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Abstract. We show that every smooth projective curve over a finite field k admits a finite
tame morphism to the projective line over k. Furthermore, we construct a curve with no
such map when k is an infinite perfect field of characteristic two. Our work leads to a
refinement of the tame Belyi theorem in positive characteristic, building on results of Säıdi,
Sugiyama–Yasuda, and Anbar–Tutdere.

1. Introduction

The difference between tame and wild ramification plays a crucial role in positive char-
acteristic algebraic geometry. Roughly speaking, finite tame morphisms behave as if the
characteristic was zero while wild morphisms do not. For example, the Riemann-Hurwitz
formula for a finite map f : X → Y of smooth projective curves holds in characteristic p > 0
without modification when f is tame, but must be modified somewhat when f is wild. For
another example, the study of fundamental groups of curves over a base field of character-
istic 0 is largely mirrored by Grothendieck’s theory of tame étale fundamental groups [11,
Exposé X]. It is thus a fundamental question whether or not a given curve admits a tame
morphism to P1

k.
In most characteristics, one can produce tame morphisms by considering morphisms whose

ramification indices are small. To wit, we say that f is simply ramified if the ramification
indices are equal to one or two. The following result is classical for p = 0, and due to Fulton
for p 6= 0 [8].

Theorem 1.1 (Fulton). Let X be a smooth, projective, geometrically irreducible curve over
a field k. If p = 0, or if p > 2 and k is infinite, then there exists a finite separable morphism
f : X → P1

k which is everywhere simply ramified, and hence tame.

The main goal of this paper is to address the two missing cases in this theorem. One of
these is where p > 2 and k is finite; in this case, one can extend the result of Fulton by a
sieving argument (Theorem 2.1) in the style of the Bertini theorem of Poonen [19].

The remaining, more substantive case is when p = 2, as then simply ramified morphisms
are not always tame. In fact, it was previously known that X need not itself admit a tame
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separable morphism to P1
k when k is not perfect, by an example of Schröer (see Example 3.2);

on the other hand, a recent breakthrough result of Sugiyama–Yasuda [27] shows that such a
morphism always exists if k is algebraically closed. In particular, the obstruction to such a
morphism is arithmetic (depending on k) rather than geometric.
Using the Sugiyama–Yasuda construction, we prove the following.

Theorem 1.2. If k is finite, then there exists a finite separable tame morphism f : X → P1
k.

Theorem 1.3. There always exists a finite extension k′ of k, of degree depending only on
the genus of X (except possibly if this genus is 1), for which Xk′ admits a finite separable
tame morphism to P1

k′.

We establish Theorem 1.2 and Theorem 1.3 by analyzing the Sugiyama–Yasuda construc-
tion in geometric terms: it gives rise to a canonical collection of smooth conic bundles over
X with the property that the existence of a tame morphism from X to P1

k is equivalent to
the triviality of some conic bundle in the collection. (When X is ordinary, this collection is
reduced to a single bundle. In the general case, we do not know whether different bundles
in the collection represent the same Brauer class.)

Our other result is in the negative direction. The example of Schröer cited above shows
that when k is not perfect, the finite extension k′/k in Theorem 1.3 is sometimes forced to
contain a certain nontrivial purely inseparable extension of k. However, using the explicit
nature of the Sugiyama–Yasuda construction, one can show that even when k is perfect, one
can find examples where k′ cannot equal k, as in the following case (see §8).

Theorem 1.4. Let k be the perfect closure of F2(t). Then there exists an ordinary elliptic
curve X over k for which there exists no finite separable tame morphism from X to P1

k.

To conclude this introduction, we give an application of Theorem 1.2 to a refinement of the
tame Belyi theorem in positive characteristic. Recall that Belyi’s theorem [3, 4] is commonly
asserted in the following form: for p = 0, X admits a finite morphism to P1

k ramified only
over {0, 1,∞} if and only if X descends to Q. In this statement, the “only if” assertion is
essentially due to Riemann, while the “if” assertion is Belyi’s contribution and can be made
somewhat more precise. To wit, suppose that X is defined over a subfield k of Q. Then for
any finite morphism f0 : X → P1

k, one can find a finite morphism f1 : P1
k → P1

k such that
f1 ◦ f0 is ramified only over {0, 1,∞}: the proofs of [10, Theorem 2.2, Theorem 2.4] produce
such an f1 by base extension from Q.

In positive characteristic, the direct analogue of this statement fails spectacularly: regard-
less of how big k is, X admits a morphism to P1

k ramified only over ∞ (see Theorem 9.2). If
one restricts to tamely ramified morphisms, however, then the “only if” assertion of Belyi’s
theorem becomes true again thanks to Grothendieck’s theory of tame étale fundamental
groups, which implies that Riemann’s rigidity property persists. The “if” assertion was es-
tablished for k = Fp with p > 2 by Säıdi [22, Théorème 5.6]; the case p = 2 was handled by
Anbar–Tutdere [1, Theorem 2] using the Sugiyama–Yasuda result.

We extend to positive characteristic the refined version of Belyi’s theorem. As this includes
the existence of a tame morphism when k is finite, this is new both for p > 2 and for p = 2.
See Theorem 9.3 for the proof.
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Theorem 1.5. Suppose that p > 0 and k is algebraic over Fp. Then there exists a finite
separable tame morphism f : X → P1

k ramified only over {0, 1,∞} (without base extension
from k to Fp).

Notations. Throughout this paper, as above let k be a field of characteristic p ≥ 0; let
X be a smooth, projective, geometrically irreducible curve of genus gX over k; and let X◦

denote the set of closed points of X. Let k be an algebraic closure of k. Let RX denote
the set of finite separable nonconstant morphisms f : X → P1

k, where the target is equipped
with a fixed coordinate; by pulling back this coordinate, we identify elements of RX with
elements of the function field k(X) with nonzero derivative. (For p = 0 this excludes only
constants; for p > 0 it excludes elements of the subfield k ·k(X)p.) For any field extension k′

of k, let Xk′ denote the base extension of X from k to k′, and write RX,k′ in place of RXk′
.

For f : X → P1
k a finite separable morphism and x ∈ X(k), the ramification index of f at

x is the positive integer ex for which

f−1
mP1

k
,f(x) · OX

k
= m

ex
X

k
,x.

We say that f is tamely ramified at x if ex is not divisible by p, and wildly ramified at
x otherwise; if f is tamely ramified at every x ∈ X, we simply say that f is tame. (For
the purposes of checking this condition, it is permissible to work with points over a perfect
closure of k instead of an algebraic closure; this will be helpful later.)

2. Odd characteristic

We first treat the case of odd characteristic using a probabilistic argument in the style of
Poonen’s Bertini theorem over finite fields [19].

Theorem 2.1. If p > 2 and k is finite, then there exists f ∈ RX which is everywhere simply
ramified, and hence tame.

Proof. Let L be an ample line bundle on X and let n be a positive integer. For x ∈ X,
choose a generator tx of L at x. For any pair (s0, s1) ∈ H0(X,L⊗n)×2, we can choose a
trivialization of L in a neighborhood of x, thus identifying tx with a uniformizer in OX,x,
and then expand around x to obtain

s0 = s0,0 + s0,1tx + s0,2t
2
x +O(t3x), s1 = s1,0 + s1,1tx + s1,2t

2
x +O(t3x);

the ratio f = s0/s1 ∈ k(X) defines a morphism to P1
k in a neighborhood of x if and only if s0,0

and s1,0 are not both zero. If this occurs, f is ramified at x if and only if s0,0s1,1−s0,1s1,0 = 0.
If this also occurs, then f fails to be simply ramified at x if and only if s0,0s1,2 − s1,0s0,2 = 0.

Here we used that ( s0
s1
)′ =

s′0s1−s0s′1
s21

and ( s0
s1
)′′ =

s′′0 s1−s0s′′1
s21

.

Consequently, as soon as n is large enough that H0(X,L⊗n) surjects onto

H0(SpecOX,x/m
3
X,x,L

⊗n) ∼= OX,x/m
3
X,x,

we may compute the probability that a random pair (s0, s1) defines a simply ramified mor-
phism at x as follows. The number of k-rational points on the affine quadric in six variables

s0,0s1,1 − s0,1s1,0 = s0,0s1,2 − s1,0s0,2 = 0
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is (κ(x)2 − 1)κ(x)2 + κ(x)4 = 2κ(x)4 − κ(x)2: for every (s0,0, s1,0) 6= (0, 0) we have κ(x)2

choices for the other variables, and for (s0,0, s1,0) = (0, 0) we have κ(x)4 such choices. Hence

the desired probability is κ(x)6−2κ(x)4+κ(x)2

κ(x)6
= (1− κ(x)−2)2.

Put q = #k. Then for m a positive integer, the number of x ∈ X◦ with #κ(x) = qm is
O(qm); it follows that the product

∏

x∈X◦(1 − κ(x)−2)2 converges absolutely to a positive
limit (namely ζX(2)

−2, where ζX(s) is the zeta function of X). Consequently, if we write
Sn for the set of pairs (s0, s1) ∈ H0(X,L⊗n)×2 which define a morphism in RX which is
everywhere simply ramified, it will suffice to check that

lim
n→∞

#Sn

#H0(X,L⊗n)×2
=

∏

x∈X◦

(1− κ(x)−2)2,

as this will then imply that Sn 6= ∅ for n large. Note that this does not follow from the
previous paragraph, because the number n for which H0(X,L⊗n) surjects onto OX,x/m

3
X,x

depends on the point x. To circumvent this problem we follow the paradigm of [19].
Fix a positive integer e. We then distinguish points of x as being of low degree, medium

degree, or high degree according to whether the degree of x over k belongs to

[1, e],
[

e+ 1, n
2

]

,
(

n
2
,∞

)

.

For n large compared to e, the preceding analysis shows that (s1, s2) define a simply ramified
morphism at each point of low degree with probability equal to the product of (1−κ(x)−2)2

as x ranges over these points. For points of medium degree, we may apply [6, Lemma 2.5]
to see that the probability that the morphism is ramified (simply or not) at some such
point tends to 0 as e → ∞ (uniformly in n). For points of high degree, we may apply [6,
Lemma 2.6] to see that the probability that the morphism is ramified (simply or not) at
some such point tends to 0 as n→ ∞. Combining these results prove the claim. �

Remark 2.2. We did not see how to deduce Theorem 2.1 directly from the main results of
[19]. It would be interesting to see whether one of the many subsequent variations of that
result give a direct implication of Theorem 2.1, or if not whether there is a hitherto unknown
variation that would do so.

3. An obstruction to tame morphisms

We now assume p = 2 until further notice. In this context, we next describe an obstruction
to the existence of tame morphisms discovered by Schröer [23, Theorem 6.1].

Proposition 3.1 (Schröer). Suppose that there exists f ∈ RX which is tame. Then the
canonical bundle ωX/k is a square in Pic(X).

Proof. Write ωX/k as the tensor product of the pullback f ∗ωP1
k
/k with the determinant

OX(KX/P1) of the relative canonical sheaf. The former is a square because ωP1
k
/k

∼= OP1
k
(−2);

since f is tame, the latter is the square of OX(D) for (cf. [25, Tag 0C1F])

D =
∑

x∈X◦

ex−1
2

[x].

Hence ωX is itself a square. �
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Example 3.2. Let X be the generic n-pointed curve of genus g for some integers n ≥ 0, g ≥
3. Then a theorem of Schröer [23, Theorem 5.1] (the “strong Franchetta conjecture”) implies
that ωX/k is not a square in Pic(X). Consequently, Proposition 3.1 implies that X admits
no tame morphism to P1

k.
By contrast, it was shown by Bouw–Wewers [5, Theorem 1] that (for arbitrary p) for

n ≥ 3, g ≥ 0, the generic n-pointed genus-g curve does admit a tame morphism after base
extension to an algebraically closed field. This statement is now subsumed by the result of
Sugiyama–Yasuda, except that Bouw–Wewers obtain some additional control on the degree
of the morphism and on the ramification indices; see [5, Theorem 10]. For example, for p 6= 3
one can ensure that the ramification indices are all equal to 1 or 3.

We record a reformulation of the condition that the canonical bundle is a square.

Definition 3.3. For i a nonnegative integer and U an open subset of X, let U (i) be the base
extension of U along the i-th power of the absolute Frobenius morphism on k. Recall that
the i-th power of the absolute Frobenius morphism on X factors as the relative Frobenius
π(i) : X → X(i) followed by the base change morphism X(i) → X.

Definition 3.4. For p arbitrary, a theta characteristic (also known as a spin structure) on
X is a line bundle L on X for which L⊗2 ∼= ωX/k. If such a bundle exists, then the set of
isomorphism classes of theta characteristics form a torsor for Pic(X)[2].

For p = 2, there exists a canonical theta characteristic over X(1); as in [26], it may be
constructed by observing that for any f ∈ k(X), the divisor of df becomes a square over
X(1). Moreover, it is unique because for any g ∈ RX the ratio df

dg
is a square in k(X).

Remark 3.5. From the description of the canonical theta characteristic, it is clear that the
obstruction to tame morphisms described in Proposition 3.1 vanishes upon base extension
along Frobenius on k. In particular, this obstruction vanishes whenever k is perfect.

4. The Sugiyama-Yasuda symbol

The breakthrough of Sugiyama–Yasuda rests on the remarkable invariant theory for the
group PGL2(k

1/4 ·k(X)) developed in [27, §2], which will make it possible to study “tameness
modulo fourth powers” starting in §5. This can be viewed as a characteristic-2 analogue of
the classical theory of the Schwarzian derivative (see Remark 4.9). We give a detailed
treatment here, both for expository purposes and to clarify the effect of working over an
arbitrary (not necessarily algebraically closed or even perfect) base field. Throughout this
section we assume that char(k) = 2.

Definition 4.1. Put Γ := PGL2(k
1/4 · k(X)). We write Γk in place of Γ when it becomes

necessary to specify k (e.g., when passing to a field extension).
Consider the following action of Γ on k(X) by linear fractional transformations:

(

a b
c d

)

(f) =
a4f + b4

c4f + d4
.

Note that the action on RX
∼= k(X) \ k · k(X)2 is free: a fixed point would correspond to

a solution of the equation a4f + b4 = c4f 2 + d4f , but since f /∈ k · k(X)2 this would force
b = c = 0 and a = d.

Write Γf for the Γ-orbit of f ; note that it contains both f−1 and f 3 = f 4f−1.
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Definition 4.2. For g ∈ RX , note that 1, g, g
2, g3 form a basis1 of k(X) over k · k(X)4 . For

f, g ∈ RX , we may therefore write

(4.2.1) f = f 4
0 + f 4

1 g + f 4
2 g

2 + f 4
3 g

3 = (f 2
0 + f 2

2 g)
2 + (f 2

1 + f 2
3 g)

2g (fi ∈ k1/4 · k(X)).

Since f 2
1 + f 2

3 g =
(

df
dg

)1/2

is nonzero (as otherwise f would lie in k · k(X)2), we may define

the Sugiyama-Yasuda symbol of f and g by the formula

SY(f, g) :=

(

f1f3 + f 2
2

f 2
1 + f 2

3 g

)2

dg ∈ Ωk(X)/k.

(Note that SY is meant to abbreviate both “Sugiyama-Yasuda” and “symbol”; see Re-
mark 4.9.)

Remark 4.3. The group Γ is generated by the operations

g 7→ g + 1, g 7→ g−1, g 7→ t4g (t ∈ (k1/4 · k(X))×).

These operations have the following effects on (4.2.1):

f = (f0 + f1 + f2 + f3)
4 + (f1 + f3)

4(g + 1) + (f2 + f3)
4(g + 1)2 + f 4

3 (g + 1)3

= f 4
0 + (f3g)

4g−1 + (f2g)
4g−2 + (f1g)

4g−3

= f 4
0 + (t−1f1)

4t4g + (t−2f2)
4(t4g)2 + (t−3f3)

4(t4g)3.

In particular, by replacing g with a suitable element in Γg, we can first ensure that f3 6= 0
(as otherwise the nonvanishing of f 2

1 + f 2
3 g forces f1 6= 0, and we may apply g 7→ g−1), and

then that f2 = 0 (by first rescaling to achieve f2 = f3). If we further replace f with f + f 4
0

(thus moving f within Γf), we then have f/g = (f 2
1 + f 2

3 g)
2 and so

SY(f, g) =
(f1f3)

2

f/g
dg.

Lemma 4.4. For f, g ∈ RX , we have that SY(f, g) = SY(f, γ(g)) for every γ ∈ Γ.

Proof. By Remark 4.3,

SY(f, t4g) =

(

t−1f1t
−3f3 + t−4f 2

2

t−2f 2
1 + t−6f 2

3 t
4g

)2

d(t4g) = SY(f, g)

SY(f, g + 1) =

(

(f1 + f3)f3 + (f2 + f3)
2

(f1 + f3)2 + f 2
3 (g + 1)

)2

d(g + 1) = SY(f, g)

SY(f, g−1) =

(

f1gf3g + f 2
2 g

2

f 2
3 g

2 + f 2
1 g

2g−1

)2

d(g−1) = SY(f, g).

This establishes invariance under a generating set of Γ and hence proves the claim. �

Corollary 4.5. For f, g ∈ RX , SY(f, g) = 0 if and only if g ∈ Γf .

1Since K(X)4 ⊆ K(X)2 ⊆ K(X), it is enough to check that 1, g is a basis of K(X)2 ⊆ K(X) which is
clear as it is an extension of degree two and 1, g are linearly independent which can be seen by differentiating
any linear relation thereof.
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Proof. For f = g, we have f0 = f2 = f3 = 0 and so SY(f, g) = 0. By Lemma 4.4, it follows
that if g ∈ Γf , then SY(f, g) = 0.

Conversely, suppose that SY(f, g) = 0 and we wish to check that f ∈ Γg. By Lemma 4.4,
both the hypothesis and the conclusion are preserved by moving g within Γg, so by Re-
mark 4.3 we may assume that f2 = 0, f3 6= 0. The vanishing of SY(f, g) implies that
f1f3 + f 2

2 = 0; we must then have f1 = 0 in addition, and so f = f 4
0 + f 4

3 g
3 ∈ Γg3 = Γg. �

We come now to the most remarkable property of SY.

Lemma 4.6. For f, g, h ∈ RX ,

SY(f, g) + SY(g, h) = SY(f, h).

Proof. When computing SY(f, g), Lemma 4.4 asserts that we are free to move g within Γg,
and Remark 4.3 asserts that by so doing (and translating f by a fourth power) we can ensure
that f ∈ k · k(X)2g. By the same logic, we may move h within Γh while fixing f and g, so
as to ensure that g ∈ k · k(X)4 + k · k(X)2h (however, we cannot move g without disturbing
our assumption about f). Writing r for g21 + g23h = (dg/dh)1/2, we have

g = g40 + r2h = g40 + (g21 + g23h)
2h

f = (f 2
1 + f 2

3 g)
2g

= (f 2
1 + f 2

3 (g
4
0 + r2h))2(g40 + g41h+ g43h

3)

= ((f1 + f3g
2
0)

4 + (f3r)
4h2)(g40 + g41h+ g43h

3)

= (f1g0 + f3g
3
0)

4 + (f1g1 + f3g
2
0g1 + f3g3rh)

4h+ (f3g0r)
4h2 + (f1g3 + f3g

2
0g3 + f3g1r)h

3.

By writing df/dh as (df/dg)(dg/dh) = r2df/dg, we compute that

SY(f, g) =
f 2
1 f

2
3

df/dg
dg =

f 2
1 f

2
3 r

2

r2(df/dg)
dg =

f 2
1 f

2
3 r

4

r2(df/dg)
dh

SY(f, h) =
(f1g1 + f3g

2
0g1 + f3g3rh)

2(f1g3 + f3g
2
0g3 + f3g1r)

2 + (f3g0r)
4

r2(df/dg)
dh

SY(f, g) + SY(f, h) =
g21g

2
3(f

2
1 + f 2

3 (g
4
0 + r2h))2

r2(df/dg)
dh

=
g21g

2
3

dg/dh
dh = SY(g, h)

as desired. �

Putting everything together, we have the following statement which includes [27, Propo-
sitions 2.7, 2.8, 2.9] (with the same proofs up to cosmetic differences).

Theorem 4.7 (Sugiyama-Yasuda). The map SY : RX × RX → Ωk(X)/k has the following
properties.

(a) It is Γ-equivariant in each argument and symmetric in the two arguments.
(b) For f, g ∈ RX , SY(f, g) = 0 if and only if f, g belong to the same Γ-orbit.
(c) For f, g, h ∈ RX , SY(f, g) + SY(g, h) + SY(h, f) = 0.

Note that, since char(k) = 2, a pairing is symmetric if and only if it is anti-symmetric.
7



Proof. We first observe that part (b) is just a restatement of Corollary 4.5. Given (b),
Lemma 4.6 implies that

SY(f, g) + SY(g, f) = SY(f, f) = 0;

together with Lemma 4.4, this implies (a). Given (a), the condition (c) is equivalent to
Lemma 4.6. �

Remark 4.8. Suppose that k is algebraically closed. As observed in [27, Lemma 3.3],
for fixed g and a, the equation SY(f, g) = da is quadratic in f1, f2, f3, and so by Tsen’s
theorem has a nonzero solution. Consequently, the morphism SY(−, g) : RX/Γ → Ωk(X)/k is
surjective. It is also injective by Corollary 4.5, and hence we may upgrade Theorem 4.7 to
assert that SY equips RX/Γ with the structure of a Ωk(X)/k-torsor. We will return to this
point in §6.

Remark 4.9. Our use of the term symbol in reference to SY is meant to suggest the possibil-
ity of a conceptual interpretation for this construction, e.g., in terms of algebraic K-theory.
While we do not have such an interpretation in mind, it is natural to look for one using the
following observation of Yuichiro Hoshi, spelled out in more detail (and put into a geometric
framework) in [14].

In complex function theory, the Schwarzian derivative of a pair f, g is defined (as in [13,
Chapter 10]; see also [18]) as

{f, g} =
d

dg

(

d2f/dg2

df/dg

)

−
1

2

(

d2f/dg2

df/dg

)2

.

The associated quadratic differential {f, g}(dg)2 is known to have strong algebraic properties:
it is antisymmetric in the two arguments and invariant under linear fractional transformations
on either side, vanishes if and only if f is a linear fractional transformation of g, and satisfies

{f, h}(dh)2 = {f, g}(dg)2 + {g, h}(dh)2.

If one divides by 2, reduces modulo 2, and takes the square root (interpreting 1
2
d2f/dg2 ap-

propriately in terms of the Cartier operator), one recovers precisely the definition of SY(f, g)
and the properties of SY(f, g) according to Theorem 4.7.

5. Pseudotame and tame morphisms

Throughout §5, assume that k is perfect. With the properties of the SY symbol in mind,
we now introduce a key relaxation of the definition of a tame morphism: the notion of a
pseudotame morphism in the sense of Sugiyama–Yasuda. This can be thought of as the
condition that a morphism is tame “up to fourth powers”, or more precisely “up to Γ-
equivalence”.

Definition 5.1. For f ∈ RX carrying x to y ∈ P1
k, choose a uniformizer t of P1

k at y.
Following [27, Definition 2.1], we say that f is pseudotame at x if there exists an element
h ∈ k(X) such that vx(f

∗t+ h4) is odd. This definition has the following properties.

• If f is tame at x, then evidently f is pseudotame at x.
• If u is a uniformizer of X at x and we write f ∗t = a1u + a2u

2 + · · · , then f is
pseudotame at x if and only if the first index i ≥ 1 with ai 6= 0 and 4 6 | i is an odd
number.
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• In the previous point, the index i does not depend on the choice of t and is invariant
under base extension. Consequently, the pseudotame condition at x is independent
of the choice of t, and is invariant under base extension in the following sense: if k′ is
a field extension of k and x′ ∈ X ′ lies over x, then f is pseudotame at x if and only
if the induced map f : X ′ → P1

k′ is pseudotame at x′.

For U ⊆ X an open subscheme, we say that f is pseudotame on U if it is pseudotame at
every point of U ; for U = X, we simply say that f is pseudotame.

Lemma 5.2. An element f ∈ RX is pseudotame at x ∈ X◦ if and only Γf contains an
element which is a uniformizer at x. In particular, this property is Γ-invariant.

Proof. The pseudotame property is preserved by the operations f 7→ a4f + b4 (as this has
an obvious effect on the element h) and f 7→ f 3; consequently, it is Γ-invariant. Since a
uniformizer at x is obviously pseudotame at x, by Remark 4.3 any element in its Γ-orbit is
likewise.

Conversely, suppose that f ∈ RX is pseudotame. By translating by the element h from
Definition 5.1, we obtain an element f1 ∈ Γf with odd order at x. By taking either f1 or
1/f1, we find an element f2 ∈ Γf with order at x congruent to 1 mod 4. By multiplying by
a suitable fourth power, we find an element f3 ∈ Γf with order 1 at x, as desired. �

Since pseudotameness is a Γ-invariant property, it is natural to ask how it is expressed in
terms of symbols. The answer, reproduced here from [27, Theorem 2.10], turns out to be
quite simple.

Lemma 5.3. For x ∈ X, suppose that f, g ∈ RX are such that g is pseudotame at x. Then
f is pseudotame at x if and only if SY(f, g) is regular at x (meaning that it belongs to
(Ωk(X),k)x).

Proof. By Theorem 4.7 and Lemma 5.2, we are free to move f and g within their respective
Γ-orbits (as both sides of the desired equivalence are preserved). In particular, we may
assume that g is in fact a uniformizer at x.
If f is pseudotame at x, then we may also assume that it is a uniformizer at x; then the

terms f0, f1, f2, f3 in (4.2.1) are regular at x, and f 2
1 + f 2

3 g is nonzero at x. It follows that
SY(f, g) is regular at x.

Conversely, suppose that f is not pseudotame at x. We may then assume that vx(f) = 2,
in which case vx(f1) ≥ 1, vx(f2) = 0, vx(f3) ≥ 0. Then

vx(f1f3 + f 2
2 ) = 0, vx(f

2
1 + f 2

3 g) ≥ 1,

and so SY(f, g) is the differential of an element of k(X) with a pole of order 2vx(f
2
1 +f

2
3 g)−1

at x. This order being positive and odd, SY(f, g) is not regular at x. �

We conclude this section by showing that the existence of tame and pseudotame morphisms
is intricately linked. We follow the proof of [27, Theorem 4.1], with some minor adjustments
to accommodate the case where k is finite. (In exchange, we do not attempt to optimize the
degree of the morphism.)

Lemma 5.4. If f ∈ RX is pseudotame, then there exists g ∈ Γf which is tame; in particular,
X admits a tame morphism to P1

k if and only if it admits a pseudotame morphism to P1
k.

9



Proof. Fix a point ∞ ∈ X◦ and let R be the coordinate ring of the affine scheme X \ {∞}.
For g ∈ R nonzero, define deg(g) as the pole order at ∞, or equivalently the minimal n ∈ Z≥0

such that g ∈ H0(X,OX(n∞)).
Write f = h0/h1 with h0, h1 ∈ R and put f1 := h41f ∈ Γf∩R. Since f1 is pseudotame at∞,

so is f 2e1+1
1 for any nonnegative integer e1; by taking e1 sufficiently large, we can ensure that

there exists h2 ∈ R such that deg(f2) is odd for f2 := f 2e1+1
1 +h42. More precisely, if deg(f1) is

odd we may take h2 = 0. Otherwise, deg(f1) must be divisible by 4; by completing at infinity,
we can find r > 0 such that for every e1 ≥ 0, there exists h2 ∈ OX(

1
4
deg(f 2e1+1

1 )∞)/mr
X,∞

for which

f 2e1+1
1 |r∞ + h

4

2 ∈ OX(deg(f
2e1+1
1 )∞)/mr

X,∞

is of odd multiplicity. (We are using here the observation that for f ∈ k((t)), if we expand
f 2e+1 and then compute the difference between the lowest degree of a nonzero term and the
lowest odd degree of a nonzero term, the result is independent of e > 0.) Now take e1 ≫ 0
so that H0(X,OX(

1
4
deg(f 2e1+1

1 )∞)) → H0(r∞,OX(
1
4
deg(f 2e1+1

1 )∞)) is surjective; then we

can lift h2 to the sought-after h2 ∈ R.
Let Y be the union of the set-theoretic zero loci of f2 and df2 on X \ {∞}. For e2 a

sufficiently large positive integer, we have (2e2 + 1) deg(f2) > 12g − 2, and moreover we can
find h3 ∈ R such that (2e2 + 1) deg(f2) > 4 deg(h3) and f3 := f 2e2+1

2 + h43 does not vanish
anywhere on Y . This can be ensured by enforcing explicit values of h3 at points of Y (the
number of which is independent of e2). In particular, deg(f3) is odd. Moreover, since the
set-theoretic zero locus of df3 is equal to Y , the zeroes of f3 are all simple.

We will take f4 ∈ Γf to have the form f 3
3 + h44 for a suitable choice of h4 ∈ R. To find h4,

let my denote the order of df3 = f 2e2
2 df2 at y ∈ Y , so that

∑

y∈Y

my degk(y) = deg(df3) = deg(f3) + 2g − 1.

Since we are assuming that k is perfect, my is even; let I be the ideal of R consisting of
elements which vanish at y to order ⌊my/4⌋+1 for each y ∈ Y . We may then choose h4 ∈ R
such that f 3

3 + h44 is tame at all y ∈ Y , and this property holds also with h4 replaced by any
element of its congruence class modulo I. In fact, by Riemann-Roch, we may find such an
element h4 with

deg(h4) ≤ 2g +
∑

y

(⌊my/4⌋+ 1) degk(y)

≤ 2g +
∑

y

(my/2) degk(y) = 3g +
1

2
(deg(f3)− 1)

and so 4 deg(h4) ≤ 12g−2+2 deg(f3). Since deg(f3) > 12g−2, we have 4 deg(h4) < 3 deg(f3)
and so f4 := f 3

3 + h44 is tame at ∞.
To complete the argument, we must check that f4 is tame at any x ∈ X◦ \ (Y ∪ {∞}).

Since df4 = 3f 2
3df3 and df3 does not vanish at x, f4 can only be ramified at X if f3 vanishes

at x. In this case, f3 has a simple zero at x, so df4 has a double zero and both f 3
3 and f4

have ramification index 3 at x (this being unaffected by the addition of h41). This proves the
claim. �
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Remark 5.5. The method of proof of Lemma 5.4 cannot ensure that g is triply ramified,
i.e., that its ramification indices are all equal to 1 or 3; it may be possible to modify the
argument to achieve triple ramification away from ∞, but the method depends essentially
on the large pole at ∞.
Whether or not an arbitrary curve admits a triply ramified morphism to P1

k remains an
open problem even in characteristic 0. Over C, Fried–Klassen–Kopeliovich showed that the
generic genus-1 curve admits a triply ramified morphism [7] (see also [23, Proposition 6.4]);
this was extended to genus-g curves for any g by Artebani–Pirola [2]. Over an algebraically
closed field of characteristic p 6= 3, Schröer proved that the generic genus-1 curve admits a
triply ramified morphism [24, Corollary 5.3], and for g ≥ 2 the set of points in the moduli
space of genus-g curve corresponding to curves admitting a triply ramified morphism has
dimension at least 2g − 3 [24, Corollary 5.2].

6. Conic bundles

We now expand on a point of [27] to exhibit a geometric obstruction to the existence of a
tame morphism. For the moment, we do not require k to be perfect.

Definition 6.1. Following Raynaud [20, §4], we may identify the canonical theta character-

istic on X(1) with the image B of π
(1)
∗ d : π

(1)
∗ OX → π

(1)
∗ ωX/k as follows. Note that there is

an exact sequence
0 → OX(1) → π(1)

∗ OX → B → 0

of sheaves on X(1). To write down the autoduality on B, form the exact sequence

0 → B → π(1)
∗ ωX

c
→ ωX(1)/k → 0

where c denotes the Cartier operator; since p = 2, the pairing (f, g) 7→ c(f dg) on π
(1)
∗ OX

induces the desired isomorphism

(6.1.1) B ⊗ B → ωX(1)/k.

By (6.1.1) plus Serre duality, we have a perfect pairing

(6.1.2) H0(X(1), B)×H1(X(1), B) → k;

explicity, for φ ∈ H0(X(1), B) ≃ Hom(B, ωX(1)/k), the corresponding map H1(X(1), B) → k
is given by

H1(X(1), B)→H1(X(1), ωX(1)/k)
Tr
−→ k.

Here, the trace map Tr is a sum of appropriate residues (cf. [12, Section III.7]).
To write this pairing out explicitly, fix an open affine covering {U, V } of X and suppose

α ∈ H0(X(1), B) is represented by some f ∈ RX which is regular and not a square on U .
Any class β ∈ H1(X(1), B) can then be represented by a single value in H0(U (1) ∩ V (1), B),
which can in turn be represented by some g ∈ k(X)/k(X)2. Writing g = g20 + g21f , we have
c(fdg) = g1df ∈ H0(U ∩ V, ωX(1)/k), and so

(6.1.3) 〈α, β〉 =
∑

x∈X\U

Resx(g1 df).

(Note that we must break symmetry by summing over either X \ U or X \ V ; the choice
does not matter because the sum over X \ (U ∩ V ) vanishes by the residue theorem.)

11



We now come to [27, Theorem 3.5].

Definition 6.2. Let U1, . . . , Un be a covering ofX by open affine subspaces. For i = 1, . . . , n,
let fi ∈ RX be a morphism which is pseudotame on Ui. For i, j = 1, . . . , n, SY(fi, fj)
is represented by a regular differential on Ui ∩ Uj by Lemma 5.3, and hence defines an

element of H0(U
(1)
i ∩U

(1)
j , B). By Theorem 4.7, these elements define a class in H1(X(1), B).

Moreover, changing the choice of the fi (after possibly refining the covering) has the effect

of translating the cocycle by a class in
⊕

H0(U
(1)
i , B), and so does not change the resulting

class. Indeed, for f ′
i unramified on Ui, we have SY(f ′

i , fj) = SY(fi, fj) + SY(f ′
i , fi).

By Lemma 6.3 below, the class in H1(X(1), B) vanishes, so we get a 1-coboundary on X(1)

with values in B. The collection of coboundaries that occur in this fashion form a canonical
H0(X(1), B)-torsor, which we call the SY torsor of X; we may view this torsor in a natural
way as the set of k-points of an affine space SX over k. (Recall that X is ordinary if and
only if H0(X(1), B) = 0, in which case the SY torsor is reduced to a single point.)

Lemma 6.3. The class in H1(X(1), B) defined in Definition 6.2 vanishes.

Proof. Since (6.1.2) is a perfect pairing, it suffices to check that the specified class pairs to
zero with the class of H0(X(1), B) represented by an arbitrary element g ∈ RX . Let U be
the open subspace of X on which g is regular and unramified; we can then find an element
h ∈ k(X) such that g + h2 is regular and tame on some open subspace V of X containing
X \U . Write h = h20 + h21g. We represent the specified class in H1(X(1), B) as the 1-cocycle
with respect to the covering {U (1), V (1)} taking the value

SY(g, g + h2) = SY(g, h40 + g + h41g
2) = h41 dg

on U (1) ∩ V (1). By (6.1.3), the desired value of the pairing is
∑

x∈X\U

Resx(h
2
1 dg) =

∑

x∈X\U

Resx(dh) =
∑

x∈X\U

0 = 0,

as claimed. �

We next extract a key construction from the proof of [27, Lemma 3.3]. Note that con-

structing an F-splitting π
(1)
∗ OX = OX(1) ⊕ B1 over an open subset U ⊆ X is equivalent to

finding a global section g of OU with the image in Γ(U (1), B) vanishing nowhere on U (1). We

denote this splitting as π
(1)
∗ OX = OX(1) ⊕ OX(1)g over U . In turn, we obtain splittings of

higher Frobenius pushforwards, for example, π
(2)
∗ OX =

⊕3
i=0 OX(2)gi over U .

Definition 6.4. Form the P2-bundle Y := P(π
(2)
∗ OX/OX(2)) on X(2). For U an open sub-

set of X, we can define homogeneous coordinates T1, T2, T3 on Y over U (2) by choosing

g ∈ Γ(U (2), π
(2)
∗ OX) = Γ(U,OX) whose image in Γ(U (1), B) does not vanish anywhere, and

splitting π
(2)
∗ OX/OX(2) over U as

⊕3
i=1 OX(2)gi.

Let B(1) be the pushforward of B to X(2) via the relative Frobenius π(1,2) : X(1) → X(2).

Given a section a ∈ Γ(U (2), B(1)), we can write a = b2g with b ∈ Γ(U (2), π
(1,2)
∗ OX(1)) and

then form the subscheme Cg,da of Y ×X(2) U (2) cut out by T1T3 + T 2
2 + b(T 2

1 + gT 2
3 ); this is

a bundle of smooth conics over U (2). Note that a k(X(2))-valued point [f1 : f2 : f3] of Cg,da

corresponds to a solution f = f 4
0 + f 4

1 g+ f 4
2 g

2 + f 4
3 g

3 ∈ k(X) of the equation SY(f, g) = da.
12



This construction is independent of coordinates in the following sense. Suppose that

h ∈ Γ(U (2), π
(2)
∗ OX) also has image in Γ(U (1), B) which does not vanish anywhere. Then

from Theorem 4.7 and the previous paragraph, we have an equality

Cg,da = Ch,da+SY(g,h)

of closed subschemes of Y ×X(2) U (2). In order to describe this identity explicitly, let us

denote the change of coordinates induced by the equality π
(2)
∗ OU/OU(2) =

⊕3
i=1 OU(2)gi =

⊕3
i=1 OU(2)hi by (T1, T2, T3) 7→ (T ′

1, T
′
2, T

′
3). By Theorem 4.7, the equation SY(f, g) = da is

equivalent to SY(f, h) = da+ SY(g, h), and so we get that

T ′
1T

′
3 + (T ′

2)
2

(T ′
1)

2 + h(T ′
3)

2
= b′.

over k(X(2)) where da+ SY(g, h) = (b′)2dh. Since X is integral, this is equivalent to T ′
1T

′
3 +

(T ′
2)

2 + b′((T ′
1)

2 + h(T ′
3)

2) = 0 over U (2) which concludes the explanation.

Definition 6.5. With notation as in Definition 6.2, each element of the SY torsor is repre-

sented by a 0-cochain (ai)i with ai ∈ H0(U
(1)
i , B). These elements satisfy

SY(fi, fj) = dai + daj.

For each i, consider the conic bundle Cfi,dai over U
(2)
i ; by the previous discussion, the re-

strictions of Cfi,dai and Cfj ,daj coincide as closed subschemes of Y ×X(2) (Ui ∩ Uj)
(2). These

bundles therefore glue to give a conic bundle over X(2) contained in Y ; we call this the SY
bundle of X associated to the original cochain.

We may naturally globalize the construction over SX to obtain a conic bundle over X(2)×k

SX contained in Y ×k SX . We call this the total SY bundle of X, denoted hereafter by ZX .

Lemma 6.6. Set notation as in Definition 6.2 and suppose that k is perfect. Then there
is a canonical bijection between pseudotame morphisms f ∈ RX and pairs of dashed arrows
which complete the commutative diagram

X(2) //

��

ZX

��

// X(2)

��

Spec(k) // SX
// Spec(k)

in such a way that the horizontal compositions are identity morphisms.

Since X is a curve, giving a section over X(2) is equivalent to giving a section over the
fraction field k(X(2)).

Proof. A diagram as above corresponds to the choice of k-rational point of SX and a section
of the fiber of ZX over this point. The first choice amounts to picking a 0-cochain (ai)i with

ai ∈ H0(U
(1)
i , B); the second choice amounts to picking a k(X(2))-rational point of the fiber,

which in turn corresponds to a solution f ∈ k(X) of the system of equations SY(f, fi) = dai.
By Lemma 5.3, any such f is pseudotame (and in particular belongs to RX).
Conversely, if we start with f pseudotame, then Lemma 5.3 implies that dai := SY(f, fi)

belongs to Γ(U
(1)
i , B), so we may reverse the constructions of the previous paragraph. This

proves the claim. �
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Remark 6.7. It is natural to wonder if one can describe the geometric structure of the conic
bundles we constructed above. In this remark we show that they are in fact 2 : 1 purely

inseparable covers of PX(π
(2)
∗ OX/π

(1)
∗ OX). For simplicity, we assume that k is perfect.

Note that every conic in a two-dimensional projective space defined over an algebraically
closed field of characteristic two is strange, that is, all tangent lines to it pass through a
single point, called the strange point. Moreover, they are all purely inseparable 2 : 1 covers
of P1 constructed by blowing up the strange point and sending a point x on the conic to the
intersection of the tangent line at x with the exceptional locus.

To prove the claim, we first show that the section of Y = PX(π
(2)
∗ OX/OX) given by the

short exact sequence

0 → π(1)
∗ OX/OX → π(2)

∗ OX/OX → π(2)
∗ OX/π

(1)
∗ OX → 0

is a section of strange points. Indeed, our conic is given by the equation T1T3 + T 2
2 + b(T 2

1 +
gT 2

3 ) = 0 and the above section picks up the point (0 : 1 : 0). Since the derivative of this
conic is T3dT1 + T1dT3, we get that the tangent lines are given by equations of the form
f3T1 + f1T3 = 0, and thus they all pass through the point (0 : 1 : 0).

By globalizing the construction explained in the second paragraph, every conic bundle as
above admits a 2 : 1 purely inseparable map to the exceptional locus of the blow-up of it at the

section of strange conics. Since this exceptional locus is isomorphic to PX(π
(2)
∗ OX/π

(1)
∗ OX),

the claim follows.
In fact, by Lemma 6.8 the map from our conic bundle to the exceptional locus of the

blow-up is the relative Frobenius over X. This implies that the Frobenius twist of our conic

bundle is isomorphic to PX(π
(2)
∗ OX/π

(1)
∗ OX).

Lemma 6.8. Let S be a smooth scheme of finite type over a field k of positive characteristic
p > 0. Let X and Y be smooth S-curves, and let f : X → Y be a purely inseparable finite
morphism of degree p over S. Then Y is isomorphic to the Frobenius twist of X over S and
f is the relative Frobenius.

Proof. Since f is purely inseparable of degree p, we have that Op
X ⊆ OY ⊆ OX (cf. [25, Tag

0CNF]). Thus the absolute Frobenius FX factors through f , i.e. FX : X
f
−→ Y

g
−→ X.

Consider the following diagram

X Y X

S S.

FX

f g

FS

Here the square is commutative because OY ⊆ OX and the big diagram is commutative.

More precisely, we have that X
f
−→ Y

g
−→ X → S coincides with X

f
−→ Y → S

FS−→ S, and

hence so does Y
g
−→ X → S with Y → S

FS−→ S (as f is an epimorphism).
In particular, we get a get a finite map Y → X ′, where X ′ = X ×S S is the Frobenius

twist of X over S. As deg f = p, we must have that deg g = pn−1 = degFS where n is the
dimension of X, and so Y → X ′ is of degree one. Hence Y ≃ X ′ as X ′ is normal. By [25,
Tag 0CCY], f : X → Y ≃ X ′ is the relative Frobenius over the generic point of S, and so f
is the relative Frobenius, as X and Y are integral. �
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7. The SY bundle and tame morphisms

Using the SY bundle, we establish our main results on the existence of tame morphisms.
We start by recovering the main result of Sugiyama–Yasuda [27, Theorem 1.1], as well as a
related observation [27, Remark 3.7].

Theorem 7.1 (Sugiyama–Yasuda). Suppose that k is algebraically closed (and recall that
p = 2).

(a) Every SY bundle of X admits a section. Consequently, by Lemma 5.4 and Lemma 6.6,
X admits a tame morphism to P1

k.
(b) Via the symbol map SY of Definition 4.2, the subset of the quotient set RX/Γ con-

sisting of orbits composed of pseudotame elements is naturally identified with SX(k);
in particular, it carries the structure of a torsor for the group H0(X(1), B).

Proof. To obtain (a), apply Tsen’s theorem (Remark 4.8). To obtain (b), note that for any
pseudotame f ∈ RX and any a ∈ H0(X(1), B), Tsen’s theorem again implies the existence
of some g ∈ RX with SY(f, g) = da; Theorem 4.7 implies that Γg is uniquely determined
by f and a. Lemma 5.3 then implies that g is pseudotame, and Theorem 4.7 again provides
the identification with SX(k). �

We note in passing the following open problem related to this result.

Problem 7.2. Suppose that k is algebraically closed (and p = 2). For each positive integer
g, what is the smallest integer c(g) for which every curve X of genus g over k admits a tame
morphism to P1

k of degree at most c(g)?

Remark 7.3. Sugiyama–Yasuda show that in Problem 7.2, c(g) exists and is at most 144g2+
66g − 3 [27, Theorem 5.2]. However, we expect the correct bound to be linear in g.

We next deduce Theorem 1.2.

Definition 7.4. For each element of the SY torsor of X, the corresponding SY bundle
defines a class in Br(X(2))[2], which is trivial if and only if the bundle admits a section. Each
such class is called an SY class of X.

The following seems plausible, but we were unable to verify it. In addition to it being
true when k is finite or algebraically closed, see Theorem 8.3 for another bit of corroborating
evidence.

Conjecture 7.5. There is only one SY class associated to X; that is, the construction is
independent of the choice of an element of the SY torsor.

Theorem 7.6. If k is finite, then every SY class of X is trivial. Consequently, by Lemma 5.4
and Lemma 6.6, X admits a tame morphism to P1

k.

Proof. Since k is finite, class field theory implies that the Brauer group ofX is trivial. Indeed,
by the Albert–Brauer–Hasse–Noether theorem, we have an injection

Br(K)[2] →
⊕

v∈X(2)

Br(Kv)[2],

where K = k(X(2)) and Kv is the fraction field of the completion of the local ring OX(2),v

at v. When a conic bundle over a local field has good reduction, it is automatically trivial,
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as a section over the residue field can be lifted by means of Hensel’s lemma. The theorem
follows, as an SY bundle by construction is a conic bundle over all of X(2). �

We will obtain Theorem 1.3 by expanding on the same line of reasoning.

Theorem 7.7. For gX > 1, there exists a function N = N(gX) satisfying the following
conditions.

(a) Each SY class of X is killed by some field extension k′/k of degree at most N .
(b) There exists a further field extension k′′/k of degree at most N such that Xk′′ admits

a tame morphism to P1
k′′.

Proof. First, we show that there exists a field extension k′/k, of degree depending only on
gX , for which X(k′) 6= ∅. Since we assumed gX > 1, by Riemann-Roch h0(X,ωX) > 0, and
so there exists a nonzero irreducible divisor D such that degD ≤ 2g − 2. Taking k′ to be
the residue field of D concludes the proof.

We may assume hereafter that X has a k-rational point. Since Br(X
(2)

k
) vanishes by Tsen’s

theorem, the Leray spectral sequence for the structure morphism H i(k,Hj
fppf(Xk,Gm)) =⇒

H i+j
fppf(X,Gm) yields an exact sequence

Br(k) → Br(X(2)) → H1
et(k,Pic(X

(2))) = H1
fppf(k,Pic(X

(2))).

Since X(2) admits a rational point, a class in Br(k) which becomes 2-torsion in Br(X(2)) is
automatically 2-torsion. Thus, we get a short exact sequence

Br(k)[2] → Br(X(2))[2] → H1
et(k,Pic(X

(2)))[2].

It suffices to bound the extension k′/k required to kill the resulting class inH1
et(k,Pic(X

(2)))[2],
as then we are only left to kill a class in Br(k′)[2] with a further quadratic extension of k′

(this step is sometimes unnecessary; see Remark 7.8). Using the exact sequence

(7.7.1) 0 → Pic(X(2))/2Pic(X(2)) → H1
fppf(k,Pic(X

(2))[2]) → H1
fppf(k,Pic(X

(2)))[2] → 0

it further suffices to exhibit an extension k′ that kills a specified class inH1
fppf(k,Pic(X

(2))[2]) =

H1
fppf(k,Pic

0(X(2))[2]) = H1
fppf(k, J [2]) where J is the Jacobian of X(2).

Consider the connected-étale sequence

1 → J [2]conn → J [2] → J [2]et → 1.

To kill the image of the specified class in H1
et(k, J [2]

et), it is enough to find a field extension
k′ of k for which J [2]et admits a k′-rational point. If x is any closed point of the scheme
J [2]et, then we can take k′ to be the residue field k(x) at x. Since the degree of this extension
is bounded by the length of the zero-dimensional scheme J [2]et, which in turn depends only
on the genus of X, the claim for the étale part is proven.

After replacing k by k′, we can assume that our class lies in H1
fppf(k, J [2]

conn). The mor-
phism J [2]conn → Spec k is a universal homeomorphism, and so it factors through the r-th
power of Frobenius for some r ∈ N bounded in terms of the length of J [2]conn, and thus in
terms of the genus. Taking a base change of k by this r-th power makes the associated torsor
acquire a rational point, and so kills our class in H1

fppf(k, J [2]
conn).

This yields (a). To deduce (b), note first that if k is perfect, then Xk′ itself admits a tame
morphism by Lemma 5.4 and Lemma 6.6. To handle the general case, note that the proof of
Lemma 5.4 still yields a function f ∈ RX,k′ which becomes pseudotame after base extension

16



to the perfect closure of k′; then note that one may follow through the proof of Lemma 5.4
over a purely inseparable extension of k′ whose degree can be bounded solely in terms of
gX . �

Remark 7.8. If k is perfect and X has a k-rational point, then that gives a section of
the map Br(k) → Br(X(2)). Mapping any SY class back to Br(k) then gives a trivial class
because our original conic bundle has a purely inseparable multisection. Consequently, in
this case it is not necessary to kill any classes in Br(k′)[2].

8. Elliptic curves

To illustrate the previous results in a concrete setting, we compute the obstruction to
existence of a tame morphism for ordinary and supersingular elliptic curves in characteristic
2.

Throughout §8, assume that k is perfect, and let ϕ : k → k denote the absolute Frobenius
morphism on k.

Theorem 8.1. Let X be the elliptic curve over k given by the affine model

y2 + xy = x3 + ax2 + b

for some parameters a, b ∈ k with b 6= 0. (This is the generic form of an ordinary elliptic
curve with j-invariant b−1.)

(a) If one of a, b, a + b belongs to the image of ϕ + 1, then X admits a tame morphism.
(Note that this always holds if k is finite or algebraically closed.)

(b) Conversely, if X(k) is torsion and none of a, b, a + b belongs to the image of ϕ + 1,
then X does not admit a tame morphism.

Proof. For convenience, we write A = a1/4, B = b1/8, so that our curve becomes

y2 + xy = x3 + A4x2 +B8.

Since X is ordinary and k is perfect, it has a unique k-rational 2-torsion point, namely
Q = (0, B4). As per [17, (4)], the multiplication-by-2 map is given by

(x, y) 7→

(

x2 +
b

x2
, (x+

y

x
)(x2 +

b

x2
) +

b

x2

)

.

Consequently, the 4-torsion points have the form (x, y) where

x = B2, y2 +B2y = B6 + A4B4 +B8.

The latter equation is equivalent to

a =
( y

B2
+B2

)2

+
y

B2
+B2;

from this, we see that X contains a rational 4-torsion point iff A is in the image of ϕ+ 1 on
k, where ϕ denotes the absolute Frobenius (equivalently, if there is a change of coordinates
to make A equal to 0).

Let U be the open set on which x is regular and pseudotame; note that U = X \ {∞, Q}.
Let V be the open set on which x/(y + B4) is regular and pseudotame; then U ∪ V = X
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because x/(y+B4) is a uniformizer at both Q and ∞. For g = x, f = (y+B4)x3 ∈ Γ( x
y+B4 ),

we calculate by repeated differentiation and using the equation of the elliptic curve that

f = (xy + A2x2 +B4x)2 + (x2 +B2x)2x

= (y + (A2 + A)x+B4)4 + x4x+ (x+B2)4x2 +B4x3

and hence

SY

(

x

y +B4
, x

)

= SY(f, g) =

(

x2 +Bx+B4

x(x+B2)

)2

dx.

The fact that y does not appear is not an accident: it follows from the fact that the nontrivial
automorphism of the curve over P1

k is given by y 7→ y + x, which carries f = (y + B4)x3 to
the element (y + x+B4)x3 = f + x4 in the same Γ-orbit.) By writing

SY(f, g) =
x2 +B4

x2
dx+

B2

x2 +B4
dx,

we express SY(f, g) as a 1-coboundary (this expression is unique because X is ordinary;

moreover, dx has only a double pole at ∞, so B2

x2+B4dx is regular at ∞). The SY bundle
therefore has generic fiber Cg,d(x+B4x−1), which is to say the zero locus of

(8.1.1) T1T3 + T 2
2 + (1 + B2x−1)T 2

1 + (x+B2)T 2
3 .

Note that for u, v ∈ k, this conic admits a point of the form (T1 : uT1 + vT3 : T3) if and
only if (1 +B2x−1 + u2)(x+B2 + v2) is in the image of ϕ+ 1 on k(X); here we use that for
w1, w2 ∈ k, w1x

2 + xy+w2y
2 has a section if and only if x2 + x+w1w2 does. By making the

choices (u, v) = (0, 0), (1, B), (1, x/B) and noting that

(x−1y)2 + (x−1y) + (B4x−1)2 + (B4x−1) = x+B4x−1 + A4,

we obtain a point in case one of

A4, B2, A4 +B2

is in the image of ϕ+ 1 on k; this proves (a).
To prove (b), suppose by way of contradiction that X(k) is torsion; none of a, b, a + b

belongs to the image of ϕ+1; and the SY bundle ZX → X admits a section. Extending the
previous calculation, we see that any 8-torsion point (x, y) of X satisfies

x2 +
b

x2
= B2.

Define the extensions

k′ = k[α]/(α2 + α + A4), k′′ = k′[β]/(β2 + β +B2).

By rewriting the equation of the curve as
(y

x

)2

+
y

x
= x+ a+

b

x2
= x2 + x+ a+ x2 +

B8

x2
,

we see that over k′′, X acquires the 8-torsion point (βB, βB(βB + α + β)); hence k′′ is the
8-division field of X, so we have a distinguished identification Gal(k′′/k) ∼= (Z/8Z)×.

Since ZX → X admits a section, ZX is a ruled surface and hence has the form PX(E)
for some rank-2 vector bundle E over X [12, Proposition V.2.2] (this result assumes k is
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algebraically closed, but it works for k perfect as well). From Remark 6.7, we obtain an
isomorphism

PX(F∗L2) ∼= PX(F
∗E)

where the map F : X → X is Frobenius and L2 is the unique 2-torsion line bundle on X; it
follows that F∗L2

∼= F ∗E ⊗ G for some line bundle G. Note that over k′, we have

F∗L2
∼= (F∗OX)⊗ L4

∼= L4 ⊕ (L2 ⊗ L4)

where L4 is a 4-torsion line bundle.
We continue using the classification of elliptic surfaces on Xk from [12, Theorem 2.15].

Suppose first that E is decomposable on Xk. By comparing F ∗E with F∗L2 and using the
decomposition of the latter, we see that deg(E) is even. Consequently, deg(G) is even; by
twisting E by a suitable multiple of L(∞), we may ensure that deg(G) = 0. Since X(k) is
torsion, there is a minimal positive integer m such that G⊗m is trivial. If m is odd, then G
has a square root with which we can twist E to force G to become trivial. If m = 2r, then r
is odd because X does not have 4-torsion over k. so G ⊗ L2 admits a square root and so we
may reduce to the case G = L2. But (F∗L2)⊗L2

∼= F∗L, so in this case we may also take G
to be trivial.

Since G is now trivial, on Xk we have

F ∗E ∼= L4 ⊕ (L2 ⊗ L4).

On Xk, we may choose a square root L8 of L4 and see that E must split as one of

L8 ⊕ (L4 ⊗ L8), (L2 ⊗ L8)⊕ (L4 ⊗ L8),L8 ⊕ (L2 ⊗ L4 ⊗ L8), (L2 ⊗ L8)⊕ (L2 ⊗ L4 ⊗ L8).

However, none of these options can be the pullback of a bundle on X: one of the elements
of Gal(k/k) fixes L4 and sends L8 to L2 ⊗L8, and none of the candidates for E is preserved
by this element. This yields the desired contradiction.

Suppose now that E is indecomposable on Xk. Then after twisting E , we must have a
nonsplit extension

0 → O → E → O(n∞) → 0

with n ∈ {0, 1}. This pulls back to an extension

0 → O → F ∗(E) → O(2n∞) → 0.

Since F ∗(E) ⊗ G ≃ F∗L2, we have that G(n∞) squares to ∧2F∗L2
∼= O, and so it must be

isomorphic to either O or L2. In either case, as (F∗L2)⊗ L2 ≃ F∗L2, we get a sequence

0 → O → (F∗L2)⊗O(n∞) → O(2n∞) → 0.

If n = 0, then we may split F∗L2 as above and then obtain a contradiction; so we must have
n = 1. Thus we get a sequence

0 → O → O(P1)⊕O(P2) → O(2∞) → 0,

where P1,P2 are the two 4-torsion points. In particular, the map O → O(2∞) yields a
section in H0(X,O(2∞)) corresponding to P1 + P2 ∈ |2∞|. This is impossible, because this
map is a Frobenius pullback of O → O(∞). �
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One can generate explicit examples using Kramer’s description of 2-descent for elliptic
curves over function fields of characteristic 2 [17]. Take k0 = F2(t); let k be the perfect
closure of k0; let X0 be the curve y2 + xy = x3 + ax2 + b over k0 for some a ∈ k0, b ∈ k0 \ F2

such that b is a square in k0, and none of a, b, a+ b belongs to the image of ϕ+ 1 on k; and
let X be the base extension to k. Let π : X0 → X ′

0 be the Frobenius isogeny, whose target
is the curve y2 + xy = x3 + a2x2 + b2; let ψ : X ′

0 → X0 be the dual isogeny (Verschiebung).
Then the product of the orders of the ψ-Selmer and π-Selmer groups gives an upper bound
on the order of X0(k)/2X0(k).

Suppose in particular that the ψ-Selmer group has order 2 and the π-Selmer group is
trivial. Since the Mordell-Weil theorem holds in this case (see [9, Theorem 1.1] or [21,
Corollary 1.3], which apply because j(X0) = b−1 /∈ F2), X0(k) is finitely generated and so
must be equal to the subgroup Z/2Z generated by (0, b1/2); meanwhile, π induces a surjection
X0(k) → X ′

0(k) and so X ′
0 is also of rank 0. It follows that X(k) is torsion (and in fact is

isomorphic to Z/2Z), and so X is an example to which Theorem 8.1 applies; consequently,
X admits no tame morphism to P1

k.
The following computation in the Magma computer algebra system confirms that taking

a = t, b = t6 yields an example as above. This may also be confirmed by a hand calculation.

> F<t> := RationalFunctionField(GF(2));

> E := EllipticCurve([1,t,0,0,t^6]);

> G1, G2 := TwoIsogenySelmerGroups(E);

> Order(G1), Order(G2);

2 1

We summarize the result as follows.

Theorem 8.2. There exists an ordinary elliptic curve over a perfect field k of characteristic 2
(namely the perfect closure of F2(t)) which does not admit a tame morphism to P1

k. Explicitly
we can take the elliptic curve given by the equation y2 + xy = x3 + tx2 + t6 over F2(t

1/p∞).

Moving to the supersingular case, we obtain the following.

Theorem 8.3. Let X be the elliptic curve over k given by the affine model

y2 + y = x3 + ax+ b

for some parameters a, b ∈ k. (This is the generic form of a supersingular elliptic curve,
necessarily having j-invariant 0.) Then all of the SY classes of X vanish; in particular, X
admits a tame morphism to P1

k.

Proof. We have

dy = (x2 + a) dx.

Let U be the complement of ∞ in X; then x is regular and unramified on U . Let V be
the open subset of X on which y/x2 is regular and unramified; then U ∪ V = X. For
g = x, f = x2y, we calculate by repeated differentiation that

f = (xy + b1/2x)2 + (x2 + a1/2x)2x

= (x2 + a1/2x)4 + (x)4x+ (y + b1/2 + b1/4)4x2 + (a1/4)4x3
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and hence

SY
( y

x2
, x
)

= SY(f, g) =

(

a1/4x+ y2 + b1/2 + b

x(x+ a1/2)

)2

dx.

By writing

SY(f, g) = (x2 + a) dx+
a1/2x2 + y + x3 + ax

x2(x2 + a)
dx,

we express SY(f, g) as a 1-coboundary. However, since X is not ordinary, this expression is
not unique; we have (here we use the fact that H0(X(1), B) ≃ H0(X,ωX) = k dx)

H0(X(1), B) = kx,

and so we get a collection of SY bundles of the form Cg,d(x3+c2x) for c
2 ∈ k. The corresponding

conics are
T1T3 + T 2

2 + (x+ c)T 2
1 + (x2 + cx)T 2

3

or equivalently
T1T3 + T 2

2 + xT 2
1 + cxT 2

3 ;

in the latter form, we may read off the rational point (T1 : T2 : T3) = (c1/2 : c1/4 : 1). �

Remark 8.4. We did not attempt to explicitly reconstruct tame morphisms in the setting
of either Theorem 8.1 or Theorem 8.3. However, in the latter case, we observe (following
[23, Remark 6.3]) that when a = 0, the rational function y defines a (geometrically) cyclic
covering of P1

k, which is in particular tame.

9. Tame Belyi maps

We now drop our running hypothesis that p = 2 and formulate the refined tame Belyi
theorem in positive characteristic. For parallelism, we first recall the usual Belyi theorem in
characteristic zero, as in [10, §2].

Theorem 9.1 (Riemann, Belyi). Suppose that p = 0.

(a) If X admits a morphism to P1
k ramified only over {0, 1,∞}, then X descends to Q.

(b) Conversely, suppose that k is algebraic over Q. Then X admits a morphism to P1
k

ramified only over {0, 1,∞}. (In particular, this morphism is defined over k, not just
over k.)

As noted in the introduction, the direct analogue of Belyi’s theorem in positive charac-
teristic fails without a tameness restriction, due to the following fact. (This statement has
its origins in Abhyankar’s observation that the map x 7→ xp + x−1 presents Gm,k as a finite
étale cover of A1

k.)

Theorem 9.2 (Abhyankar, Katz, et al.). Suppose that p > 0. Then X always admits a
morphism to P1

k ramified only over ∞.

Proof. See [15, Lemma 16] for the case where k is perfect, and [16, Theorem 1] for the general
case (and a correspoding assertion in higher dimensions). �

To salvage a form of Belyi’s theorem in positive characteristic, one must restrict to tame
morphisms. The following result recovers Theorem 1.5; part (b) was previously known for
k = Fp, by Säıdi for p > 2 [22, Théorème 5.6] and Anbar–Tutdere [1, Theorem 2] for p = 2
(the latter using the work of Sugiyama–Yasuda).
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Theorem 9.3. Suppose that p > 0.

(a) If X admits a tame morphism to P1
k ramified only over {0, 1,∞}, then X descends

to Fp.
(b) Conversely, suppose that k is algebraic over Fp. Then X admits a tame morphism to

P1
k ramified only over {0, 1,∞}.

Proof. Part (a) follows from Grothendieck-Murre-Raynaud’s theory of tame fundamental
groups (see in particular [11, Exposé XIII, Corollaire 2.12]), which implies that the tame
fundamental group of a curve (and hence the category of tame covers) is invariant under
base change along extensions of algebraically closed fields. To prove (b), we may assume at
once that k is finite. Apply Theorem 2.1 (if p > 2) or Theorem 7.6 (if p = 2) to obtain a
tame morphism f0 : X → P1

k. Choose a power q of p such that all of the branch points of
f0 in P1

k are defined over Fq, then let f1 : P
1
k → P1

k be the map x 7→ xq−1. The composition
f1 ◦ f0 is tame and ramified only over {0, 1,∞}, as desired. �
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[23] S. Schröer, The strong Franchetta conjecture in arbitrary characteristics, Int. J. Math. 14 (2003), 371–

396.
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