
MimicNet: Fast Performance Estimates for Data Center
Networks with Machine Learning

Qizhen Zhang, Kelvin K.W. Ng, Charles W. Kazer§, Shen Yan†, João Sedoc⇧, and Vincent Liu
University of Pennsylvania, §Swarthmore College, †Peking University, ⇧New York University

{qizhen,kelvinng,liuv}@seas.upenn.edu, §ckazer1@swarthmore.edu, †yanshen@pku.edu.cn, ⇧js11531@stern.nyu.edu

ABSTRACT
At-scale evaluation of new data center network innovations is
becoming increasingly intractable. This is true for testbeds, where
few, if any, can a�ord a dedicated, full-scale replica of a data center.
It is also true for simulations, which while originally designed
for precisely this purpose, have struggled to cope with the size of
today’s networks.

This paper presents an approach for quickly obtaining accurate
performance estimates for large data center networks. Our system,
MimicNet, provides users with the familiar abstraction of a packet-
level simulation for a portion of the network while leveraging
redundancy and recent advances in machine learning to quickly
and accurately approximate portions of the network that are not
directly visible. MimicNet can provide over two orders of magnitude
speedup compared to regular simulation for a data center with
thousands of servers. Even at this scale, MimicNet estimates of the
tail FCT, throughput, and RTT are within 5% of the true results.

CCS CONCEPTS
•Networks→Network simulations; Network performance mod-
eling; Network experimentation; • Computing methodologies →
Massively parallel and high-performance simulations;

KEYWORDS
Network simulation, Data center networks, Approximation, Ma-
chine learning, Network modeling
ACM Reference Format:
Qizhen Zhang, Kelvin K.W. Ng, Charles W. Kazer§, Shen Yan†, João Sedoc⇧,
and Vincent Liu. 2021. MimicNet: Fast Performance Estimates for Data Cen-
ter Networks with Machine Learning. In ACM SIGCOMM 2021 Conference
(SIGCOMM ’21), August 23–27, 2021, Virtual Event, USA. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3452296.3472926

1 INTRODUCTION
Over the years, many novel protocols and systems have been pro-
posed to improve the performance of data center networks [5–
7, 12, 19, 33, 39]. Though innovative in their approaches and promis-
ing in their results, these proposals su�er from a consistent chal-
lenge: the di�culty of evaluating systems at scale. Networks, highly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00
https://doi.org/10.1145/3452296.3472926

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

4 8 16 32 64 128

W
1

to
 G

ro
un

d
Tr

ut
h

Network Size (#Clusters)

Small-scale Flow-level MimicNet

Figure 1: Accuracy for MimicNet’s predictions of the FCT
distribution for a range of data center sizes. Accuracy is
quanti�ed via the Wasserstein distance (W1) to the distri-
bution observed in the original simulation. Lower is better.
Also shown are the accuracy of a �ow-level simulator (Sim-
Grid) and the accuracy of assuming a small (2-cluster) simu-
lation’s results are representative.

interconnected and �lled with dependencies, are particularly chal-
lenging in that regard—small changes in one part of the network
can result in large performance e�ects in others.

Unfortunately, full-sized testbeds that could capture these e�ects
are prohibitively expensive to build and maintain. Instead, most pre-
production performance evaluation comprises orders of magnitude
fewer devices and fundamentally di�erent network structures. This
is true for (1) hardware testbeds [47], which provide total control of
the system, but at a very high cost; (2) emulated testbeds [43, 54, 56],
which model the network but at the cost of scale or network e�ects;
and (3) small regions of the production network, which provide
‘in vivo’ accuracy but force operators to make a trade-o� between
scale and safety [48, 59]. The end result is that, often, the only way
to ascertain the true performance of the system at scale is to deploy
it to the production network.

We note that simulation was originally intended to �ll this gap.
In principle, simulations provide an approximation of network be-
havior for arbitrary architectures at an arbitrary scale. In practice,
however, modern simulators struggle to provide both simultane-
ously. As we show in this paper, even for relatively small networks,
packet-level simulation is 3–4 orders of magnitude slower than real-
time (5min of simulated time every ⇠3.2 days); larger networks
can easily take months or longer to simulate. Instead, researchers
often either settle for modestly sized simulations and assume that
performance translates to larger deployments, or they fall back to
approaches that ignore packet-level e�ects like �ow approximation
techniques. Both sacri�ce substantial accuracy.

In this paper, we describe MimicNet, a tool for fast performance
estimation of at-scale data center networks. MimicNet presents to
users the abstraction of a packet-level simulator; however, unlike

287

https://doi.org/10.1145/3452296.3472926
https://doi.org/10.1145/3452296.3472926
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Q. Zhang et al.

existing simulators, MimicNet only simulates—at a packet level—
the tra�c to and from a single ‘observable’ cluster, regardless of the
actual size of the data center. Users can then instrument the host and
network of the designated cluster to collect arbitrary statistics. For
the remaining clusters and tra�c that are not directly observable,
MimicNet approximates their e�ects with the help of deep learning
models and �ow approximation techniques.

As a preview ofMimicNet’s evaluation results, Figure 1 shows the
accuracy of its Flow-Completion Time (FCT) predictions for various
data center sizes and compares it against two common alternatives:
(1) �ow-level simulation and (2) running a smaller simulation and
assuming that the results are identical for larger deployments. For
each approach, we collected the simulated FCTs of all �ows with
at least one endpoint in the observable cluster. We compared the
distribution of each approach’s FCTs to that of a full-�delity packet-
level simulation using a,1 metric. The topology and tra�c pattern
were kept consistent, except in the case of small-scale simulation
where that was not possible (instead, we �xed the average load and
packet/�ow size). While MimicNet is not and will never be a perfect
portrayal of the original simulation, it is 4.1⇥ more accurate than
the other methods across network sizes, all while improving the
time to results by up to two orders of magnitude.

To achieve these results, MimicNet imposes a few carefully cho-
sen restrictions on the system being modeled: that the data center is
built on a classic FatTree topology, that per-host network demand is
predictable a priori, that congestion occurs primarily on fan-in, and
that a given host’s connections are independently managed. These
assumptions provide outsized bene�ts to simulator performance
and the scalability of its estimation accuracy, while still permitting
application to a broad class of data center networking proposals,
both at the end host and in the network.

Concretely, MimicNet operates as follows. First, it runs a sim-
ulation of a small subset of the larger data center network. Using
the generated data, it trains a Mimic—an approximation of clus-
ters’ ‘non-observable’ internal and cross-cluster behavior. Then,
to predict the performance of an # cluster simulation, it carefully
composes a single observable cluster with # � 1 Mimic’ed clusters
to form a packet-level generative model of a full-scale data center.
Assisting with the automation of this training process is a hyper-
parameter tuning stage that utilizes arbitrary user-de�ned metrics
(e.g., FCT, RTT, or average throughput) and MimicNet-de�ned met-
rics (e.g., scale generalizability) rather than traditional metrics like
L1/2 loss, which are a poor �t for a purely generative model.

This entire process—small-scale simulation, model training/tu-
ning, and full-scale approximation—can be orders of magnitude
faster than running the full-scale simulation directly, with only
a modest loss of accuracy. For example, in a network of a thou-
sand hosts, MimicNet’s steps take 1h3m, 7h10m, and 25m, respec-
tively, while full simulation takes over a week for the same net-
work/workload. These results hold across a wide range of network
con�gurations and conditions extracted from the literature. This
paper contributes:
• Techniques for the modeling of cluster behavior using deep-
learning techniques and �ow-level approximation. Critical to
the design of the Mimic models are techniques to ensure the
scalability of their accuracy, i.e., their ability to generalize to
larger networks in a zero-shot fashion.

0.0001

0.001

0.01

0.1

0 10 20 30 40 50 60 70

Si
m

ul
at

io
n

Se
co

nd
s

/S
ec

on
d

of ToRs/Aggs

Single Thread One Machine
Two Machines Four Machines

Figure 2: OMNeT++ performance on leaf-spine topologies of
various size. Even for these small cases, 5mins of simulation
time can take multiple days to process. Results were similar
for ns-3 and other simulation frameworks.

• An architecture for composing Mimics into a generative model
of a full-scale data center network. For a set of complex protocols
and real-world tra�c patterns, MimicNet can match ground-
truth results orders of magnitude more quickly than otherwise
possible. For large networks, MimicNet even outperforms �ow-
level simulation in terms of speed (in addition to producing
much more accurate results).

• A customizable hyperparameter tuning procedure and loss func-
tion design that ensure optimality in both generalization and a
set of arbitrary user-de�ned objectives.

• Implementations and case studies of a wide variety of network
protocols that stress MimicNet in di�erent ways.

The framework is available at: https://github.com/eniac/MimicNet.

2 MOTIVATION
Modern data center networks connect up to hundreds of thousands
of machines that, in aggregate, are capable of processing hundreds
of billions of packets per second. They achieve this via scale-out
network architectures, and in particular, FatTree networks like the
one in Figure 3 [4, 18, 50]. In the canonical version, the network
consists of Top-of-Rack (ToR), Cluster, and Core switches. We refer
to the components under a single ToR as a rack and the components
under and including a group of Cluster switches as a cluster. A large
data center might have over 100 such clusters.

The size and complexity of these networks make testing and
evaluating new ideas and architectures challenging. Researchers
have explored many potential directions including veri�cation [15,
26, 27, 35, 57], emulation [52, 54, 56], phased rollouts [48, 59], and
runtime monitoring [20, 58]. In reality, all of these approaches have
their place in a deployment work�ow; however, in this paper, we fo-
cus on a critical early step: pre-deployment performance estimation
using simulation.

2.1 Background on Network Simulation
The most popular simulation frameworks include OMNeT++ [34],
ns-3 [42], and OPNET [1]. Each of these operates at a packet-level
and are built around an event-driven model [53] in which the op-
erations of every component of the network are distilled into a
sequence of events that each �re at a designated ‘simulated time.’

288

https://github.com/eniac/MimicNet

MimicNet: Fast Performance Estimates for DCNs with ML SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Compared to evaluation techniques such as testbeds and emulation,
these simulators provide a number of important advantages:
• Arbitrary scale: Decoupling the system model from both hard-
ware and timing constraints means that, in principle, simula-
tions can encompass any number of devices.

• Arbitrary extensions: Similarly, with full control over the simu-
lated behavior, users can model any protocol, topology, design,
or con�guration.

• Arbitrary instrumentation: Finally, simulation allows the collec-
tion of arbitrary information at arbitrary granularity without
impacting system behavior.
In return for the above bene�ts, simulators trade-o� varying

levels of accuracy compared to a bare-metal deployment. Even so,
prior work has demonstrated their value in approximating real
behavior [5, 6, 33, 46, 55].

2.2 Scalability of Today’s Simulators
While packet-level simulation is easy to reason about and extend,
simulating large and complex networks is often prohibitively slow.
One reason for this is that discrete-event simulators, in essence,
take a massive distributed system and serialize it into a single event
queue. Thus, the larger the network, the worse the simulation
performs in comparison.

Parallelization.Anatural approach to improving simulation speed
is parallelization, for instance, with the parallel DES (PDES) tech-
nique [17]. In PDES, the simulated network is partitioned into
multiple logical processes (LPs), where each process has its own
event queue that is executed in parallel. Eventually, of course, the
LPs must communicate. In particular, consistency demands that a
process cannot �nish executing events at simulated time C unless
it can be sure that no other process will send it additional events
with C4 < C . In these cases, synchronization may be necessary.

Parallel execution is therefore only e�cient when the LPs can
run many events before synchronization is required, which is typi-
cally not the case for highly interconnected data center networks.
In fact, simulation performance often decreases in response to par-
allelization (see Figure 2). Many frameworks instead recommend
running several instances with di�erent con�gurations [14]. This
trivially provides a proportional speedup to aggregate simulation
throughput but does not improve the time to results.

Approximation. The other common approach is to leverage vari-
ous forms of approximation. For example, �ow-level approaches [38]
average the behavior ofmany packets to reduce computation. Closed-
form solutions [37] and a vast array of optimized custom simula-
tors [33, 45, 46] also fall in this category. While these approaches
often produce good performance; they require deep expertise to
craft and limit the metrics that one can draw from the analysis.

3 DESIGN GOALS
MimicNet is based around the following design goals:
• Arbitrary scale, extensions, and instrumentation: Acknowledging
the utility of packet-level simulation in enabling �exible and rich
evaluations of arbitrary network designs, we seek to provide
users with similar �exibility with MimicNet.

• Orders of magnitude faster results: Equally important, MimicNet
must be able to provide meaningful performance estimates
several orders of magnitude faster than existing approaches.
Parallelism, on its own, is not enough—we seek to decrease the
total amount of work.

• Tunable and high accuracy: Despite the focus on speed, Mimic-
Net should produce observations that resemble those of a full
packet-level simulation. Further, users should be able to de�ne
their own accuracy metrics and to trade this accuracy o� with
improved time to results.

Explicitly not a goal of our framework is full generality to arbi-
trary data center topologies, routing strategies, and tra�c patterns.
Instead, MimicNet makes several carefully chosen and domain-
speci�c assumptions (described in Section 4.2) that enable it to scale
to larger network sizes than feasible in traditional packet-level sim-
ulation. We argue that, in spite of these restrictions, MimicNet can
provide useful insights into the performance of large data centers.

4 OVERVIEW
MimicNet’s approach is as follows. Every MimicNet simulation
contains a single ‘observable’ cluster, regardless of the total num-
ber of clusters in the data center. All of the hosts, switches, links,
and applications in this cluster as well as all of the remote appli-
cations with which it communicates are simulated in full �delity.
All other behavior—the tra�c between un-observed clusters, their
internals, and anything else not directly observed by the user—is
approximated by trained models.

While prior work has also attempted to model systems and net-
works (e.g., [54, 56]), these prior systems tend to follow a more
traditional script by (1) observing the entire system/network and
(2) �tting a model to the observations. MimicNet is di�erentiated
by the insight that, by carefully composing models of small pieces
of a data center, we can accurately approximate the full data center
network using only observations of small subsets of the network.

4.1 MimicNet Design
MimicNet constructs and composes models at the granularity of
individual data center clusters: Mimics. From the outside, Mimics
resemble regular clusters. Their hosts initiate connections and ex-
change data with the outside world, and their networks drop, delay,
and modify that tra�c according to the internal queues and logic of
the cluster’s switches. However, Mimics di�er in that they are able
to predict the e�ects of that queuing and protocol manipulation
without simulating or interacting with other Mimics—only with
the observable cluster.

We note that the goal of MimicNet is not to replicate the e�ects
of any particular large-scale simulation, just to generate results
that exhibit their characteristics. It accomplishes the above with the
help of two types of models contained within each Mimic: (1) deep-
learning-based internal models that learn the behavior of switches,
links, queues, and intra-cluster cross-tra�c; and (2) �ow-based
feeder models that approximate the behavior of inter-cluster cross-
tra�c. The latter is parameterized by the size of the data center.
Together, these models take a sequence of observable packets and
their arrival times and output the cluster’s predicted e�ects:

289

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Q. Zhang et al.

… … ……

Data Generation Model Training

Feature
Extraction +

… … ……

Model Testing

Learned
Model

Hyper-parameter Tuning

…

drop

latency

ECN

… … ……

Large-scale Simulation

Hyper-tuned
Model

many
clusters

ML model

❶ ❷ ❸

❹

❺

Figure 3: The end-to-end, fully automated work�ow of MimicNet. (∂) Small-scale observations, (∑) model training, (∏) model
testing, and (π) optional hyper-parameter tuning produce tuned machine learning models for use in Mimics, which speed up
large-scale simulations (∫) by replacing the majority of the network. A key feature of MimicNet is that the traditionally slow
steps of ∂, ∑, ∏, and π are all done at small scale and are, therefore, fast as well.

… …

Cl
us

te
r Mimic-Real

Mimic-Mimic§5

§6 §6

Figure 4: Breakdown of tra�c in a to-be-approximated clus-
ter. MimicNet approximates all tra�c that does not interact
with the observable cluster (dotted-red lines) using the mod-
els in the referenced sections.

(1) Whether the packets are dropped as a result of the queue man-
agement policy.

(2) When the packets egress the Mimic, given no drop.
(3) Where the packets egress, based on the routing table.
(4) The contents of the packets after traversing the Mimic, includ-

ing modi�cations such as TTL and ECN.

Work�ow. The usage of MimicNet (depicted in Figure 3) begins
with a small subset of the full simulation: just two user-de�ned
clusters communicating with one another. This full-�delity, small-
scale simulation is used to generate training and testing sets for
supervised learning of the models described above. Augmenting
this training phase is a con�gurable hyper-parameter tuning stage
in which MimicNet explores various options for modeling with
the goal of maximizing both (a) user-de�ned, end-to-end accuracy
metrics like throughput and FCT, and (b) generalizability to larger
con�gurations and di�erent tra�c matrices.

Using the trained models, MimicNet assembles a full-scale sim-
ulation in which all of the clusters in the network (save one) are
replaced with Mimics. For both data generation and large-scale
simulation, MimicNet uses OMNeT++ as a simulation substrate.

Performance analysis. To understand MimicNet’s performance
gains, consider the Mimic in Figure 4 and the types of packets
that �ow through it. At a high level, there are two such types: (1)
tra�c that interacts with the observable cluster (Mimic-Real), and
(2) tra�c that does not (Mimic-Mimic).

As a back-of-the-envelope computation, assume that we simulate
clusters,# � 2. Also assume that) is the total number of packets

sent in the full simulation of the data center and that ? is the ratio
of tra�c that leaves a cluster vs. that stays within it (inter-cluster-
to-intra-cluster), 0  ?  1. The number of packets that leave a
single cluster in the full simulation is then approximately)?

.
Because Mimics only communicate with the single observable

cluster and not each other, the number of packets that leave a Mimic
in an approximate simulation is instead:

)?

(# � 1)
Thus, the total number of packets generated in a MimicNet simu-
lation (the combination of all tra�c generated at the observable
cluster and # � 1 Mimics) is:

)

#
+ (# � 1))?
(# � 1) =

) +)?
#

The total decrease in packets generated is, therefore, a factor be-
tween #

2 and # with a bias toward # when tra�c exhibits cluster-
level locality. Fewer packets and connections generated mean less
processing time and a smaller memory footprint. It also means a de-
crease in inter-cluster communication, which makes the composed
simulation more amenable to parallelism than the full version.

4.2 Restrictions
MimicNet makes several domain-speci�c assumptions that aid in
the scalability and accuracy of the MimicNet approach.
• Failure-free FatTrees: MimicNet assumes a FatTree topology,
where the structure of the network is recursively de�ned and
packets follow a strict up-down routing. This allows it to as-
sume symmetric bisection bandwidth and to break cluster-level
modeling into simpler subtasks.

• Tra�c patterns that scale proportionally: To ensure that mod-
els trained from two clusters scale up, MimicNet requires a
per-host synthetic model of �ow arrival, �ow size, packet size,
and cluster-level locality that is independent of the size of the
network. In other words (at least at the host level), users should
ensure that the size and frequency of packets in the �rst step
resemble those of the last step. We note that popular datasets
used in recent literature already adhere to this [6, 8, 33, 40].

• Fan-in bottlenecks: Following prior work, MimicNet assumes
that the majority of congestion occurs on fan-in toward the

290

MimicNet: Fast Performance Estimates for DCNs with ML SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

destination [24, 50]. This allows us to focus accuracy e�orts on
only the most likely bottlenecks.

• Intra-host isolation: To enable the complete removal of Mimic-
Mimic connections at end hosts, MimicNet requires that con-
nections be logically isolated from one another inside the host—
MimicNet models network e�ects but does not model CPU
interactions or out-of-band cooperation between connections.
MimicNet, as a �rst step toward large-scale network prediction

is, thus, not suited for evaluating every data center architecture
or con�guration. Still, we argue that MimicNet can provide useful
performance estimates of a broad class of proposals. We also discuss
potential relaxations to the above restrictions in Appendix A, but
leave those for future work.

5 INTERNAL MODELS
As mentioned, Mimics are composed of two types of models. The
�rst type models internal cluster behavior. Its goal is twofold:

(1) For external tra�c (both Mimic-Real and Mimic-Mimic), to
be able to predict how the network of the cluster will a�ect
the packet: whether it drops, its latency, its next hop, and any
packet modi�cations.

(2) For internal tra�c (between hosts in the same Mimic), to re-
move it and bake its e�ects into the above predictions. In other
words, during inference, the model should account for the ob-
servable e�ects of internal tra�c without explicitly seeing it.

Note that not all observable e�ects need to be learned, especially
if the result can be computed using a simple, deterministic function,
e.g., TTLs or ECMP. However, for others—drops, latency, ECN
marking, NDP truncation, and so on—the need for the models to
scale to unobserved con�gurations presents a unique challenge for
generalizable learning. To address the challenge,MimicNet carefully
curates training data, feature sets, and models with an explicit
emphasis on ensuring that generated models are scale-independent.

5.1 Small-scale Observations
MimicNet begins by running a full-�delity, but small-scale simula-
tion to gather training/testing data.

Simulation and instrumentation. Data generation mirrors the
depiction in Figure 3. Users �rst provide their host and switch
implementations in a format that can be plugged into the C++-
based OMNeT++ simulation framework.

Using these implementations, MimicNet runs a full-�delity simu-
lation of two clusters connected via a set of Core switches. Among
these two clusters, we designate one as the cluster to be modeled
and dump a trace of all packets entering and leaving the cluster. In
a FatTree network, this amounts to instrumenting the interfaces
facing the Core switches and the Hosts. Between these two junc-
tures are the mechanics of the queues and routers—these are what
is learned and approximated by the Mimic internal model.

Pre-processing.MimicNet takes the packet dumps and matches
the packets entering and leaving the network using identi�ers
from the packets (e.g., sequence numbers). Examining the matches
helps to determine the length of time it spent in the cluster and

any changes to the packet. There are two instances where a 1-to-
1 matching may not be possible: loss and multicast. Loss can be
detected as a packet entering the cluster but never leaving. Multicast
must be tracked by the framework. Both can be modeled.

5.2 Modeling Objectives
MimicNet models the clusters’ e�ects as machine learning tasks.
More formally, for each packet of external tra�c, 8:

Latency regression. We model the time that 8 spends in the clus-
ter’s network as a bounded continuous random variable and set the
objective to minimize the Mean Absolute Error (MAE) between the
real latency and the prediction:

min
’

|~;8 � ~̂;8 |,

where~;8 is (!max+n) if the packet is dropped and (lat 2 [!min, !max])
otherwise. ~̂;8 is the predicted latency. To improve the accuracy of
this task, MimicNet uses discretization in training latency models.
Speci�cally, MimicNet quantizes the values using a linear strategy:

5 (~;) =
$
~; � !min
!max � !min

⇥ ⇡
%

where ⇡ is the hyperparameter that controls the degree of dis-
cretization. By varying ⇡ , we can trade o� the ease of modeling
and the recovery precision from discretization.

Drops and packet modi�cation classi�cation. For most other
tasks, classi�cation is a better �t. For example, the prediction of
a packet drop has two possible outcomes, and the objective is to
minimize Binary Cross Entropy (BCE):

min
’

�~38 log ~̂38 � (1 � ~38) log(1 � ~̂38)

where ~38 is 1 if 8 is dropped and 0 otherwise, and ~̂38 2 [0, 1] is the
predicted probability that 8 is dropped. Packet modi�cations like
ECN-bit prediction share a similar objective.

Both regression and classi�cation tasks are modeled together with
a uni�ed loss function, which we describe in Section 5.4.

5.3 Scalable Feature Selection
With the above formulations, MimicNet must next select features
that map well to the target predictions. While this is a critical step
in any ML problem, MimicNet introduces an additional constraint—
that the features be scalable.

A scalable feature is one that remains meaningful regardless of
the number of clusters in the simulation. Consider a packet that
enters the Mimic cluster from a Core switch and is destined for a
host within the cluster. The local index of the destination rack ([0,
') for a cluster of ' racks) would be a scalable feature as adding
more clusters does not a�ect the value, range, or semantics of the
feature. In contrast, the IP of the source server would NOT be a
scalable feature. This is because, with just two clusters, it uniquely
identi�es the origin of the packet, but as clusters are added to the
simulation, never-before-seen IPs are added to the data.

Table 1 lists the scalable features in a typical data center network
with ECMP and TCP, applicable to both ingress and egress packets.
Other scalable features that are not listed include priority bits,
packet types, and ECN markings.

291

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Q. Zhang et al.

Feature Count

Local rack # Racks per cluster
Local server # Servers per rack
Local cluster switch # Cluster switches per cluster
Core switch traversed # Core switches
Packet size single integer value
Time since last packet single real value (discretized)
EWMA of the above feature single real value (discretized)

Table 1: Basic set of scalable features.

MimicNet performs two transformations on the captured fea-
tures: one-hot encoding the �rst four features to remove any implicit
ordering of devices and discretizing the two time-related features
as in Section 5.2. Crucially, all of these features can quickly be de-
termined using only packets’ headers, switch routing tables, and
the simulator itself.

5.4 DCN-friendly Loss Functions
The next task is to select an appropriate training loss function.
Several characteristics of this domain make it di�cult to apply the
objective functions of Section 5.2 directly.

Class imbalances. Even in heavily loaded networks, adverse events
like packet drops and ECN tagging are relatively rare occurrences.
For example, Figure 5a shows an example trace of drops over a
one-second period in a simulation of two clusters. 99.7% of training
examples in the trace are delivered successfully, implying that a
model of loss could achieve high accuracy even if it always predicts
‘no drop.’ Figure 5b exempli�es this e�ect using an LSTM trained
using BCE loss on the same trace as above. It predicts a drop rate
of almost an order of magnitude lower than the true rate.

To address this instance of class imbalance, MimicNet takes a
cost-sensitive learning approach [13] by adopting a Weighted-BCE
(WBCE) loss:

✓3 = �(1 �F)
’

~38 log ~̂38 �F
’

(1 � ~38) log(1 � ~̂38)

whereF is the hyperparameter that controls the weight on the drop
class. Figure 5c and 5d show that weighting drops can signi�cantly
improve the prediction accuracy. We note, however, that setting
F too high can also produce false positives. From our experience,
0.6⇠0.8 is a reasonable range, and we rely on tuning techniques in
Section 7.2 to �nd the bestF for a given network con�guration and
target metric.

Outliers in latencies. In latency, an equivalent challenge is accu-
rately learning tail behavior. For example, consider the latencies
from the previous trace, shown in Figure 6a. While most values
are low, a few packets incur very large latencies during periods of
congestion; these outliers are important for accurately modeling
the network.

Unfortunately, MAE as a loss function fails to capture the im-
portance of these values, as shown in the latency predictions of
an MAE-based model (Figure 6b), which avoids predicting high
latencies. We note that the other common regression loss function,
Mean Squared Error (MSE), has the opposite problem—it squares
the loss for each sample and produces models that tend to overvalue
outliers (Figure 6c).

MimicNet strikes a balance with the Huber loss [23]:

✓; =
’

�X (~;8 , ~̂;8)

�X (~; , ~̂;) =
(
1
2 (~; � ~̂;)2, if |~; � ~̂; |  X,
X |~; � ~̂; | � 1

2X
2, otherwise

where X 2 R+ is a hyperparameter. Essentially, the Huber loss
assumes a heavy-tailed error distribution and uses the squared loss
and the absolute loss under di�erent situations. Figure 6d shows
results for a model trained with the Huber loss (X = 1). In this
particular case, it reduces inaccuracy (measured in MAE) of the
99-pct latency from 13.2% to only 2.6%.

Combining loss functions. To combine the above loss functions
during model training, MimicNet normalizes all values and weights
them using hyperparameters. Generally speaking, a weight that
favors latency over other metrics is preferable as regression is a
harder task than classi�cation.

5.5 Generalizable Model Selection
Finally, with both features and loss functions, MimicNet can begin
to model users’ clusters. The model should be able to learn to
approximate the mechanics of the queues and interfaces as well as
cluster-local tra�c and its reactions to network conditions (e.g., as
a result of congestion control).

Many models exist and the optimal choice for both speed and
accuracy will depend heavily on the target network. To that end,
MimicNet can support any ML model. Given our desire for general-
ity, however, it currently leverages one particularly promising class
of models: LSTMs. LSTMs have gained recent attention for their
ability to learn complex underlying relationships in sequences of
data without explicit feature engineering [22].

Ingress/egress decomposition. To simplify the required mod-
els and improve training e�ciency, MimicNet models ingress and
egress tra�c separately. This approach is partially enabled by Mim-
icNet’s requirement of strict up-down routing, the intrinsic model-
ing of cluster-local tra�c, and the assumption of fan-in congestion.
While there are still some inaccuracies that arise from this deci-
sion (e.g., the e�ect of shared bu�ers), we found that this choice
was another good speed/accuracy tradeo� for all architectures we
tested. For each direction of tra�c, the LSTMs consist of an input
layer and a stack of �attened, one-dimensional hidden layers. The
hidden size is #features ⇥ #packets where #packets is the number of
packets in a sample, and #features is post one-hotting.

Congestion state augmentation. While in principle, LSTMs can
retain ‘memory’ between predictions to learn long-term patterns, in
practice, they are typically limited to memory on the order of 10s or
100s of samples. In contrast, the tra�c seen by a Mimic may exhibit
self-similarity on the order of hundreds of thousands of packets.
Our problem, thus, exhibits properties of multiscale models [11].

Because of this, we augment the LSTM model with a piece of
network domain knowledge: an estimation of the presence of con-
gestion in each cluster’s network. Speci�cally, four distinct states
are considered: (1) little to no congestion, (2) increasing congestion
as queues �ll, (3) high congestion, and (4) decreasing congestion as
queues drain. These states are estimated by looking at the latency

292

MimicNet: Fast Performance Estimates for DCNs with ML SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

 0

 1

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(a) Ground truth

 0

 1

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(b) Pred w/ BCE

 0

 1

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(c) Pred w/ 0.6 WBCE

 0

 1

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(d) Pred w/ 0.9 WBCE

Figure 5: Ground truth and LSTM-predicted drops for a one-second test set using di�erent loss functions. The y-axis is 1
for dropped, 0 for not. Ground truth has 0.3% drop rate and BCE loss has 0.01%. WBCE results in more realistic drop rates
depending on the weight (w = 0.6: 0.14%;w = 0.9: 0.49%).

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(a) Ground truth

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(b) Pred w/ MAE (1.4 ⇥ 10�4)

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(c) Pred w/ MSE (3.3 ⇥ 10�4)

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

.1s .2s .3s .4s .5s .6s .7s .8s .9s 1s
(d) Pred w/ Huber (1.1 ⇥ 10�4)

Figure 6: Ground truth and LSTM-predicted latency (in seconds) for a one-second test set using di�erent loss functions. With
each, we report the output of the objective, MAE (listed in parentheses). Unfortunately, usingMAE directly as the loss function
fails to capture outliers. Instead, Huber produces more realistic results and a better eventual MAE score.

and drop rate of recently processed packets in the cluster. By break-
ing the network up into these four coarse states, the LSTM is able
to e�ciently learn patterns over these regimes, each with distinct
behaviors. This feature is added to the others in Table 1.

6 FEEDER MODELS
While the above (internal) models can model the behavior of the
queues, routers, and internal tra�c of a cluster, the complete trace
of external tra�c is still required to generate accurate results. In
the terminology of Figure 4, internal models bake in the e�ects of
the intra-cluster tra�c, but the LSTMs are trained on all external
tra�c, not just Mimic-Real.

To replace the remaining non-observable tra�c, the internal
models are augmented with a feeder whose role is to estimate the
arrival rate of inter-Mimic tra�c and inject them into the internal
model. Creating a feeder model is challenging compared to internal
cluster models as inter-Mimic tra�c is not present in the small-scale
simulation and varies as the simulation scales. MimicNet addresses
this by creating a parameterized and fully generative model that
uses �ow-level approximation techniques to predict the packet
arrival rate of Mimic-Mimic tra�c in di�erent network sizes.

The feeder model is trained in parallel to the internal models.
MimicNet �rst derives from the small-scale simulation characteris-
tic packet interarrival distributions for all external �ows, separated
by their direction (ingress/egress). In our tests, we observed, as
others have in the past [8, 31] that simple log-normal or Pareto dis-
tributions produced reasonable approximations of these interarrival
times. Nevertheless, more sophisticated feeders can be trained and
parameterized in MimicNet. During the full simulation, the feeders
will take the hosts’ inter-cluster demand as a parameter, compute a
time-series of active �ow-level demand, and draw packets randomly
from that demand using the derived distributions.

Crucially, when feeding packets, the feeders generate ‘packets’
independently, pass their raw feature vectors to the internal models,
and immediately discard any output. This means that internal mod-
els’ hidden state is updated as if the packets were routed without
actually incurring the costs of creating, sending, or routing them.
While this approach shares the weaknesses of other �ow-level ap-
proximations, like the removal of intra-cluster tra�c, these packets
are never directly measured and, thus, an approximation of their
e�ect is su�cient. Further, while the tra�c is never placed in the

surrounding queues, i.e., queues of the Core switch or the egress
queues on the Hosts; as prior work has noted, the majority of drops
and congestion are found elsewhere in the network [50].

7 TUNING AND FINAL SIMULATION
MimicNet composes Mimics into a parallelized large-scale data
center simulation. In addition to designing the internal and feeder
models with scale-independence in mind, it ensures the models
survive scaling with a hyper-parameter tuning phase.

7.1 Composing Mimics
An # -cluster MimicNet simulation consists of a single real cluster,
� 1 Mimic clusters, and a proportional number of Core switches.
The real cluster continues to use the user implementation of Sec-
tion 5.1, but users can add arbitrary instrumentation, e.g., by dump-
ing pcaps or queue depths.

The Mimic clusters are constructed by taking the ingress/egress
internal models and feeders developed in the previous sections
and wrapping them with a thin shim layer. The layer intercepts
packets arriving at the borders of the cluster, periodically takes
packets from the feeders, and queries the internal models with both
to predict the network’s e�ects. The output of the shim is, thus,
either a packet, its egress time, and its egress location; or its absence.
Adjacent hosts and Core switches are wired directly to the Mimic,
but are otherwise unaware of any change.

Aside from the number of clusters, all other parameters are kept
constant from the small-scale to the �nal simulation. That includes
the feeder models and tra�c patterns, which take a size parameter
but �x other parameters (e.g., network load and �ow size).

7.2 Optional Hyper-parameter Tuning
Mimic models contain at least a few hyper-parameters that users
can optionally choose to tune: WBCE weight, Huber loss X , LSTM
layers, hidden size, epochs, and learning rate among others. Mim-
icNet provides a principled method of setting these by allowing
users to de�ne their own optimization function. This optimization
function is distinct from the model objectives or the loss functions.
Instead, they can evaluate end-to-end accuracy over arbitrary be-
havior in the simulation (for instance, tuning for accuracy of FCTs).
Users can add hyper-parameters or end-to-end optimization func-
tions depending on their use cases.

293

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Q. Zhang et al.

For every tested parameter set, MimicNet trains a set of models
and runs validation tests to evaluate the resulting accuracy and its
scale-independence. Speci�cally, MimicNet runs an approximated
and full-�delity simulation on a held-out validation workload in
three con�gurations: 2, 4, and 8 clusters. It then compares the two
versions using the user’s target metric.

The full-�delity comparison results are only gathered once, and
the MimicNet results are evaluated for every parameter set, but the
sizes are small enough that the additional time is nominal. Based on
the user-de�ned metric, MimicNet uses Bayesian Optimization (BO)
to pick the next parameter set that has the highest ‘prediction un-
certainty’ via an acquisition function of EI (expected improvement).
In this way, BO quickly converges on the optimal con�guration.

MimicNet supports two classes of metrics natively.

MSE-basedmetrics. For 1-to-1metrics,MimicNet provides a frame-
work for computing MSE. For example, when comparing the FCT
of the same �ow in both simulations:

MSE =
1

|Flows|
’

5 2Flows
(realFCT5 �mimicFCT5)2

A challenge in using this class of metrics is that the set of completed
�ows in the full-�delity network and MimicNet are not necessarily
identical—over a �nite running timespan, �ow completions that are
slightly early/late can change the set of observed FCTs. To account
for this, we only compute MSE over the intersection, i.e.,

Flows = {5 | (9 realFCT5 ^ (9 mimicFCT5)}
By default, MimicNet ignores models with overlap < 80%.

Wasserstein-based metrics. Unfortunately, not all metrics can
be framed as above. Consider per-packet latencies. While in train-
ing we assume that we can calculate a per-packet loss and back-
propagate, in reality when a drop is mistakenly predicted, the next
prediction should re�ect the fact that there is one fewer packet in
the network, rather than adhering to the original packet trace. In
some protocols like TCP, the loss may even cause packets to appear
in the original but not in any MimicNet version or vice versa.

MimicNet’s hyper-parameter tuning phase, therefore, allows
users to test distributions, e.g., of RTTs, FCTs, or throughput, via
the Wasserstein metric. Also known as the Earth Mover’s Distance,
the metric quanti�es the minimum cost of transforming one distri-
bution to the other [16]. Speci�cally, for a one-dimensional CDF,
the metric (,1) is:

,1 =
π +1

�1
|CDFreal (G) � CDFmimic (G) |

,1 values are scale-dependent, with lower numbers indicating
greater similarity.

8 PROTOTYPE IMPLEMENTATION
We have implemented a prototype of the full MimicNet work�ow
in C++ and Python on top of PyTorch/ATen and the OMNeT++ [34]
simulation suite. Given an OMNeT++ router and host implemen-
tation, our prototype will generate training data, train/hypertune
a set of MimicNet models, and compose the resulting models into
an optimized, full-scale simulation. This functionality totals to an
additional 25,000 lines of code.

Simulation framework.MimicNet is built on OMNeT++ v4.5 and
INET v2.4 with custom C++ modules to incorporate our machine
learningmodels into the framework. To ensure that the experiments
are repeatable, all randomness, including the seeds for generating
the tra�c are con�gurable. They were kept consistent between
variants and changed across training, testing, and cross validation.

Parallel execution. A side bene�t MimicNet is that it signi�cantly
reduces the need for synchronization in a parallel execution. In
order to take advantage of this property, we parallelize each cluster
of the �nal simulation using an open-source PDES implementation
of INET [51].

Machine learning framework. Our LSTM models are trained
using PyTorch 0.4.1 and CUDA 9.2 [41, 44]. Hyperparameter tuning
was done with the assistance of hyperopt [2]. At runtime, Mimic
cluster modules accept OMNeT++ packets, extract their features,
perform a forward step of the LSTMs, and forward the packet via
ECMP based on the result. For speed, our embedded LSTMs were
custom-built inference engines that leverage low-level C++ and
CUDA functions from the Torch, cuDNN, and ATen libraries.

9 EVALUATION
Our evaluation focuses on several important properties ofMimicNet
including: (1) its accuracy of approximating the performance of
data center networks, (2) the scalability of its accuracy to large
networks, (3) the speed of its approximated simulations, and (4) its
utility for comparing con�gurations.

Methodology. Our simulations all assume a FatTree topology, as
described in Section 2. We con�gured the link speed to be 100Mbps
with a latency of 500 `s. To scale up and down the data center,
we adjusted the number of racks/switches in each cluster as well
as the number of clusters in the data center. We note that higher
speeds and larger networks were not feasible due to the limitation
of needing to evaluate MimicNet against a full-�delity simulation,
which would have taken multiple years to produce even a single
equivalent execution.

The base case uses TCP New Reno, Drop Tail queues, and ECMP.
To test MimicNet’s robustness to di�erent network architectures,
we use a set of protocols: DCTCP [6], Homa [40], TCP Vegas [9],
and TCP Westwood [36] that stress di�erent aspects of MimicNet.
Our workload uses traces from a well-known distribution also used
by many recent data center proposals [6, 40]. By default, the tra�c
utilizes 70% of the bisection bandwidth and the mean �ow size is
1.6MB. All experiments were run on CloudLab [47] using machines
with two Intel Xeon Silver 4114 CPUs and an NVIDIA P100 GPU.
When evaluating �ow-level simulation, we use the SimGrid [10]
v3.25 and its built-in FatTreeZone con�gured with the same topol-
ogy and tra�c demands as full/MimicNet simulation.

Evaluation metrics. As mentioned in Section 7.2, traditional per-
prediction metrics like training loss are not useful in our context.
Instead, we leverage three end-to-end metrics: (1) FCT, (2) per-
server Throughput binned into 100ms intervals, (3) and RTT. In the
�ow-level simulation, FCT is computed using �ow start/end times,
Throughput is computed with a custom load-tracking plugin, and
RTT is not possible to compute. In MimicNet and full simulation,
all three are computed by instrumenting the hosts in the observable

294

MimicNet: Fast Performance Estimates for DCNs with ML SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA
2
C
lu
st
er
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

F
ra

ct
io

n
 o

f
F

lo
w

s

Flow Completion Time (s)

Groundtruth
MimicNet (0.108)

Flow-level (0.277)

(a) FCT distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106 107

F
ra

ct
io

n

Throughput (Bps)

Groundtruth
MimicNet (5256)

Flow-level (61614)

(b) Throughput distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10

F
ra

ct
io

n
 o

f
P

a
ck

e
ts

Latency (s)

Groundtruth
MimicNet (0.00118)

(c) Packet RTT distribution

12
8
C
lu
st
er
s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1 10 100

Groundtruth: 10.77
MimicNet: 10.97

Flow-level: 7.53
Small-scale: 12.95

F
ra

ct
io

n
 o

f
F

lo
w

s

Flow Completion Time (s)

Groundtruth
MimicNet (0.113)

Flow-level (0.501)
Small-scale (0.464)

(d) FCT distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106 107

Groundtruth: 213K
MimicNet: 221K

Flow-level: 158K
Small-scale: 441K

F
ra

ct
io

n

Throughput (Bps)

Groundtruth
MimicNet (7561)

Flow-level (21787)
Small-scale (42115)

(e) Throughput distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0001 0.001 0.01 0.1 1 10

Groundtruth: 0.0307
MimicNet: 0.0302

Small-scale: 0.0183

F
ra

ct
io

n
 o

f
P

a
ck

e
ts

Latency (s)

Groundtruth
MimicNet (0.00158)

Small-scale (0.00269)

(f) Packet RTT distribution

Figure 7: The accuracy of MimicNet in the baseline con�guration for 2 clusters and 128 clusters. Also shown are results from
SimGrid and the assumption that small-scale results are representative.,1 to ground truth is shown in parentheses. We an-
notate the 99-pct value of each metric for every approach at the tail in 128 clusters.

0
5K

10K
15K
20K
25K
30K
35K
40K

4 8 16 32 64 128

W
1

to
 G

ro
un

d
Tr

ut
h

Network Size (#Clusters)

Small-scale Flow-level MimicNet

Figure 8: Throughput Scalability.

cluster to track packets sends and ACK receipts. Where applicable,
we compare CDFs using a,1 metric.

9.1 MimicNet Models Clusters Accurately
We begin by evaluating MimicNet’s accuracy when replacing a
single cluster with a Mimic before examining larger con�gurations
in the next section. Note that in this con�guration, there is no need
for feeder models. Rather, this experiment directly evaluates the ef-
fect of replacing a cluster’s queues, routers, and cluster-local tra�c
with an LSTM. For this test, we use the baseline set of protocols
described above. The �nal results use tra�c patterns that are not
found in the training or hyper-parameter validation sets.

Figure 7a–c show CDFs of our three metrics for this test. As the
graphs show, MimicNet achieves very high accuracy on all metrics.
The LSTM is able to learn the requisite long-term patterns (FCT
and throughput) as well as packet RTTs. Across the entire range,
MimicNet’s CDFs adhere closely to the ground truth, i.e., the full-
�delity, packet-level simulation; just as crucial, the shape of the
curve is maintained. Flow-level simulation behaves much worse.

9.2 MimicNet’s Accuracy Scales
A key question is whether the accuracy translates to larger compo-
sitions where tra�c interactions become more complex and feeders
are added. We answer that question using a simulation composed
of 128 clusters (full-�delity simulation did not complete for larger

0

5.0e-4
1.0e-3
1.5e-3
2.0e-3
2.5e-3
3.0e-3
3.5e-3

4 8 16 32 64 128

W
1
to
G
ro
un
d
Tr
ut
h

Network Size (#Clusters)

Small-scale MimicNet

Figure 9: RTT Scalability. Flow-level simulation is too
coarse-grained to provide this metric.

sizes). In MimicNet, 127 clusters are replaced with the same Mimics
as the previous subsection. Figure 7d–f show the resulting accuracy.
There are a couple of interesting observations.

First, while the accuracy of MimicNet estimation does decrease,
the decrease is nominal. More concretely, for FCT, throughput, and
RTT, we �nd,1 metrics of 0.113, 7561, and 0.00158 compared to
the ground truth, respectively. For reference, we also plot SimGrid
and the original 2-cluster simulation’s results. The,1 error be-
tween 2-cluster simulation and 128-cluster groundtruth are 311%,
457%, and 70% higher than MimicNet’s values; the,1s of FCT and
throughput between SimGrid and the groundtruth are similarly
high. The results indicate that our composition methods are suc-
cessfully approximating the scaling e�ects. Critically, MimicNet
also predicts tails well: the p99 of MimicNet’s FCT, throughput, and
RTT distributions are within 1.8%, 3.3%, and 2% of the true result.

We evaluate MimicNet’s scalability of accuracy more explicitly
in Figures 1, 8, and 9. Here, we plot the ,1 metric of all three
approaches for several data center sizes ranging from 4 to 128.
Recall that the 2-cluster results essentially hypothesize that FCT,
throughput, and RTT do not change as the network scales. An
upward trend on their,1 metric in all three graphs suggests that the
opposite is true. Compared to that baseline, MimicNet on average
achieves a 43% lower RTT,1 error, 78% lower throughput error, and
63% lower FCT error. In all cases, MimicNet also shows much lower

295

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Q. Zhang et al.

 1

 10

 100

 1000

 10000
2 racks/cluster

1.9

4 racks/cluster

2.3

8 racks/cluster

2.8

(a) 8 clusters
 1

 10

 100

 1000

 10000

4.2 6.1
10.5

(b) 16 clusters
 1

 10

 100

 1000

 10000

12.4
24.6

75.2

(c) 32 clusters
 1

 10

 100

 1000

 10000

70.0
199.9

N
ot

 F
in

is
he

d
in

 3
 m

on
th

s

(d) 64 clusters
 1

 10

 100

 1000

 10000

675.1

N
ot

 �
ni

sh
ed

 in
 3

 m
on

th
s

N
ot

 F
in

is
he

d
in

 3
 m

on
th

s

(e) 128 clusters
Figure 10: Simulation running time speedup brought byMimicNet in di�erent sizes of data centers. In a network of 128 clusters
(256 racks), MimicNet reduces the simulation time from 12 days to under 30 minutes, achieving more than two orders of
magnitude speedup. The speedups are consistent and stable across di�erent workloads.

variance across workloads, demonstrating better predictability at
approximating large-scale networks.

9.3 MimicNet Simulates Large DCs Quickly
Equally important,MimicNet can estimate performance very quickly.
The multiple phases of MimicNet—small-scale simulation, model
training, hyper-parameter tuning, and large-scale composition—
each require time, but combined, they are still faster than running
the full-�delity simulation directly. By paying the �xed costs of the
�rst two phases, the actual simulation can be run while omitting
the majority of the tra�c and network connections.

Execution time breakdown. Table 2 shows a breakdown of the
running time of both the full simulation and MimicNet, factored
out into its three phases for the 128 cluster, 1024 host simulation in
Figure 1. For 20 seconds of simulated time, the full-�delity simulator
required almost 1w 5d. In contrast, MimicNet, in aggregate, only
required 8h 38m, where just 25m was used for �nal simulation—
a 34⇥ speedup. Longer simulation periods or multiple runs for
di�erent workload seeds would have led to much larger speedups.

Simulation time speedup.We focus on the non-�xed-cost com-
ponent of the execution time in order to better understand the
bene�ts of MimicNet. Figure 10 shows the speedup of MimicNet
after the initial, �xed cost of training a cluster model. For each
network con�guration, we run both MimicNet and a full simulation
over the exact same sets of generated workloads. We then report
the average speedup and the standard error across those workloads.

In both systems, simulation time consists of both setup time
(constructing the network, allocating resources, and scheduling the
tra�c) as well as packet processing time. MimicNet substantially
speeds up both phases.

MimicNet can provide consistent speedups up to 675⇥ for the
largest network that full-�delity simulation was able to handle.
Above that size, full-�delity could not �nish within three months,
while MimicNet can �nish in under an hour. Somewhat surprisingly,
MimicNet is also 7⇥ faster than �ow-level approximation at this scale
as SimGrid must still track all of the Mimic-Mimic connections.

Groups of simulations. We also acknowledge that simulations
are frequently run in groups, for instance, to test di�erent con-
�guration or workload parameters. To evaluate this, we compare
several di�erent approaches to running groups of simulations and
evaluate them using two metrics: (1) simulation latency, i.e., the
total time it takes to obtain the full set of results, and (2) simulation

Factor Time

MimicNet
Small-scale simulation 1h 3m

Training and hyper-param tuning 7h 10m
Large-scale simulation 25m

Full Simulation 1w 4d 22h 25m

Table 2: Running time comparison for 20 s of simulated time
of a 128 cluster, 1024 host data center. Bene�ts of MimicNet
increase with simulated time as the �rst two values forMim-
icNet are constant.

throughput, i.e., the average number of aggregate simulation sec-
onds that can be processed per second. In this section, we focus on
the e�ect of network size on these metrics, but we also evaluated
the e�ect of simulation length in Appendix F and the e�ect on
compute consumption in Appendix G.

Simulation latency: For latency, # cores in a machine, and (sim-
ulation seconds, we consider �ve di�erent approaches: (1) single
simulation, i.e., one full simulation that runs on a single core and
simulates (seconds; (2) singleMimicNet w/ training, i.e., one end-to-
end MimicNet instance, running from scratch; (3) single MimicNet,
i.e., one MimicNet instance that reuses an existing model; (4) par-
titioned simulation, i.e., # full simulations, each simulating (/#
seconds; and (5) partitioned MimicNet, i.e., # MimicNet instances,
each simulating (/# seconds. #=20 as our machines have 20 cores.

Figure 11 shows the results for network sizes ranging from 8 to
128 clusters. We make the following observations. First, when the
network is relatively small, the model training overhead in Mim-
icNet is signi�cant, so ‘single MimicNet w/ training’ takes longer
than ‘single simulation’ to �nish. When the network size reaches 64
clusters, even when training time is included, MimicNet runs faster
than any full simulation approach. When the network is as large as
128 clusters, MimicNet is 2-3 orders of magnitude faster than full
simulations. The results hold when partitioning, with MimicNet
gaining an additional advantage in larger simulations where the re-
moval of the majority of packets/connections introduces substantial
gains to the memory footprint of the simulation group.

Simulation throughput: For throughput, we consider a similar set of
�ve approaches. Speci�cally, the �rst three are identical to (1)–(3)
above, while the last two run for (seconds to maximize throughput:
(4) parallel simulation, i.e., # full simulations, each simulating (
seconds and (5) parallel MimicNet, i.e., # MimicNet instances, each
simulating (seconds.

296

MimicNet: Fast Performance Estimates for DCNs with ML SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

101

102

103

104

105

106

107

8 16 32 64 128

O
ut

 o
f

m
em

or
y

Si
m

ul
at

io
n

la
te

nc
y

(s
ec

on
ds

)

Network size (#clusters)

Single simulation
Single MimicNet w/ training

Single MimicNet
Partitioned simulation

Partitioned MimicNet

Figure 11: Simulation latency with di�erent network sizes (lower is better).

10-5

10-4

10-3

10-2

10-1

100

8 16 32 64 128

O
ut

 o
f

m
em

or
y

O
ut

 o
f

m
em

or
y

Si
m

ul
at

io
n

th
ro

ug
hp

ut
(s

im
ul

at
io

n
se

co
nd

s/
se

co
nd

)

Network size (#clusters)

Single simulation
Single MimicNet w/ training

Single MimicNet
Parallel simulation

Parallel MimicNet

Figure 12: Simulation throughput with di�erent network sizes (higher is better).

Figure 12 shows the throughput results for the range of network
sizes. Overall, MimicNet maintains high throughput regardless
of the network size because the amount of observable tra�c is
roughly constant. Single simulation, on the other hand, slows down
substantially as the size of the network grows, and at 128 clusters,
full simulation is almost �ve orders of magnitude slower than the
real-time. As mentioned in Section 2.2, a remedy prescribed by
many simulation frameworks is to run multiple instances of the
simulation. Our results indeed show that the throughput of parallel
simulation compared to single simulation improves by up to a factor
of # . When contrasted to the scale-independent throughput of
MimicNet, however, a single instance of MimicNet overtakes even
parallelized simulation at 32 clusters. Larger parallelized instances
begin to su�er from the memory issues described above, but even
with unlimited memory, MimicNet would still likely outperform
parallelized simulation by 2–3 orders of magnitude at 128 clusters.

9.4 Use Cases
MimicNet can approximate a wide range of protocols and provide
actionable insights for each. This section presents two potential use
cases: (1) a method of tuning con�gurations of DCTCP and (2) a
performance comparison of several data center network protocols.

9.4.1 Configuration Tuning

DCTCP leverages ECN feedback from the network to adjust conges-
tion windows. An important con�guration parameter mentioned
in the original paper is the ECN marking threshold, , which in�u-
ences both the latency and throughput of the protocol.

Essentially, a lower signals congestion more aggressively en-
suring lower latency; however, a that is too low may underutilize
network bandwidth, thus limiting throughput. FCTs are a�ected by

 3

 4

 5

 6

 7

 8

K=5 K=10 K=20 K=40 K=60 K=80

90
-p

ct
 F

C
T

(s
ec

on
d)

ECN Marking Threshold (packet)

2 clusters
32 clusters

32 clusters (MimicNet)

Figure 13: Tuning the marking threshold Q in DCTCP: the
con�guration that achieves the lowest 90-pct FCT is di�er-
ent between 2 clusters (Q = 60) and 32 clusters (Q = 20).
MimicNet provides the same answer as the full simulation
for 32 clusters, but it is 12⇥ faster.

both: short �ows bene�t from lower latency while long �ows favor
higher throughput. The optimal , thus, depends on both the net-
work and workload. Further, a simulation’s prescription for has
implications for its feasibility, its latency/throughput comparisons
to other protocols, and the range of parameters that an operator
might try when deploying to production.

Figure 13 compares the 90-pct FCT for di�erent s. Looking only
at the small-scale simulation, one may be led to believe that the
optimal setting for our workload is = 60. Looking at the larger
32-cluster simulation tells a very di�erent story—one where = 60
is among the worst of con�gurations tested and = 20 is instead
optimal. MimicNet successfully arrives at the correct conclusion.

9.4.2 Comparing Protocols

Finally, MimicNet is accurate enough to be used to compare dif-
ferent transport protocols. We implement an additional four such

297

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Q. Zhang et al.

 0
 0.2
 0.4
 0.6
 0.8

 1

10-5 10-4 10-3 10-2 10-1 100 101 102F
ra

ct
io

n
of

 F
lo

w
s

Flow Completion Time (s)

Homa
DCTCP

TCP Vegas
TCP Westwood

(a) Ground truth of the comparison

 0
 0.2
 0.4
 0.6
 0.8

 1

10-5 10-4 10-3 10-2 10-1 100 101 102F
ra

ct
io

n
of

 F
lo

w
s

Flow Completion Time (s)

Homa
DCTCP

TCP Vegas
TCP Westwood

(b) The approximation of MimicNet.
Figure 14: FCT distributions of Homa, DCTCP, TCP Vegas,
and TCP Westwood for a 32-cluster data center.

protocols that each stress MimicNet’s modeling in di�erent ways.
Homa is a low-latency data center networking protocol that utilizes
priority queues—a challenging extra feature for MimicNet as pack-
ets can be reordered. TCP Vegas is a delay-based transport protocol
that serves as a stand-in for the recent trend of protocols that are
very sensitive to small changes in latency [28, 39]. TCP Westwood
is a sender-optimized TCP that measures the end-to-end connec-
tion rate to maximize throughput and avoid congestion. DCTCP
(= 20) uses ECN bits, which add an extra feature and prediction
output compared to the other protocols. We run the full MimicNet
pipeline for each of the protocols, training separate models. We
then compare their performance over the same workload, and we
evaluate the accuracy and speed of MimicNet for this comparison.
The FCT results are in Figure 14 (other metrics are in Appendix D).

As in the base con�guration, for all protocols, MimicNet can
match the FCT of the full-�delity simulation closely. In fact, on
average, the approximated 90-pct and 99-pct tails by MimicNet are
within 5% of the ground truth. Because of this accuracy, MimicNet
performance estimates can be used to gauge the rough relative
performance of these protocols. For example, the full simulation
shows that the best and the worst protocol for 90-pct of FCT is
Homa (3.1 s) and TCP Vegas (4.5 s); MimicNet predicts the correct
order with similar values: Homa with 3.3 s and TCP Vegas with 4.6 s.
While the exact values may not be identical, MimicNet can predict
trends and ballpark comparisons much more accurately than the
small-scale baseline. It can arrive at these estimates in a fraction of
the time—12⇥ faster.

10 RELATEDWORK
Packet-level simulation. As critical tools for networking, simu-
lators have existed for decades [30]. Popular choices include ns-
3 [21, 42], OMNeT++ [34], and Mininet [29]. When simulating large
networks, existing systems tend to sacri�ce one of scalability or
granularity. BigHouse, for instance, models data center behavior

using tra�c drawn from empirically generated distributions and a
model of how tra�c distributions translate to a set of performance
metrics [37]. Our system, in contrast, begins with a faithful repro-
duction of the target system, providing a more realistic simulation.

Emulators. Another class of tools attempts to build around real
components to maintain an additional level of realism [3, 32, 54].
Flexplane [43], for example, passes real, production tra�c through
models of resource management schemes. Pantheon [56] runs real
congestion control algorithms on models of Internet paths. Unfor-
tunately, emulation’s dependency on real components often limits
the achievable scale. Scalability limitations even impact systems
like DIABLO [52], which leverages FPGAs to emulate devices with
low cost, but may still require ⇠$1 million to replicate a large-scale
deployment.

Phased deployment.Also related are proposals such as [49, 59] re-
serve slices of a production network for A/B testing. While showing
true at-scale performance, they are infeasible for most researchers.

Preliminary version. Finally, we note that a published prelimi-
nary version of this work explored the feasibility of approximating
packet-level simulations using deep learning [25]. This paper rep-
resents a substantial evolution of that work. Critical advancements
include the notion of scale-independent features, end-to-end hyper-
parameter tuning methods/metrics that promote scalability of accu-
racy, the addition of feeder models, improved loss function design,
and other machine learning optimizations such as discretization.
These are in addition to signi�cant improvements to the Mimic-
Net implementation and a substantially deeper exploration of the
design/evaluation of MimicNet.

11 CONCLUSION AND FUTUREWORK
This paper presents a system, MimicNet, that enables fast perfor-
mance estimates of large data center networks. Through judicious
use of machine learning and other modeling techniques, MimicNet
exhibits super-linear scaling compared to full simulation while re-
taining high accuracy in replicating observable tra�c. While we
acknowledge that there is still work to be done in making the pro-
cess simpler and even more accurate, the design presented here
provides a proof of concept for the use of machine learning and
problem decomposition for the approximation of large networks.

As part of the future work, we would like to further improve
MimicNet’s speed with the support of incremental model updates
when models need retraining; and its accuracy with models that
involve more network events at higher levels such as �ow depen-
dencies (details are in Appendix H). More generally, extending its
accuracy and speed for the evaluation of more data center protocols
and architectures is how MimicNet evolves in the future.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We gratefully acknowledge Rishikesh Madabhushi, Chuen Hoa Koh,
Lyle Ungar, our shepherd Brent Stephens, and the anonymous SIG-
COMM reviewers for all of their help and thoughtful comments.
This work was supported in part by Facebook, VMWare, NSF grant
CNS-1845749, and DARPA Contract No. HR001117C0047. João Se-
doc was partially funded by Microsoft Research Dissertation Grant.

298

MimicNet: Fast Performance Estimates for DCNs with ML SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

REFERENCES
[1] Opnet network simulator, 2015. https://opnetprojects.com/

opnet-network-simulator/.
[2] Hyperopt, 2018. http://hyperopt.github.io/hyperopt/.
[3] M. Al-Fares, R. Kapoor, G. Porter, S. Das, H. Weatherspoon, B. Prabhakar, and

A. Vahdat. Netbump: User-extensible active queue management with bumps
on the wire. In 2012 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), pages 61–72, Oct 2012.

[4] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, SIGCOMM ’08, pages 63–74, New York,
NY, USA, 2008. ACM.

[5] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. Conga: Distributed
congestion-aware load balancing for datacenters. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, pages 503–514, New York, NY, USA,
2014. ACM.

[6] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data
center tcp (dctcp). In Proceedings of the ACM SIGCOMM 2010 Conference, SIG-
COMM ’10, pages 63–74, New York, NY, USA, 2010. ACM.

[7] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. Less is more: Trading a little bandwidth for ultra-low latency
in the data center. In Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages 253–266, San Jose, CA, 2012.
USENIX.

[8] Theophilus Benson, Aditya Akella, and David A. Maltz. Network tra�c charac-
teristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, 2010.

[9] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. Tcp vegas: New
techniques for congestion detection and avoidance. SIGCOMM Comput. Commun.
Rev., 24(4):24–35, October 1994.

[10] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric
Suter. Versatile, scalable, and accurate simulation of distributed applications and
platforms. Journal of Parallel and Distributed Computing, 74(10):2899–2917, June
2014.

[11] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale
recurrent neural networks. arXiv preprint arXiv:1609.01704, 2016.

[12] Je�rey Dean and Sanjay Ghemawat. MapReduce: Simpli�ed data processing on
large clusters. In OSDI, 2004.

[13] Charles Elkan. The foundations of cost-sensitive learning. In Proceedings of the
Seventeenth International Joint Conference on Arti�cial Intelligence, IJCAI 2001,
Seattle, Washington, USA, August 4-10, 2001, pages 973–978, 2001.

[14] G. Ewing, Krzysztof Pawlikowski, and Donald Mcnickle. Akaroa-2: Exploiting
network computing by distributing stochastic simulation. Proceedings of 13th
European Simulation Multiconference, ESM’99, pages 175–181, 6 1999.

[15] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,
Ratul Mahajan, and Todd Millstein. A general approach to network con�guration
analysis. In Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation, NSDI’15, pages 469–483, Berkeley, CA, USA, 2015.
USENIX Association.

[16] Andrew Frohmader and Hans Volkmer. 1-wasserstein distance on the standard
simplex. CoRR, abs/1912.04945, 2019.

[17] Richard M. Fujimoto. Parallel discrete event simulation. In Proceedings of the 21st
Winter Simulation Conference, Washington, DC, USA, December 4-6, 1989, pages
19–28, 1989.

[18] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. Vl2: A scalable and �exible data center network. In Proceedings of the
ACM SIGCOMM 2009 Conference on Data Communication, SIGCOMM ’09, pages
51–62, New York, NY, USA, 2009. ACM.

[19] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. Rdma over commodity ethernet at scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, pages 202–215, New York,
NY, USA, 2016. ACM.

[20] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis
Kurien. Pingmesh: A large-scale system for data center network latency mea-
surement and analysis. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM ’15, pages 139–152, New York,
NY, USA, 2015. ACM.

[21] Thomas R. Henderson, Mathieu Lacage, and George F. Riley. Network simulations
with the ns-3 simulator. In In Sigcomm (Demo, 2008.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[23] Peter J. Huber. Robust estimation of a location parameter. In The Annals of
Mathematical Statistics, pages 73–101, 1964.

[24] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,
and Changhoon Kim. Eyeq: Practical network performance isolation for the
multi-tenant cloud. In 4th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 12), Boston, MA, June 2012. USENIX Association.

[25] Charles W. Kazer, João Sedoc, Kelvin K. W. Ng, Vincent Liu, and Lyle H. Ungar.
Fast network simulation through approximation or: How blind men can describe
elephants. In Proceedings of the 17th ACM Workshop on Hot Topics in Networks,
HotNets 2018, Redmond, WA, USA, November 15-16, 2018, pages 141–147. ACM,
2018.

[26] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.
Veri�ow: Verifying network-wide invariants in real time. SIGCOMM Comput.
Commun. Rev., 42(4):467–472, September 2012.

[27] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster,
and Russ Clark. Kinetic: Veri�able dynamic network control. In Proceedings of
the 12th USENIX Conference on Networked Systems Design and Implementation,
NSDI’15, pages 59–72, Berkeley, CA, USA, 2015. USENIX Association.

[28] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, David Wetherall, and Amin Vahdat. Swift: Delay is simple and
e�ective for congestion control in the datacenter. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, page 514–528, New York, NY, USA, 2020. Association for
Computing Machinery.

[29] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: Rapid
prototyping for software-de�ned networks. In Proceedings of the 9th ACM SIG-
COMMWorkshop on Hot Topics in Networks, Hotnets-IX, pages 19:1–19:6, New
York, NY, USA, 2010. ACM.

[30] LBNL. network simulator man page. https://ee.lbl.gov/ns/man.html.
[31] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar na-

ture of ethernet tra�c (extended version). IEEE/ACM Transactions on Networking,
2(1):1–15, Feb 1994.

[32] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno P.
Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. Crystalnet: Faithfully
emulating large production networks. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, page 599–613, New York, NY, USA, 2017.
Association for Computing Machinery.

[33] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.
F10: A fault-tolerant engineered network, 2013.

[34] OpenSim Ltd. Omnet++, 2018. http://omnetpp.org.
[35] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten

Godfrey, and Samuel Talmadge King. Debugging the data plane with anteater.
In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pages
290–301, New York, NY, USA, 2011. ACM.

[36] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren Wang.
TCP westwood: Bandwidth estimation for enhanced transport over wireless links.
In Christopher Rose, editor, MOBICOM 2001, Proceedings of the seventh annual
international conference on Mobile computing and networking, Rome, Italy, July
16-21, 2001, pages 287–297. ACM, 2001.

[37] David Meisner, Junjie Wu, and Thomas F. Wenisch. Bighouse: A simulation
infrastructure for data center systems. In IEEE International Symposium on
Performance Analysis of Systems & Software, 2012.

[38] Vishal Misra, Wei-Bo Gong, and Don Towsley. Fluid-based analysis of a network
of aqm routers supporting tcp �ows with an application to red. In Proceedings
of the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’00, pages 151–160, New York, NY, USA,
2000. ACM.

[39] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
Timely: Rtt-based congestion control for the datacenter. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, SIGCOMM
’15, pages 537–550, New York, NY, USA, 2015. ACM.

[40] BehnamMontazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. Homa:
A receiver-driven low-latency transport protocol using network priorities. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’18, page 221–235, New York, NY, USA, 2018. Association
for Computing Machinery.

[41] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40–53, March 2008.

[42] nsnam. ns-3, 2017. http://nsnam.org.
[43] Amy Ousterhout, Jonathan Perry, Hari Balakrishnan, and Petr Lapukhov. Flex-

plane: An experimentation platform for resource management in datacenters. In
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI
17), pages 438–451, Boston, MA, 2017. USENIX Association.

[44] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic di�erentiation in pytorch. 2017.

299

https://opnetprojects.com/opnet-network-simulator/
https://opnetprojects.com/opnet-network-simulator/
http://hyperopt.github.io/hyperopt/
https://ee.lbl.gov/ns/man.html
http://omnetpp.org
http://nsnam.org

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Q. Zhang et al.

[45] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishna-
murthy. Designing distributed systems using approximate synchrony in data
center networks. In Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, 2015.

[46] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. Improving datacenter performance and robust-
ness with multipath tcp. In Proceedings of the ACM SIGCOMM 2011 Conference,
SIGCOMM ’11, pages 266–277, New York, NY, USA, 2011. ACM.

[47] Robert Ricci, Eric Eide, and The CloudLab Team. Introducing CloudLab: Scienti�c
infrastructure for advancing cloud architectures and applications. USENIX ;login:,
39(6), December 2014.

[48] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,
Nick McKeown, and Guru Parulkar. Can the production network be the testbed?
In Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 365–378, Berkeley, CA, USA, 2010. USENIX
Association.

[49] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,
Nick McKeown, and Guru Parulkar. Can the production network be the testbed?
In Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 365–378, Berkeley, CA, USA, 2010. USENIX
Association.

[50] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Je� Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,
Stephen Stuart, and Amin Vahdat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, SIGCOMM
’15, pages 183–197, New York, NY, USA, 2015. ACM.

[51] Mirko Sto�ers, Ralf Bettermann, James Gross, and Klaus Wehrle. Enabling
distributed simulation of omnet++ inet models. In Proceedings of the 1st OMNeT++

Community Summit, 2014.
[52] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David Patterson.

Diablo: A warehouse-scale computer network simulator using fpgas. In Pro-
ceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, pages 207–221,
New York, NY, USA, 2015. ACM.

[53] Andras Varga. The omnet++ discrete event simulation system. Proc. ESM’2001, 9,
01 2001.

[54] K. V. Vishwanath, D. Gupta, A. Vahdat, and K. Yocum. Modelnet: Towards a
datacenter emulation environment. In 2009 IEEE Ninth International Conference
on Peer-to-Peer Computing, pages 81–82, Sep. 2009.

[55] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design,
implementation and evaluation of congestion control for multipath TCP. In NSDI,
2011.

[56] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip
Levis, and Keith Winstein. Pantheon: the training ground for internet congestion-
control research. In 2018 USENIX Annual Technical Conference (USENIX ATC 18),
pages 731–743, Boston, MA, 2018. USENIX Association.

[57] Nofel Yaseen, Behnaz Arzani, Ryan Beckett, SelimCiraci, and Vincent Liu. Aragog:
Scalable runtime veri�cation of shardable networked systems. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pages
701–718. USENIX Association, November 2020.

[58] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng. Packet-
level telemetry in large datacenter networks. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, SIGCOMM ’15,
pages 479–491, New York, NY, USA, 2015. ACM.

[59] Danyang Zhuo, Qiao Zhang, Xin Yang, and Vincent Liu. Canaries in the network.
In Proceedings of the 15th ACM Workshop on Hot Topics in Networks, 2016.

300

MimicNet: Fast Performance Estimates for DCNs with ML SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

… …

Selector

Duplicator

(a) Ingress

Selector

… …

Duplicator

(b) Egress
Figure 15: Hybrid Mimic clusters for use in separate mod-
eling tuning/debugging. These include both an ML model
(white box) and a full-�delity network. Depending on the
model tested, ingress, egress, and internal tra�c are routed
through the parallel networks. Flat-headed arrows indicate
that all tra�c of that type is dropped.

 0.01

 0.02

 0.03

 0.04

 1 2 3 4 5 6 7 8 9 10

Tr
ai

ni
ng

 L
os

s

1 packet
2 packets
5 packets

10 packets
12 packets
20 packets

(a) Training loss descent
 0

 0.01

 0.02

Tr
ai

ni
ng

 L
at

en
cy

 (s
)

1 packet
2 packets
5 packets

10 packets
12 packets
20 packets

(b) Training latency

Figure 16: The impact of the window size on modeling accu-
racy and speed. The BDP of the network is around 12 pack-
ets. More packets in the window help loss descent (through
epochs), but can make the training slower (training latency
is per batch in Python).

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A RELAXATIONS TO RESTRICTIONS
In Section 4.2, we listed a series of restrictions that MimicNet uses
to promote accuracy and speed, even as we scale the simulation
by composing increasing numbers of Mimics. We note that not all
of the restrictions are necessarily fundamental. In this section, we
brie�y speculate on possible techniques to relax the restrictions.

Topology and routing. In principle, deep learning models could
learn the behavior of arbitrary network topologies, and even incor-
porate the e�ects of failures and more exotic routing policies, e.g.,
those used in optical circuit-switched networks. This would require
a uni�ed model instead of the ingress/egress/routing models that
we currently use, which may slow down the training and execution
of the system. The only piece that would be di�cult to relax is the
implicit requirement that the network be decomposed in a way that
small-scale results are representative of a subset of the larger scale
simulation. Random networks, would therefore be challenging for
the MimicNet approach; however, heterogeneous but structured
networks may be possible, as described below.

Tra�c patterns. The expectations of compatible tra�c generators
in MimicNet are carefully selected, and thus, would be di�cult to

separate from the MimicNet approach. Certainly, MimicNet could
be used on packet traces rather than the synthetic patterns used in
this work (by characterizing the trace using a distribution). We also
note that it may be possible to relax the symmetry assumption by
training distinct models for di�erent types of clusters, e.g., frontend
clusters, Hadoop clusters, and storage clusters. More baked-in are
the requirements that per-cluster tra�c adhere to a consistent
distribution regardless of the size of the simulation; however, given
that clusters maintain the same capacity, it is reasonable to expect
that they maintain similar demand.

Bottleneck locations. The assumption that the most common
bottlenecks exist in the downward-facing direction of a packet’s
path allows MimicNet to elide the modeling of e�ects like over-
subscription coming out of the hosts and core-level congestion
from inter-Mimic tra�c. These could easily be added back in via
similar mechanisms to inter-Mimic modelling, but at additional
performance costs.

Host-internal isolation.MimicNet’s removal of connections from
the host is a large source of improved performance as those imple-
mentations tend to be more complicated and require more state
than even switch queues. Hosts and connections also outnumber,
signi�cantly other components in the simulation. Their removal
from the network is replaced by MimicNet’s constituent models,
but the hosts in Mimics actually have fewer connections. The ef-
fects of CPU contention could likely be modelled accurately. The
e�ects of out-of-band cooperation between connections, e.g., an
RCP-like mechanism running on each hosts, could also potentially
be modelled with su�cient domain-expertise. Both would add to
the execution time, though the training time could be parallelized.

B SEPARATE INGRESS/EGRESS TUNING
MimicNet, by default, tunes the ingress and egress models together,
but in order to tune/debug the ingress model and the egress model
separately, and also avoid a quadratic increase in the con�gura-
tion space that we must explore, we create two separate testing
frameworks: one for ingress tra�c and one for egress tra�c. These
frameworks isolate the e�ect of each direction so that, when train-
ing an ingress model, egress tra�c travels through a full-�delity
network, and vice versa for an egress model.

The testing frameworks resemble the structure of the small-scale
simulation of Section 5.1. Like the original simulation, two clusters
are set up to communicate with one another. One is kept at full-
�delity, while the other is converted to use a specialized testing
cluster.

See Figure 15 for diagrams of the specialized testing clusters.
Isolation of the two directions depends on the model being tested.
Consider, for instance, the ingress testing cluster shown in Fig-
ure 15a. Tra�c ingressing the cluster �ows through the model
before the hosts receive it, and tra�c egressing the cluster �ows
through the full-�delity network. Unfortunately, only feeding the
egress tra�c into the full-�delity component would result in in-
accurate results as egress tra�c contends with local tra�c, which
contends in turn with ingress tra�c. In other words, the congestion
of the full-�delity network depends on every packet in the full-
�delity trace. To account for this, we duplicate ingress packets and
continue to feed them and local tra�c into the full-�delity cluster,

301

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Q. Zhang et al.

 0.01

 0.02

 0.03

 0.04

 1 2 3 4 5 6 7 8 9 10

Va
lid

at
io

n
Lo

ss

1 packet
2 packets
5 packets

10 packets
12 packets
20 packets

(a) Validation loss descent
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

In
fe

re
nc

e
La

te
nc

y
(m

s)

1 packet
2 packets
5 packets

10 packets
12 packets
20 packets

(b) Inference latency
Figure 17: The impact of the window size in the LSTMmodel
on modeling accuracy and speed. Larger window sizes help
improve the accuracy (lower validation loss), but can make
the inference slower (inference latency is per packet in C++).

dropping them in favor of the model’s results when applicable. A
similar process occurs when testing an egress model.

A dedicated investigation and evaluation of this function of
MimicNet is beyond the scope of this paper.

C THE IMPACT OF MODEL COMPLEXITY
We note that in MimicNet, a signi�cant, domain-speci�c factor in
model complexity is the size of the training window. The window is
a number of packets (their features) that we input to the model. This
size decides (1) the amount of data that the model learns from one
sample, and (2) the hidden size of the LSTM model. Having a larger
window helps learning and potentially improves the prediction
accuracy, but at the cost of training and inference speed.

Figure 16 shows both of these e�ects on the training of an ingress
model. From Figure 16a, we can see that a window size of only 1
packet performs very poorly, even after several epochs. The training
accuracy is quickly improvedwith additional packets in the window,
but this comes with diminishing returns after the window size
reaches the BDP of the network (around 12 packets). Figure 16b
shows a reverse trend for training time. This suggests that the BDP
of the network strikes a good balance between accuracy and speed
for the LSTM model.

We also evaluated the impact of the window size on the valida-
tion accuracy and the inference speed. Figure 17 shows the result.
Speci�cally, Figure 17a shows that the validation loss resembles the
trend of the training loss as shown in Figure 16b. When there is only
one packet in the window, the model does not perform well—the
validation loss decreases very slowly over ten epochs. Including
more packets helps the accuracy: a 2-packet window works signi�-
cantly better than a 1-packet window, and 5-packet window works
better than both. However, when the window size reaches the BDP
of the network (⇠12 packets), having more packets in the window
does not improve the accuracy signi�cantly. Figure 17b shows that
the model complexity also a�ects the inference speed. When the
window has only a few packets, e.g., 1 packet, 2 packets and 5
packets, the inference latency for a packet is as low as 70 `s. When
the window size increases to 10 and 12, the inference latency rises
to 100 `s, and with 20 packets, the inference time goes up further
to more than 150 `s. This evaluation validates the conclusion in
Appendix C: using BDP as the window size strikes a good balance
between accuracy and speed for the LSTM model.

D THROUGHPUT AND RTT
Figure 18 shows the comparison for throughput between Homa,
DCTCP (with = 2), TCP Vegas, and TCP Westwood in a data
center with 32 clusters. Figure 19 shows the results for packet RTTs.

Similar to FCT, MimicNet can closely match the throughput and
RTT of a real simulation for all protocols. We can use the estimation
of MimicNet to compare these protocols—not only their general
trends of throughput and RTT distributions, but also their ranking
at speci�c points. For example, TCP Westwood achieves the best
90 percentile throughput performance due to its optimizations on
utilizing network bandwidth; in comparison, DCTCP has the lowest
throughput at this particular point. MimicNet successfully predicts
the order. The situation in RTT, however, is the opposite: TCP
Westwood now has the highest 90 percentile latency, while DCTCP
performs the best among these four protocols. This comparison is
also correctly predicted by MimicNet.

For all protocols, MimicNet estimates are much more accurate
than the small-scale (2-cluster) baseline. Again,MimicNet can achieve
an order of magnitude higher simulation speed at this scale.

E HEAVIER NETWORK LOADS
In addition to the default network load at 70% bisection bandwidth,
we have evaluated the performance of MimicNet with heavier net-
work loads. Figure 20 shows MimicNet’s estimation of the FCTs in
a network of 32 clusters where the aggregation network load is 90%
bisection bandwidth. Similar to previous experiments, MimicNet
provides high accuracy in approximating the ground truth: the over-
all,1 score is low at 0.15, and the shape is maintained. MimicNet
completes the execution 10.4⇥ faster than the full simulation.

F MORE GROUPS OF SIMULATIONS
We also ran additional experiments on the latency/throughput of
di�erent methods to execute groups of simulations. For these experi-
ments, we �x the network size as 32 clusters and vary the simulation

 0
 0.2
 0.4
 0.6
 0.8

 1

100 101 102 103 104 105 106 107

F
ra

ct
io

n

Throughput (Bps)

Homa
DCTCP

TCP Vegas
TCP Westwood

(a) The ground truth of the comparison

 0
 0.2
 0.4
 0.6
 0.8

 1

100 101 102 103 104 105 106 107

F
ra

ct
io

n

Throughput (Bps)

Homa
DCTCP

TCP Vegas
TCP Westwood

(b) The approximation of MimicNet.

Figure 18: Throughput distributions of Homa, DCTCP, TCP
Vegas, and TCP Westwood in 32 clusters.

302

MimicNet: Fast Performance Estimates for DCNs with ML SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.001 0.01 0.1 1 10 100

F
ra

ct
io

n
of

 P
ac

ke
ts

Latency (s)

Homa
DCTCP

TCP Vegas
TCP Westwood

(a) The ground truth of the comparison

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.001 0.01 0.1 1 10 100

F
ra

ct
io

n
of

 P
ac

ke
ts

Latency (s)

Homa
DCTCP

TCP Vegas
TCP Westwood

(b) The approximation of MimicNet.

Figure 19: Packet RTT distributions of Homa, DCTCP, TCP
Vegas, and TCP Westwood in 32 clusters.

 0
 0.2
 0.4
 0.6
 0.8

 1

10-3 10-2 10-1 100 101 102F
ra

ct
io

n
of

 F
lo

w
s

Flow Completion Time (s)

Groundtruth
MimicNet (0.154)

Figure 20: MimicNet approximation for high aggregation
network load (90% of the bisection bandwidth).

length from 20 simulation seconds to 320 simulation seconds. Fig-
ures 21 and 22 show the simulation latency and throughput results,
respectively, for di�erent simulation approaches (we use the same
approaches introduced in Section 9.3).

The results are somewhat expected: the relative simulation speeds
of di�erent approaches barely change with the simulation length.
When simulation length increases, the latency of each approach
increases correspondingly. The latency of full simulations increases
slightly slower than that of MimicNet because the constant sim-
ulation setup overhead in full simulations is signi�cantly higher
than MimicNet. The relative latency eventually stabilizes—the la-
tency of single MimicNet is lower than that of single simulation,
even when the model training time is included in MimicNet, and
partitioned MimicNet is better than partitioned simulation. For
all approaches, the simulation throughput does not change at all
with the simulation length. Similarly, single MimicNet outperforms
single full simulations, and parallel MimicNet outperforms parallel
full simulations. The speedup of MimicNet further grows when the
simulation scales to larger networks.

G COMPUTE CONSUMPTION
A potential concern in using MimicNet is its compute resource
consumption: it uses GPU resources for model training and runtime
inference while the full simulations only use CPUs. This section
evaluates this aspect.

Speci�cally, we calculate the total number of �oating-point op-
erations (FLOPs) in both CPUs (for both full simulations and Mim-
icNet) and GPUs (for MimicNet only) of the simulation approaches
in Section 9.3 as their compute resource consumption. Figure 23
shows the result for the evaluation of latency (similar �ndings
in the evaluation of throughput). Indeed, MimicNet shows signif-
icant computational load, primarily because of the use of GPUs
for training and inference. This makes its compute consumption
higher than full simulations when the network to be simulated is
small, especially when the training overhead is counted. However,
in large networks, e.g., 128 clusters, the use of deep learning models
in MimicNet pays o� by much lower simulation latency, and its
total compute consumption is lower than full simulations even with
the computational overhead in training models. We leave the investi-
gation of alternative training, tuning, and models for optimizing
the compute consumption to future work.

H FUTURE DIRECTIONS
Finally, we note that the MimicNet framework o�ers plenty of
opportunities for improvement beyond those mentioned in Appen-
dix A. We introduce a small subset of such directions here.

Model reuse and retraining. An important goal in the design
of MimicNet is arbitrary scale, which is achieved by its end-to-
end work�ow (Figure 3) and assumptions described in Section 4.
In that spirit, the models that are trained and tuned in MimicNet
can be safely reused to evaluate the network at any scale, i.e., no
matter how the network scales up or down by adding or removing
clusters. Generally, there is no need of retraining the models if
the training data and steps in MimicNet work�ow do not change.
However, if any factor in the data and steps for generating the
models changes, the models should be updated to re�ect the change.
This includes changes in the workload, routing/switching protocol,
internal structure of a cluster, and accuracy in the step of hyper-
parameter tuning.

Although we have shown that MimicNet runs faster than full
simulations even when the model training time is counted (Sec-
tion 9.3 and Appendix F), we would like to explore techniques that
can minimize the overhead of model retraining. This requires con-
siderations in both model design and MimicNet’s work�ow, for
example, whether it is possible or how easily to transfer knowledge
between models and how MimicNet supports such incremental
model updates. We leave this exploration for future work.

Flow modeling. Recall from Section 6 that MimicNet uses feeder
models that currently learn o�ine �ow-level patterns to approxi-
mate and remove non-observable inter-Mimic tra�c. The ordering
and dependencies between observable �ows are still simulated in
full �delity, i.e., not approximated. That said, we acknowledge that
co-�ow modeling is currently missing in MimicNet, which can
help the accuracy in the evaluation of some real-world systems
like MapReduce and BSP-style data processing. In order to support
co-�ows in MimicNet, they have to be identi�ed when extracting

303

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Q. Zhang et al.

101

102

103

104

105

106

107

20 80 320Si
m

ul
at

io
n

la
te

nc
y

(s
ec

on
ds

)

Simulation length (simulation seconds)

Single simulation
Single MimicNet w/ training

Single MimicNet
Partitioned simulation

Partitioned MimicNet

Figure 21: Simulation latency with di�erent simulation lengths (lower is better).

10-4

10-3

10-2

10-1

100

20 80 320

Si
m

ul
at

io
n

th
ro

ug
hp

ut
(s

im
ul

at
io

n
se

co
nd

s/
se

co
nd

)

Simulation length (simulation seconds)

Single simulation
Single MimicNet w/ training

Single MimicNet
Parallel simulation

Parallel MimicNet

Figure 22: Simulation throughput with di�erent simulation lengths (higher is better).

104

105

106

107

108

109

8 16 32 64 128
O

ut
 o

f
m

em
or

y

Co
m

pu
ta

tio
n

(g
ig

a
FL

O
Ps

)

Network size (#clusters)

Single simulation
Single MimicNet w/ training

Single MimicNet
Partitioned simulation

Partitioned MimicNet

Figure 23: Compute resource consumption in di�erent simulation approaches (lower is better).

features for training the internal models and using them for pre-
dictions. We leave enabling the ability of identifying co-�ows in

MimicNet and studying the bene�t in the evaluation of applications
where co-�ows present for future work.

304

	Abstract
	1 Introduction
	2 Motivation
	2.1 Background on Network Simulation
	2.2 Scalability of Today's Simulators

	3 Design Goals
	4 Overview
	4.1 MimicNet Design
	4.2 Restrictions

	5 Internal Models
	5.1 Small-scale Observations
	5.2 Modeling Objectives
	5.3 Scalable Feature Selection
	5.4 DCN-friendly Loss Functions
	5.5 Generalizable Model Selection

	6 Feeder Models
	7 Tuning and Final Simulation
	7.1 Composing Mimics
	7.2 Optional Hyper-parameter Tuning

	8 Prototype Implementation
	9 Evaluation
	9.1 MimicNet Models Clusters Accurately
	9.2 MimicNet's Accuracy Scales
	9.3 MimicNet Simulates Large DCs Quickly
	9.4 Use Cases

	10 Related Work
	11 Conclusion and Future Work
	Acknowledgments
	References
	A Relaxations to Restrictions
	B Separate Ingress/egress Tuning
	C The Impact of Model Complexity
	D Throughput and RTT
	E Heavier Network Loads
	F More Groups of Simulations
	G Compute Consumption
	H Future Directions

