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A B S T R A C T   

Given that kerogen is a source of vast amount of hydrocarbons and organically–bound inorganic elements, it’s 
important to understand the thermal decomposition kinetics of kerogen. Green River Shale contains a significant 
amount of immature kerogen (Type I), which can be an ideal source for the sample of experimental study. In this 
study, Thermogravimetric Analysis and Derivative Thermogravimetry (TGA/DTG) was used to quantify the 
weight loss during the pyrolysis process of the Green River Shale from Utah and subsequently establish the ki
netic model of thermal decomposition of kerogen based on the Friedman method followed by the data–driven 
modeling approach. A two–step reaction mechanism and components of production during the pyrolysis were 
determined by implementing Thermogravimetry Analysis–Differential Scanning Calorimetry–Gas Chromatog
raphy (TGA–DSC–GC). The chemical bonds were analyzed with Fourier–Transform Infrared spectroscopy (FTIR) 
before and after the pyrolysis. From the experiments, we observed the two–stage reactions in the hydrocarbon 
evolution window when the heating rate was lower than 30 ◦C/min, while only one stage was observed with the 
higher heating rates. C14 hydrocarbon was generated continuously during the hydrocarbon evolution, which 
indicated that the Green River Shale contained a plentiful amount of it. The kinetic parameters were obtained for 
the decomposition of organic and inorganic mixture and the organic matter (kerogen) only. The Artificial Neural 
Network (ANN) method was implemented to train the kinetic parameters obtained from the TGA/DTG experi
ment. The prediction of extrapolated cases showed a good performance when the heating rate was smaller than 
5 ◦C/min. The generated proxy model can be coupled with various physical models to simulate the thermal 
decomposition of kerogen with high accuracy.   

1. Introduction 

Kerogen is a source of vast amount of hydrocarbons and organ
ically–bound inorganic elements, which undergoes thermal cracking 
and degradation to release them, and it’s important to understand the 
thermal characteristics of kerogen decomposition [1,2]. Green River 
Shale contains a significant amount of immature kerogen (Type I 
kerogen), which can provide ideal samples for the thermal experiments. 
In this study, Thermogravimetric Analysis and Derivative Thermog
ravimetry (TGA/DTG) was used to quantify the weight loss during the 
pyrolysis process of the Green River Shale from Utah, to establish the 
kinetic model of thermal decomposition of kerogen based on the 
Friedman method and data–driven modeling. 

Kerogen thermal decomposition experiments can be conducted using 
various methods, such as Rock–Eval pyrolysis, pyrolysis–gas chroma
tography, gold tube pyrolysis, micro–scale sealed vessel pyrolysis, and 
hydrous pyrolysis [2–6].From the previous studies, we found that 

Thermogravimetric Analysis (TGA) is the most appropriate pyrolysis 
technique for the artificial maturation of the oil shale by the following 
reasons: TGA method provides non–isothermal temperature programs 
with wide ranges of heating rates and temperatures; the obtained ac
curate data of weight loss subjected to temperature can be efficiently 
used to develop the sophisticated kinetic models; TGA is a widely used 
technique to heat materials in an inert condition, to figure out their 
chemical compositions and decomposition reaction kinetics [4]. 
Numerous studies about TGA on oil shale thermal kinetic models and the 
characteristics of oil and gas evolution were reported in detail [4–8]. 
Tiwari provided the TGA–MS data for Green River Shale from Utah with 
the heating rate from 0.5 ◦C/min to 10 ◦C/min and recognized the 
compounds of molecular weight from 0 to 300 ◦C [6]. In their work, the 
uncertainties in activation energies of the thermal kinetic parameters 
were about 10% for the whole pyrolysis process. Later, the Jimsar oil 
shale sample was pyrolyzed by TGA under the same heating rate range, 
and the heating temperature reached 1,000 ◦C [8]. Kuang identified the 
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two–step reaction of the thermal pyrolysis only for the extracted kerogen 
from Green River Shale [5]. They compared the main isoconversional 
methods (i.e., Fridman, KAS, and, FWO) and selected the Friedman 
method with non–linear least–squares analysis to establish the kinetic 
models of two–step reaction. The heating rates for the pyrolysis ranged 
from 2 ◦C/min to 20 ◦C/min to figure out the kinetic parameters. 
Numerous studies established the pyrolysis kinetic models using the 
traditional isoconversional methods, which are only effective under the 
specific heating rate range and the extension of conversion. 

Recently, several investigations have applied the machine learning 
methods in studying the thermal reaction kinetics with high accuracy 
and flexibility [9–11]. Artificial Neural Network (ANN) method was 
employed to predict the organic matter contents and activation energy 
in the investigation of the in–situ pyrolysis of kerogen [9]. A recent 
study used the ANN approach to validate the results from the distributed 
activation energy model of Staghorn Sumac decomposition [10]. Hosen 
et al. combined the ANN method and conventional model to predict the 
kinetic parameters for the polymerization batch reaction. The obtained 
hybrid model showed higher accuracy than the other previously pub
lished kinetic models [11]. 

Previous study found that only the Green River Shale generated a 
relatively large amount of prist-1-ene and isoalkanes during the stepwise 
pyrolysis, which denoted that the organic matters from Green River 
Shale was different from other types of shales [4]. In addition, the Utah 
Geologic Survey indicated that the lacustrine source rocks with Type I 
kerogen in the Brazilian Campos and Santos basins alone were respon
sible for more than 5.5 billion barrels of oil production between 2004 
and 2013. However, only 0.7 billion barrels have been produced from 
Green River Shale of Uinta Basin [12,13]. Thus, the Green River Shale of 
Uinta Basin still has a vast potential of hydrocarbon resources to be 
exploited. To the best of our knowledge, there’s no study on the data
–driven modeling of thermal decomposition kinetic models of shale rock 
and kerogen by applying the ANN approach, which is significantly 
effective to build proxy models for the datasets with nonlinearity. In 
addition, no data–driven model has been established using the experi
mental data of Green River Shale. In this regard, our study on the 
thermal decomposition kinetics focuses on the Green River Shale from 
Uinta Basin to elucidate the kerogen decomposition mechanisms and 
establish the data–driven models. 

In this work, we aim to investigate the evolution of generated hy
drocarbons during the kerogen thermal decomposition and establish the 
reaction kinetics of Green River Shale from Utah. We obtained the 
weight loss of the bulk rock and the pyrolysis of isolated kerogen using 
TGA/DTG. Then, the two–step reaction mechanisms and components of 
production of the kerogen thermal decomposition were determined by 
implementing TGA–DSC–GC. The FTIR analyzed the chemical bonds 
before and after the pyrolysis. The thermal kinetic parameters were 
established by the Friedman method, and the probable kinetic model 
was evaluated by the Popescu method. The Artificial Neural Network 
(ANN) method was firstly implemented to train the dataset involving the 
information of kinetic parameters and heat flow of the Green River 
Shale. By applying the ANN method, the generated data–driven model 
can predict the kinetic parameters within the training range with high 
accuracy and efficiency, given that the experimental method is not only 
expensive but also time–consuming. Once the ANN model has been 
trained, the output can be obtained in a second. The generated 

data–driven model can also be coupled with various numerical models 
to simulate the thermal decomposition of kerogen with high accuracy. 
This paper is organized as follows: the experimental and theoretical 
methods are addressed in Section 2; Section 3 analyzes the experimental 
results and presents the developed kinetics models; the summary and 
conclusion are included in Section 4. 

2. Experimental and theoretical methods 

2.1. Samples preparation 

In this experiment, we considered both the bulk rock shale and the 
isolated kerogen from the Green River formation. To decrease the im
pacts of the mineral heterogeneity on the reaction kinetics modeling of 
organic matter, the bulk rock shale was ground and sieved as smaller 
than 0.25 mm–diameter before pyrolysis. The kerogen isolation was 
conducted in the closed–conservative ultra–pure kerogen isolation at the 
Center for Petroleum Geochemistry at the University of Houston. The 
closed–conservative kerogen isolation method is very effective in 
removing the impure fractions [14]. The bulk rock of Green River Shale 
specimens was put into Teflon cells and flushed by HCl several times to 
dissolve carbonate, sulfates, and soluble sulfides. Then, the specimens 
were flushed by HF to dissolve siliciclastic, ammonium hydroxide to 
neutralize the system and remove HCl soluble gels [14]. During each 
step of flush, the specimens were rinsed with deionized water. Finally, 
the specimens were put into acidic CrCl2 to dissolve pyrite in the sealed 
reaction cells. 

2.2. Thermogravimetric analysis 

The TGA/DTG analysis was carried out using the Perkin Elmer STA 
6000. Approximately 20 mg of the sample for the bulk rock and isolated 
kerogen were put in the pan kit. The samples were heated from 30 to 
990 ◦C with the heating rates from 1 ◦C/min to 100 ◦C/min under a 
constant helium flow rate of 20 ml/min. 

2.3. TGA–DSC–GC and FTIR 

A hyphenated system of TGA–DSC–GC was used to simultaneously 
analyze the gas components while heating samples at the heating rate of 
5 ◦C/min, 20 ◦C/min, and 50 ◦C/min. TGA was used to measure the 
weight change of the sample, and Differential Scanning Calorimetry 
(DSC) was used to measure the heat flow of the sample. Gas components 
were analyzed by the GC of Perkin Elmer Clarus 590. The outlet of the 
TGA heating chamber was connected to Clarus 590 by TG–GCMS 
Interface TL 8500. Elite–VMS column with 40 m length, 0.18 mm ID was 
used to separate the compositions. First, the isothermal temperature 
program for the GC oven was set at 40 ◦C and held for 30 min. Then, the 
oven temperature was increased to 260 ◦C with the rate of 5 ◦C/min and 
hold for 3 min. The injector temperature was set at 250 ◦C; split vent 
flow was set as 100 ml/min; and the carrier gas flow rate was 0.7 ml/ 
min. We collected the volatile gas for 0.5 min at each reaction stage of 
the pyrolysis. The target gas components were alkanes and aromatics. 
We directly injected two standards sample—D2887 and DHA aromatics 
into GC to establish the GC library to interpret the peaks of GC results 
[15,16]. Fourier Transform Infrared Spectroscopy (FTIR) was used to 

Table 1 
Results of TOC measurement and Rock–Eval analysis of Green River bulk rock.  

Sample I.D. Source quality Thermal maturity 

Sample ID TOC 
(%) 

S1 
(mg HC/g rock) 

S2 
(mg HC/ 
g rock) 

S1 + S2 
(mg HC/ g rock) 

HI 
(mg HC / g TOC) 

S3 
(mg CO2 /g rock) 

OI 
(mg CO2 /g TOC) 

Transformation Ratio “PI” 
(S1/S1 + S2) 

Tmax 

(◦C) 

Run 1  21.43  5.63  185.14  190.77 864  3.55 17  0.03 442 
Run 2  20.92  5.43  181.27  186.70 866  3.57 17  0.03 443  
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scan the sample and observe chemical properties by the infrared light. 
The chemical bonds were measured before and after heating the sample. 

2.4. Rock–Eval analysis 

Rock–Eval Analysis was conducted by Vinci RockEval–6 Pyrolysis 
Analyzer on the bulk rock of Green River Shale. The detailed results for 
Rock–Eval analysis are listed in Table 1. The Total Organic Carbon 
(TOC) was found to be about 21 wt% from the twice replicate mea
surements. S1 is the free hydrocarbons present in the sample before the 
analysis; S2 is the volume of hydrocarbons formed during the thermal 
pyrolysis; S3 is the amount of CO2 produced during the pyrolysis of 
kerogen [17]. The HI and OI are Hydrogen Enrichment Index and Ox
ygen Enrichment Index, which indicate that the bulk rock of Green River 
Shale contained Type I kerogen. Tmax values for the bulk rock samples 
were 442 and 443 ◦C, indicating that the Green River Shale kerogen has 
from low to marginal thermal maturity [18]. 

2.5. Theoretical methods for reaction kinetics 

The rate equation of non–isothermal pyrolysis kinetics can be 
expressed as the following equation [19]: 

kf (α) =
dα
dt

= β
dα
dT

= Aexp(−
Ea

RT
)f (α) (1)  

where, α is the degree of conversion; β is the heating rate (◦C/min); k is 
the reaction constant; Ea is the activation energy (J/mol); A is the 
pre–exponential factors (min−1); R is the universal gas constant, which 
equals to 8.314 J/K⋅mol, and T is the temperature (K). α can be calcu
lated by the following equation: 

α =
WO − Wt

W0 − W∞
(2)  

where, WO is the initial mass of the sample; Wt is the mass at time t, and 
W∞ is the final mass after the pyrolysis. We selected the linear Friedman 
method to estimate Ea in the rate equation, since it directly used the 
differential form of the rate equation and did not require any mathe
matical approximations, which could avoid calculation errors [5]. 

Application of the logarithm of the Eq.1 provides the following 
equation by Friedman method: 

ln
(

β
dα
dT

)

= ln
(

dα
dt

)

= ln[Af (α) ] −
Ea

RT
(3)  

where, dα
dt was obtained numerically from the TGA experiments data with 

Δα = 0.02. First, we plotted the graph taking ln
(

dα
dt

)

as y–axis and 1T as 

x–axis under the constant α for a set of β values. Then we found the slope 
of −Ea

R with the series of straight line [19]. To find the most suitable 
kinetic model, we used the Popescu method, while taking advantages of 
no assumptions and insensitivity of potential experimental errors [5]. 

By taking the integral expression of Eq. (3), we obtain the following 
equation: 
∫ αn

αm

dα
f (α)

=
1
β

∫ Tn

Tm

k(T)dT (4)  

where αn and αm are corresponding degree of conversion at temperature 
of Tn and Tm. By using the notations: 

g(α) =

∫ αn

αm

dα
f (α)

(5)  

and. 

I(T)nm =

∫ Tn

Tm

k(T)dT (6) 

Eq. (4) can be substituted into the following form: 

g(α) =
1
β

I(T)nm (7) 

For each pair of the temperature range (ie., Tn and Tm), we can find 
corresponding degree of conversion (ie., (αn1, αm1), (αn2, αm2), (αn3, α3) 
…) under the different heating rates of β (ie.,β1, β2, β2…) from the 
experimental data [5]. The possible kinetic models (f(α)) and their in
tegral expressions (g(α)) are listed in Table 2. Then, the integral 
expression value of each kinetics model (ie., g(α)nm1, g(α)nm2, g(α)nm3…) 
can be calculated. We plotted the linear fitting curve of g(α) and 1β with 
y–intersect of zero and calculated coefficient of determination (R2) for 
the fitting curve of different kinetic models. For different pyrolysis 
stages, a proper kinetic model can be selected by considering R2 value. 

Table 2 
Kinetic models (f(α)) and their integral expressions (g(α)).  

Model f(α) g(α)

Reaction–order model 
First–order (F1) (1 − α)

1 −ln(1 −α)

Second–order (F2) (1 − α)
2 

(1 − α)
−1

−1 
Third–order (F3) (1 − α)

3 [
(1 − α)

−2
−1

]/
2 

Nucleation model 
Power law (P2) 2α1/2 α1/2 

Power law (P3) 3α2/3 α1/3 

Power law (P4) 4α3/4 α1/4 

Avrami–Erofe’ve (A2) 2(1 −α)[ − ln(1 − α) ]
1/2 

[ − ln(1 − α) ]
1/2 

Avrami–Erofe’ve (A3) 3(1 −α)[ − ln(1 − α) ]
2/3 

[ − ln(1 − α) ]
1/3 

Avrami–Erofe’ve (A4) 4(1 −α)[ − ln(1 − α) ]
3/4 

[ − ln(1 − α) ]
1/4 

Geometrical contraction model 
Contracting area (R2) 2(1 − α)

1/2 1 −(1 − α)
1/2 

Contracting volume (R3) 3(1 − α)
2/3 1 −(1 − α)

1/3 

Diffusion model 
1–D diffusion (D1) 1/2α α2 

2–D diffusion (D2) −1/ln(1 −α) −[(1 − α)ln(1 − α) ] + α 
3–D diffusion (D3) 3(1 − α)

2/3
/
[
2

(
1 − (1 − α)

1/3
) ]

−
[
1 − (1 − α)

1/3
]2 

Ginstling–Brounshtein (D4) 3/2
[
(1 − α)

−1/3
−1

]
1 −(2α/3) −(1 − α)

2/3  

J. You and K.J. Lee                                                                                                                                                                                                                            



Fuel 320 (2022) 123899

4

2.6. ANN method 

The ANN multi–layer model contains the input, hidden, and output 
layers [20]. We selected different neuron numbers for training data sets 
under different temperature ranges to achieve high performance. The 
neurons process the combined information of inputs, weights, biases, 
activation functions to produce the outputs [21]. Bias assures the di
versity of the model formats and guarantees the best performance of 
training [21]. In this study, hyperbolic tangent (tanh) activation 

function was used to restrict the output within the required range. 
He–uniform variance scaling initializer was used to initialize the weight 
value following the uniform distribution within [-limit, limit], where 
limit was depending on the number of input units [22]. We selected the 
Mean Squared Error (MSE) loss function to evaluate the difference be
tween the training data and the predicted value. The Back–propagation 
algorithm was used to train the neural network model. ADAM algorithm 
optimizer was employed to decrease the loss function to the convergence 
criteria by iteratively calculating the gradient of the loss function and 

Fig. 1. The normalized weight loss curve and derivative under the heating rates from (a) 1 ◦C/min to 17 ◦C/min and (b) 20 ◦C/min to 100 ◦C/min of isolated 
kerogen. The solid line denotes the normalized weight loss, and the dot line denotes the derivative of weight loss. 
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Fig. 2. The normalized weight loss curve and derivative under the heating rates from (a) 1 ◦C/min to 17 ◦C/min and (b) 20 ◦C/min to 100 ◦C/min of bulk rock shale. 
The solid line denotes the normalized weight loss, and the dot line denotes the derivative of weight loss. 
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updating the weight and bias [23]. The training rate was set as 0.001, 
and the convergence criteria was set as 1 × 10-5. The ANN method was 
developed based on TensorFlow open–source software library [24]. 

3. Results and discussion 

The present study investigates the thermal characteristics during 
TGA/DTG pyrolysis of isolated kerogen and bulk rock of Green River 
Shale. The TGA/DTG results and the produced components are 
described in Sections 3.1 and 3.2. The kinetic models were established 
using the Freidman method and Popescu method by using the experi
mental results. The ANN–based data–driven modeling method was 
employed to predict the parameters of reaction kinetics by taking the 
heat flow as an input, which is introduced in Section 3.4. 

3.1. Thermogravimetric analysis of samples 

This work measured weight loss of samples during the thermal 
decomposition of bulk rock shale and isolated kerogen with the heating 
rates from 1 ◦C/min to 100 ◦C/min. The heating temperature profile was 
set at 30–990 ◦C. The previous study shows that the main components of 
Green River Shale rock from Utah were quartz, albite, calcite, illite, 
dolomite, orthoclase, aragonite, and analcime [6]. The change of weight 
loss with time and its derivative are shown in Fig. 1 and Fig. 2. From the 
derivative of weight loss, we could observe a two–step decomposition 
reactions for bulk rock shale and a single–step reaction for isolated 
kerogen. For the Green River bulk rock, the first reaction was around 
320–620 ◦C, and the second reaction was around 650–850 ◦C. For the 

lower temperature region of up to 200 ◦C, the evaporation of moisture, 
interplay water, clay minerals, and nahcolite (carbonate) minerals 
resulted in the weight loss [25]. The decomposition window of the 
nahcolite was between 50 ◦C and 200 ◦C [26]. The mineral decompo
sition rate was also influenced by the heating rate. When the heating rate 
was high, the decomposition rate of mineral was low, and the weight 
loss was small. Since we used dry samples of kerogen and bulk rock 
shale, there was no obvious weight loss during this temperature win
dow. The volatile hydrocarbon is known to be generated from shales 
during the temperature window of 200–620 ◦C and results in weight loss 
during thermal decomposition [25]. 

For the two–step reaction of bulk rock shale, the weight loss for 
temperature beyond 600 ◦C was due to the carbonate decomposition 
[25]. The carbonate was removed from the kerogen, and there was only 
a single–step reaction for isolated kerogen. For the pyrolysis of isolated 
kerogen, we could observe the two–step evolution of hydrocarbons 
within 200 ◦C to 620 ◦C of temperature at the heating rates from 5 ◦C/ 
min to 30 ◦C/min, as shown in Fig. 1 (a) and (b). The previous pyrolysis 
studies showed that Kimmeridge oil shale, Jordanian oil shale, Turkish 
oil shale, and Green River Shale had two–step decomposition for hy
drocarbons [25,27–29]. However, the two–step evolution for hydro
carbons was not obvious with the heating rates higher than 30 ◦C/min. It 
could be caused by that the different components from the sample were 
not detected due to the fast increase of temperature. The weight loss 
percentage is listed in the SI. Under the lower heating rates, the sample 
showed larger weight loss at the end of the pyrolysis. Given that the 
sample was heated for a long time under the lower heating rate, the 
weight loss was found to be highly influenced by the heating time. 

Fig. 3. FTIR results for Green River kerogen. (a) FTIR results before pyrolysis; (b) FTIR results within the hydrocarbon window (200–620 ◦C). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.2. TGA–DSC–GC and FTIR results 

We conducted the FTIR analysis on the isolated kerogen and bulk 
rock of Green River Shale before and after the pyrolysis. We selected 
some temperature to conduct FTIR analysis during the hydrocarbon 
decomposition stage. Then we performed additional analyses after the 
second step reaction (temperature higher than 620 ◦C) for the bulk rock 
shale. The chemical bonds representing certain peaks and corresponding 
wavelengths are listed in SI. Fig. 3 shows the FTIR results before and 
after the pyrolysis of isolated kerogen. The bonds between 2,864–2,843 

cm−1 and 2,936–2,916 cm−1 indicate stretching C–H. The symmetrical 
stretching C–H bond from 3,000 to 2,900 cm−1 can be indicating the 
cyclohexyl group. The compound containing C–H is mainly aliphatic 
hydrocarbons and aromatic hydrocarbons [7]. Vibration of C–H bonds 
in the range of 720 cm−1 to 750 cm−1 are the aromatic rings and un
saturated aliphatic hydrocarbon. Stretching C≡N and C=C=N bonds 
between the wavelength of 2,210–2,175 cm−1 and 2,050–2,000 cm−1 

are in the nitrogen compounds [30]. The mean nitrogen content in oil 
shale is about 1.3% [31]. Stretching bond C=O from 1,186 cm−1 to 
1,168 cm−1 and N3 from 2,155 cm−1 to 2,141 cm−1 are in the functional 

Fig. 4. FTIR results for the bulk rock of Green River Shale. (a) FTIR results before pyrolysis; (b) FTIR results within the hydrocarbon window (200–620 ◦C); (c) FTIR 
results after the second step reaction (temperature larger than 620 ◦C). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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Fig. 5. The results of TGA/DTG and heat flow and the results of GC analysis for bulk rock shale pyrolysis under the heating rate of 5 ◦C/min. GC components were 
analyzed at t = 70 min, 87 min, 97 min, and 134 min. 

Table 3 
GC components produced at different times for the bulk rock pyrolysis at 5 ◦C/min–heating rate.  

Peak Retention time (min) Area % Component formula Peak Retention time (min) Area % Component formula 

70 min 87 min 
a 3.46 14.39 * a 3.487 22.49 * 
b 7.88 1.81 * b 4.278 6.48 * 
c 11.22 2.57 C5H10/C5H8 c 5.532 4.85 * 
d 14.96 4.23 C6H10 d 7.888 5.01 * 
e 15.46 8.31 C7 e 11.227 5.45 C5H10/C5H8 
f 17.64 9.11 C7H12 f 14.985 3.67 C6H10 
g 20.45 11.44 C8H12 g 18.719 3.96 C7H10 
h 39.41 13.67 C14 h 22.267 3.81 C8H12 
i 48.92 8.62 * i 25.596 3.46 C10 
97 min j 28.711 4.4 C11 
a 3.458 10.26 * k 31.625 3.39 C11H22/C11H20/C12H18 
b 15.455 4.78 C7 l 34.369 2.32 * 
c 18.028 10.51 C7H12 m 39.467 4.6 C14 
d 18.995 5.78 C8 n 48.704 5.54 * 
e 21.519 4.4 C8H12 134 min 
f 22.667 10.16 C9H18 a 15.871 8.77 C7H14 
g 23.91 6.34 C9H12 b 17.903 14.03 C7H12 
h 24.932 2.63 C10H14 c 20.359 21.04 C8H12 
i 38.764 13.74 C13H* d 39.42 30.96 C14 
j 42.656 5.51 *     
k 48.723 13.12 *     
l 49.465 1.57 *      
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group of C-(C=O)–N3. The peak at 1,360–1,390 cm−1 is the SO2 bond. 
For the peak between 1,300–1,160, the possible chemical bond is C-O, 
which is in the functional group of C=C-COOR. Before the reaction, the 
sample contain the functional group of R(CH2)4-C/R(CH2)4-OR, Cyclo
hexyl, C=C-COOR, C-(C=O)–N3, and Si-O-Si-6 member ring. After the 
pyrolysis of isolated kerogen, as shown in Fig. 3 (b), the detected 
chemical bonds are C–H, C≡N, C=C=N, and NO2 within the hydrocar
bon decomposition temperature window [30]. During pyrolysis, the 
chemical bond of C–H was broken. The degree of C–H bond broken 
depended on the heating rate and heating time. When the heating rate 
was 50 ◦C/min, it took a shorter time to reach 630 ◦C and left some C–H 
bonds unbroken. Thus, the peak of C–H bond was obvious at 630 ◦C with 
hating rate of 50 ◦C/min. At this time, the functional group (R)2C=N- 
C≡N, (C)2C=C=N-R, Cyclohexyl, R(CH2)4-C/R(CH2)4-OR still remain in 
the sample. There is a new functional group N-NO2 after the pyrolysis. 

Fig. 4 shows the FTIR results for the pyrolysis of bulk rock shale. 
Before pyrolysis, we detected Si-O-Si, P=S, S-S bonds, which were not 
found from kerogen sample. Si-O-Si probably existed in the Si-O-Si6- 
member ring functional group, and this chemical bond was not easy to 
crack during the pyrolysis. Si-O-Si might have come from the quartz in 
shale bulk rock. Other possible functional groups have C-N=NH-C, R-S- 
S-R, R-O-O-R, R(CH2)4-C/R(CH2)4-OR and Cyclohexyl. The peaks during 
800–580 cm−1 can be assigned to P=S, which can be contained in 
minerals in the bulk rock shale. Stretching S-S bond was in the range of 
450–480 cm−1, which denoted a disulfide compound in the bulk rock 

shale. After the pyrolysis of bulk rock shale, the C–H bond cracked and 
became weak. Si-O-Si6-member ring functional group still exists in the 
sample. 

GC analysis was conducted simultaneously during the pyrolysis. We 

Fig. 6. The plots for ln
(

dα
dt

)

and 1/T according to Friedman method of non–isothermal bulk rock shale pyrolysis. The slope represents the value of −Ea
R , and then we 

can obtain the activation energy. (a) heating rates from 1 ◦C/min to 5 ◦C/min; (b) heating rates from 6 ◦C/min to 10 ◦C/min; (b) heating rates from 10 ◦C/min to 
20 ◦C/min. 

Fig. 7. The plot for Friedman method of non–isothermal pyrolysis of isolated 
kerogen with heating rate from 1 ◦C/min to 5 ◦C/min. 
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collected the decomposed gas from TGA pyrolysis for 0.5 min. Fig. 5 
shows the results for the GC analysis under the heating rate of 5 ◦C/min. 
The results for 20 ◦C/min and 50 ◦C/min can be found from SI. The 
degree of conversion (α), derivation of α, and heat flow were plotted in 
Fig. 5. We can observe three peaks on the curve of the derivative of α, 
along with endothermic characteristics on the heat flow curve. For 
heating rate of 5 ◦C/min, the two endothermic characteristics occurred 
at around t = 87 min and t = 97 min, respectively, when the shale was 
decomposed into hydrocarbons. Gas was collected at these three de
rivative peaks for GC components analysis. The gas components are 
listed in Table 3. The star symbol (*) in the table denotes that the 
component was out of our column range, which could not be identified. 
The pyrolysis of bulk rock shale produced the maximum number of 
components at t = 87 min when the heating rate was 5 ◦C/min, which 
was also the maximum peak of the derivative of α. We named the peak of 
derivative of α as the maximum derivative for clarity. The pyrolysis of 
the bulk rock shale mainly produced alkenes, alkanes, and aromatics. 
We could get very limited amount of hydrocarbons at t = 70 min (at 
380 ◦C). C10, C11 and C14 were the main alkane components produced 
at t = 87 min, whereas C7 and C8 were the main alkane components at t 
= 97 min. At t = 134 min, C14 was the only alkane produced at this time. 
For the larger heating rates, the second–step reaction showed a shorter 
time, and there was no clear boundary for the generation of different 
components. Other components occurred only at the maximum deriva
tive. GC results for isolated kerogen showed similar results, which are 
provided in the SI. 

3.3. Thermal kinetic models 

The isoconversional plots of the Friedman method for bulk rock shale 
and kerogen are shown in Fig. 6 and Fig. 7, respectively. The weight loss 
for the bulk rock of Green River accounts for the evaporation of mois
ture, interplay water, clay minerals, nahcolite, and kerogen. While the 
weight loss for the isolated kerogen is only account for the pure kerogen 
decomposition. Thus, the kinetic parameters obtained from heating the 
bulk rock were valid for the mixture of organic matter and minerals, 
while the ones from heating the kerogen samples were valid for the pure 

organic matter. Each plot takes five sets of ln
(

dα
dt

)

and the corresponding 

temperature under different heating rates. Fig. 6 (a) and Fig. 7 are for the 
heating rates from 1 ◦C/min to 5 ◦C/min, and Fig. 6 (b) is for the heating 
rates from 6 ◦C/min to 10 ◦C/min. The plots in Fig. 6 (c) have the 
heating rates of 12 ◦C/min, 14 ◦C/min, 16 ◦C/min, 17 ◦C/min, and 
20 ◦C/min. The plots for different degrees of conversion with Δα = 0.02 
are shown in different colors. R2 for the prediction of Δα by the thermal 
kinetic model of Friedman could reach 0.991. We built the kinetic model 
of kerogen decomposition with the heating rates from 1 ◦C/min to 5 ◦C/ 
min, since the pyrolysis of isolated kerogen was highly sensitive to the 
heating rates, and the higher heating rate could lead to significant error 
on the kinetic model by using both Friedman method and data–driven 
method. The obtained activation energy and the value of y–intersect are 
listed in the SI. 

The most probable kinetic model was determined by the Popescu 
method [5]. For different reaction stages, the decomposition has 

Table 4 
R2 for different kinetic models of bulk rock pyrolysis.  

model Temperature range(◦C)  

150–300 300–350 350–400 400–450 450–650 650–700 

First–order (F1)  –  0.81  0.91  –  –  0.88 
Second–order (F2)  0.072  0.91  0.98  0.93  0.94  0.56 
Third–order (F3)  0.23  0.96  0.94  0.98  0.86  0.37 
Power law (P2)  –  –  –  –  –  – 
Power law (P3)  –  –  –  –  –  – 
Power law (P4)  –  –  –  –  –  – 
Avrami–Erofe’ve (A2)  –  –  –  –  –  0.93 
Avrami–Erofe’ve (A3)  –  –  –  –  –  0.94 
Avrami–Erofe’ve (A4)  –  –  –  –  –  0.94 
Contracting area (R2)  –  0.73  0.76  –  –  0.89 
Contracting volume(R3)  –  0.75  0.83  –  –  0.94 
1–D diffusion (D1)  –  –  –  –  –  – 
2–D diffusion (D2)  0.94  0.97  0.97  0.59  –  0.80 
3–D diffusion (D3)  0.95  0.96  0.96  0.85  –  0.91 
Ginstling–Brounshtein (D4)  0.94  0.97  0.97  0.70  –  0.93  

Table 5 
R2 for different kinetic models of pyrolysis of isolated kerogen.  

model Temperature range(◦C)  

150–300 300–350 350–400 400–450 450–500 

First–order (F1)  –  0.37  0.99  0.99  0.80 
Second–order (F2)  –  0.74  0.84  0.84  0.57 
Third–order (F3)  –  0.91  0.71  0.71  0.44 
Power law (P2)  –  –  –  –  – 
Power law (P3)  –  –  –  –  – 
Power law (P4)  –  –  –  –  – 
Avrami–Erofe’ve (A2)  –  –  0.83  0.83  0.91 
Avrami–Erofe’ve (A3)  –  –  0.60  0.60  0.93 
Avrami–Erofe’ve (A4)  –  –  0.38  0.38  0.93 
Contracting area (R2)  –  –  0.74  0.74  0.91 
Contracting volume(R3)  –  0.17  0.90  0.90  0.89 
1–D diffusion (D1)  –  –  –  –  – 
2–D diffusion (D2)  0.78  0.93  0.94  0.94  0.84 
3–D diffusion (D3)  0.82  0.96  0.95  0.95  0.73 
Ginstling–Brounshtein (D4)  0.79  0.94  0.97  0.97  0.80  
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different kinetic parameters and needs an appropriate kinetics model. 
We divided the pyrolysis process into six stages for bulk rock shale and 
five stages for kerogen, respectively. R2 of the possible kinetic model was 
calculated for each stage by temperature. The expression of the kinetic 
models is listed in Table 2. The corresponding degree of conversion 
under different temperatures is listed in the SI. Some values are not 
indicated in the table for kinetic models, because their functions 
couldn’t be established based on the described method. The diffusion 
models are generally suitable for the temperature range of 450–650 ◦C. 
Between 450 and 650 ◦C, the second–order reaction model was the most 
probable model for bulk rock shale, since it has the highest R2 value 
according to Table 4, and Avrami–Erofe’ve Nucleation models were 
more suitable for the pyrolysis of isolated kerogen (Table 5). 

3.4. ANN results 

We performed ANN training on the dataset of the kinetic parameters, 
where the input data included Δα, heat flow, and heating rate, and the 
output data included the activation energy and ln[Af(α) ]. The raw data 
for ANN training is provided in the SI. We first randomly selected 20% 
data as the test set, and the other 80 % data was used as the training set. 
We have 750 datasets for the bulk rock shale and 250 in total for the 
isolated kerogen. The performance of bulk rock parameters and kerogen 
were shown in SI. 

To see the performance of predicting the data out of our training set, 
we picked the data under one designated heating rate as the test set and 
the remaining data sets as the training set, instead of a random manner. 
Thus, the training sets didn’t contain the data under the same heating 
rate as the test sets. For the bulk rock shale, training data has 700 sets, 

Fig. 8. Performance of the data–driven models of bulk rock shale on activation energy (J/mol).  
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and test data has 50 sets. We found that the performance was good for 
the heating rate from 1 ◦C/min to 5 ◦C/min of both isolated kerogen and 
bulk rock shale. As shown in Fig. 8, R2 for predicting bulk rock shale’s 
activation energy could reach 0.997. For the test set, R2 was 0.973, 
0.984, 0.971, 0.984, and 0.954 for heating rates for 1, 2, 3, 4, and 5 ◦C/ 
min. We got similar R2 for predicting ln[Af(α) ] between 1 ◦C/min and 
5 ◦C/min. However, 80 neurons were used to reach high R2 for training 

ln[Af(α) ]. The performance plot and scattered distribution for ln[Af(α) ]

were shown in the SI. Fig. 9 shows the performance of the ANN model 
for kinetic parameters of kerogen decomposition. We used 200 datasets 
for training and 50 datasets for the test. Thus, the neuron number was 
increased to 100 to get the high R2. The ANN training took 5,000 steps to 
meet the convergence criteria. R2 could reach 0.999 for the prediction of 
activation energy and ln[Af(α) ] on the training set, and was all above 

Fig. 9. Performance of the data–driven models of kerogen on activation energy (J/mol).  
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0.98 on the test set. The prediction of extrapolated datasets had high R2, 
which showed good performance in estimating the kinetic parameters. 
This ANN model can be used to predict kinetic parameters of pyrolysis 
without the traditional method of actual experiments. The kinetic pa
rameters can be obtained from our ANN model with the given data of 
heat flow, temperature, and corresponding degree of conversion. The 
performance of our ANN model was good when heating rate was less 
than 5 ◦C/min. This is because that the kinetic parameters were very 
sensitive to the heating rates and highly depending on the heat flow 
when heating rate was lower than 5 ◦C/min. However, the kinetic pa
rameters were slightly depending on the heat flow under a higher 
heating rate, and the performance of ANN model was affected. The 
model can be coupled with various numerical simulation models to 
calculate the kinetic parameters with high computational efficiency and 
accuracy. For example, this ANN model can be incorporated into the 
pore–scale model describing the thermal decomposition of shale. The 
investigation of data–driven model can help thoroughly develop the 
micro pore–scale models for the kerogen pyrolysis modeling. In por
e–scale model, the kerogen phase and other impure minerals are sepa
rately distributed in the computational domain. The different 
component of the shale has different reaction kinetics. Thus, it is sig
nificant to investigate the reaction kinetics both for the pure kerogen 
and the shale bulk rock. Within the discretized control volume, the de
grees of conversion and temperature vary, because each discretized 
element has different distance to the heat source. Thus, the trained 
model can produce the accurate kinetic parameters for each discretized 
element without conducting multiple experiments. 

4. Conclusions 

This work investigated the evolution of generated hydrocarbon 
during the kerogen maturity and established the thermal decomposition 
kinetics of Green River Shale (Type I kerogen) of the Utah basin. Since 
the Green River Shale has a high volume of organic matter, which has a 
high potential to be exploited, we firstly applied the data–driven model 
to predict the reaction kinetics from the heat flow data of the Green 
River Shale during the pyrolysis. The obtained results can be incorpo
rated into full physics models to simulate the decomposition of oil shale 
with high accuracy and faster calculation speed. We investigated the 
reaction kinetics both for the bulk shale rock and isolated pure kerogen, 
which can be used in the reservoir–scale models and the pore–scale 
models. The prediction of extrapolated datasets has excellent 
performance. 

We have the following interesting findings from the investigation. 
For the pyrolysis of isolated kerogen, we could observe the two–step 
evolution of hydrocarbons within 200–620 ◦C of temperature at the 
heating rate from 5 ◦C/min to 30 ◦C/min. However, this two–step 
mechanism was not apparent for the heating rate higher than 30 ◦C/min. 
Under the lower heating rate, the sample had larger weight loss at the 
end of pyrolysis. 

We detected the chemical bonds of C–H, C≡N, C=C=N, N3, and C=O 
from FTIR, which confirmed that the Green River Shale contained 
alkane, alkene, and aromatics. We also found that Si-O-Si of the Si-O-Si-6 
member ring functional groups was strong enough and didn’t crack after 
the pyrolysis. The gas components were analyzed during the pyrolysis at 
the peaks of derivative of α. We could obtain lots of components at the 
maximum derivative point. Under the higher heating rate, the more 
alkane components at the maximum derivative point we can obtain. This 
was because, the hydrocarbons were generated one by one following 
their mass weights, and the lighter components were firstly separated 
before the maximum derivative under the lower heating rates (smaller 
than 20 ◦C/min). For the higher heating rates (larger than 20 ◦C/min), 
the second–step reaction showed a shorter time, and there was no clear 
boundary for the generation of different components. C14 was gener
ated continuously during the second–step evolution, which indicated 
that the Green River Shale contained a plentiful amount of it. 

By implementing Friedman method, isoconversional plots and ki
netic parameters (activation energy and pre–exponential factors) were 
obtained from the experimental results. The most probable kinetic 
models could be selected with higher R2 value by using Popescu method. 
The kinetic parameters obtained from heating the bulk rock were valid 
for the mixture of organic matter and minerals, while the ones from 
heating the kerogen samples were valid for the pure organic matter. 
After obtained the thermal kinetic parameters, we took heat flow rate, 
Δα, and heating rate as the input data, and the kinetic parameters as the 
output data, respectively. The ANN method was used to train the data
sets and predict the kinetic parameters. The performance of the data
–driven model was good when we randomly selected 20% data as test set 
to compare the predicted value with the observed data. The R2 value 
could reach 0.99 for training set, and above 0.95 for test set. To see the 
performance of prediction out of our training set, we picked the data 
under one designated heating rate as the test set and the remaining data 
sets as the training set, instead of a random manner. The prediction of 
extrapolated datasets had high R2 when the heating rate was smaller 
than 5 ◦C/min, which showed good performance in estimating the ki
netic parameters. Then, the degree of conversion of shale with different 
temperatures and unmeasured heating rates can be predicted by the 
ANN model. The generated data–driven proxy models can be coupled 
with full physics models with various scales to simulate the decompo
sition of oil shale with high accuracy. As such, the kinetic parameters for 
shale bulk rock and the isolated kerogen can be incorporated into res
ervoir–scale models and the pore–scale models, respectively. 
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