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Abstract. We consider species tree estimation from multiple loci sub-
ject to intralocus recombination. We focus on R∗, a summary coalescent-
based method using rooted triplets. We demonstrate analytically that
intralocus recombination gives rise to an inconsistency zone, in which
correct inference is not assured even in the limit of infinite amount of
data. In addition, we validate and characterize this inconsistency zone
through a simulation study that suggests that differential rates of recom-
bination between closely related taxa can amplify the effect of incomplete
lineage sorting and contribute to inconsistency.
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1 Introduction

Species tree estimation from genomic data is complicated by various biologi-
cal phenomena which generate phylogenetic conflict, among them hybridization,
horizontal gene transfer, gene duplication and loss, and incomplete lineage sort-
ing (ILS) [23]. In particular, ILS may cause phylogenetic conflict in which a gene
tree exhibits a different topology from that of the species tree, and is of greatest
concern for species trees with short internal branches [23]. Of some interest is
the existence of an anomaly zone for species trees, in which the most probable
topology in the gene tree distribution differs from the topology of the species tree
[5,7,8] (see also [2,21] for a more recent discussion of these and other relevant
issues).

The existence of an anomaly zone has served as an impetus for the devel-
opment of summary coalescent-based methods, quartets, such as R∗, MP-EST,
BUCKy, ASTRAL, and others [6,15,16,20]. Some of these methods are based on
the fact that rooted triples and unrooted quartets are special cases in which no
anomaly zone exists [5,13] and also provide sufficient information to reconstruct
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the full phylogeny [24,27]. Provided that the gene trees are estimated without
error, such methods can provide statistically consistent methods of estimating
species tree topology [30].

A common assumption of coalescent-based models based on the multispecies
coalescent (MSC) [21,22] is that recombination occurs between genes (or loci)—
so that gene trees may be assumed unlinked or statistically independent—
but that intralocus recombination (i.e., recombination occurring within gene
sequences), does not occur [2,9]. The significance of the latter assumption—
that is, the impact of intralocus recombination on phylogenetic inference—is a
matter of present interest [2,32] and much debate about its significance when
unaccounted for [9,14,26]. One justification for assuming no intralocus recombi-
nation is that within-gene recombination may break gene function [23].

An influential simulation study argued that even high levels of intralocus
recombination do not present a significant challenge for species tree estimation
relative to other biological phenomena [14]. On the other hand, the authors of
[25] suggest the absence of intralocus recombination may be an unreasonable
assumption in real data, such as protein-coding genes in eukaryotes [2,19], and
particularly in the case of species phylogenies with many taxa [26]. In particular,
the potential for intralocus recombination to distort gene tree frequencies has
been recognized as a challenge to summary coalescent-based methods, and [14]
has been critiqued for its focus on shallow divergences and limitation to a low
number of loci and taxa [26].

In this paper we take an analytical approach to investigate the effect of
intralocus recombination. We prove that intralocus recombination has the poten-
tial to confound R∗, a summary coalescent-based methods based on inferring
rooted triples. That is, we show that correct inference of rooted triplets cannot
be guaranteed in the presence of intralocus recombination, assuming a distance-
based approach is used for gene tree reconstruction. We then present a simulation
study which characterizes the “inconsistency zone”, i.e. the regime of parameters
for S in which rooted triple inference does not converge to S as m → ∞. We
find that the effect arises when differential rates of recombination are exhibited
between closely-related taxa.

1.1 Key Definitions

A species phylogeny S = (VS , ES ; r, ρ̄, τ̄ , θ̄) is a directed binary tree with vertex
set VS , edge set ES , root r ∈ VS , and n labeled leaves LS = [n], such that each
edge e ∈ ES is associated with a length τe ∈ (0,∞), expressed in coalescent
units, a recombination rate ρe ∈ [0,∞), and a mutation rate θe ∈ [0,∞). It is
assumed that there exists an ancestral population common to all leaves of S,
i.e., a population above the root, with respective mutation and recombination
parameters. Mutation rates are assumed to be per site per coalescent unit (a
coalescent unit being 2Ne generations for diploid organisms, where Ne is the
effective population size); recombination rates are per locus per coalescent unit.

The general question considered here is how to reconstruct the topology
of the species phylogeny from gene sequence data sampled from its leaves.
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This sequence data takes the form of multiple sequence alignments; a multi-
ple sequence alignment (MSA) is an n× k matrix M whose entries are letters in
the nucleotide alphabet {A, T,C,G} such that entries in the same column are
assumed to share a common ancestor. The phylogenetic reconstruction problem
in this paper is to recover the topology of S from m independent samples of M .

We define a rooted triple to be a rooted binary phylogenetic tree with label
set of size three; we use the notation XY |Z (or equivalently Y X|Z) to denote a
rooted triple with leaves X,Y,Z having the property that the path from X to
Y does not intersect the path from Z to the root [24]. The term species triplet
refers to a restriction of S to three of its leaves. A rooted triple XY |Z is said to
be uniquely favored if it appears in more gene samples than either of the other
two rooted triples XZ|Y or Y Z|X.

1.2 Inference Methods

This paper considers Majority-Rule Rooted Triple, or R∗, a consensus-based
pipeline for species tree estimation. R∗ utilizes the fact that the full topology
of S is uniquely determined by, and hence can be recovered from, its rooted
triples [27]. The R∗ pipeline has three steps: first, for each gene, infer a rooted
triple for each triplet of leaves X,Y,Z ∈ LS . Second, make a list of uniquely
favored triples from the m sampled genes. Finally, construct the most-resolved
topology containing only uniquely favored triples. When gene trees are drawn
independently according to the MSC, it holds that for every set of three taxa,
the most probable rooted triple in the gene tree distribution matches the rooted
triple obtained by restricting the species tree S to that set of three taxa; for this
reason, the topology of the R∗ consensus tree converges to that of S [6].

Since we are interested in the inference of the species-tree topology from
sequence data, we consider a distance-based approach in which a species triplet
with leaves X,Y,Z is inferred to have topology XY |Z if

δXY < δXZ ∧ δY Z . (1)

where δXY = δXY (Mk) is the number of mismatching nucleotides between
sequences sX and sY (X,Y ∈ LS). We refer to this inference procedure as
R∗ with sequence distances.

1.3 Multispecies Coalescent with Recombination

The model considered here, which we term the Multispecies Coalescent with
Intralocus Recombination, or MSCR, uses the ancestral recombination graph
(ARG) model from [10] (see also [1]) within the framework of the multi-species
coalescent (MSC) [8,21,22]. In the single-population ARG [10], ancestors are
represented by edges in the graph (see Fig. 1a), and the number N of ancestors,
or gene lineages, at time t is a bottom-up birth-death process in which births
(recombination events) occur at rate ρN and deaths (coalescent events) occur
at rate N(N − 1)/2. When a coalescent event happens, two edges are chosen at
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Fig. 1. Two depictions of an ARG, in a single population (left) and in the multispecies
case (right). In Fig. 1a, two lineages enter the population at time 0 and three exit at time
tend. Coalescent events occurred at times t2 and t5. Recombinations with breakpoints
b1, b2, b2 occurred at times t1, t3, and t4. In Fig. 1b, the lineages of a multispecies ARG
are shown in blue within a 4-taxa species tree S (the thick tree) with fixed edge lengths
τA, τB , . . . , τABC . (Color figure online)

random and merged into one. When recombination occurs, a randomly chosen
lineage splits into two parent lineages. Each recombination vertex is labeled by
a number b, chosen uniformly on [0,1]; this number is the breakpoint of the
recombination.

The single-population ARG can be extended to multiple species in a manner
similar to the MSC: at time t = 0, each leaf of S begins with a single lineage,
and these lineages evolve in a bottom-up manner according to the ARG process
along each edge of a fixed species tree (see Fig. 1b). If G is a rooted directed
graph with edge lengths and leaf and breakpoint labels obtained in this manner,
then we say that G is generated according to the MSCR process on S . In
this scheme, the locus is modeled by the unit interval, and for each site x ∈ [0, 1],
a marginal gene tree T (x) can be obtained by tracing upward along the edges of
G starting from the leaves; if a recombination vertex is reached with breakpoint
b, take the left path if x ≤ b and the right path if x > b. This yields a collection of
rooted edge-weighted binary trees; a simple example is shown in Fig. 2. The set
of marginal gene trees M := {T (x) : 0 ≤ x ≤ 1} is almost surely finite [10]. For
each Tg ∈ M, define I(Tg) = {x ∈ [0, 1] : T (x) = Tg}, and define wg = |I(Tg)|,
where |·| denotes Lebesgue measure. In words, I(Tg) is the identical-by-descent
segment of the locus having genealogy Tg, and wg is the proportion of sites with
genealogy Tg.



Effect of Intralocus Recombination 147

Fig. 2. On the left, an ancestral recombination graph (in blue) is shown within a 3-
taxa tree S (in black). The times of coalescence and recombination events are labeled
t1, . . . t4 on the time axis, and the breakpoint associated with the recombination event
is labeled b ∈ [0, 1]. On the right, the corresponding marginal gene trees T1 and T2

are shown. This particular example also illustrates how intralocus recombination may
contribute to phylogenetic conflict by allowing for ‘partial’ ILS, whereby one or more
of the marginal gene trees (in this case T1) exhibits a topology different from that of S.

Measuring time in coalescent units, this paper assumes that the per-site
mutation rate is given by a fixed number θ > 0 which does not vary on S.
For each x ∈ [0, 1], site x evolves independently according to the Jukes-Cantor
process [12,27] on the tree T (x). A somewhat more general description of this
algorithm can be found in [4].

Thus, to model the evolution of a genetic locus consisting of k sites in which
recombination breakpoints are distributed uniformly between them, a two-step
process is followed. First, a multispecies ARG G is generated according to the
MSCR process on S, from which a marginal gene tree T (x) is obtained for each
x ∈ [0, 1]. Second, for each x ∈ [0, 1] the Jukes-Cantor process is run with input
tree T (x) in order to generate a nucleotideN (i, x) ∈ {A, T,C,G} for each i ∈ LS .
The MSA Mk is then defined as the n × k random matrix with rows s1, . . . , sn
where for each X ∈ [n], sX = (sX(1), . . . , sX(k)) where sX(j) = N (X, j

k−1 ),
j = 0, 1, . . . , k − 1. In this case, we say that Mk is generated according to
the MSCR-JC(k) process on S .

In words, the MSCR-JC(k) process models the evolution of n homologous
genes situated at a common genetic locus consisting of k sites, and which may
have experienced intralocus recombination; these homologous genes are assumed
to have been drawn from n distinct species whose true species phylogeny is
represented by S. The resulting homologous aligned DNA sequences are the
rows of the n×k matrixMk. The phylogenetic reconstruction problem considered
here pertains to whether the topology of S can be recovered from sequence data
generated in this manner, or more precisely:
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Problem: Let S be a species phylogeny with leaf labels LS = [n]. Fix
k ≥ 2. Given m independent samples M (1)

k , . . . ,M (m)
k , each generated

according to the MSCR-JC(k) process on S, recover the topology of S.

1.4 Estimating Sequence Distances

Let G be generated according to the MSCR process on S, and M the corre-
sponding set of marginal gene trees. Given a marginal gene tree Tg ∈ M, let
d
Tg

XY be the evolutionary distance between leaves X and Y on Tg, defined as the
expected number of mutations per site along the unique path between X and
Y . It follows from the assumptions about the mutation process that dTg

XY = 2θt,
where t is the time of the most recent common ancestor of X and Y on Tg. For
example in Fig. 2, dT1

AB = 2θt4 and dT2
AB = 2θt2. Define the breakpoint-weighted

uncorrected distance by

∆XY :=
3
4

∑

Tg∈M
wg

(
1 − e− 4

3d
Tg
XY

)
. (2)

This formula, due to [28], generalizes the uncorrected Jukes-Cantor distance to
the setting of intralocus recombination; if no intralocus recombination occurs,
then the right-hand side has only a single summand and reduces to the inverse of
the Jukes-Cantor distance correction formula for a single non-recombining locus.

Our first lemma shows that δXY can be approximated by k∆XY when k is
large.

Lemma 1. If Mk is generated according to the MSCR-JC(k) process on S then
for all X,Y ∈ LS, conditioned on G, δXY (Mk) = k∆XY + o(k) almost surely as
k → ∞.

2 Inconsistency of R∗

2.1 Statement and Overview

The main result is the following:

Theorem 1. For k sufficiently large, R∗ using sequence distances is not statis-
tically consistent under the MSCR-JC(k) model. That is, there exists a species
phylogeny S such that the topology of the output of R∗ using sequence distances
does not converge in probability to the topology of the species tree.

To prove Theorem 1, it suffices to consider a species tree S with LS =
{A,B,C} and topology AB|C. Denote edges of S, or populations, by the letters
A,B,C,AB, and ABC as depicted in Fig. 3 where A,B,C correspond to the
leaf populations, AB is the parent edge of A and B, and ABC is edge extending
above the root. The key idea is to allow recombination only in population A. In
order to keep the analysis tractable, the recombination rate and length of edge A



Effect of Intralocus Recombination 149

are chosen so that with high probability the number of recombinations is 0 or 1,
so that the number of lineages on the ARG exiting population A (backwards-in-
time) is either one or two. By choosing the internal branch length τAB sufficiently
small, ILS occurs along that edge with high probability, so that all coalescent
events on the ancestral recombination graph occur in the root population ABC.
In that case, as long as the mutation rate is not too large, we show that, on the
event R1C0 (see Fig. 3), taxa B and C are more likely to be inferred as more
closely related than taxa A and B, so that R∗ converges to the wrong topology
BC|A as the number m of samples grows.

The mutation rate θ is assumed to be the same in all populations. The vector
of recombination rates ρ̄ is defined by setting ρA = ρ > 0 and ρX = 0 for all
X )= A. Assume S to be ultrametric. The populations A and B have length
τA = τB > 0, the internal population AB has length τAB , the age of the root
troot is given by troot = τA + τAB = τC . For now assume that τAB > 0 and
τA > 0; their precise values will be determined later in the proof.

Let Mk be generated according to the MSCR-JC(k) process on S, and let
EXY |Z be the event that the rooted triple inferred from Mk using (1) is XY |Z.
The following lemma implies that to prove Theorem 1, it will suffice to prove

P[EY Z|X ] > P[EXY |Z ]. (3)

The consistency zone for R∗ with sequence distances under the MSCR-JC(k)
model is the set of species phylogenies S such that the topology of the R∗

consensus tree converges in probability to the topology of S as m → ∞.

Lemma 2. A necessary and sufficient condition for S to lie in the consistency
zone for R∗ with sequence distances under the MSCR-JC(k) model is that for all
XY |Z ∈ R(S),

P[EXY |Z ] > P[EXZ|Y ] ∨ P[EY Z|X ] (4)

Here R(S) = {S|J : J ⊆ LS , |J |= 3, and S|J is binary} is the set of restricted
rooted triples of S (see [24]).

By Lemma 1, with probability one, an ancestral recombination graph G
generated according to the MSCR process has the property that sequences of
increasing length k generated on it by the Jukes-Cantor process satisfy the
almost sure limit 1

k δXY (Mk) → ∆XY as k → ∞. Since almost sure conver-
gence implies convergence in distribution, it holds that under the joint process
which combines both genealogical and mutational processes, 1

k δXY (Mk) ⇒ ∆XY

as k → ∞ for all X,Y ∈ LS . Therefore, since the distribution function of
∆XY is continuous, P[EXY |Z ] → P[E] and P[EY Z|X ] → P[F ] as k → ∞, where
E := [∆AB < ∆AC ∧∆BC ] and F := [∆BC < ∆AB ∧∆AC ]. Therefore inequality
(3) will hold for sufficiently large k provided that

P[F ] > P[E]. (5)

We detail the proof next.
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2.2 Key Lemmas

In what follows, set intersection is denoted with product notation (i.e. so that
XY = X ∩ Y for events X,Y ) and the important events to be considered are

Ri = [exactly i recombinations occur in the time interval (0, τA)]
Ci = [exactly i coalescences occur during the time interval (0, troot)]

C0,X = [no coalescence occurs in population X] .

Since recombination occurs only in population A, the number of recombination
events is governed by the recombination rate ρ and the duration τA of population
A. The following lemma shows that τA can be chosen sufficiently small that with
high probability, zero or one recombination occurs.

Lemma 3 (Recombination Probabilities). For all ρ, τA ≥ 0, P[R0] =
e−ρτA and P[R1] ≥ P[R1C0,A] ≥ ρτAe−(1+2ρ)τA . As τA → 0+, P[∪k≥2Rk] =
O(ρ2τ2

A).

For the case where no recombination occurs, the probabilities of E and F
are estimated in the following lemma using elementary MSC calculations.

Lemma 4 (No Recombination Case). P[E|R0] − P[F |R0] ≤ τAB.

For the case where exactly one recombination occurs, the following lemma
characterizes the behavior of coalescent events occurring below the root of S.
Intuitively, it says that coalescence in population AB is rare when τAB is small.

Lemma 5 (Effect of Small Internal Edge). As τAB → 0+, P[C0|R1] =
K + O(τAB), P[C0,A|R1C1] = O(τAB), and P[C2|R1] = O(τAB), where K =
P[C0,A|R1] ∈ (0, 1) depends only on τA and ρ, and satisfies limτA→0 K = 1 for
any fixed ρ > 0.

Next we apply Lemma 5 to show that P[E|R1C1]−P[F |R1C1] is small, tending
to zero as τAB → 0+.

Lemma 6. P[E|R1C1] − P[F |R1C1] = O(τAB) as τAB → 0+,

We now come to a key part of the calculation: the event R1C0, depicted
in Fig. 3. The next lemma demonstrates that as long as θ is not too large,
conditional on R1C0, the event F is more likely than E.

Lemma 7. The quantity ᾱ := P[F |R1C0] − P[E|R1C0] depends only on θ and
is positive if θ ∈ (0, 3/4).

Proof Sketch. We sketch the proof idea here. Conditional on R1C0, four distinct
lineages enter population ABC at time troot. Denote these lineages by A1, A2, B,
and C, as shown in Fig. 3. Since no recombination occurs in population ABC, the
order in which the lineages coalesce determines a labeled history (an ultrametric
rooted binary tree with labeled tips and internal nodes rank-ordered according
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Fig. 3. A depiction of the event R1C0. The portion of the ancestral recombination
graph more ancient than troot is not shown.

to age [21]), whose tips are taken to be the lineages A1, A2, B and C at time troot.
There are 18 such labeled histories γ1, . . . , γ18. Since pairs of lineages coalesce
uniformly at random under the coalescent, P[γj |R1C0] = 1

18 for all j, and hence

P[F |R1C0] − P[E|R1C0] =
1
18

18∑

j=1

(P[F |R1C0γj ] − P[E|R1C0γj ]) . (6)

Having conditioned a particular labeled history, the probabilities P[E|R1C0γj ]−
P[F |R1C0γj ] for j = 1, . . . , 18 are computed in a straightforward manner, so
that the right hand side of (6) is positive provided that not too much signal is
lost by a high mutation rate. In particular, since there are two lineages from A
and only one from each of B and C, at least one of the A lineages is more likely
to be included in the final coalescing pair, favoring greater pairwise distances
between A and the other two taxa than those between B and C. !

The next lemma applies Lemmas 5, 6, and 7 to show that P [F |R1] > P[E|R1]
when the internal branch length τAB is small and the mutation rate θ is not too
large.

Lemma 8. If θ ∈ (0, 3/4), then P[E|R1]−P[F |R1] = −ᾱK+O(τAB) as τAB →
0+ (where the term −ᾱK does not depend on τAB).

2.3 Proof of Theorem 1

Proof of Theorem 1. It suffices to prove (5) for some choice of parameters ρ, θ, τA,
and τAB . Let ρ > 0 and θ ∈ (0, 3/4) be arbitrary; we will show that τA, and τAB

can be chosen sufficiently small that (5) holds. Conditioning on the number of
recombination events in population A,

P[F ] − P[E] >
(P[F |R0] − P[E|R0])P[R0] + (P[F |R1] − P[E|R1])P[R1] − P[∪k≥2Rk].
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Therefore by Lemma 4 and the trivial inequality P[R0] ≤ 1,

P[F ] − P[E] > −τAB + (P[F |R1] − P[E|R1])P[R1] − P[∪k≥2Rk].

By Lemma 8, there exists δ > 0 such that P[F |R1]−P[E|R1] > ᾱK/2 whenever
0 < τAB < δ. Assume further that τAB ∈ (0, δ). Then

P[F ] − P[E] > −τAB +
ᾱK

2
P[R1] − P[∪k≥2Rk].

By Lemma 3, there exists constants C,D > 0 not depending on τAB such that
P[R1] ≥ CρτA and P[∪i≥2Ri] ≤ Dρ2τ2

A, so that

P[F ] − P[E] > −τAB +
(
1
2
ᾱKC − DρτA

)
ρτA.

Since K does not depend on τAB and K → 1 as τA → 0 by Lemma 5, there
exists τA > 0 sufficiently small that both K > 1/2 and ε := ᾱC/4 − DρτA > 0.
It follows that P[F ] − P[E] > −τAB + ερτA. Since ε does not depend on τAB , it
follows that P[F ] − P[E] > 0 for τAB sufficiently small. !

3 Simulation Study

We performed a simulation study to characterize the inconsistency zone estab-
lished in Theorem 1. Code and documentation can be found at https://github.
com/max-hill/MSCR-simulator.git. In all simulations, sequence data is gener-
ated according to the MSCR process on an ultrametric species phylogeny S with
three species A, B, C, and rooted topology AB|C. In all cases, k = 500, τA = 1
and θ does not vary among populations. We use the notation p̂XY |Z to denote
the proportion of them samples from which the rooted tripleXY |Z was inferred,
and t̂ to denote the R∗ uniquely favored rooted triple of the m samples. By the
strong law of large numbers, p̂XY |Z serves as an estimate of P[EXY |Z ] for large
m, where EXY |Z is defined as in Lemma 2.

The range of recombination rates considered in these simulations are com-
parable to those in [14], who suggest they encompass biologically plausible
values. As for mutation rates, typical rates in eukaryotes are on the order of
µ = 10−9 to 10−8 per site per generation [11,17] and effective eukaryotic popu-
lation sizes Ne range from 104 to 108 [18], making the values considered here of
θ = 2Neµ ∈ {0.01, 0.1} plausible as well. Computational constraints limited the
ability to consider mutation rates lower than these, as doing so would have neces-
sitated an increase in k or m to compensate; however the analytic results here
predict that the inconsistency zone will persist, and may grow, for smaller values
of θ: the computed difference ᾱ = P[F |R1C0]−P[E|R1C0] actually increases as
θ → 0, suggesting that phylogenetic conflict may be greater under regimes with
smaller mutation rates than those simulated here.

In the first experiment, we simulated the MSCR-JC(k) process under a vari-
ety of parameter regimes in order to characterize the anomaly zone and evaluate

https://github.com/max-hill/MSCR-simulator.git
https://github.com/max-hill/MSCR-simulator.git
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the robustness of triplet-based inference in the presence of intralocus recombina-
tion. In particular m = 105 replicates were generated independently under each
parameter regime, with the aim of estimating how frequently the correct topol-
ogy was inferred. The parameters used were θ = 0.1, τAB ∈ {0.01, 0.02, . . . , 0.15},
ρA ∈ {0, . . . , 20}, and ρX = for all X )= A, so that recombination occurred only
in population A. Figure 4 shows the value of t̂ for each simulated parameter
regime, and Fig. 5 plots the surface z = p̂AB|C − p̂BC|A as a function of ρA and
τAB , so that parameter regimes with negative z values indicates inconsistent
inference.

We also evaluated R∗ inference with rooted triples inferred not by equa-
tion (1), but rather by maximum-likelihood under the (false) assumption of
no intralocus recombination; in this mode, which we call R∗ with maxi-
mum likelihood, binary sequences were simulated and the maximum likeli-
hood rooted triple was computed analytically using the method in [31]. A plot
almost identical to Fig. 4 was obtained. For the very short internal branch length
τAB = 0.01, simulations were run with similar parameters and higher num-
ber of replicates (m = 15, 000), with inference performed using both R∗ with
sequence distances and R∗ with maximum likelihood. Figure 6 plots the differ-
ence y = p̂BC|A − p̂AB|C as a function of ρA obtained from these simulations.

These results show that the combination of intralocus recombination in pop-
ulation A along with a very short internal branch length τAB resulted in the
rooted triple BC|A being more slightly likely to be inferred than the correct
topology AB|C. Figure 6 shows clearly that this effect increases for larger values
of ρA. Nonetheless, as both Figs. 5 and 6 show, the magnitude of this effect is
relatively small: even when p̂BC|A−p̂AB|C is positive, it is never greater than 0.1.
Moreover, as Figs. 4 and 5 show, this effect disappears when τAB is increased

Fig. 4. R∗ inconsistency zone. The
color of each dot represents a simula-
tion of m = 105 replicates.

z

τAB ρA

Fig. 5. The surface z = p̂AB|C − p̂BC|A
as a function of τAB and ρA.
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(ILS being less likely to occur on longer edges of S). Notably, even for high
rates of recombination, R∗ under both sequence distance mode and maximum
likelihood mode always correctly inferred the topology of S when τAB > 0.1
coalescent units.

In our second experiment, we relaxed the assumption that recombination
occurs only in population A by allowing for recombination in population B as
well. For this simulation, τAB = 0.01 and θ = 0.01, with inference performed
using R∗ with sequence distances. Figure 7 shows the uniquely favored rooted
triple for each choice of ρA and ρB , with each estimate obtained from m =
105 samples. When this experiment was repeated with τAB = 0.1, all but one
parameter regimes resulted in correct inference; the exception was when ρA = 0
and ρB = 20, in which case t̂ = AC|B. These results support the hypothesis
that taxa exhibiting higher rates of recombination relative to other taxa are
more likely to be inferred as more distantly related, but that the effect is small
and manifests only in species triplets with very short internal branches.

Fig. 6. The effect of increasing ρA on inference using R∗ with sequence distances and
maximum likelihood.

The third experiment tested the effect when all populations in S (excluding
the root population ABC) experience recombination at comparable rates. The
simulation parameters were ρ := ρA = ρB = ρC = ρAB ∈ {0, 1, . . . , 20} and
ρABC = 0, along with θ = 0.1, τAB = 0.01, and m = 106, with inference per-
formed using R∗ with sequence distances. The results, shown in Fig. 8, suggest
that when recombination rates are similar on the edges of S, greater recombi-
nation rates does not lead to incorrect inference of rooted triples: in all cases,



Effect of Intralocus Recombination 155

Fig. 7. R∗ inference with recombination in both populations A and B.

Fig. 8. Equal recombination rates in A,B,C and AB.

p̂AB|C > p̂AC|B ∨ p̂BC|A, suggesting consistent inference despite the very short
internal branch length, a result which agrees with the conclusions of [14] that
even high recombination rates are not a significant source of error, at least when
rates are comparable across species. Thus, the existence of differential rates of
recombination between closely related taxa appears to be a necessary condition
for a species tree S to lie in the inconsistency zone.
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4 Discussion

The primary focus of this study is the effect of intralocus recombination on the
inference of rooted triples. In contrast to previous simulation studies [3,14,29],
the current work considers the effect of intralocus recombination on inference
of species phylogenies with recombination rate heterogeneity across taxa. Our
main result is a proof that within the parameter space of species phylogenies
there exists a subset—the inconsistency zone—in which phylogenetic conflict
between the topology of the species phylogeny and the topology of inferred gene
trees is of a sufficient level to render certain majority vote methods statisti-
cally inconsistent. We further quantify and characterize this inconsistency zone
through simulations, showing that it includes biologically plausible recombina-
tion and mutation rates for eukaryotes, and suggesting that it arises on species
phylogenies exhibiting both (1) very short internal branch lengths (less than
0.1 coalescent units) and (2) differential rates of recombination between closely
related taxa. These results highlight a way in which intralocus recombination
can exacerbate ILS and lead to overestimation of the divergence times of those
taxa exhibiting disproportionately high intralocus recombination rates relative
to other taxa.

These findings do not necessarily contradict the conclusions of [14] that the
effect of unrecognized intralocus recombination can be minor. Indeed, our sim-
ulation experiments provide further evidence that inference of rooted triples is
hampered by unrecognized intralocus recombination only in cases where the
internal branch length of the species tree is short, that is in cases where ILS is
already high. The size of the observed effect is also relatively small; even when
the uniquely favored rooted triple does not agree with the species tree, it is
usually only slightly more common than the true rooted triple. Furthermore,
if differential rates of recombination between closely-related taxa are rare, then
summary coalescent-based methods which take no account of intralocus recom-
bination may nonetheless indeed be robust even when recombination rates are
high.

Our results raise a number of questions for future study. Our analysis focused
on a simple idealized case consisting of a rooted ultrametric three-taxa species
phylogeny with mutations modeled by the Jukes-Cantor process. The nature and
significance of the inconsistency zone may be affected by factors such as variable
population sizes as well as elements of mutation and recombination rate hetero-
geneity not considered here. In addition, our theoretical results only consider
distance-based gene tree estimation. Extending these results to likelihood-based
inference would be of interest.
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