors,
so that security analysts can define if they want to taint data from specific sources. WHISK uses
variable length bit-vectors as well, however, the authors define the options for the lengths to only
be 1, 8, 16, or 32 bits to observe the degree to which tag bits are utilized with regards to the tag
width. Kannan et al. [41] employed 4-bit tags per word in memory, such that low-level memory
corruption attacks and high-level semantic attacks can be detected.

Crucially, these multi-bit schemes [18, 41, 61] allow for policies that can differentiate the sources
of tags. Examples of such a highly expressive DIFT implementation include those leveraging tags of
provenance list style, such as FAROS [4] and DDIFT [64]. FAROS is a whole-system DIFT approach
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for reverse engineering running on top of PANDA/QEMU, in which provenance lists contain sets
of tags of different types (e.g., network information, file information), allowing for the identifi-
cation of tag signatures of in-memory-only attacks. DDIFT is a DIFT framework for IoT devices
that leverages tracking at the device level and optimization of tracking at the cloud level, and
similarly to FAROS, utilizes provenance information for attack detection. These systems can track
information about the history of tagged data within the system, e.g., where the data has been, or
what other data it has interacted with. However, the increased expressiveness of such a multi-bit
scheme comes at the high cost of increased memory and runtime overheads. Moreover, the larger
and the more complex a tag is, the more challenging it is to have the DIFT system implemented in
hardware.

Tag Granularity: Tag granularity is a measure of the smallest-sized memory unit that a tag can
be associated with. It determines three critical performance metrics for a DIFT system—memory
overhead, runtime overhead, and information accuracy. For a DIFT scheme with a simple tagging
policy (e.g., 1-bit tags), the benefits of fine tag granularity (e.g., 1-byte granularity), such as the
ability to detect buffer overflow attacks, can outweigh the storage overhead costs. Works such as
libdft [42] and that of Chow et al. [17] justify their choice on byte level granularity as improving
accuracy in flagging policy violations or keeping the DIFT architecture simple.

While a DIFT scheme with coarse-grained tag granularity (e.g., word level or higher) can reduce
memory overhead, it can potentially leave some data unnecessarily tainted (false positive) [17]. To
combine the best of two worlds, Suh et al. [71] proposed multi-granularity security tags, where
the operating system (OS) maintains two extra tag bits per page to indicate the granularity
within that page, which allows the system to reduce the amount of shadow memory allocated
for tag storage (discussed below). The cost of this approach is that it requires the shadow mem-
ory to be dynamically allocated by the DIFT-aware OS. However, we believe that moving forward,
multi-granularity schemes are likely to become a general standard as the field progresses, as more
complex implementations start exploring more the principles of spatial and temporal locality of
a taint.

4.2 Tag Insertion

Tag insertion is the process of inserting new tags into a running system. Tags are usually associated
with memory units involved in certain system activities and can be inserted into (or associated
with) policy-defined regions of memory. Tags can be inserted at any point designated by a chosen
security policy. In most cases, tags are inserted at points in a system where data is being used in
an untrusted way or entering the system from an untrusted source. In other cases, data that flows
through designated I/O channels will be tagged, or any untrusted application or process may have
its data tagged. For example, TaintBochs [17], which utilizes 1-bit tags, considers all data that
enters their system from the network as tainted (untrusted) and tags them immediately upon their
entering in the system.

Additionally, some systems initialize their data with certain taint values, which are then prop-
agated during execution, so that an analyst can observe which areas of memory most interacted
with each other. An example of this is V-DIFT [30], which inserts a vector of random floating points
values as the tag for every byte in its system for locating the region of memory where a crypto-
graphic key is stored by different cryptographic algorithms. The policy used by V-DIFT dictated
tag insertion at the beginning of execution. Other systems may insert tags at certain interfaces,
e.g., when data enters the system via user input, upon invocation of a system or function call (e.g.,
FAROS [4]), or via a network interface (e.g., MINOS [21, 22]).
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4.3 Tag Storage

The original works by Denning and Fenton [25, 26, 31, 32] do not address the logistics associated
with storing tags, yet tag storage sustains as an integral aspect of a functioning DIFT system. The
tags employed by a DIFT system must be stored such that they are accessible for propagation and
policy checking. The location of tag storage varies for each individual DIFT scheme. Generally, the
memory that DIFT systems use to store tags is denoted as shadow memory.

DIFT implemented entirely in software often has its shadow memory located within the main
memory, like Pagurus [59], FAROS [4], and DDIFT [64]. These DIFT systems store tags in a seg-
ment of main memory such that addressing and accessing stored tags can be mapped in memory
in a flexible way. DIFT implemented in hardware, or in software with hardware modifications, typ-
ically stores tags in its own physical shadow memory. This can be implemented as a fully separate
memory module or as adjacent memory [21, 22]. Minos, implementing DIFT in an x86 emulator,
utilizes adjacent shadow memory by simply extending each unit of main memory by the length
of the tag (1 bit). Similarly, Pagurus has a configurable mode that allows for adjacent storage of
tags, called a “coupled” scheme. In other instances, tags are stored within the space of the program
(or the application), one example being PIFT [50], which taints memory at page granularity and
allocates memory at compilation time into trusted or untrusted regions, with the goal of achieving
zero memory overhead in their system.

There are benefits and detriments to any chosen shadow memory scheme. Shadow memory im-
plemented as a separate segment, either in software or hardware, facilitates superior flexibility of
mapping storage, modularity, and allows for isolation of tag storage. On the other hand, accessing
segmented shadow memory is not as fast as accessing adjacent shadow memory. However, adja-
cent shadow memory is far less flexible, as it cannot be mapped or utilized in any fashion different
from the original design. More unique DIFT implementations, like PIFT [50], achieve zero memory
overhead in their system as all data is stored in variable trusted or untrusted regions of memory.
Unfortunately, this creates performance overheads from the increase in memory accesses to ensure
all data is moved into its correct and respective region of memory.

4.4 Tag Propagation

To regulate the flow of information within the program (or the system), the inserted tags are prop-
agated as the program or system runs according to the information flow policies in place (e.g., Biba
for integrity). There are two types of tag propagation methods, as described below.

4.4.1  Direct Flow Propagation. Direct flows are composed of copy and computation dependen-
cies. In a copy dependency, a value is copied from one location (e.g., a byte or word in memory
or CPU register) to another. Comparatively, in a computation dependency, a function is applied to
data values. To track the information flow of a copy dependency, the tag is propagated from the
source tag location to the destination tag location. In the case of computation dependency, the tags
of the values used for calculation are combined as a union. For example, when the computation of
the sum between two variables results in a third variable, e.g., z = x + y, the tag of the resultant
variable (i.e., z) contains the union of the tags of the two variables x and y.

4.4.2 Indirect Flow Propagation. Indirect flows are based on the control-flow of a system. In
particular, indirect flows are a property of DIFT, whereas implicit flows, as described by Denning
[25]. are a property of static analysis of information flow. Specifically, an indirect flow is an occur-
rence of an implicit flow within dynamic analysis, as described by V-DIFT [30]. The designation
of implicit flow entails the knowledge of the different possible execution paths, whereas indirect
flows only have knowledge of the execution path that has been observed to have executed.
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const char oldString = "TaintedString";

char newString [32];

char lookupTable [256];

for (i = 0; i < 256; i++)
lookupTable[i] = i;

for (j = 0; j < strlen(oldString); j++)
newString[j] = lookupTable[oldString[j]];

Fig. 2. An example of address dependency in C [4].

char taintedByte;
char untaintedByte = 0;
for (int bit = 1; bit < 256; bit <<= 1) {
if (bit & taintedByte)
untaintedByte |= bit;

Fig. 3. An example of control dependency in C [4].

Indirect flows can be divided into two types— address and control dependencies. Address depen-
dency occurs when a resultant value is dependent specifically on the initial value of a certain mem-
ory region, which is used to address (or index) another value. Specifically, Figure 2 [4] presents an
example of address dependency in C that utilizes a lookup table to propagate a tainted string from
one location to another. Since the input string 01dString is tainted, the resultant string newString
should also be tainted. In the example, to ensure that newString has been tainted properly, the
taint status of the address (used for the load) is checked with lookupTable and this taint is propa-
gated. In a control dependency, the value within a certain memory region determines the flow of
the program instructions. Figure 3 [4] shows an example of control dependency in C, where the
current value of variable bit determines the value of variable untaintedByte.

Undertainting and Overtainting: One of the major challenges of making DIFT a practical secu-
rity technology is that while it is straightforward to observe occurrences of direct flows, indirect
flows are significantly harder to track. Therefore, current DIFT systems lack the ability to discern
the necessity of propagating tags through indirect flows, revealing the dilemma of undertainting
vs. overtainting. Overtainting occurs when tags are propagated through all indirect flows, leading
to taint explosion. Slowinska and Bos [69] define taint explosion as a phenomenon in which a tag
spreads rapidly within a system during execution. This results in taint pollution, as most objects
in the system are tainted, leaving the memory saturated with tags and no longer able to produce
meaningful results in terms of information flow tracking. In other words, overtainting can make
it impossible to discern the actual behavior of a system. The challenge of tracking indirect flows
and the performance costs of overtainting leads to nearly all DIFT solutions to only track direct
flows. Conversely, undertainting occurs when tags are not propagated enough through indirect
flows, leading to the loss of pertinent knowledge about the information flow (low accuracy). The
information that has been lost due to undertainting may be crucial for security applications to de-
tect/prevent the attack and the violation of security policies (see examples in the discussion below).

Few works [30, 65, 69] have attempted to discuss or address the undertainting vs. overtaint-
ing dilemma. Besides Slowinska and Bos [69], V-DIFT [30], an application-specific DIFT method
for locating cryptographic keys within memory, attempts to address the issue of tracking indi-
rect flows by utilizing vectors as taint marks and weighting the propagation of address or control
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dependencies to decrease the likelihood of taint explosion. MITOS [65] analytically models the
problem of optimizing the propagation of indirect flows and discovered two properties to be key
factors for the efficiency and usefulness of modern DIFT systems: fairness and tag-balancing. Fair-
ness is valuable to properly balance tag propagation, based on the pervasiveness of certain types
of tags in the system. In other words, the DIFT system would reduce the likelihood of pervasive
tags being overly propagated. While MITOS introduces new insights into creating an optimal so-
lution, this dilemma is still open and constitutes one of the major refraining factors to real-world
implementations of DIFT systems.

We note that assumptions that integrity-focused applications do not need to reason about in-
direct flows are flawed. For example, Crandall and Chong [21] showed that many control-flow
hijaking attacks they analyzed were not detected by DIFT without tracking indirect flows. Con-
versions between formats, compression and decompression, encoding and decoding, and many
other common operations apply indirect flows of information to the data they operate on, and
every pointer calculation (such as for an array) and conditional branch (such as if statements and
for loops) are opportunities for indirect flows. Thus, the complete and correct tracking of indirect
flows are key for the development of practical and effective security-based DIFT solutions.

4.5 Tag Checking

The purpose of tag checking is to verify whether information is flowing according to a defined
security policy. Specifically, DIFT checks if the current flow of data to or from one object caused
by a subject action follows a pre-defined security policy and ensures that the policy is enforced.
For example, Minos enforces the Biba integrity policy [21, 22] to prevent control-flow hijacking
attacks, such as buffer overflows. Minos employs a single “integrity bit” tag to indicate if its cor-
responding data is low integrity (tainted). Minos taints all bytes coming from the network and
considers a security violation when tainted data is written into the PC register. For a real-world
implementation of DIFT, the consensus is that tag checking must occur regularly enough (e.g., for
every instruction executed), such that all violations to the security policy are detected.

Checking tags too often, however, can incur in performance overheads. LATCH [76], for in-
stance, utilizes software-hardware collaboration to enforce whole-system integrity and attempts to
decrease the time to process tags by checking them only when necessary, based on spatial-temporal
locality of the tags within the memory system, by only initiating fine-grained taint checking and
propagation when the system detects tags at the page level. LATCH checks operand tags using a
coarse-grained taint checking hardware module, and in the event a tag is detected at the course
granularity, it then temporarily resorts to byte granularity for propagation and checking. Due to
the strong temporal locality exhibited by the tags, this process allows for the resource intensive
monitoring to be invoked less often. There are also a few works that do not use explicit rules to
determine tag propagation and checking, such as that by She et al. [67].

4.6 Summary

Thus far, DIFT systems can vary many key attributes to implement taint tracking functionality,
such as tag size, format, and granularity. Tag insertion can be handled when the system is initi-
ated or via an event (e.g., a system call invocation or the arrival of a network packet), and tags
are stored in segments of main memory or in dedicated shadow memory modules. Tags are prop-
agated as the program or system runs, based on direct or indirect flows. During propagation, the
creation or transfer of tags to objects are checked against static or configurable rules to enforce
a desired security policy. The design choice for the values of the different attributes of a DIFT
system (tag size, granularity, and frequency of tag checking) has a direct impact on the system’s
performance, memory usage, and accuracy in exposing important information flows. For example,
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larger and more complex tags can improve accuracy, in that more information about an object
can be stored and propagated. However, larger tags require more shadow memory space and more
processing time for tag checking. The same rationale is valid for applying tags at a finer granu-
larity, e.g., tagging every byte vs. tagging a word or an object: tagging at a finer abstraction level
leads to more tags coexisting in the system, which requires more memory space and incurs in
higher tag processing time. On the other hand, tagging data at a finer granularity improves sys-
tem accuracy by preventing, for example, a potential malicious byte evading exposure because it
was group-tagged with a piece of data coming from a trusted source. Similarly, the cadence of tag
checking also affects system performance and accuracy: frequent tag checking incurs more CPU
cycles, but increases the likelihood of a malicious flow of information being detected. An open
research challenge is how to perform tag insertion and checking in an optimal fashion, without
falling for the overtainting vs. undertainting dilemma, which directly affects the performance and
the accuracy of the DIFT system. Even though recent research suggested promising optimization
heuristics for determining when to tag [38, 64], such implementation in hardware is still seen as
unfeasible due to added complexities required for the hardware subsystem.

5 DIFT IN SOFTWARE (SW-DIFT)
ADDRESSING RQ2: WHAT IS THE STATE OF THE ART FOR DIFT SOLUTIONS IMPLEMENTED
EXCLUSIVELY IN SOFTWARE?

Most of the DIFT proposals in the literature are software-based, referred to in this article as SW-
DIFT, potentially due to the flexibility software offers to implement propagation rules and config-
ure parameters, such as tag format, size, format, granularity, and storage mechanism. Such flexibil-
ity streamlines the development of various DIFT applications, such as security policy enforcement,
visualization, reverse engineering, and malware analysis.

SW-DIFT needs to introduce DIFT-based machine-level instructions into the program binary,
which can be accomplished at the source code level or via binary translation. For the introduc-
tion of DIFT operations in the source code, a special compiler is needed to insert the respective
machine-level instructions in the binary program. One challenge is how to enforce policies in
third-party libraries or proprietary and commodity programs, where the source code is not avail-
able. Furthermore, given today’s software supply chain high dependence on externally written
open-source software (packages, libraries, or modules), the need for compiler modifications is a
significant limitation [72, 73].

On the other hand, while applying DIFT operations into executable code via binary translation
(re-writing) [16, 18, 56, 62] can capture third-party library/proprietary code, the large performance
and memory overhead costs of this approach challenge their on-the-fly applicability [37]. For
RAIN [37] the memory overhead incurred was typically around 50%. Specifically, in whole-system
analyses, binary translation DIFT becomes heavy-weight tracking, causing prohibitive slowdowns
(e.g., FAROS’s 56 runtime overhead [4]). Moreover, binary translation approaches face challenges
while handling multi-threaded programs due to the complexity of control and data dependency
propagation among threads.

While there is a wide variety of SW-DIFT proposals, they can be categorized into two classes
- (i) Online SW-DIFT, applying DIFT on-the-fly during the program execution and (ii) Offline SW-
DIFT, applying DIFT without performance concerns and/or via record-and-replay of the program
or the whole system.

5.1 Online SW-DIFT

This category of DIFT system provides run-time and flexible detection mechanism, but can gen-
erate substantial performance overhead, especially if the scope of taint-tracking operations is the
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whole system and not a single application. Online analysis implementations have also been lever-
aged for non-security applications, such as program visualizations [42, 51, 54]. Such visualizations
are used to create diagrams and form an understanding of the code, or to detect misbehavior during
program execution. In the case of the DIFT systems proposed by Mazloom et al. [51], the slowdown
was minimal for compression operations, but for database operations, the average slowdown was
100x, and up to 200x for deleting database entries. Representative examples of online SW-DIFT
systems proposed in the literature are Vigilante [19], TaintCheck [56], Dytan [18], libdft [42], and
TaintDroid [29], summarized below.

Vigilante [19], one of the first online whole-system SW-DIFT, targeted Internet worm detection.
The system is basically an x86 application performing binary re-writing at load time and tagging
data at the byte-level. In Vigilante, every control transfer instruction (e.g., RET, CALL, and JMP)
and every critical and data movement instruction are instrumented with tags stored in main mem-
ory. Proposed concurrently, TaintCheck [56] is an online whole-system fine-grained SW-DIFT so-
lution performing binary translation at runtime with the goal of detecting buffer overflow attacks
and generating signatures against detected exploits.

Clause et al. [18] introduced Dytan, an application-specific online SW-DIFT based on binary
translation. Unlike Vigilante and TaintCheck, Dytan attempts to address control dependencies
(indirect flows). It utilizes a conservative approach to track control dependencies by computing
and propagating a tag for any result of a conditional branch statement. This approach is directly
inspired by that of Vachharajani et al. [78] (see Section 6.1 for a discussion). Dytan also allows
the DIFT analyst to define and configure three core dimensions of DIFT, namely the taint source,
i.e., the memory location that should be tagged, the propagation policy, and the taint sink, i.e., the
location for tag checking. More importantly, it allows a security analyst to define tag propagation
rules in the form of a mapping function, the default behavior being to taint the produced data with
the union of tags of all tainted operands.

As a follow-up to TaintCheck, Kang et al. [40] introduced DTA++, a whole-system online SW-
DIFT, to track implicit flows accurately by propagating tainted control dependencies selectively.
Specifically, TaintCheck propagates a tag along a targeted subset of control-flow dependencies to
protect the confidentiality of sensitive data. It first detects indirect flows that lead to undertainting,
then adds additional tags only for those control dependencies at a byte-level granularity. The goal
is to ameliorate the undertainting vs. overtainting dilemma.

Kemerlis et al. [42] introduced libdft, an application-specific online SW-DIFT framework for
commodity systems, that provides an API to support DIFT-enabled tools for unmodified binaries.
Specifically, it is a shared library that implements DIFT using Intel’s Pin dynamic binary instrumen-
tation framework. There are three categories that a libdft-enabled tool can use as a data source or
sink: program instructions, function calls, and system calls. libdft stores tags in a tagmap contain-
ing a process-wide data structure and a thread-specific structure. The process-wide data structure
holds the tags for data in memory, while the thread-specific data structure holds tags for data in
registers. Although, libdft can track indirect flows for address dependencies, it does not consider
control dependencies.

Enck et al. [29] proposed TaintDroid, the first whole-system DIFT for Android smartphones, to
track the flow of privacy-sensitive data through third-party applications. TaintDroid monitors the
access and manipulation of users’ personal data by third-party applications in real-time. Lever-
aging Android’s virtualized execution environment, TaintDroid integrates four granularities of
tag propagation—variable-level, method-level, message-level, and file-level. While TaintDroid in-
curs less than 32% of performance overhead on CPU-bound microbenchmarks and negligible over-
heads on interactive third-party applications, it can be circumvented through leaks via indirect
flows.
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5.2 Offline SW-DIFT

Several SW-DIFT systems for offline analysis are based on the record-and-replay technique, which
records all the events and states during program execution and replays the recorded events while
applying taint tracking operations, usually for forensic purposes [38]. Given its offline nature, this
approach provides the flexibility to examine a system in detail without performance overhead
constraints. Offline SW-DIFT plays a vital role in reverse engineering applications and employs
different techniques, including the tracing of the point when the malware uses code unpacking [28],
or conducting malware behavior analyses by monitoring system or API function calls [4].

For instance, Panorama [83] is a whole-system fine-grained SW-DIFT mechanism intended for
automatic malware detection. It is implemented on QEMU, a generic processor emulator, and aims
to protect the confidentiality of data by exposing privacy-breaching malware. The main idea is to
monitor the behavior of the sample program with respect to the sensitive information and log rele-
vant information in the form of a taint-graph (byte level tags). DIFT (only direct flows) is leveraged
to track the sensitive information propagation within the whole system and its propagation into
the sample program (i.e., whether the program has exfiltrated the information). To detect malware,
Panorama checks for a violation of pre-defined confidentiality policies on the taint graph.

PANDA [27] was developed as a tool to facilitate offline analysis (reverse engineering) of a whole
system. It stores tags in a shadow memory and the tag propagation is handled by inline LLVM code.
PANDA employs QEMU virtualization and the record-and-replay technique for deep vulnerability
analysis. FAROS [4] extended PANDA to track and detect in-memory-injection attacks in Windows
systems using provenance lists as tag granularity.

V-DIFT [30] is an application-specific SW-DIFT solution intended for reverse engineering of
malware that attempts to discover cryptographic keys in memory. It uses vectors to represent
tags to streamline tag processing via vector operations and tag comparison via cosine similarity.
The use of vectors provides an approximation of the information flow considering indirect flows,
despite the approach not completely solving the overtainting vs. undertainting dilemma.

RAIN [37] is a whole-system SW-DIFT that leverages its custom record-and-replay mechanism
to construct a logical provenance graph by continuously monitoring and logging all the system-
call events. The coarse provenance graph is compressed and sent to a trusted host from the target
host for further analysis. RTAG [38] extended RAIN’s record-and-replay technique with a custom
tagging system to facilitate investigation of cross-host attacks. Specifically, it utilizes the reachabil-
ity analysis of RAIN (i.e., pruning the system-wide provenance graph to extract a subgraph related
to the designated attack) and extends it to cope with cross-host scenarios.

5.3 Summary

The greatest advantage of SW-DIFT is the flexibility in implementation, which allows researchers
to build applications for a variety of goals and systems. Implementation of DIFT in software is
accomplished by either specialized compilers adding special instructions to perform taint tracking
into the software source code or via binary instrumentation. For SW-DIFT relying on source-code
transformations, the challenge is extending taint-tracking operations to third-party libraries and
proprietary code. While binary translation can extend taint tracking to third-party code, it incurs
significant performance overheads, which limits its applicability for on-the-fly operation. That is
why many SW-DIFT proposals have a natural offline/reverse engineering applicability for mal-
ware/intrusion analysis.

While some proposals attempted to address indirect flows [4, 18, 69], most still focus on only
tracking direct flows. Moving forward, our expectation is that SW-DIFT will continue to be a
fertile ground for prototyping different implementations and applications and as analysis/reverse
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engineering tools to be used offline. However, practical uses will move to implementations in
hardware or relying on hardware-software collaboration.

6 SOFTWARE-HARDWARE COLLABORATION FOR DIFT (SW-HW DIFT)
ADDRESSING RQ3: WHAT IS THE STATE OF THE ART FOR DIFT SOLUTIONS IMPLEMENTED BY
LEVERAGING BOTH THE SOFTWARE AND HARDWARE SUBSYSTEMS?

The literature has given evidence that there is much promise in combining the flexibility a soft-
ware implementation provides with the performance gains from executing taint tracking opera-
tions in hardware for real-time operation, resulting in SW-HW DIFT systems, which are typically
implemented as (i) Hardware-Supported Software or (ii) Software-Supported Hardware, as described
below. While such systems have positive improvements on performance and memory overhead,
they require substantial modifications in both hardware and software subsystems.

6.1 Hardware-Supported Software

We categorize a SW-HW DIFT system as leveraging hardware-supported software if it primarily
comprises a customized software system (or a modified ISA) to handle DIFT operations and a mod-
ified hardware (processor) platform to facilitate the implementation of the ISA. The modification
of the conventional ISA allows the DIFT system to achieve flexibility in implementation choices.

One instance of such design is RIFLE [78], a run-time information flow security system, that
aims to protect the confidentiality of data by enforcing user-defined security policies. It is based
on an abstract information flow architecture (Information Flow Security -IFS- ISA) that translates
a targeted program binary into a modified binary for the custom IFS ISA. The translated binary
is executed within a modified processor supporting the IFS ISA, which is simulated within the
Liberty Simulation Environment [77]. The simulated processor interacts with a security-enhanced
OS to enforce the user-defined policies. RIFLE also highlights the impracticality of Fenton’s data
mark machine [31, 32], as the compiler requires knowledge of the privilege of every piece of data
at every execution point. Therefore, for practical purposes, Vachharajani et al. [78] suggest that
the compiler could instead enforce security statically with Denning’s lattice model [25, 26].

6.2 Software-Supported Hardware

We classify a SW-HW DIFT system as software-supported hardware if the hardware component
provides an architectural structure for fundamental DIFT operations, such as tag storage, prop-
agation, and checking, and the software component supplements the architecture by handling
more complex DIFT operations, such as security exceptions, tag storage allocation, and precise tag
checking. This model allows hardware-based DIFT implementations to gain functional flexibility
from the software support at the expense of increasing their dependence on complex software
modifications to support the specialized hardware.

One example of such design is Raksha [23], an architecture to assure the implementation of
DIFT-based integrity policies. Raksha is implemented as an FPGA prototype, which integrates the
hardware support for tag propagation and analysis with additional software analysis to support
flexible and programmable security policies that can provide protection against high-level (e.g.,
SQL injection) and low-level (e.g., buffer overflows) attacks. Raksha delegates tag storage, access,
and propagation to the hardware, while implementing security handlers and taint analysis in soft-
ware within a custom Linux distribution.

Similarly, WHISK [61], a whole-system DIFT architecture implemented within a hardware sim-
ulator, consists of: (i) hardware architectural mechanisms to integrate DIFT in heterogeneous Sys-
tem on Chip (SoC) designs and (ii) software wrappers that provide DIFT functionality for third-
party IP components. WHISK stores tags and data separately in memory locations to keep low
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area overhead and improve flexibility. It delegates tag insertion, storage, and access to the custom
hardware. The software subsystem, which utilizes the MutekH exokernel-based OS [2], provides
support for tag page table allocation, page table cache configuration, and interrupt handling con-
cerning writes to untagged pages. WHISK’s goal is to facilitate integration of DIFT in SoCs, without
a focus on individual security policies. Such a hardware-software collaboration allows the system
to maintain expressiveness, while reducing performance overhead (7.5%).

LATCH [76] leverages the notion that information flows have a high degree of spatial and
temporal locality to minimize the time consumed during precise taint checking, which is key to
its effectiveness. The main goal is to detect system integrity breaches. The architecture consists
of a software-supported hardware accelerator (S-LATCH) running on a single simulated core. S-
LATCH’s software component propagates tags, while the hardware accelerator monitors the data
accessed by the program to detect tags. When a tag is detected, the hardware accelerator invokes
the instrumented OS via a hardware exception for policy enforcement at an average of 60% runtime
overhead.

6.3 Summary

Software and hardware collaboration to support DIFT has been accomplished in two ways:
hardware-supported software and software-supported hardware. These approaches typically aim
to implement DIFT with programmable or variable policy enforcement. The performance over-
head of such design is lower than its purely software counterpart. A popular approach has been
to introduce a custom ISA running on specialized hardware. This architecture facilitates policy
programmability via software support or utilizes a hardware accelerator that triggers when to ap-
ply software support. However, while these approaches attempt to combine the best software and
hardware have to offer (programmability and good performance), they introduce the challenge of
requiring substantial and non-trivial modifications both in software and in hardware (customized
OS, ISA, and hardware), which might discourage practical, widespread applications of this design.

7 DIFT IN HARDWARE (HW-DIFT)
ADDRESSING RQ4: WHAT IS THE STATE OF THE ART FOR DIFT SOLUTIONS IMPLEMENTED
EXCLUSIVELY IN HARDWARE?

DIFT designs implemented in hardware, referred to as HW-DIFT, can be classified into three
categories—(i) in-core, where the whole processor core is modified to support DIFT opera-
tions [23, 58], (ii) off-core, where all DIFT operations are performed outside the processor core
[13, 46, 47, 80], and (iii) off-load, where a separate core is dedicated specifically for the DIFT
operations [55].

7.1 In-Core HW-DIFT

Figure 4 shows a visual depiction of the in-core design with a five-staged pipeline of processor
with the logic added to perform DIFT operations. To support the data flow tracking, the general-
purpose register file and special function registers are extended to include a tag. As tags must
also be propagated to the memory system, extensions to the data and instruction caches, system
bus, and underlying memory storage are also required. The instruction fetch stage obtains code
to execute from the instruction cache (iCache) and sends the code to the decode stage of the
CPU. The instruction decoder then sends instruction-related information to a tag propagation
module at the execute stage. This information can contain register indexes and the instruction
type. In the execute stage, the memory instruction is processed to send requests to the memory
system. The data tag is exchanged with the memory system according to the instruction type.
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Table 2. Hardware Based Information Flow Tracking Techniques

Works Type Performance Overhead Hardware Overhead

Chow et al. [17] In-Core Unspecified Unspecified

Minos (Crandall and  In-Core +3.125% Unspecified

Chong [21])

Palmiero et al. [58] In-Core Unspecified +12.5%(storage),+0.82%(LUT)

Tiwari et al. [74]) In-Core -32% +5% to +35%(ALUT)

Tiwari et al. [75] In-Core Unspecified +70%(ALUT)

Raksha (Dalton et al.  In-Core +34% +12.5%(Storage)

[23])

Kannan et al. [41] Off-Core +1% +8%

Lee et al. [46] Oft-Core —82.9% +60%(BRAM:s),
+27.98%(LUTs)

Lee et al. [47] Off-Core —82.9% +60%(BRAMs),
+28.36%(LUTs)

Wahab et al. [79] Off-Core —26% +1%(Area), +16.2%(Power)

Wabhab et al. [80] Off-Core —5.4% +5.87%(AXI), +5.2%(IP),
+4.62%(Softcore)

Chen et al. [14] Off-Load +2% to 51% Unspecified

Nagarajan et al. [55] Off-Load +48% Unspecified
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Fig. 4. In-Core design framework.

Before the instruction can be committed in the write-back stage, it needs to be checked according
to the specified tag check rule. Some of the in-core designs [23, 58] integrate the tag check logic
within the write-back stage. Alternatively, the tag logic can also be implemented as an independent
pipeline stage to reduce the stall cycles.

Because of the close integration of DIFT operations into the pipeline in the in-core design, se-
curity policies can be enforced as instructions execute. This allows the prevention of attacks that
violate such policies because the information flow rules are checked before instructions are com-
mitted, with exceptions raised when instructions violating the policies are flagged. However, the
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in-core design requires significant modifications on the processor, which are expensive to integrate
with commercial cores, thus requiring vendor support.

The earliest known example of a real-world DIFT processor is Elbrus E2K 512-bit wide VLIW
microprocessor developed by the Moscow Center of SPARC Technologies (MCST) and fabri-
cated by TSMC in 2000 [5]. It supports two instruction set architectures (ISA): Elbrus VLIW and
Intel x86. Elbrus 2000 introduced a dynamic data type-checking during execution to prevent unau-
thorized access: each pointer has additional type information that is verified when the associated
data is accessed.

In 2004, Chow et al. [17] proposed TaintBochs, an emulated online heavyweight whole-system
HW-DIFT based on the Intel x86 32-bit emulator Bochs to analyze the lifetime of sensitive data
tainting, where the propagation occurs across the OS, programming language, and application
boundaries. TaintBochs targets maintaining confidentiality by tracking sensitive data (e.g., pass-
words, credit card numbers) at byte-level granularity with tags stored in the guest’s OS memory.

Concurrently, Crandall et al. [21] proposed Minos, a whole-system DIFT architecture for de-
tection and mitigation of control flow attacks. Also implemented in Bochs, Minos utilizes word-
granularity tags in memory by extending each word in memory by 1-bit. In contrast to TaintBochs,
Minos targets maintaining Biba’s low water-mark integrity policy across all individual words of
data with low performance overhead (< 10%).

Unlike most prior works, Tiwari et al. [75] introduced a user-agnostic architectural design of
a processor with the goal to track all information flows within the machine, including all direct
and indirect flows. The proposed design is based on the notion of Gate Level Information Flow
Tracking (GLIFT) that can precisely augment logic blocks with tracking logic to support DIFT
operations at the gate level. The implementation of their hardware design resulted in a custom ISA
based on the GLIFT logic, which facilitates programmable policy enforcement.

Palmiero et al. [58] implemented a DIFT framework on a RISC-V processor core and synthesized
it on a Field Programmable Gate Array (FPGA) board with a focus on IoT applications. To sup-
port different data-flow operations, the authors modified the processors’ pipeline by introducing
an additional pipeline stage before the instruction commit stage. The added new stage performs tag
checking, allowing the design to detect any potential violation of security policies. The proposed
design utilizes a byte-level tag, in which every byte of the data in memory and general purpose
register is assigned a 1-bit tag. To support flexible memory protection, new custom instructions
are added to set the tag of a specified memory data, e.g., setting the tag of a specified register or
memory location. These custom instructions can be used to assign data with different tag values
to enforce different security properties.

Tiwari et al. [74] enforced strong isolation between trusted and untrusted programs through
information flow tracking. The authors introduced a new call-and-return mechanism (Execution
Leases), where the caller function enforces a bound on the address space accessible to the callee
function. This work uses tags to represent whether the corresponding action should be “admitted”
or “denied”. Additionally, new ISAs are introduced to support setting memory access bounds.

7.2 Off-Core HW-DIFT

Figure 5 presents a basic off-core design. Unlike the in-core design, the instruction related infor-
mation is sent to the processor’s external sink (e.g., a DIFT-supported coprocessor) from the main
processor for analysis. The DIFT coprocessor generally includes its own instruction decoders to
aid with data flow tracking. Tag storage can be implemented with either a shadow memory or
the system’s memory. The latter requires support to control access to tag information by applica-
tions. In certain implementations, the processor is slightly modified to output internal states to the
COPIrocessor.
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Fig. 5. Off-Core design framework.

Tag

The main difference between the in-core and the off-core designs is that the latter introduces a
latency between attack incursion and detection. In the off-core design, all committed instructions
are sent to the coprocessor to be processed later. At this point in time, these instructions have
already been executed and the detrimental effects of a potential attack may have already been
materialized, which is of great concern for attacks that attempt to compromise confidentiality,
such as sensitive data leaks.

Similar to Raksha’s design (see Section 6.2), Kannan et al. [41] introduce a coprocessor with a
coarse-grained synchronization scheme, which allows for the processor to temporarily fall behind
the main core in execution and synchronize only on system calls with 0.79% performance overhead.
The custom interface between the processor and the DIFT coprocessor passes instruction encoding
along with committed PCs and memory addresses. Lee et al. [46, 47] proposed the use of a debug
interface to extract essential information, such as process ID, PC, and memory addresses from
the main processor and output a signal bundle to support DIFT operations with 1.6% slowdown.
A dedicated coprocessor receives execution information from the signal bundle to perform the
desired DIFT operations. Similarly, Wahab et al. [79, 80] used the existing infrastructure of the
ARM CoreSight architecture to develop a DIFT framework. The ARM CoreSight provides a debug
interface allowing the live extraction of program execution and, in some instances, traces. The
trace information is sent to a CoreSight sink for further processing. The information obtained
from the sink is then sent to a dedicated DIFT coprocessor, which analyzes the instruction trace
and propagates tags.

The processor and the sink communicate via either a debug component (e.g., ARM Core- Sight
TPIU) or a special coprocessor interface (e.g., Rocket Custom Coprocessor -RoCC-in the Rocket-
Chip). The greatest difference between these two types of channels is whether they can recover
the whole execution states of an instruction in the processor. The ARM CoreSight component, for
example, cannot acquire the memory address of memory instructions without binary instrumen-
tation.

7.3 Off-Load HW-DIFT

In an off-load design [14, 55] (depicted in Figure 6), the target program is executed in one processor
core while the corresponding DIFT operations are instrumented in another. Unlike the off-core
design, the off-load design needs a dedicated processor core for DIFT operations and can only be
implemented in a multi-core processor, where the two cores need to communicate (e.g., shared
memory) so that taint tracking operations are implemented.

This design does not require substantial modifications in the target hardware platform, but high
latency is incurred due to the need of synchronization between the target and the monitoring
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Fig. 6. Off-Load design framework.

program (representing DIFT operations) running on different cores and the need to instrument
the target program for DIFT operations.

For the off-load design, the likelihood of attack prevention depends on the design and the per-
formance overhead requirements. For example, an attack can be prevented if the target program
waits for the check results from the DIFT core. The corresponding operation is stopped once the
check fails. On certain implementations of this design, for performance considerations, the target
program does not wait for check results and continues to execute until an interrupt is raised (check
fails). In this case, the effects of the attack might persist even after its detection.

Nagarajan et al. [55] proposed an off-load based information flow tracking design, where the re-
lated execution information is exchanged between the target thread on the main core and the DIFT
thread on the additional core. The authors compared two communication channels: software-based
channel (via shared memory) and hardware-based channel (through a hardware based FIFO buffer).
The software-based channel causes high-performance overhead on both inter-thread (caused by
cache misses) and intra-thread (to synchronize the pace of two programs). For the hardware-based
channels, there is no need to synchronize the target and the DIFT threads. The incurred software
performance overhead can be ameliorated by optimizing the target program and the modified
program where taint tracking operations occur. Design schemes without hardware queue usually
cause a slowdown <4x, while those with hardware queue usually cause a slowdown of 0.5x.

7.4 Summary

There are three design choices for HW-DIFT—in-core, off-core, and off-load (see comparison
of performance and hardware overhead for different types of hardware based DIFT designs in
Table 2). Amongst the in-core HW-DIFT implementations, the reporting of performance and
hardware overhead metrics vary, with half of the implementations not reporting specifics on
performance overhead [17, 58, 75]. This is likely due to the increased complexity of the hardware
designs causing typical metrics to be less useful. For those works that do report metrics [21, 23, 74],
we see a wide range of performance overheads [21, 23, 74], a slight increase in storage over-
head [23, 58, 74], and multiple solutions with significant increases to hardware overhead in the
form of lookup tables [58, 74, 75]. The in-core solutions offer streamlined DIFT solutions at the
cost of significantly increased hardware complexity [17, 21, 23, 58, 74, 75]. In comparison, both
the off-core [41, 46, 47, 79, 80] and off-load [14, 55] DIFT solutions provide significantly less
hardware complexity. Although the off-core DIFT solutions report increased hardware overhead,
this is a result of these solutions introducing an entirely separate coprocessor. The off-core DIFT
solutions introduced techniques that utilize debug interfaces to extract crucial information for a
separate DIFT coprocessor to operate on. For example, Lee et al. [46, 47] first proposed the usage
of a debug interfaces to communicate essential information to a coprocessor for DIFT operations,
with Wahab et al. [79, 80] using the existing debug interface provided by the ARM CoreSight
architecture. Contrasting, off-load DIFT solutions provide the simplest hardware implementation,
as they typically do not require any hardware modifications at all, as seen in Chen et al. [14]
and Nagarajan et al. [55]. However, we notice that these off-load DIFT designs report the highest
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performance latencies of all of the hardware based information flow tracking techniques covered
in our survey. Both of these off-load DIFT implementations [14, 55] do not specify any hardware
overhead metrics, as the changes necessary to the existing hardware platforms are negligible.

Several factors influence the performance overhead and the applicability of these designs, such
as the target ISA, the complexity of hardware modifications, tag storage, and the information
needed to support the DIFT operations. Generally, no software instrumentation is needed for in-
core designs to operate, which results in no noticeable software performance overhead. This type
of design also has the advantage of preventing attacks because instructions are only committed af-
ter the DIFT checks. However, this design requires significant and complex hardware modification,
which impacts deployability due to the need of vendor support for DIFT boutique processor lines
The off-core design requires relatively simple hardware modification because DIFT operations are
delegated to a coprocessor, which can be easily repackaged and deployed alongside existing pro-
cessor IP, thus facilitating deployability. However, because DIFT operations occur in parallel to
CPU operations, it may not be possible to detect an ongoing attack until a portion of it has taken
effect. The off-core design may also need some software communication with the DIFT core.

Lastly, the off-load design, which is suitable for multi-core systems, requires no hardware modi-
fications, but involves software instrumentation, incurring non-negligible performance overheads
due to the communication of the cores. Exchange of information between the core running the
program and the core performing taint tracking operations is often processed using auxiliary soft-
ware. If real-time tracking of information flow is desired, the software being examined may need
to be modified to allow for synchronous DIFT operation. This incurs high software performance
overhead, which is further exacerbated by latencies associated with the software collecting and
processing information flow metadata.

In addition to tracking information flow on general-purpose computing architecture, off-core
designs can be customized to support emerging computing architectures including GPUs and other
hardware accelerators. Different from general computing architectures, these parallel computing
architectures adopt small caches, simple control unit, and energy efficient ALU to boost throughput.
The off-core design on general computing architectures uses the essential information extracted
from the CPU to recover the instruction trace and analyze possible security violations. Therefore,
DIFT components will need to be customized when applied to new computing architectures. For
example, GPUs adopt massive threads to tolerate latency. In this case, the granularity of tags should
be determined according to the numbers of threads instead of the width of the data bus and memory
units. Also, the main security rules on parallel computing architectures should also be updated, e.g.,
enforcing isolation on data from different threads or different application scenarios.

8 DISCUSSION, LIMITATIONS, AND FUTURE DIRECTIONS

Table 1 provides a compilation of all works systematized in this article. Table 2 focuses on provid-
ing a summary of works implemented entirely in hardware and categorized by different design
choices. Table 3 summarizes the different design types of DIFT proposals based on the platform
for implementation—SW-DIFT, HW-DIFT, or SW-HW DIFT, where DIFT is implemented entirely
in software, entirely in hardware, or collaboratively in software and hardware, respectively.

Table 1 categorizes as DIFT Fundamentals those works that best illustrate the impact of different
attributes on the performance and accuracy of DIFT systems. Some implementations showcase
different attributes in prototypes where DIFT is applied in the whole-system [50, 65, 67, 69, 71] or
in a particular application [1]. Only a few works attempt to track indirect flows and/or address the
overtainting vs. undertainting dilemma [30, 65, 69].

SW-DIFT works can be targeted for online (e.g., [19, 71]) or offline operation (e.g., [4, 30, 65])—
see Tables 1 and 3. Both approaches offer flexibility in implementation of tag sizes, metadata
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granularity, and security policies. Nevertheless, SW-DIFT suffers from substantial performance
overheads due to their reliance on binary translations and program instrumentation, which makes
DIFT on-the-fly usage for security policies enforcement not practical. Most SW-DIFT solutions use
byte granularity (see Table 1) [4, 6, 12, 18, 28, 30, 37, 38, 40, 42, 51, 54, 56, 62, 83, 85] and focus on
offline applications, such as reverse engineering [4, 30, 65] (also see Table 3).

SW-HW DIFT has the potential to reduce the substantial performance overhead incurred in
entirely software implementations, while retaining some design flexibility. This can be achieved
either through (see Table 3) HW-Supported SW, where an abstract ISA is built to handle DIFT oper-
ations and the hardware platform is customized to support the ISA, or SW-Supported HW, where
hardware provides an architectural structure for fundamental taint tracking operations (e.g., tag
storage, propagation, and checking), while the software subsystem supplements the hardware by
handling more complex DIFT-related operations (e.g., security exceptions and tag storage allo-
cation). Although SW-HW DIFT provides relatively better performance compared to SW-DIFT,
it requires non-negligible modifications in both software and hardware subsystems, which adds
challenges for real-world deployment.

HW-DIFT provides further reduction in performance overheads compared to its software coun-
terparts, with currently three types of explored designs: in-core, where the main processor is mod-
ified to support DIFT operations, off-core, where the DIFT operations are transferred to a coproces-
sor, and off-load, where a separate processor core is designated for DIFT operations (see Tables 2
and 3). In-core design does not require software instrumentation and, as instructions are commit-
ted only after DIFT checking, it can prevent security policy violations. However, the in-core design
requires complex hardware modifications relying on vendor support. The off-core design has bet-
ter deployability potential but may occasionally need software instrumentation. One limitation
is that it cannot prevent some effects of attacks as DIFT checking is performed after instructions
have been committed. The off-load design, on the other hand, does not require any hardware
modifications, but requires the target program to be instrumented and relies on synchronization
between the main processor core and the dedicated DIFT processor, resulting in high performance
overheads.

In contrast to most SW-DIFT solutions, for both SW-HW DIFT and HW-DIFT solutions that we
included in this work, tag granularity varies, with many designs having per word [21-23, 47, 61] or
configurable tag granularities [60, 79, 80] (see Table 1). We included many HW-DIFT solutions that
are designed to significantly accelerate the processing of taint tracking operations in comparison
to SW-DIFT solutions [10, 13, 17, 21, 22, 39, 41, 47, 49, 58—-60, 74, 75, 79, 80].

The majority of HW-DIFT implementations utilize a 1-bit tag format [17, 21, 22, 47, 49], as it
is the most straightforward way to extend hardware designs to handle DIFT tags. More recent
HW-DIFT implementations have shown progress in limiting runtime and performance overheads
in comparison to the majority of SW-DIFT implementations [13, 21, 22, 39, 41, 47, 49, 58] (Table 1).

8.1 Limitations

For our study, we chose to focus on dynamic information flow tracking specifically, rather than
information flow in general. For example, there has been a large body of work on dynamic bi-
nary instrumentation [24] and other static approaches to information flow tracking at design or
compilation time [48, 52]. DIFT encompasses a distinct problem space from other information flow
tracking approaches because it seeks to be fully dynamic. This means that information flow reason-
ing is based on program traces, not higher-level program constructs that give information about
code that does not run. It also means that DIFT can be applied to commodity systems, even when
the source code is not available. Closed source software, malware, and cloud systems, where users
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Table 3. Summary of Systematization

[ Category | Description [ Advantages [ Limitations
. . . . — flexibility in implementation of DIFT — prohibitive performance overhead
i~ — run-
E Online run-time tracking mechanism fundamental units for real-time applications
] . — flexibility in implementation of DIFT .
§ — record-and-play techniques fundamental units — substantial performance overhead
Offline — usually used for reverse engineering . . . — not suitable to enforce security policies
A 1 i . lysi — can examine the program in detail e
.g., malware/intrusion analysis) . . on-the-fly
without performance constraints
— abstract ISA to handle DIFT operations
| HW-Supported SW |— customized hardware platform to — better performance compared to — requires modifications in both SW
& support the abstract ISA. purely SW-DIFT and HW
§ — HW provides an architectural structure
g . for fundamental DIFT operations
§ SW-Supported HW/ _ SW supplements by handling more
complex DIFT operations
— Main processor is modified to support
| In-Core DIFT operations — no SW instrumentation needed — requires complex HW modifications
E — Instruction is only committed after — all security violations can be prevented |— needs vendor support
< DIFT checking is performed
T _ DIFT operations oceur in a — may need SW instrumentation — some effects of attacks cannot be
Off-Core co- rccpessor — need relatively simpler HW modification | prevented as DIFT checking is
P — easy repackaging and better deployability| performed after instruction commits
— Involves a dedicated processor core — target program needs to be instrumented
Off-Load for DIFT operations — does not require HW modifications — synchronization checks introduce latency
P ) resulting in high-performance overhead.

are free to install and configure any software they wish, are examples where a system may want to
apply information flow tracking without having access to all the source code. Furthermore, even
when all source code is available, it alone does not describe a full, live system. Modern systems op-
erate via a large amount of dynamic loading, inter-process communication, memory sharing, and
other low-level abstractions that are naturally captured by DIFT, but make static analysis before
compiling the system prohibitively complex. Because we are interested in specifically the prob-
lem space that DIFT performs well in, and also because we want our results and analysis to be
applicable to this problem space, we limited the set of papers that we considered mostly to DIFT
papers. Furthermore, we limited the systematization to only DIFT schemes, and did not include
flow controlling designs (e.g., HiStar [84]), or other language-based approaches.

Lastly, although we focused on security models handling confidentiality and integrity, such
as those of, respectively, Bell-LaPadula [7, 45] and Biba [8], we acknowledge that there are other
models used for enforcing information flow security, which were not covered by the works system-
atized in this article. One example is the non-interference model by Goguen and Meseguer [33],
which introduces the notion that the manipulation of private information has no effect on pub-
lic observations of data and is commonly used for specification of policies in language-based
security [63].

8.2 Recommendations

Integrating Static Approaches to DIFT: DIFT only detects unallowable information flows if
they occur while the program is running. Static information flow mechanisms, on the other hand,
can anticipate unauthorized flows prior to execution. We believe that integrating static and dy-
namic approaches could significantly improve the security of information flows in the system,
potentially helping to alleviate the need to track all indirect flows at run-time. Few proposals in
the literature explore hybrid static and dynamic approaches. For example, Kang et al. [40] use
static analysis at compilation time for information flow analysis, with performance overheads
application-dependent. Another example is the work from Wahab et al. [79, 80], a software-assisted
hardware DIFT that performs static analysis during compilation time for tag annotations. While
SW-HW DIFT systems may be expensive to implement at the whole system level, specialized
applications could be useful for integrating static and dynamic techniques to address indirect
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information flows. Based on our findings, most proposals in the literature do not explore hybrid
approaches (static and dynamic). Researchers either focused on hardware optimizations, software
techniques for application specific designs, or considered static analysis too expensive or incom-
plete, thus favoring an entirely dynamic system. The scarcity of literature in hybrid systems moti-
vates further exploration.

Handling Indirect Flows vs. Overhead: To create an effective DIFT system, indirect flows must
be correctly tracked and propagated. Our systematization did not find any system that can fully
track indirect flows without noticeable performance issues. Tracking indirect flows is non-trivial,
which has lead to diverse solutions at various layers of abstraction. Tiwari et al. [75] attempt to
handle indirect flows using a constrained ISA. The V-DIFT system from Espinoza et al. [30] de-
fines taint vectors for tags and works at the tag level of abstraction. However, current approaches
are not able to track indirect flows completely without incurring over-tainting. Wahab et al. [79]
used a custom ISA and binary translation to handle indirect flows while maintaining modest over-
heads ranging from 5% to 24%. However, their system’s translations might not be appropriate in all
cases. The Neutaint system from She et al. [67] attempts to select optimal taint propagation poli-
cies using a neural network. Sapountzis et al. [65] provide valuable insight into handling indirect
flows analytically and, although the problem has been observed to be NP-hard, their work pro-
vides evidence that a relaxed version of the problem can aid in handling overtainting. We suggest
continuing to explore analytical optimization solutions for indirect flow propagation, particularly
in hardware. Table 1 provides details on the systems we found that track indirect flows, regardless
of their handling of over-tainting and their incurred runtime overhead.

Akey question is: Is it possible to handle indirect flows and maintain acceptable performance over-
head simultaneously? Our systematization shows that research efforts have focused on addressing
either runtime performance or indirect flows in isolation. However, DIFT solutions cannot be prac-
tical (performance) or effective/accurate (handling indirect flows) without addressing both issues.
Our systematization indicates that handling indirect flows requires propagating more tags and po-
tentially different tag types. Most work have attempted to handle taint and tracking operations
in ways that are sequential and synchronized with the target program or system. One avenue not
pursued for DIFT is parallelism, especially in hardware. We envision that research focused on
this vein could yield results useful for addressing runtime performance and indirect flow tracking
requirements simultaneously. More specifically, DIFT systems could be built in ways that capture
indirect flows (e.g., more tags, more complex tags), while incurring acceptable performance over-
heads utilizing hardware parallelism. Another research direction not fully explored is temporal
and spatial locality for tag creation and propagation, which could alleviate performance costs and
the need to modify existing hardware subsystems to accommodate DIFT.

Standardized benchmarks: A major need for the research community to make progress in bring-
ing DIFT into practice is a common set of benchmarks, that can enable direct comparisons between
different DIFT systems. This will be very challenging, as our systematization of the DIFT literature
has shown that there are many different ways that DIFT is implemented and applied. Moreover,
our survey has also revealed another research gap: there are published efforts that evaluate the
performance overhead of DIFT and show acceptable performance to be used in practice, and there
are published efforts that show the efficacy of DIFT for real-world, challenging programs that in-
clude indirect flows, but not much at the intersection of these two prerequisites for a real-world,
practical DIFT system. A set of benchmarks addressing both performance and the ability to track
indirect flows of information would help to fill this gap, and would give DIFT research efforts a
common ground to compare different approaches more directly.
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Promoting Hardware Implementation: Our systematization shows that SW-DIFT is appealing
as a reverse engineering tool, but impractical for on-the-fly operation due to the prohibitive perfor-
mance overhead. Table 1 provides runtime overheads for the various SW-DIFT, SW-HW DIFT, and
HW-DIFT. Notice that in general, SW-DIFT incur significant runtime overhead (several orders of
magnitude above a given applications base run-time) when compared to HW-DIFT platforms. Alle-
viating, if not eliminating, the performance overhead without dedicated hardware is difficult. How-
ever, HW-DIFT options are not yet fully mature in that proposed prototypes still require substantial
changes in the processor and hardware and software subsystems. Our systematization indicates
promise in the off-core design, where the coprocessor is entirely dedicated to DIFT operations, to
further enhance the performance of taint tracking operations and make fabrication and real-world
deployment feasible. Off-core designs (e.g., decoupled DIFT coprocessor [41, 46, 47, 79, 80]) have
shown considerable potential for DIFT as a built-in security system for devices with relatively sim-
ple security policies (e.g., prevention of stack-based buffer overflows). Given this, we advocate a
focus on off-core designs.

Processing DIFT operations in an off-core manner, however, raises concerns around sharing
information between the core processor and the entity (e.g., coprocessor) performing the DIFT
operations. Nevertheless, we forsee it to be a promising architectural design choice for DIFT in
hardware, thus promoting the widespread use of DIFT. The breadth of options to test and evaluate
the effectiveness of DIFT further highlights the body of research yet to be performed. As the field
progresses, we expect hardware implementations to continue to target real-time program analysis
rather than offline record-and-replay, as this would allow for detection and mitigation as threats
occur.

DIFT in the IoT Landscape: On the surface, DIFT seems to be at odds with the IoT landscape, due
to DIFT implementations still incurring performance overhead and the resource constraints of IoT
devices. However, we observe that DIFT, if implemented with minimal hardware overhead, could
be a game-changer for IoT ecosystems. Specifically, as the off-core design for DIFT in hardware
continues to advance, manufacturers could begin to ship their products with a configurable DIFT
architecture directly built into their devices because this particular design has the potential to
package DIFT into a simple and easy-to-integrate hardware module. This transition seems like
a natural fit given that the current generation of IoT devices typically lack dedicated security
mechanisms whether that be in their hardware or the software aboard. We predict that DIFT will
fill the role as a built-in, dedicated security mechanism that facilitates this “plug and play” feature;
a highly desirable feature in the IoT paradigm.

Confidentiality and Integrity Policies: There are a wide variety of DIFT implementations fo-
cused on enforcing either confidentiality or integrity policies. However, we did not find any imple-
mentation that attempts to enforce both or study the effects of both policies operating in tandem.
Given the prevalence and severity of attacks targeting these two CIA pillars, we recommend ad-
ditional research on architectures enforcing both policies without conflicts, given that integrity
policies in many cases are the dual of confidentiality policies.

9 CONCLUSION

In this article, we systematized literature on DIFT, compiling common knowledge and formulating
research gaps between the existing literature and real-world requirements for DIFT implementa-
tion. To inform on DIFT foundations prior to our systematization, we briefly discussed fundamen-
tals of DIFT, including tag attributes (size, format, and granularity), tag insertion, tag propagation,
and tag checking. We provided an exposition of DIFT from two core dimensions— (i) the layer of
abstraction for the DIFT implementation: software, hardware, and their combination, and (ii) the
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security goal: confidentiality and/or integrity. We identified two major challenges that impede the
practical application of DIFT for real-world deployment— (i) prohibitive performance and memory
overhead, i.e., high memory and runtime costs, and (ii) the non-optimal tracking of information
that leads to undertainting vs. overtainting dilemma (low accuracy). We believe that addressing
these two major limitations for DIFT via hardware implementation using the off-core design and
exploring parallelism and temporal and spatial locality will unleash DIFT’s great potential for on-
the-fly security policy enforcement, especially for the IoT ecosystem, as DIFT can streamline the
implementation of security policies in a built-in and standardized fashion. Based on the insights
from our systematization and to make DIFT practical for real-time applications, we provided vari-
ous recommendations for the next generation of efficient DIFT systems.
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