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ABSTRACT
Observations suggest that satellite quenching plays a major role in the build-up of passive, low-mass galaxies at late cosmic
times. Studies of low-mass satellites, however, are limited by the ability to robustly characterize the local environment and star
formation activity of faint systems. In an effort to overcome the limitations of existing data sets, we utilize deep photometry in
Stripe 82 of the Sloan Digital Sky Survey, in conjunction with a neural network classification scheme, to study the suppression
of star formation in low-mass satellite galaxies in the local Universe. Using a statistically driven approach, we are able to push
beyond the limits of existing spectroscopic data sets, measuring the satellite quenched fraction down to satellite stellar masses of
∼107 M� in group environments (Mhalo = 1013−14 h−1 M�). At high satellite stellar masses (�1010 M�), our analysis successfully
reproduces existing measurements of the quenched fraction based on spectroscopic samples. Pushing to lower masses, we find
that the fraction of passive satellites increases, potentially signalling a change in the dominant quenching mechanism at M� ∼
109 M�. Similar to the results of previous studies of the Local Group, this increase in the quenched fraction at low satellite
masses may correspond to an increase in the efficacy of ram-pressure stripping as a quenching mechanism in groups.
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1 IN T RO D U C T I O N

The recent generation of large-scale galaxy surveys has revealed that
the population of non-star-forming (i.e. ‘quiescent’ or ‘quenched’)
galaxies increased by more than a factor of 2 in the past 7–
10 Gyr, such that quenched systems, as opposed to their star-forming
counterparts, comprise the majority of the stellar mass budget at
z ∼ 0 (Bell et al. 2004; Bundy et al. 2006; Faber et al. 2007).
While the growth of the global quenched population is relatively
well measured at late cosmic time, our current understanding of the
physical processes responsible for the suppression (or ‘quenching’)
of star formation remains woefully incomplete as evidenced by many
models of galaxy formation overestimating the observed satellite
quenched fraction (Kimm et al. 2009; Weinmann et al. 2012;
Hirschmann et al. 2014). Nevertheless, a wide assortment of physical
processes has been put forth to explain how galaxies transition
from star forming to quiescent. In general, these processes are
split into two distinct categories, namely, internal and environmental
quenching. The former, which acts independent of local environment
(i.e. on both central and satellite systems), refers to any quenching
process that suppresses star formation from within a galaxy. Ex-
amples of internal quenching mechanisms include feedback from
star formation (Oppenheimer & Davé 2006; Ceverino & Klypin
2009) and active galactic nuclei (AGNs; Di Matteo, Springel &
Hernquist 2005; Hopkins et al. 2005; Croton et al. 2006). On the other
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hand, environmental quenching, which typically applies to low-mass
satellites (�1010 M�), refers to a range of quenching mechanisms
that suppress star formation due to environmental factors – e.g. ram-
pressure stripping (Gunn & Gott 1972; Abadi, Moore & Bower
1999), tidal stripping (Merritt 1983; Moore et al. 1999; Gnedin
2003), strangulation or starvation (Larson, Tinsley & Caldwell 1980;
Kawata & Mulchaey 2008), and harassment (Moore et al. 1996;
Moore, Lake & Katz 1998). In general, environmental quenching
mechanisms suppress star formation either by preventing satellites
from accreting gas (e.g. strangulation) or by removing pre-existing
gas reservoirs through galaxy–galaxy interactions (i.e. harassment),
gravitational tidal forces (e.g. tidal stripping), or interaction with the
circumgalactic medium of the host (e.g. ram-pressure stripping).

At z ∼ 0, galaxy surveys find that satellites, not centrals, com-
prise the largest fraction of passive systems over a wide range
of stellar masses (�1010.7 M�; Wetzel et al. 2013). Furthermore,
observations of low-mass (�109 M�) galaxies in the local Universe
have demonstrated that nearly all field galaxies are star forming,
signalling that environmental quenching is primarily responsible for
suppressing star formation in the low-mass regime (Haines, Gargiulo
& Merluzzi 2008; Geha et al. 2012). Altogether, these observations
demonstrate the importance and ubiquity of satellite quenching at
late times and especially low satellite masses. Yet, hydrodynamic
and semi-analytical models, which successfully predict the fraction
of quiescent centrals, continue to significantly overpredict the relative
number of passive satellites, especially at low masses (Kimm
et al. 2009; Hirschmann et al. 2014; Wang et al. 2014, but see
also Henriques et al. 2017). This discrepancy between theoretical
predictions and observations is driven by a failure to properly
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Studying quenching with machine learning 1637

model the physical processes responsible for satellite quenching.
This lack of agreement between observations and theoretical mod-
els further emphasizes that understanding the details of satellite
quenching is tantamount to advancing our understanding of galaxy
formation.

Our current understanding of satellite quenching at low masses is
largely derived from studies of dwarf galaxies (M� ∼ 106–108 M�)
in the very local Universe, including our own Local Group. First
and foremost, a range of observations demonstrate that the vast
majority of low-mass satellites are gas-poor and passive, in contrast
to their gas-rich, star-forming counterparts in the field (e.g. Grcevich
& Putman 2009; Spekkens et al. 2014; Weisz et al. 2014a, b).
Furthermore, studies of the accretion history of these systems using
N-body simulations demonstrate that quenching is highly efficient,
such that the typical time-scale over which quenching occurs is
∼2 Gyr at M� � 108 M� [likely driven by an increase in the
efficacy of ram-pressure stripping (Fillingham et al. 2015, 2016,
2018; Weisz et al. 2015; Wetzel, Tollerud & Weisz 2015)]. On the
other hand, studies of the more massive satellites (M� � 108 M�) in
the Local Group and nearby groups/clusters find that these systems
have significantly longer quenching time-scales (�5 Gyr), consistent
with starvation acting as the dominant quenching mechanism (De
Lucia et al. 2012; Wetzel et al. 2013; Wheeler et al. 2014). Taken
together, this implies that a transition in the dominant quenching
mechanism occurs at M� ∼ 108 M� (at least within Milky Way-like
host haloes, Mhalo ∼ 1012 M�; Fillingham et al. 2016; Rodriguez
Wimberly et al. 2019).

A major step towards increasing our understanding of satellite
quenching involves determining whether the aforementioned results
extend beyond the Local Group. Is a similar increase in the quenched
fraction observed at low masses outside of the Local Group (and/or
in more massive host haloes), indicating a corresponding increase
in the efficiency of environmental (or satellite) quenching at this
mass range? Unfortunately, the current generation of spectroscopic
surveys lacks the necessary combination of depth, area, and/or
completeness to reliably probe this mass regime. For example, at the
magnitude limit of the main spectroscopic survey, the Sloan Digital
Sky Survey (SDSS; York et al. 2000) can only probe galaxies with
stellar masses less than 108 M� at z < 0.01. While more recent
surveys push fainter, including the Galaxy and Mass Assembly
(GAMA; Driver et al. 2009, 2011) survey, the corresponding area
of sky mapped is significantly smaller, again limiting the number of
nearby hosts around which we can study their satellites. In contrast
to spectroscopic data sets, wide and deep imaging programs are
able to probe both star-forming and passive galaxies down to stellar
masses of ∼107 M� at z � 0.1, covering significant areas on
the sky.

Herein, we present a method for measuring the satellite quenched
fraction down to M� ∼ 107 M� by applying machine learning and
statistical background subtraction techniques to wide and deep pho-
tometric data sets, pushing beyond the limits of current spectroscopic
samples. In Section 2, we describe the spectroscopic and photometric
data sets utilized in our analysis. In Section 3, we discuss the training,
testing, and performance of our neural network classifier (NNC) as
well as our use of the trained model to classify galaxies in our
photometric sample as star forming or quenched. In Section 4, we
describe our statistical background subtraction technique and use
it to measure the satellite quenched fraction around nearby groups.
Lastly, in Section 5, we discuss and summarize our results. When
necessary, we adopt a flat Lambda cold dark matter cosmology with
H0 = 70 km s−1 Mpc−1 and �m = 0.3. All magnitudes are on the
AB system (Oke & Gunn 1983).

2 DATA

2.1 Photometric sample

Our analysis utilizes the co-added images and photometry from the
SDSS, focusing on the deeper Stripe 82 data set (S82; Annis et al.
2014; Bundy et al. 2015). S82 is centred on the celestial equator and
is comprised of an area of ∼300 deg2 that spans between −50◦ <

α < 60◦ and −1.25◦ < δ < +1.25◦. The co-added images in S82
reach a depth ∼2 mag deeper in ugriz relative to the SDSS single-
pass data. Overall, the wide area and impressive depth (r ∼ 22.4,
95 per cent complete for galaxies) of S82 make it well suited for
studying the properties of low-mass galaxies in the local Universe.
For the purpose of our analysis, we limit the S82 sample to only
include galaxies (defined using the SDSS TYPE parameter) with
13 < r < 21.5. This apparent r-band magnitude cut is applied to
ensure that galaxies in our sample are below the SDSS saturation
limit and above the 95 per cent completeness limit for galaxies in the
gri passbands.

We exclude the shallower and less complete u and z bands
throughout our analysis. Furthermore, as discussed in Bundy et al.
(2015), the TYPE-based galaxy classification is contaminated with
a non-negligible fraction of stars (∼10 per cent), which is attributed
to point spread function (PSF) characterization issues in the co-
added images. Based on visual inspections, we find that the fraction
of stars misclassified as galaxies is higher and more pronounced at
brighter magnitudes. To eliminate stars from the photometric sample,
we remove sources at 15 < r < 18 that are classified as stars in
the corresponding single-pass SDSS images. At the very brightest
magnitudes (r < 15), where number counts are lower, we remove
stars based on a visual inspection of the single-pass SDSS images.
Combined, these two procedures remove ∼6 per cent of sources at
r < 18 from our sample, such that our final catalogue includes 1,
293, and 392 galaxies with non-extinction-corrected gri photometry
in S82. Accounting for Galactic extinction does not change our
qualitative results, in part due to the low extinction in the S82 field
(Schlegel, Finkbeiner & Davis 1998).

2.2 Spectroscopic training set

To train our classification scheme, which aims to identify galaxies
as star forming or quenched, we use spectroscopic data products
from the Max Planck Institute for Astrophysics and Johns Hopkins
University Data Release 7 (DR7) catalogue (MPA–JHU; Kauffmann
et al. 2003; Brinchmann et al. 2004) along with photometry from
SDSS DR7 (Aihara et al. 2011). The MPA–JHU catalogue is a value-
added data set derived from the spectroscopic SDSS DR7, containing
stellar mass and star formation rate (SFR) estimates for nearly a
million galaxies up to z ∼ 0.3. When available, the SFRs are derived
using the extinction-corrected H α emission line luminosities. For
galaxies that lack emission lines, the SFRs are estimated using
a relationship between SFR and the 4000 Å break index (D4000;
Bruzual 1983; Hamilton 1985; Brinchmann et al. 2004). Likewise,
the stellar masses are computed using model fits to the broad-band
ugriz photometry (Kauffmann et al. 2003).

We match galaxies in the MPA–JHU and SDSS DR7 catalogues
using their unique MJD, plate ID, and fiber ID to construct a cross-
matched catalogue that includes both photometric and spectroscopic
galaxy properties. These properties include gri model magnitudes,
specific star formation rates (sSFR; SFR divided by stellar mass), red-
shifts, and stellar masses. Furthermore, we limit our cross-matched
catalogue to only include galaxies in which CLEAN = 1 and RELI-
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1638 D. C. Baxter, M. C. Cooper and S. P. Fillingham

Figure 1. A heatmap displaying the correlation between observed colours,
apparent magnitudes, and sSFRs for galaxies in our spectroscopic training set.
In general, supervised NNCs rely heavily on an existing correlation between
input features and target variables (i.e. quenched or star-forming label). For
our sample, we detect a relatively strong correlation between observed colour
and sSFR.

ABLE �= 0. The former is a photometric flag that removes sources
suffering from saturation, deblending, and/or interpolation issues.
The latter is a spectroscopic flag that omits galaxies with unreliable
line profiles and physical parameters. Overall, these cuts remove
roughly 3 per cent of galaxies from the original MPA–JHU cata-
logue. Finally, we limit our sample to only include galaxies at z < 0.1
and M� > 106.5 M�, with measured sSFRs. Overall, our final sample
includes ∼240 000 galaxies, with a median redshift of 0.07, median
stellar mass of 2.7 × 1010 M�, and median r-band magnitude of 17.

2.3 Host sample

Our spectroscopically confirmed host sample is selected from the
group catalogue of Yang et al. (2007). We select groups within the
S82 footprint at z < 0.1 and 1013 < Mhalo h−1 M� < 1014, excluding
groups that are located within 0.5 deg of the edges of the S82 field.
Our final sample consists of 110 hosts, with a median redshift of 0.077
and a median halo mass of 1.6 × 1013 M�. The central galaxies in
these groups have a median stellar mass of 1.3 × 1011 M�.

3 N EURAL NETWORK C LASSIFIER

3.1 Feature selection and pre-processing

The first step in constructing our training set for supervised machine
learning involves selecting the appropriate features that will enable
our machine learning model to accurately classify galaxies as either
star forming or quenched. Moreover, we can only include photomet-
ric features since we ultimately seek to apply our NNC to galaxies
without spectra. To that end, we construct a heatmap to visualize
the degree of correlation, as measured by the Pearson correlation
coefficient, between the sSFR of the MPA–JHU galaxies and their

Figure 2. sSFR versus stellar mass for galaxies in our spectroscopic training
set. The contours highlight the star-forming and quenched galaxy population
within our sample. We divide the galaxy sample at sSFR = 10−11 yr−1, such
that galaxies above this threshold are labelled as star forming and galaxies
below this threshold are labelled as quenched.

photometric properties. As shown in Fig. 1, we find a relatively strong
negative correlation between the optical colours of the galaxies and
their sSFRs, which implies that optically blue (red) galaxies tend
to have higher (lower) sSFRs. With this correlation in mind, we
construct our training set using only the g − r, r − i, and g − i
observed colours as features. The inclusion of magnitude information
(i.e. apparent gri magnitudes) has a negligible effect on the resulting
classifications, and as such was not utilized in the final configuration.

The second important step in constructing our training set for
supervised machine learning involves systematically labelling galax-
ies as either star forming or quenched. We achieve this by taking
advantage of the strong bimodality in sSFR–M� space, which for
our MPA–JHU sample is illustrated in Fig. 2. In particular, we adopt
a cut of sSFR = 10−11 yr−1 as our quenching threshold, such that
galaxies above (below) this threshold are labelled as star forming
(quenched). This results in a balanced training set where 49 per cent
(51 per cent) of galaxies are classified as quenched (star forming).
This is important because imbalanced training sets can result in
uninformative models that naively overpredict the majority class and
underpredict the minority class. Furthermore, we standardize the
features of our training set to have a mean of zero and standard
deviation of one according to Xst = (X − μ)/σ , where X, μ,
and σ are the input feature, mean, and standard deviation of the
sample, respectively. This pre-processing procedure is implemented
to optimize the performance and stability of the NNC, which assumes
that the inputs are standardized.

Lastly, to construct our validation set, we remove 6600 out of the
∼240 000 galaxies in our training set. The validation set is composed
of a subset of those galaxies cross-matched between the MPA–JHU
and the S82 photometric catalogues using a search radius of 1 arcsec.
We omit these galaxies from the training and testing process, so
that they can ultimately be used to evaluate the performance of the
resultant NNC.
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Figure 3. Classification accuracy in the validation set as a function of redshift and stellar mass (left) along with observed g − r and g − i colour (right). The
accuracy of the NNC is largely independent of host halo redshift and weakly dependent on stellar mass, with high-mass galaxies more likely to be incorrectly
classified. Despite the training set being largely composed of high-mass galaxies (∼90 per cent of the training set has M� > 109.5 M�), we find that the overall
classification accuracy as well as our primary satellite quenched results remain qualitatively unchanged when high-mass systems are omitted from the training
set. As expected, the NNC is less reliable at classifying galaxies at intermediate colours (i.e. in the ‘green valley’ of the colour bimodality) precisely due to the
binary nature of the classification scheme.

3.2 Supervised neural network classifier

The supervised NNC is a machine learning model that is trained
using labelled observations in order to learn a mapping function
between input features and output targets. The utility of these models
is that once they are trained they can be readily used to classify
unlabelled observations. Moreover, NNCs are constructed using a
variety of hyperparameters that influence the overall performance of
the machine learning model. The optimal hyperparameters for our
NNC are obtained using a K-fold cross-validation grid search. The
names and values of these hyperparameters are as follows: (i) the
number of hidden layers is 2; (ii) the number of nodes in the first
and second hidden layer is 8 and 4, respectively; (iii) the batch size
is 64; (iv) the number of epochs is 10; (v) the dropout is 20 per cent.
As is standard for binary classification, we use the rectified linear
unit (ReLU) activation function for the input and hidden layers,
while the sigmoid activation function is used for the output layer.
Our model is compiled using a binary cross-entropy loss function
and stochastic gradient descent with a learning rate of 0.01. Lastly,
we use a stratified K-fold cross validation procedure with k = 5 to
determine the average accuracy and logarithmic loss of our model.

3.3 Performance of neural network classifier

The K-fold cross validation yields an average classification accuracy
of 0.94 and logarithmic loss of 0.17. Here, the accuracy measures
the fraction of galaxies that are correctly classified during the
training/testing process, while the logarithmic loss measures the
uncertainty of the predictions made by the NNC. Therefore, the high
average classification accuracy and low logarithmic loss suggest that
our NNC returns both accurate and precise classifications. Another
diagnostic for determining the reliability of the NNC involves ap-
plying the trained model to labelled data that was not utilized during

the training or testing process. In our case, we use our validation set
that is composed of a subset of the galaxies cross-matched between
our spectroscopic training set and the S82 photometric sample. Upon
applying the NNC to our validation set, we find that 93 per cent of
galaxies in the validation set are correctly classified as quenched, and
95 per cent of star-forming galaxies in the validation set are correctly
classified as star forming. Moreover, we find that the true quenched
fraction for the validation set is reproduced by the NNC with an aver-
age percent error of ∼2 per cent, largely independent of stellar mass.

In addition to classifying the galaxies in the validation set, the
NNC also provides a classification probability (CP) between 0 and 1
for each prediction such that the CP equals 0 (1) when the model is
100 per cent certain that a given galaxy is quenched (star forming).
With this information, we define the classification confidence to
be equal to the classification probability when CP > 0.5 and equal
to 1 − CP when CP < 0.5. The mean and median classification
confidence are 0.927 and 0.98, respectively. Overall, these results
provide further confidence in the reliability and accuracy of the
predictions made by the N.

Using the validation set, we also explore how the classification
accuracy varies with galaxy properties. As shown in Fig. 3, we find
that the classification accuracy remains relatively constant across
our specified redshift range, such that host haloes at slightly lower
redshift are not biased relative to their higher-z counterparts within
the sample. We do find, however, a modest correlation between
classification accuracy and stellar mass, such that the NNC achieves
higher levels of accuracy when classifying lower mass galaxies (M� �
109 M�). While the spectroscopic training set is dominated by more
massive galaxies (∼90 per cent of the spectroscopic training set has
M� > 109.5 M�), the classification accuracy – and our primary results
regarding the satellite quenched fraction – is qualitatively unchanged
when limiting the spectroscopic training set to systems with 106.5 M�
< M� < 109.5 M�.
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Figure 4. An illustration of our background subtraction technique, in which we measure the radial number density of galaxies around our host galaxies (left)
and in randomly selected background fields (middle). Using the photometric sample, we compute the mean number density profile as a function of projected
radial distance, averaged over our sample of hosts and 6 × 104 background fields (right). The error bars for both radial profiles correspond to 1σ Poisson errors
in the measured surface density of galaxies.

As suggested in Fig. 1, g − r and g − i colour are the most
informative features with respect to predicting whether a galaxy is
star forming or quenched. In Fig. 3, we explore the relationship
between the classification accuracy and these two features. As
expected, the classification accuracy is highest for very blue and red
galaxies, with a modest decrease for galaxies residing in the green
valley. This is in part due to the binary nature of our classification
scheme (i.e. the lack of a transitory phase between star forming
and quenched) along with the overlap between dusty star-forming
galaxies and quiescent systems in rest-frame optical colour (e.g. Yan
et al. 2006; Maller et al. 2009; Williams et al. 2009).

3.4 Classification of galaxies in S82

Using the hyperparameters discussed in Section 3.1, we train our
NNC on the entirety of the spectroscopic training set (Section 2.2).
Next, we standardize the apparent g − r, g − i, and r − i colours of
the galaxies in our S82 photometric sample to have a mean of zero
and standard deviation of one using the same procedure outlined in
Section 3.1. Classifying our photometric sample using the trained
NNC, we find that 66 per cent of the galaxies in our photometric
sample are classified as quenched while 34 per cent are classified as
star forming. We recognize that the fraction of passive galaxies in
our photometric sample is biased high due to the inevitable inclusion
of high-z galaxies. Many of these high-z sources have red apparent
colours, and are more likely to be classified as quenched. Ultimately,
the success of our approach relies on correctly classifying the low-
z sources (i.e. the satellites of our targeted group sample). With
that objective, the next step in our analysis involves combining
the classification results with a statistical background subtraction
technique to ultimately determine the satellite quenched fraction of
our low-z host sample.

4 A NA LY SIS O F THE S82 SAMPLE

4.1 Statistical background subtraction

While deep imaging allows the satellite population around nearby
hosts to be detected and our NNC is able to robustly classify sources

as star forming or quenched, identifying the true satellites amongst
the sea of background sources remains a challenge. This is primarily
due to the lack of highly complete line-of-sight velocity information
for our photometric sample, which is required to cleanly determine
if a particular source is truly a satellite of a given host. However,
instead of identifying properties of individual satellites, we employ a
statistically driven background subtraction technique that enables us
to robustly measure the average properties of the satellite population.
Fig. 4 illustrates our methodology, by which we compare the radial
distribution of galaxies around nearby hosts to that measured in
random positions on the sky. By subtracting the random background,
we are able to measure the average properties (e.g. radial profile, rest-
frame colour distribution, and quenched fraction) of the underlying
satellite population.

This statistical approach has proven effective in previous studies
of satellites at intermediate redshift (Nierenberg et al. 2011, 2012;
Tal et al. 2013; Kawinwanichakij et al. 2014). In general, the
background subtraction procedure utilized in these studies involves
measuring the radial distribution of galaxies around spectroscop-
ically confirmed hosts and subtracting the contribution from the
background/foreground galaxies. For our analysis, we utilize the
110 centrals from the Yang et al. (2007) group catalogue that overlap
with the S82 footprint as our sample of spectroscopically confirmed
host galaxies. As stated in Section 2.3, our host sample is situated at
z < 0.1 and have halo masses between 1013 and 1014 h−1 M�.

Our technique for estimating the contribution from background
galaxies involves measuring the radial distribution of galaxies at
random positions within the S82 footprint. In particular, we generate
106 random positions within S82, assigning each a corresponding
redshift between 0.02 < z < 0.1 as randomly drawn from a uniform
distribution. As was done for the host sample, the random positions
are also required to be less than 0.5 deg from the edges of the
S82 field. We have also considered requiring the random points to
be sufficiently far away from the spectroscopic hosts (e.g. dproj >

1−2 Mpc). However, we ultimately omitted this constraint since
both scenarios return qualitatively similar results.

We partition our hosts and random positions into six evenly spaced
redshift bins between 0.02 < z < 0.1. For a given redshift bin, we
count the number of quenched and star-forming galaxies in annuli
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Figure 5. Comparison between our estimated stellar masses and those
provided by the MPA–JHU catalogue. Our stellar mass estimator, which
we infer by fitting galaxies in the MPA–JHU catalogue using equation (1),
provides robust mass measurements in the absence of multiband photometry.
In comparison to the MPA–JHU measurements, the median stellar mass
difference is −0.030 dex with a standard deviation of 0.22 dex.

centred on the hosts in bins of r-band magnitude. This procedure is
repeated at the location of the background pointings, for which we
count the number of quenched and star-forming galaxies in bins of
r-band magnitude within annuli centred on 100 random positions.
Specifically, the photometric sample is partitioned into seven r-band
magnitude bins between 13 < r < 21.5 and the galaxies are counted in
five annuli between 15 and 1000 kpc. For each r-band magnitude and
redshift combination, we calculate the average number of quenched
and star-forming galaxies per annuli for both the background and the
spectroscopically confirmed centrals. Moreover, for each individual
host/random position, we calculate the 1σ Poisson error associated
with our measurement and propagate this error in the calculation of
the average number of galaxies per annuli. Increasing the number
of random pointings used to determine the background (i.e. >100)
yields no significant change in our results.

The galaxies are counted in the manner outlined above because it
allows us to robustly estimate stellar masses for our statistical satellite
population by capitalizing on the strong correlation between apparent
r-band magnitude and stellar mass at fixed redshift. To determine this
mapping from r and z to stellar mass, we fit the following relation to
galaxies in the MPA–JHU catalogue:

M�(r, z) = γ ∗ r + b(z), (1)

where γ and b(z) correspond to the slope and y-intercept of the fit
in a given redshift bin. In particular, we fit this relation in redshift
bins (with typical width of �z = 0.005), such that the statistically
inferred galaxy counts as a function of r-band magnitude (following
background subtraction) can be mapped to stellar mass based on the
redshift of the host system. In Fig. 5, we compare the stellar masses
estimated using our best-fitting parameters for equation (1) to the
corresponding stellar masses from the MPA–JHU catalogue, which
are based on fitting the multiband photometry to model spectral

Figure 6. The average number of satellites as a function of stellar mass in
projected distance bins. The vertical error bars give the standard deviation
in the distribution of the number of satellites after repeating the background
subtraction procedure 100 times, whereas the horizontal error bars represent
the standard deviation within the stellar mass bin. For our analysis, we limit
our satellite population to systems at dproj < 400 kpc.

energy distributions. Our stellar mass estimates, inferred solely from
the observed r-band magnitude, are relatively accurate with a median
difference of −0.030 dex and a 1σ scatter of 0.22 dex. There is a
slight bias towards our method underpredicting and overpredicting
the masses of high-mass and low-mass galaxies, respectively. Not
surprisingly, the fits to equation (1) are best at intermediate stellar
masses, where the spectroscopic training set is more abundant.
Tuning our fits to better reproduce the stellar masses of low-mass
systems does not yield a significant change in our results, with our
measurements of the satellite quenched fraction computed in bins of
stellar mass that exceed the typical measurement uncertainty.

Altogether, the statistical background procedure provides us with
a measure of the average number of quenched and star-forming
galaxies as a function of projected distance and stellar mass at the
location of both the spectroscopically confirmed host galaxies and
the random background positions. With these galaxy counts and
classifications, we compute the average number of quenched and
star-forming satellites as a function of stellar mass and projected
distance according to

N̄sats(dproj, M�) =
∑

(N̄back+sats − N̄back), (2)

where N̄back+sats and N̄back are the average number of galaxies
measured in annuli centred on the spectroscopically confirmed
centrals and random positions, respectively.

In Fig. 6, we show the resulting average number of satellites as
a function of stellar mass and projected host-centric distance. We
adopt 400 kpc as the outer extent of our groups (roughly R200) based
upon a comparison to similar haloes in the IllustrisTNG project
(Naiman et al. 2018; Nelson et al. 2018, 2019; Marinacci et al. 2018;
Pillepich et al. 2018; Springel et al. 2018). For host haloes at z =
0 and 1013 h−1 M� < M200 < 1014 h−1 M� within the TNG300
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simulation, a sample of >2000 haloes with a median mass of M200 ∼
1.85 × 1013 h−1 M�, the median R200 is 430 h−1 kpc with a 1σ scatter
of 97 h−1 kpc. Given that our measurements are made in projection,
we limit our selection of the satellite population to projected distances
of <400 kpc. While this excludes a subset of satellites at hostcentric
distances of 400 kpc < R < R200, it also reduces contamination
from objects in the surrounding infall regions (R ∼ 1−2 R200). As
discussed in Section 4.2, our results are qualitatively unchanged when
including satellites out to projected distances of 600 or 800 kpc.

Selecting satellites within 400 kpc, we find excellent agreement
between our inferred satellite stellar mass function and that measured
for the IllustrisTNG hosts. As shown in Fig. 7, our integrated
satellite counts are very tightly bracketed by the corresponding
predicted counts in the TNG100 and TNG300 simulations, where
we select satellites at projected distances of <400 kpc for hosts
with M200 = 1013−14 h−1 M�. In addition, we compare to the
observed satellite mass function from Yang, Mo & van den Bosch
(2008, 2009), based on a sample of spectroscopically confirmed
satellites in ∼300 000 low-z groups (see also Vázquez-Mata et al.
2020). Overall, our measured satellite mass function is in remarkably
good agreement, especially at low masses (or faint magnitudes).
While our background-subtraction technique is unable to identify
individual satellite galaxies, it is quite robust at indirectly identifying
the satellite population, such that its properties may be characterized.

4.2 Measuring the satellite quenched fraction

As a benchmark for comparison, we measure the quenched fraction
as a function of satellite stellar mass for the spectroscopically
confirmed satellites in the Yang et al. (2007) group catalogue. We
limit our sample of host haloes to those with 1013 h−1 M� < Mhalo

< 1014 h−1 M�, identifying satellites as quenched according to
the sSFR cut of 10−11 yr−1 described in Section 3.1. Unlike our
photometric analysis, however, we include groups across the entire
SDSS spectroscopic footprint – i.e. both within and beyond the S82
footprint. From this parent population, we then select two subsamples
at z < 0.06 and at z < 0.1. The lower-z (z < 0.06) sample includes
∼1500 groups with ∼14 000 satellite galaxies, complete down to a
stellar mass of ∼1010 M�. The higher-z sample includes more host
systems (∼8000 groups with ∼40 000 satellites), but only probes
down to ∼1010.5 M�. In agreement with many previous studies of
satellite properties at z ∼ 0 (e.g. Baldry et al. 2006; Wetzel et al.
2013; Woo et al. 2013; Hirschmann et al. 2014; Omand, Balogh &
Poggianti 2014), we find that the satellite quenched fraction decreases
with decreasing satellite stellar mass, such that nearly all satellites
are quenched at >1011 M� with a quenched fraction of < 50 per cent
at ∼1010 M�.

In an effort to push measurements of the satellite quenched fraction
to lower masses (i.e. <1010 M�), we use the background subtraction
technique described in Section 4.1 as applied to our photometric
sample in S82. Accordingly, we compute the satellite quenched
fraction as a function of stellar mass as

f sats
q (dproj, M�) = N̄sats,q

N̄sats,q + N̄sats,sf
, (3)

where N̄sats,sf and N̄sats,q are the average number of star-forming
and quenched satellites detected at dproj < 400 kpc, respectively.
As discussed in Section 4.1, we adopt 400 kpc as the outer extent
of our groups based upon a comparison to comparable haloes in
the IllustrisTNG simulation suite. Our resulting satellite quenched
fraction, however, remains qualitatively unchanged when integrating
satellite counts out to 600 or 800 kpc.

Figure 7. The cumulative satellite stellar mass function based on our
statistical background subtraction technique in comparison to that from
spectroscopic observations and simulations. The dark and light crimson bands
show our satellite counts (per group) at R < 400 and R < 600 kpc, respectively.
The purple band corresponds to the satellite stellar mass function for groups
with Mhalo = 1013.2−13.8 h−1 M� from Yang et al. (2009), while the black
dashed and dotted lines denote the satellite counts for host haloes with M200 =
1013−14 h−1 M� and satellites at projected distances of <400 kpc within the
TNG100 and TNG300 simulations, respectively. We find excellent agreement
between our inferred satellite counts and those based on simulations and
shallower spectroscopic samples.

Fig. 8 shows the measured satellite quenched fraction as a function
of satellite stellar mass using the spectroscopic group membership
and our photometric analysis. For the stellar mass range at which
both approaches overlap (i.e. M� > 1010 M�), we find excellent
agreement between the independent measurements. This serves as a
strong validation of the background-subtraction technique and our
classification model.

Using the deeper photometry in S82, we are able to push our
measurements of the satellite quenched fraction down to ∼107 M�,
probing satellite quenching in group environments across four orders
of magnitude in satellite stellar mass. In contrast to measurements in
the high-mass regime (>1010 M�), we find that the satellite quenched
fraction in Mhalo ∼ 1013−14 h−1 M� groups increases below satellite
stellar masses of ∼109 M�. This transition in the quenched fraction
suggests a change in the quenching efficiency (and possibly dominant
quenching mechanism), such that the suppression of star formation
in low-mass satellites is increasingly efficient at M� � 109 M�.

5 SUMMARY AND DI SCUSSI ON

We have utilized a combination of supervised machine learning and
statistical background subtraction to measure the satellite quenched
fraction in group environments across four orders of magnitude in
satellite stellar mass ranging from M� ∼ 107−11 M�. Our analysis
utilizes an NNC trained on a spectroscopic training set to label
galaxies in the co-added S82 photometric catalogue as either star
forming or quenched based solely on their g − r, g − i, and r
− i colours. The results from this procedure were subsequently
used to statistically identify the quenched and star-forming satellite
populations around spectroscopically confirmed hosts within S82
with halo masses of 1013−14 h−1 M�. The main results from this
analysis are as follows:

(i) Using our photometric approach, we successfully reproduce the
measured satellite quenched fraction at M� � 1010 M�, as derived
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Figure 8. The satellite quenched fraction as a function of stellar mass for group environments with Mhalo = 1013−14 h−1 M�. The solid red points represent the
median quenched fraction for our statistically derived satellite population. The vertical error bars correspond to the 1σ Poisson error in the quenched fraction,
while the horizontal error bars denote the standard deviation of the binned stellar masses. The shaded grey (light grey) band represents the quenched fraction
for the spectroscopic members of the Yang et al. (2007) groups at z < 0.1 (z < 0.06). Our statistically driven approach using S82 photometry successfully
reproduces the satellite quenched fraction results at high masses (>1010 M�), and pushes beyond previous studies to probe satellite quenching down to 107 M�.
We find an increase in the quenched fraction at low masses (�109 M�), potentially indicating an increase in the efficiency of quenching in the low-mass regime.

from spectroscopic studies in the local Universe. We find that the
satellite quenched fraction increases with increasing satellite mass at
M� � 1010 M�.

(ii) We measure the satellite quenched fraction down to M�

∼ 107 M�, pushing measurements of satellite quenching in
∼1013−14 h−1 M� haloes to a new regime that is not readily probed
outside of the Local Group.

(iii) We find that the satellite quenched fraction increases towards
lower satellite masses below ∼109 M�.

(iv) The increase in satellite quenching at low masses poten-
tially indicates a change in the dominant quenching mechanism at
∼109 M�, where ram-pressure stripping begins to become increas-
ingly effective (see discussion that follows).

Given that low-mass field galaxies are almost entirely star forming
as a population, the increase in the satellite quenched fraction at
<109 M� can be interpreted as a corresponding increase in the
satellite quenching efficiency within 1013−14 h−1 M� haloes. This
increase is similar to that observed in the Local Group, where there
is an apparent transition in the dominant quenching mechanism
at ∼108 M� with lower mass satellites quenched more efficiently
following infall. Both hydrodynamic simulations and analytical
modelling of the satellite population find that ram-pressure stripping
is much more efficient below 108 M� within Milky Way-like galaxies
(Mayer et al. 2007; Fillingham et al. 2016; Simpson et al. 2018; Akins
et al. 2020), while more massive satellites are primarily quenched
via starvation (Fillingham et al. 2015). Given that our host sample
is more massive (Mhalo = 1013−14 M�) relative to Milky Way-like
haloes, it is expected that an increase in infall velocities and the
density of the circumgalactic medium would cause this transition
mass to increase, such that starvation is the primary driver of satellite

quenching above ∼109.5 M� and ram-pressure stripping becoming
increasingly important in the low-mass regime. A more detailed
study of the potential quenching mechanisms at play requires further
analysis of the time-scales on which the observed satellites are
quenched following infall to the host haloes. In future work (Baxter
et al., in preparation), we aim to bridge this gap by combining
the measured satellite quenched fractions from this work with the
accretion and orbital histories determined using high-resolution
cosmological simulations, to estimate the typical quenching time-
scale as a function of satellite mass.

The satellite quenched fractions that we obtain at low masses
(M� < 109 M�) are generally lower than what have been reported
in studies of dwarf galaxies in more massive nearby clusters.
For example, Weinmann et al. (2011) studied the satellite galaxy
population in the nearby Virgo (Mhalo ∼ 1.4−4 × 1014 M�), Coma
(Mhalo ∼ 1.3 × 1015 M�), and Perseus (Mhalo ∼ 6.7 × 1014 M�)
clusters, finding red fractions between 70 and 80 per cent at stellar
masses of ∼108−10 M� (see also Boselli et al. 2016). At slightly
higher redshift (z ∼ 0.2), analysis of the satellite population in
Abell 209 (Mhalo ∼ 1015 M�) by Annunziatella et al. (2016) also
finds an elevated quenched fraction relative to our results in less
massive haloes. Interestingly, while the study of Annunziatella et al.
(2016) only probes down to ∼108.6 M� in satellite stellar mass,
the results show a quenched fraction that decreases from near
unity (∼95 per cent) at M� ∼ 1010.5 M� to ∼75 per cent at M� ∼
109 M� (see also Sarrouh et al., in preparation). Naively, if there is
a transition in the dominant quenching mechanism (or efficiency) in
these massive clusters similar to that found in the Local Group and
our group sample, we would expect the transition scale to occur at
higher satellite masses (e.g. �109.5 M�) as ram-pressure stripping
(and other cluster-specific processes) should be increasingly effective
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in hosts with Mhalo ∼ 1015 M�. Extrapolations of the mass functions
from Annunziatella et al. (2016), however, do not support this picture.

Finally, we report satellite quenched fractions in the low-mass
regime (<108 M�) that are potentially lower than expected when
compared to studies of satellite quenching in the Local Group,
where ∼90 per cent of satellites with M� < 108 M� are passive. As
discussed above, environmental quenching mechanisms are expected
to be more efficient in our more massive host haloes relative to the
Local Group. Of course, our results are based on a study of ∼100
groups, whereas studies of the Local Group satellites sample only
two host haloes. While observations of the nearby M81 group yield
a satellite quenched fraction comparable to that measured for the
Local Group (Kaisin & Karachentsev 2013; Karachentsev, Makarov
& Kaisina 2013), various studies also indicate that the Local Group
satellites may be outliers relative to the cosmic mean (e.g. Boylan-
Kolchin et al. 2010; Busha et al. 2011; Tollerud et al. 2011; Ibata
et al. 2013; Pawlowski & Kroupa 2020). Moreover, recent results
from the Satellites Around Galactic Analogs (SAGA) survey (Geha
et al. 2017; Mao et al. 2021) find lower satellite quenched fractions
(∼20 per cent) around hosts with halo masses comparable to those
of the Milky Way and M31. We contend that the application of the
methodology presented in this work to Milky Way-like hosts is an
intriguing way to better place the Local Group into a cosmological
context and constrain the quenching of satellites around hosts with
Mhalo ∼ 1012 M�.
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