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Abstract. Rapid detection of landslides is critical for emer-
gency response, disaster mitigation, and improving our un-
derstanding of landslide dynamics. Satellite-based synthetic
aperture radar (SAR) can be used to detect landslides, of-
ten within days of a triggering event, because it penetrates
clouds, operates day and night, and is regularly acquired
worldwide. Here we present a SAR backscatter change ap-
proach in the cloud-based Google Earth Engine (GEE) that
uses multi-temporal stacks of freely available data from the
Copernicus Sentinel-1 satellites to generate landslide density
heatmaps for rapid detection. We test our GEE-based ap-
proach on multiple recent rainfall- and earthquake-triggered
landslide events. Our ability to detect surface change from
landslides generally improves with the total number of SAR
images acquired before and after a landslide event, by com-
bining data from both ascending and descending satellite
acquisition geometries and applying topographic masks to
remove flat areas unlikely to experience landslides. Impor-
tantly, our GEE approach does not require downloading a
large volume of data to a local system or specialized pro-
cessing software, which allows the broader hazard and land-
slide community to utilize and advance these state-of-the-art
remote sensing data for improved situational awareness of
landslide hazards.

1 Introduction

Rapid response to landslide events (and other natural haz-
ards) is necessary to assess damage and save lives. This
response effort includes ground-based teams of local resi-
dents, government officials and logistics coordinators, scien-
tists, engineers, and more, all working together to identify
critically damaged areas (e.g., Benz and Blum, 2019; Inter-
Agency Standing Committee, 2015). Yet, many response ef-
forts are impeded by a lack of detailed information on the
condition or location of damaged areas following large and
widespread landslide events (Lacroix et al., 2018; Robinson
et al., 2019). In addition to rapid response efforts, it is also
important to construct accurate landslide inventories in the
weeks to months following these events (Froude and Pet-
ley, 2018; Roback et al., 2018; Williams et al., 2018). These
detailed inventories are used to improve understanding of
where landslides occur; to quantify erosion; and to look for
areas where secondary hazards, such as outburst flooding
due to landslide dams, may be occurring (Collins and Jib-
son, 2015; Kirschbaum et al., 2015; Kirschbaum and Stan-
ley, 2018; Roback et al., 2018). It is therefore necessary to
develop tools with freely available data that can be used to
map the landslide extent and level of damage following catas-
trophic events.
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Remote sensing techniques are commonly used to con-
struct landslide inventories over large areas following catas-
trophic events (e.g., Bessette-Kirton et al., 2019; Roback
et al., 2018). Satellite-based optical imagery provides high-
quality information for landslide mapping. Many studies
have leveraged these data with manual (e.g., Harp and Jib-
son, 1996; Massey et al., 2020) and semi-automated and/or
automated mapping techniques to identify landslides (e.g.,
Amatya et al., 2019, 2021; Ghorbanzadeh et al., 2019; Hol-
bling et al., 2015; Lu et al., 2019; Mondini et al., 2011,
2013; Stumpf and Kerle, 2011). While optical imagery pro-
vides high-quality data, it is often limited in rapid response
efforts because optical imagery requires daylight as well as
shadow- and cloud-free conditions for accurately identifying
landslides. Persistent cloud cover can prevent landslide map-
ping from satellite optical imagery for weeks to months (e.g.,
Lacroix et al., 2018; Robinson et al., 2019).

Satellite-based synthetic aperture radar (SAR) circum-
vents some of the optical data limitations because it can pen-
etrate clouds and operate day or night, but SAR data are still
limited by geometric shadow and distortion (e.g., Adriano et
al., 2020; Mondini et al., 2021). SAR data have been used for
nearly 2 decades to investigate landslides (e.g., Colesanti and
Wasowski, 2006; Hilley et al., 2004; Roering et al., 2009).
However, most studies have focused on interferometric SAR
(InSAR), which measures the radar phase change between
two acquisitions in order to quantify ground surface defor-
mation (e.g., Handwerger et al., 2019; Huang et al., 2017b;
Intrieri et al., 2017; Schlogel et al., 2015).

SAR backscatter intensity- and coherence-based change
detection can also be used to detect landslides, floods, and
other types of natural hazards (Burrows et al., 2020; De-
Vries et al.,, 2020; Jung and Yun, 2020; Mondini et al.,
2019, 2021; Rignot and Van Zyl, 1993; Tay et al., 2020; Yun
et al., 2015). Changes in backscatter and coherence occur
when there are changes in ground surface properties (e.g.,
reflectance, roughness, dielectric properties) before and after
landslide events. Coherence-based change detection methods
work best in urban areas because normally the coherence is
high prior to an event and there is a reduction in coherence
from damage after an event. However, backscatter change
detection methods can outperform coherence-based methods
in densely vegetated mountainous regions because in these
areas coherence is always low (i.e., no change) while the
backscatter can change (see Jung and Yun, 2020, for a de-
tailed comparison between these methods). Currently, SAR-
based change detection methods are under-utilized for land-
slide identification following catastrophic events, which we
believe is primarily due to data access and the specialized
processing and software required to analyze SAR data.

In this study, we develop tools and strategies to detect
individual landslides and areas with high landslide density
(i.e., heatmaps) that can aid in rapid response and in con-
structing landslide inventories. We define rapid response
landslide detection as the period of time within 2 weeks of
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a landslide event (Burrows et al., 2020; Inter-Agency Stand-
ing Committee, 2015; Williams et al., 2018). Our tools run in
Google Earth Engine (GEE), a free cloud-based online plat-
form, using only freely available data (Gorelick et al., 2017).
Recent studies have used GEE to identify floods (e.g., De-
Vries et al., 2020) and landslides (e.g., Scheip and Wegmann,
2021), investigate land cover (e.g., Huang et al., 2017a) and
surface water change (e.g., Donchyts et al., 2016), monitor
agriculture (e.g., Dong et al., 2016), and more. For landslide
detection, we measure changes in SAR backscatter from the
open-access Copernicus Sentinel-1 (S1) satellites. Our ap-
proach requires the spatial coordinates of the area of in-
terest (AOI) and the dates and duration of the landslide-
triggering event. We test our landslide detection tools for
recent events occurring under different environmental con-
ditions. To better investigate landslide detection for different
types and sizes of landslide, we analyze (1) the 2018 rainfall-
induced landslides in Hiroshima Prefecture, Japan; (2) the
2018 earthquake-triggered landslides in Hokkaido, Japan;
(3) 2020 rainfall-triggered landslides in Huong Phung, Viet-
nam; and (4) 2020 rainfall-triggered landslides in Quang
Nam, Vietnam (Fig. 1). To determine the most effective
strategies for landslide detection, we perform a sensitivity
analysis for the 2018 Hiroshima event by varying the time
span (i.e., number of images) of SAR data used to mea-
sure changes in backscatter before and after the landslide-
triggering event and by incorporating topographic slope-
and curvature-based masks to remove regions where land-
slides are unlikely to occur. We then apply our most effec-
tive landslide detection strategies to the other case studies.
We do not make systematic quantitative comparisons with
other remote-sensing-based data used for landslide detection
—e.g., SAR-based coherence (data not available in GEE) or
the normalized difference vegetation index (NDVI). How-
ever, we do make quantitative comparisons of our findings
with optical-data-based landslide inventories and qualitative
comparisons with optical data from the Copernicus Sentinel-
2 (S2) satellites for validation of our SAR-based landslide
detection. Lastly, we applied our landslide detection tools
to support rapid response to the August 2021 earthquake-
triggered landslide event in Haiti (Fig. 1). The 2021 Haiti
event occurred during the writing of this paper and pro-
vides the first real-time application of our landslide detec-
tion approach for rapid response. Our work highlights the
utility of using changes in SAR backscatter data to detect ar-
eas that have likely experienced landslides following catas-
trophic events, which is necessary for rapid response and
for generating landslide inventories in mountainous regions
that commonly have persistent cloud cover. Importantly, our
GEE approach does not require specialized SAR software or
downloading large volumes of data to a local system, so the
broader hazard communities can utilize these state-of-the-art
remote sensing data.
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Figure 1. Google terrain map showing the location of landslide case studies. © Google Maps 2021.

2 Methods

The main goals of our work are to provide open-access tools
in GEE that will enable users to utilize freely available SAR
data to (1) detect areas that have likely experienced land-
slides as fast as possible after triggering events (i.e., rapid de-
tection) and (2) identify landslides for event inventory map-
ping. We define “detection” and “mapping” using the frame-
work described by Mondini et al. (2021), where detection is
“the action of noticing or discovering single or multiple land-
slide failures in the same general area” and mapping “refers
to the action of delineating the geometry of a landslide”.
The use of SAR data is particularly important when optical
data are limited due to cloud cover. Our methodology is de-
veloped in the GEE “playground” (browser-based graphical
user interface) using the JavaScript application programming
interface (API) (Gorelick et al., 2017). This interface allows
for coding, mapping/visualization, documentation, and more,
and the products can be easily exported for offline analyses.
The GEE codes developed here are published on GitHub and
as shared GEE script links (see “Code and data availability”).

2.1 SAR backscatter in Google Earth Engine

We analyzed changes in the SAR backscatter from the
S1 satellite constellation to detect ground surface changes
associated with landslides. The S1 constellation currently
consists of two satellites, S1A and S1B, launched in
March 2014 and April 2016, respectively. Each satellite
has a minimum 12d revisit time for a given area. Us-
ing data from both satellites provides a minimum 6d re-
visit time. The S1 satellites carry a C-band radar sen-
sor with a wavelength of ~5.6cm. Depending on the
location of the AOI, both ascending (asc) and descend-
ing (desc) S1 data may be available (see worldwide acquisi-
tion coverage, https://sentinel.esa.int/web/sentinel/missions/
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sentinel-1/observation-scenario last access: 4 March 2022).
Currently, S1 data are the only SAR data available in GEE.

GEE provides Level-1 S1 Ground Range Detected (GRD)
backscatter intensity coefficient (o°) images. The backscat-
ter coefficient is defined as the target backscattering area
(radar cross-section) per unit ground area. All scenes are
processed to remove thermal noise, have undergone radio-
metric calibration (but not radiometric terrain flattening), and
are orthorectified using the Shuttle Radar Topography Mis-
sion (SRTM) digital elevation model (DEM) (Farr et al.,
2007) or the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) DEM for areas above 60°
latitude. All S1 GRD data values are provided in logarith-
mic units of decibels (dB) calculated as 10 x log;(c°). The
backscatter coefficient is a measure that can be used to de-
termine if the radar signal is scattered towards or away from
the SAR sensor. The direction of scattering is primarily con-
trolled by the geometry of the landscape relative to the radar
look direction and the electromagnetic properties of the land
cover. The GEE S1 GRD collection is updated daily and new
data are uploaded to GEE within 2 d of them becoming avail-
able. GEE ingests all of the available ascending and/or de-
scending images on the fly.

GEE provides GRD images with 10m pixel spacing
and up to four polarization modes: (1) vertical trans-
mit/vertical receive (VV), (2) horizontal transmit/horizontal
receive (HH), (3) wvertical transmit/horizontal receive
(VV +VH), and (4) horizontal transmit/vertical receive
(HH+HV). HH and HV polarizations are mostly acquired in
polar regions, which are thus unlikely to be useful for land-
slide detection. For this study we only used SAR data in the
VH polarization. Cross-polarizations, such as VH and HV,
are sensitive to forest biomass structure (Le Toan et al., 1992)
and are therefore useful to identifying landslides in vegetated
areas. We encourage users of our methods to explore the use
of other polarizations.
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2.2 Landslide detection approach

Our landslide detection approach requires the user to select
an AOI and time period before (Zpr) and after (Tpost) the
event of interest (EOI). The AOI can be a small region or
a large mountain range, and the EOI can last from seconds
(e.g., earthquakes) to several days (e.g., storms). Thus, it is
important to consider the spatial and temporal scale of the
EOI when selecting the AOI, Tpye, and Tpos. Furthermore,
Tore and Tpos Will vary depending on the goal of the project
(i.e., rapid detection or constructing full event inventories).

To reduce noise from poor-quality data, we removed all
pixels with values < —30dB (based on a recommendation
from the GEE S1 Data Catalog). We also reduce transient
noise and error by stacking images to create pre-event (Ipre)
and post-event (/post) backscatter intensity stacks. SAR data
stacking has been shown to significantly improve the signal-
to-noise ratio in SAR data (e.g., Cavalié et al., 2008; Zebker
et al., 1997). Thus, the SAR image stacks provide backscat-
ter data that are more representative of the pre- or post-event
ground surface properties. Each stack was calculated as the
temporal median of the pre-event and post-event SAR data.
We constructed image stacks using ascending data, descend-
ing data, and combined ascending and descending data. The
combined ascending and descending data (also referred to
here as “asc and desc”) were calculated as the mean of the
ascending and descending stacks.

We detected potential landslides by examining the change
in the backscatter coefficient using the standard SAR in-
tensity log ratio approach, Iah0, defined as Irago = 10 X
logg(Ipre/Ipost) (€.g., Jung and Yun, 2020; Mondini et al.,
2019, 2021). Because GEE provides the backscatter coeffi-
cient data in dB, Ipre — Ipost is equivalent to the Irato (loga-
rithm quotient rule). The I, can be either positive or neg-
ative, with positive values corresponding to a decrease in
the post-event SAR backscatter intensity. SAR backscatter
changes following landslide events occur because landslides
cause major changes in ground surface properties that alter
the radar reflectance, hillslope geometry, roughness, and di-
electric properties (Adriano et al., 2020; Mondini et al., 2021;
Rignot and Van Zyl, 1993).

We also note that other ground surface change, for instance
due to flooding, agriculture, mining, deforestation, and more,
can also be detected by examining I, (€.g., Jung and Yun,
2020; Tay et al., 2020) and may cause false positives. To
help reduce false positives, we removed areas that are un-
likely to correspond to landslides (e.g., small lakes, rivers,
flat surfaces, hilltops) by using threshold-based masks made
from the topographic slope and curvature calculated from the
1 arcsec (~ 30m) resolution NASADEM, which comprises
reprocessed SRTM data with improved height accuracy and
filled missing elevation data (NASA JPL, 2020). We refer to
this mask throughout this paper as the “DEM mask”. Since
landslides typically initiate on steep hillslopes, slopes of less
than a few degrees can be masked, as these are the areas that
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generally correspond to non-landslide locations. However,
slope thresholds will vary in different regions. Additionally,
it is common for landslides to run out into lower-slope areas;
therefore it is important to initially consider a wide range
of slope values when searching for landslide deposits. We
also mask out larger water bodies, including oceans and some
lakes and river shorelines, using the water body data stored
in the NASADEM layer.

2.3 SAR change detection performance and
determination of most effective detection strategies

To determine the performance and most effective strate-
gies of our SAR backscatter change detection for land-
slides, we performed both quantitative and qualitative com-
parisons with mapped landslide inventories and satellite op-
tical imagery. We quantitatively evaluated our results with
a previously published landslide inventory for the 2018 Hi-
roshima landslide event using receiver operating characteris-
tic (ROC) curves (Fan et al., 2006). We provide a qualitative
visual comparison with published landslide inventories for
the 2018 Hiroshima, 2018 Hokkaido, and 2021 Haiti land-
slide events and qualitative visual comparisons with S2 op-
tical images for the 2018 Hiroshima, 2018 Hokkaido, and
2020 Vietnam events. We note that in most cases, especially
for rapid response, neither cloud-free optical images nor an
external landslide inventory is likely to be available prior to
investigation. In some cases, partial-cloud-cover optical im-
ages can be used to reveal some parts of landslides and help
constrain identification of landslides from SAR data. There-
fore, we also include S2 imagery in our GEE tools.

We quantified the success of our SAR backscatter change
approach to identify true landslides for an extreme rain-
fall event that caused widespread landsliding in Hiroshima,
Japan, in 2018. In this case study, we determined the de-
tection performance using ROC curves, which measures our
detection compared to an external landslide inventory under
a variety of thresholds for discriminating between landslide
and non-landslide pixels. We compared our SAR change de-
tection to the landslide inventory made by the Geospatial
Information Authority of Japan (GSI) and Association of
Japanese Geographers (AJG) (see “Code and data availabil-
ity”’). To make a better comparison between our SAR change
detection approach and the published landslide inventory, we
manually removed landslides with an area < 100m? from
the GSI-AJG inventory for a better match with the minimum
size of a 10m x 10m S1 SAR pixel. The ROC analyses were
performed outside of the GEE platform using the MATLAB
software package. We computed the ROC curves for all pix-
els within the ~ 277 km? Hiroshima AOI shown in Fig. 2a.
For these analyses, each pixel in the SAR intensity change
raster was classified as a landslide if the I pixel value
was greater than a threshold value or as non-landslide if it
was less than the threshold value. The ROC curve is calcu-
lated by varying the Ira, threshold values (ITr). The initial
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Figure 2. Rainfall-triggered landslides in 2018 in Hiroshima Prefecture. (a) NASADEM hillshade map with black polygons showing the
GSI-AJG landslide inventory and the black box highlighting a sub-area of the AOI for plots (b)—(d). (b) Sentinel-2 optical image show-
ing landslide scars. (¢) SAR backscatter intensity change for combined ascending and descending stacks. SAR backscatter change maps
were created from stacks made from 142 combined ascending and descending pre-event SAR images collected between 1 May 2015 and
29 June 2018 and 133 post-event SAR images collected between 9 July 2018 and 29 May 2020 and represent our best-case landslide iden-
tification. (d) SAR backscatter intensity change for simulated rapid response consisting of stacks made from the same 142 pre-event SAR
images and 5 post-event SAR images collected between 9-24 July 2021. Red colors correspond to a decrease in post-event backscatter
intensity (positive I14, values). Black polygons in (¢) and (d) show the GSI-AJG landslide inventory. No DEM mask is applied to (c) or (d).

ITR ROC is set as the minimum /4, value in the dataset and is
increased until reaching the maximum value (thus we explore
the entire range of Ipa, values). We then compared these
classified pixels to the true landslides in the GSI-AJG inven-
tory. For each threshold, the false positive rate, defined as the
ratio of false positives to true non-landslide pixels, is com-
pared to the true positive rate, defined as the ratio of true pos-
itives to true landslide pixels. The best performance is deter-
mined by maximizing the area under the ROC curve (AUC)
(Fan et al., 2006). An AUC of 1 corresponds to a perfect clas-
sifier, while an AUC of 0.5 is equivalent to a random selec-
tion (50 % true positive rate and 50 % false positive rate). To
maximize the AUC, we performed a sensitivity analysis by
varying the pre-event and post-event time periods, the satel-
lite acquisition geometry (i.e., asc, desc, or asc and desc),
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and the thresholds used for slope angle and curvature for the
DEM mask. We then apply these lessons learned for optimal
landslide detection strategies within the other case studies.

The main goal of our SAR change detection performance
analysis was to determine the most effective detection strate-
gies for landslide identification. While we validated and re-
fined our landslide detection approach with external inven-
tories and optical data in this study, it is important to em-
phasize that these external data are not required for landslide
detection, and our tools are specifically designed to be used
without an external landslide inventory and without optical
data.

Nat. Hazards Earth Syst. Sci., 22, 753-773, 2022
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2.4 Landslide density heatmaps

To identify areas that have likely experienced landslides,
which is particularly useful for rapid response, we imple-
mented a landslide density heatmap approach. The heatmap
is a data visualization technique that consists of a raster made
by calculating the density of potential landslide pixels in a
location over a given radius using a kernel density estima-
tion. In this way, the landslide density heatmap is a proxy
for potential landslide occurrence and not a heatmap of ob-
served landslides classified using other methods. Several re-
cent studies have applied a landslide density map approach
to identify critically damaged areas, rather than focusing on
the location of individual landslides (e.g., Bessette-Kirton
et al., 2019; Burrows et al., 2020; Rosi et al., 2018). Our
landslide density heatmaps are similar to these other density
maps; however instead of counting individual landslides, we
calculate the density of individually detected pixels over a
fixed area. We define the pixels used in the heatmap by se-
lecting an Iy, threshold for heatmaps (Itr u). We manu-
ally explored ITr g using I, percentiles to find the thresh-
old value that visually highlights true landslides and reduces
noise and false positives (see Sect. 4.2 for further expla-
nation). All pixels > Itr g are classified as potential land-
slide pixels, and all pixels below the threshold are excluded
from the analyses. By using percentile-based thresholds, we
are able to determine thresholds that correspond to land-
slides in different regions around the world. The Itr y is
different from the thresholds used in the ROC-AUC analy-
ses (ITr,roc) because ITr g must be defined without the use
of an external landslide inventory.

We construct heatmaps using both GEE and QGIS. We use
GEE to identify the potential landslide pixel locations and
then export these as a KML file for heatmap construction in
QGIS. Once in QGIS, the pixel locations are converted to a
local UTM coordinate system, and then the heatmap is made
using the Heatmap (Kernel Density Estimation) processing
toolbox. The Heatmap toolbox requires selection of a radius,
output raster size, and a kernel shape. We found good results
with an output pixel size of 100m and either a quartic or
an Epanechnikov kernel shape. We did not identify a single
best value to define the radius but generally found that radius
values between ~ 1-3 km were appropriate. We encourage
users of our tools to explore the heatmap radius as it may
vary depending on the AOI and EOI. In addition, we include
an option to generate heatmaps directly in GEE.

3 Test sites

3.1 Rainfall-triggered landslides, 2018, Hiroshima,
Japan

A record-breaking rainfall event occurred between 28 June
and 8 July 2018 in west and central Japan that resulted
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in widespread floods and landslides. There were more than
200 fatalities, 20000 damaged buildings, and 8500 dam-
aged houses caused by these natural disasters. Hiroshima
Prefecture had an especially high 108 fatalities, 14 862 dam-
aged buildings, and 689 destroyed houses, significantly more
than other prefectures, which was primarily due to the
~ 8000 triggered landslides (Adriano et al., 2020; Hirota et
al., 2019; Miura, 2019). Between 1-7 July 2018 there was
approximately 500 mm of rainfall in Hiroshima Prefecture.
Cloud cover prevented full landslide detection from optical
images during the event period, and partial cloud cover re-
mained for the month following the event.

The study AOI (Fig. 1) has a mixture of land cover includ-
ing dense forest with little infrastructure in the mountains
and farmlands and with residential areas and cities in the val-
leys. Within our ~ 277 km? AOI, there were 3370 landslides
mapped by the GSI-AJG. The minimum, mean, and maxi-
mum elevation is 0, 210, and 850 m, respectively. The mean
slope angle is 14° &+ 11° (£ SD - standard deviation) with a
maximum slope of 64°. Adriano et al. (2020) also used SAR
intensity change with data from Advanced Land Observing
Satellite-2 (ALOS-2) to successfully identify landslides for
the same EOL

3.2 Earthquake-triggered landslides, 2018, Hokkaido,
Japan

From 3-5 September, Typhoon Jebi passed over Japan,
which brought about 100mm of precipitation. A My 6.7
earthquake struck the Iburi—-Tobu area of Hokkaido Prefec-
ture located in north Japan on 6 September 2018. The pow-
erful ground motion (station HKD126 records up to 0.67 g;
or 153 cms~! peak ground velocity) caused liquefaction and
triggered ~ 6000 landslides, which destroyed and buried 394
buildings and killed 41 people (Yamagishi and Yamazaki,
2018; Zhang et al., 2019a). Most of the coseismic landslides
were classified as coherent shallow debris slides (Zhang et
al., 2019a). Due to cloud cover, full landslide detection from
optical images was not available until 5d later. Thus, opti-
cal imagery would have also been viable for rapid response
for this event. Nonetheless, we use this EOI to test our GEE
SAR-based detection tools.

We defined our study AOI (Fig. 1) as a 1170km? region
with a high landslide density (Zhang et al., 2019a). The land
cover in our AOI includes dense forests in the mountains and
farmlands and cities in the valleys. The minimum, mean, and
maximum elevation is 0, 129, and 625 m, respectively. The
mean slope angle is 10° £ 8° (£1 SD) with a maximum slope
of 84°. This EOI was also previously investigated using SAR
change detection methods by Adriano et al. (2020), Burrows
et al. (2020), and Jung and Yun (2020). These studies showed
that both coherence change and backscatter intensity change
detection methods work to characterize the landslides; how-
ever the backscatter-based methods outperform SAR coher-
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ence change detection in the vegetated mountains (Jung and
Yun, 2020).

3.3 Rainfall-triggered landslides, 2020, Huong Phung
and Quang Nam, Vietnam

There were several major landslide events in Vietnam in Oc-
tober 2020 that were related to a particularly wet period
between 6-28 October as the country was hit by six tropi-
cal cyclones (Van Tien et al., 2021). We examined landslide
events from Huong Phung Commune on 18 October 2020
and Quang Nam Province on 28 October 2020 (Van Tien
et al., 2021). We selected a 1080 km?> AOI in Huong Phung
and a 416 km? AOI in Quang Nam (Fig. 1). Cloud cover pre-
vented full landslide detection from optical images during the
event period, and partial cloud cover remained until Febru-
ary 2021.

The landslides in Huong Phung occurred in an area that
had a mean slope angle of 17° +10° (£1 SD) with a max-
imum slope of 70°. The landslides in Quang Nam occurred
in an area that had a mean slope angle of 21° £9° with a
maximum slope of 71°. Both landslide areas in Vietnam are
covered with dense forested vegetation and farmlands.

3.4 Earthquake-triggered landslides, 2021, Haiti

While writing this paper, a major My, 7.2 earthquake struck
on 14 August 2021 in Haiti and caused widespread land-
sliding in the southwestern part of the country (Martinez
et al.,, 2021a). The earthquake epicenter was near Nippes,
Haiti (~ 120 km west of Port-au-Prince) (https://earthquake.
usgs.gov/earthquakes/eventpage/us6000f65h/executive, last
access: 4 March 2022). Heavy rainfall from Tropical Storm
Grace further contributed to the disaster 2d after the earth-
quake by triggering additional landslides and flooding and
hindering the earthquake response (https://appliedsciences.
nasa.gov/what-we-do/disasters/disasters-activations/
haiti-earthquake-landslides-flooding-2021, last access:
4 March 2022). We were able to test our landslide detection
approach in real time to support the response effort. We used
our GEE tools to generate a landslide density heatmap for a
~ 6500 km? region.

4 Results

We consider five independent landslide events to evaluate our
method within Japan, Vietnam, and Haiti. We use the Hi-
roshima EOI to determine the most effective landslide detec-
tion strategies. We then apply our findings to the other test
cases and make qualitative comparisons with cloud-free op-
tical imagery and published landslide inventories (Hokkaido
and Haiti) to help assess the landslide detection performance.
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4.1 Determining effective strategies for detecting
landslides

To determine the most effective strategies for landslide de-
tection with SAR backscatter change and to quantify de-
tection success, we explored several different strategies and
compared our findings with the GSI-AJG inventory for the
2018 Hiroshima event using the AUC scores computed from
the ROC curves. These different strategies included chang-
ing the total number of SAR images used in the pre-event
and post-event stacks; applying slope and curvature thresh-
olds (i.e., DEM mask); applying I;4io thresholds to highlight
landslides and construct heatmaps; and using ascending, de-
scending, or combined ascending and descending data. We
define the “best-case” strategy as the approach that maxi-
mizes the AUC score.

First, we calculated the SAR backscatter change for the
2018 Hiroshima event using all of the SAR data that were
available as of 29 May 2020 (when we began this study) to
construct pre- and post-event stacks. The pre-event stack con-
sisted of 142 images (100 ascending and 42 descending) with
the first image collected 1152 d before the EOI and the last
image collected 12d before the EOI. The post-event stack
consisted of 133 images (74 ascending and 59 descending)
with the first image collected 1d after the EOI and the last
image collected 684 d after the EOI. Figure 2 shows the SAR-
based backscatter change for a sub-area of our AOIL. The
SAR-based backscatter change shows many localized areas
with I > 2 that correspond to true landslides (Fig. 2c¢).
These relatively high Ia, areas have planform geometries
typical of the debris flow type landslides (long, narrow, and
channelized) that occurred during the 2018 rainfall event. We
find most landslides have a positive Iratio, i.€., Ipost < Ipres
but there were also some places with negative Iy, values
within landslide scars as discussed in Adriano et al. (2020).
Direct comparison with the cloud-free S2 optical imagery
and the GSI-AJG inventory provided initial validation that
SAR backscatter change can successfully detect landslides.

By comparing our change detection result with the GSI-
AJG inventory, we found AUC scores of 0.7363, 0.7409,
and 0.7712 for ascending, descending, and ascending and
descending, respectively, using the complete pre- and post-
event stacks. We repeated these analyses by changing the
time duration for images included in Tpre and Tpost to 12, 6,
3, and 1 months (Fig. 3). We varied the time span to simulate
the impact of different quantities of available data for future
studies. The highest AUC occurred when using all available
pre-event and post-event data and by combining asc and desc
data. We found that stacking large numbers of SAR images
improves the signal-to-noise ratio.

Next we used topographic data to help reduce false posi-
tives (Fig. 3b). To determine the slope and curvature thresh-
olds, we used our most effective landslide identification
strategy from the previous analyses (i.e., all available pre-
event and post-event data) and found the slope and curvature
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Figure 3. Receiver operating characteristic (ROC) analyses to determine the most effective strategy for landslide identification. (a) Colored
lines show ROC curves as a function of the pre-event stack time period (Tpre) and post-event stack time period (Tpost). (b) ROC curves
using all available pre- and post-event data (highest AUC in a). Dashed colored lines correspond to ascending (asc), descending (desc), and
ascending and descending data. Solid colored lines show the same data with the addition of the DEM mask slope and curvature thresholds.
(¢) ROC curves with DEM mask for rapid response detection using all pre-event SAR data and post-event data acquired 1d and 1 week

following the landslide event.

thresholds that maximized the AUC. We found that we can
further improve the AUC to 0.8101, 0.8041, and 0.8342 (best
case) for asc, desc, and asc and desc, respectively, by using
a DEM mask to exclude areas with low topographic slopes
(< 5°) and convex curvature (> —0.005m™!). These areas
of very low slope correspond to flat regions, such as cities
and valley bottoms, and areas of relatively high positive cur-
vature correspond to hilltops, where landslides are less likely
to occur. Importantly, applying slope- and curvature-based
masks makes a large improvement in landslide detection, but
the specific slope and curvature threshold values will vary for
other locations.

4.2 Determining effective strategies for rapid response

To identify landslides for rapid response (i.e., within 2 weeks
of the landslide event), we applied the DEM mask from
Sect. 4.1 and explored landslide detection scenarios where
we have limited post-event data. Ideally, for rapid response,
the first available image or first few available images fol-
lowing a catastrophic event will provide key information for
identifying damaged areas. Thus, our methodology was de-
signed with the goal of being able to provide information
to responders on the location of critically damaged areas as
quickly as possible.

For the 2018 Hiroshima simulated rapid response, we cal-
culated the SAR backscatter change for a stack consisting of
all of the available pre-event imagery and post-event imagery
collected within 2 weeks of the EOI. The first post-event im-
ages were acquired on 10 July 2018 on both ascending and
descending tracks, less than 1d after the rainfall ended. By
making comparison with the GSI-AJG inventory, we found
an AUC of 0.6212 (Fig. 3c). The second set of post-event
images was acquired on 16 July 2018 on both ascending and
descending tracks. Incorporating four total post-event images
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improved the landslide signals and increased the AUC to
0.6787. Examination of the ;4o Within the landslides’ areas
shows some elongated debris flow shapes (Fig. 2d) but with
a considerably lower signal-to-noise ratio when compared to
using post-event stacks with many more images (Fig. 2c).
Importantly, the AUC improves rapidly over the first week
with the transition from two to four post-event images, indi-
cating that the images immediately following the event pro-
vide key information on the location of damage for rapid re-
sponse. While the AUC scores are relatively low for the rapid
response analyses due to the low signal-to-noise ratio of the
post-event images and it is challenging to identify individual
landslides from the I;40, the SAR-based backscatter inten-
sity change still provides key information that can be used to
identify the critically damaged areas.

4.3 Landslide detection with SAR-based-change
landslide density heatmaps

To rapidly detect areas with high landslide density, we de-
veloped a landslide density heatmap approach in GEE. As
described above, the heatmap is a data visualization tool
that uses the density of potential landslide pixels in a lo-
cation over a given radius to generate a raster. A key step
in generating a heatmap is to define the ITr y that classi-
fies true landslide pixels. To select the best Ii4o threshold
that corresponds primarily to true landslides, we examined
data for the 2018 Hiroshima landslide event. We found that
an ITr g value that includes all pixels > the 99th-percentile
value over the full AOI best highlights the true landslides
and removes most of the false positives (Fig. 4; see Fig. Al
for other case studies). For both the simulated rapid re-
sponse and the data stack that includes years of post-event
data, the 99th percentile highlights true landslides while
greatly reducing the false positives. Comparison with the
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90th-percentile and 80th-percentile thresholds shows how
the number of false positives increases rapidly by including
a larger range of Ii4o values. We will use the 99th percentile
as our It threshold for the remainder of the study.

Figure 5 shows our landslide density heatmap for the sim-
ulated rapid response scenario for the 2018 Hiroshima EOIL.
The heatmap highlights that the areas critically damaged by
landslides, as shown by comparison with the GSI-AJG in-
ventory, can be located within 2 weeks of the landslide-
triggering event. Areas with bright red colors correspond to
the areas with the highest potential landslide density and/or
the largest landslides.

4.4 Other case studies

Our analyses of the 2018 Hiroshima event provide us with
useful guidelines for landslide detection and rapid response.
To further test our approach, we applied our most effective
strategies for rapid response to the 2018 earthquake-triggered
landslides in Hokkaido, Japan, and 2020 rainfall-triggered
landslides in Huong Phung and Quang Nam, Vietnam. Our
most effective strategies include using a DEM mask and a
large pre-event stack of combined ascending and descending
data. We note that the specific values for the DEM mask will
vary from location to location, so we recommend exploring
a range of values. For these case studies, we simulated rapid
response scenarios by limiting Tpost to 2 weeks of the EOL

4.4.1 Simulated rapid response for the
2018 earthquake-triggered landslides,
Hokkaido, Japan

We defined the simulated rapid response scenario pre-event
time period between 1 August 2015 and 5 September 2018
and the post-event time period between 6-21 Septem-
ber 2018 for the Hokkaido event. These time periods resulted
in a pre-event stack with 150 combined ascending and de-
scending images and a post-event stack with 3 combined as-
cending and descending images. We found that the rapid re-
sponse heatmap characterized the areas with high landslide
density (Fig. 6a). Direct visual comparison with the pub-
lished inventory from Zhang et al. (2019a) shows good agree-
ment between the areas detected by our SAR backscatter
change heatmap and the true landslides. Figure 6b—d show a
close-up of an area with a particularly high landslide density.
The Iiaio values and the Iao > the 99th percentile show
strong and clear signals that correspond to true landslides. In
addition, the I, values > the 99th percentile appear to cor-
respond almost entirely to true landslides, and examination
of the 99th-percentile map and heatmap allows for straight-
forward landslide detection.
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4.4.2 Simulated rapid response for
2020 rainfall-triggered landslides, Huong Phung
and Quang Nam, Vietnam

We constructed landslide density heatmaps for simulated
rapid response for the October 2020 landslide events in AOIs
in Huong Phung (Fig. 7) and Quang Nam (Fig. 8), Vietnam.
There were hundreds of landslides triggered during this un-
usually wet period, but no published inventory of them is cur-
rently available (to our knowledge). For the Huong Phung
event, we defined the pre-event period as between 1 Octo-
ber 2016 and 17 October 2020 and the post-event period as
between 19 October and 1 November 2020. This resulted
in 229 combined ascending and descending pre-event SAR
images and 4 post-event SAR images. For the Quang Nam
event, we defined the pre-event period as between 1 Octo-
ber 2016 and 27 October 2020 and the post-event period as
between 29 October and 7 November 2020. This resulted in
253 combined ascending and descending pre-event SAR im-
ages and 4 post-event SAR images. The heatmaps for both
events clearly show areas with high density of detected land-
slides. We checked areas on the heatmaps that showed high
landslide density by comparing pre- and post-event S2 opti-
cal imagery (Figs. 7 and 8). The optical imagery shows that
the heatmaps successfully highlighted areas with high land-
slide density. We also observed some false positives in the
heatmap for the Huong Phung area. We observed apparent
high landslide density that appeared to correspond to false
positives related to clearcutting of trees (Fig. 7e).

4.5 Application of landslide density heatmaps to
support rapid response for 2021 Haiti earthquake

On 15 August 2021, just 1d after the 2021 Nippes, Haiti,
M,, 7.2 earthquake, we used our GEE tools to generate
a landslide density heatmap. Our heatmap only includes
the landslides triggered by the earthquake and not those
triggered by Tropical Storm Grace 2d later. We defined
the pre-event period as between 1 August 2017 and
13 August 2021 and the post-event period as between
14-15 August 2021. This resulted in 104 descending
pre-event SAR images and 1 descending post-event SAR
image. Note that because there was only a single de-
scending image collected immediately after the event, we
used a descending-only stack to create the heatmap. We
found an area of high landslide density located ~ 56 km
west of the epicenter (Fig. 9a). We posted our landslide
heatmap on the NASA Disasters Mapping Portal (https:
//maps.disasters.nasa.gov/arcgis/apps/MinimalGallery/
index.html?appid=3b785d8e1{f943e592a9810f67181b8d3,
last access: 4 March 2022) on 17 August 2021, where
numerous other remote sensing datasets were hosted includ-
ing the SAR coherence-based damage proxy map (DPM)
and coseismic S1 interferogram that were produced by the
Advanced Rapid Imaging and Analysis (ARIA) team at
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Figure 4. Detected landslides based on iy, threshold values (ITr p) for the 2018 Hiroshima landslide event. (a—c) The 99th-, 90th-
, and 80th-percentile thresholds for detecting landslides for the best-case landslide detection strategy that consists of stacks made from
142 combined ascending and descending pre-event SAR images collected between 1 May 2015 and 29 June 2018 and 133 post-event SAR
images collected between 9 July 2018 and 29 May 2020. (d—f) The 99th-, 90th-, and 80th-percentile thresholds for detecting landslides for
the simulated rapid response that consists of stacks made from the same 142 pre-event SAR images and 5 post-event SAR images collected
between 9-24 July 2021. Images are draped over NASADEM hillshade. DEM mask is used to remove low topographic slopes (< 5°) and
convex curvature (> —0.005m™ 1), Thin black polygons show the GSI-AJG landslide inventory.

NASA’s Jet Propulsion Laboratory and California Institute
of Technology in collaboration with the Earth Observatory of
Singapore (EOS). The SAR-based products are particularly
important because cloud cover prevented full optical-based
landslide mapping for weeks after the earthquake (Martinez
et al., 2021a).

The first available optical-based landslide inventory
was produced on the day of the earthquake (14 Au-
gust 2021) using a heavily cloud covered S2 image
(Fig. 9b) with the Semi-Automatic Landslide Detec-
tion (SALaD) approach (Amatya et al., 2021). Due
to the cloud cover, only a ~300km? area had partial
visibility, and ~ 525 landslides were mapped (https:
//maps.disasters.nasa.gov/arcgis/apps/MinimalGallery/
index.html?appid=3b785d8e1{f943e59a9810f67181b8d3,
last access: 4 March 2022). The USGS then released a
larger preliminary rapid landslide inventory that included

Nat. Hazards Earth Syst. Sci., 22, 753-773, 2022

3625 landslides over a ~ 5000km’ area between 17—
23 August 2021 made from Planet and Maxar optical
imagery and published a final inventory of 4893 landslides
made from Sentinel-2, WorldView, and Planet imagery in
December 2021 (Martinez et al., 2021a; see “Code and
data availability”). We found good agreement between
our SAR-based landslide heatmap and the area of highest
landslide density mapped with optical imagery, providing
further evidence that our SAR-based approach is well suited
for rapid response following major catastrophic landslide
events (Fig. 9a). A comparison of different landslide datasets
and methodologies to support the response and recovery
effort is ongoing and will be the topic of future work.
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Figure 5. Simulated rapid response heatmap for the 2018 Hi-
roshima landslide event. Heatmap with red colors showing a high
density of potential landslides draped over NASADEM hillshade.
Black polygons are from the GSI-AJG inventory. Pre-event stack
created from 142 combined ascending and descending SAR im-
ages collected between 1 May 2015 and 29 June 2018 and post-
event stack created from 5 SAR images collected between 9—
24 July 2021. Heatmap radius set to 1km. DEM mask is used
to remove low topographic slopes (< 5°) and convex curvature
(> —0.005m~1).

5 Discussion
5.1 Landslide detection using SAR backscatter change

Our results show that SAR-based backscatter intensity
change in GEE can be used to detect landslides over large
areas. The main goal of this study was to develop a method-
ology for those without SAR expertise or specialty process-
ing software that can be used to create landslide density
heatmaps that can aid in rapid response to catastrophic land-
slide events. We performed sensitivity tests and quantitative
analysis for the 2018 Hiroshima landslide event in order to
help guide future investigations that do not have an external
landslide inventory to help refine their approach. We demon-
strated that the landslides in Hiroshima Prefecture, as well as
the other case studies, caused an overall decrease in the SAR
backscatter coefficient, which resulted in a relatively large
positive Irao (Figs. 2 and A2). Furthermore, we found that
the true landslides are well characterized by I;a, values that
are > the 99th percentile (Figs. 4 and 6d).

We found that increasing the total number of SAR images
used in the SAR backscatter intensity stacks improved land-
slide detection performance (Fig. 3). Our study also confirms
findings of previous work (e.g., Adriano et al., 2020) that the
detection performance was further improved by applying a
DEM mask to remove areas where landslides were unlikely
to occur. Additionally, combining ascending and descending
geometry SAR data into a single stack together improved
landslide detection when compared to using ascending or
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descending data individually (Fig. 3). Combining ascending
and descending data into a single stack helps reduce bias
introduced from the acquisition geometry (e.g., radar shad-
ows, foreshortening, layover). The combined effect of stack-
ing hundreds of images with both geometries can improve
the ability to detect landslides. Our findings indicate that fu-
ture catastrophic events will benefit from a large number of
pre-event images (S1 data have been collected since 2014).
However, there is likely a point at which there are dimin-
ished returns on adding additional pre-event data because
of increased computation time. Additionally, we expect fur-
ther improvements in landslide detection as more advanced
SAR processing methods are incorporated into GEE. A re-
cent GEE toolset by Mullissa et al. (2021) implements bor-
der noise correction, speckle filtering, and radiometric terrain
normalization into the S1 data that may improve our land-
slide detection capability, but these methods are not yet in-
corporated into our GEE tools.

The landslide type and size also appear to impact our land-
slide detection performance. The minimum pixel size of the
S1 GRD data is 10m, with a pixel resolution of ~ 3 and
22 m. This resolution limits our ability to detect small land-
slides with lengths or widths <20 m, and as a result larger
landslides are more likely to be detected. Furthermore, users
should exercise caution interpreting individual pixels that
are isolated in space as landslides. Landslides are most of-
ten constituted by clusters of nearby pixels. Therefore, SAR
change detection with S1 data will work better in areas with
larger landslides, such as the 2018 Hokkaido landslide event.
The type of landslide also impacts the detection success and
must be considered when setting slope and curvature thresh-
olds. Detection of channelized landslides, such as debris
flows, benefits from curvature thresholds that remove convex
hillslopes from the analyses, while rockslides or translational
landslides may initially occur along convex hillslopes (e.g.,
2018 Hokkaido landslide event). Additionally, removing ar-
eas with low slope angles may remove the landslide deposit
from the detection analyses. Therefore, we suggest perform-
ing landslide detection with a range of slope and curvature
thresholds for each specific field area.

The next step after identifying landslide areas is to con-
struct landslide inventories. The ability to construct accurate
landslide inventories generally improves with time when ad-
ditional post-event SAR images are collected. GEE has draw-
ing tools that can be used to add a marker (i.e., point location)
or draw a line, polygon, or rectangle. Data from GEE, such
as SAR backscatter change maps, can also be easily exported
as GeoTIFF files for mapping in GIS software. Although not
fully explored in this work, we have added a threshold-based
approach that classifies pixels with certain I, values as
landslides and can be used for mapping. This is the same
ILatio threshold used to make the heatmaps (ITy,1). This ap-
proach is included in our GEE toolset (see “Code and data
availability”). We also note that GEE has machine learning
capabilities that can be used to help identify landslides.
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Figure 6. Simulated rapid response heatmap for the 2018 Hokkaidd landslide event. (a) Heatmap with red colors showing a high density
of detected landslides draped over the NASADEM hillshade. Heatmap radius set to 1 km. (b) Post-event Sentinel-2 optical image for sub-
area shown in (a). (¢) I;ajo map for sub-area draped over the NASADEM hillshade. (d) I;n(, threshold map with red pixels that are > the
99th-percentile Iy, draped over the NASADEM hillshade. Black landslide polygons in (a), (c), and (d) are from Zhang et al. (2019a). SAR
images are made from stacks consisting of 150 pre-event SAR images collected between 1 August 2015 and 5 September 2018 and 3 post-
event SAR images collected between 6-21 September 2018. DEM mask is used to remove low topographic slopes < 10° in (a) and (d). No
curvature mask is used because the landslides appear to have been sourced from hilltops.

5.2 Landslide density maps

Landslide density maps have been used to identify spatial
trends in landslide occurrence and to identify areas that were
critically damaged during landslide events (e.g., Bessette-
Kirton et al., 2019; Burrows et al., 2020; Rosi et al., 2018).
These density maps are also well suited for rapid response
because they do not require detailed and time-consuming
mapping. Additionally, landslide density maps can also be
compared or combined with empirical landslide susceptibil-
ity models, which typically operate with a coarse resolution
(kilometer-scale pixels), to further refine landslide detection
capabilities (Burrows et al., 2021).

Landslide density maps are typically made by counting
the number of landslides within a fixed area. For example,
Bessette-Kirton et al. (2019) used a 2 x 2km grid with op-
tical satellite imagery and assigned high landslide density to
> 25 landslides, low landslide density to 1-25 landslides, or
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no landslides for landslides triggered during Hurricane Maria
in Puerto Rico, USA. Burrows et al. (2020) used SAR coher-
ence change with S1 and ALOS-2 data at a ~ 200 x 220 m
resolution to generate coherence change density maps for
landslides triggered by the 2015 M,, 7.8 Gorkha, Nepal,
earthquake; the 2018 M,, 6.7 Hokkaidd, Japan earthquake;
and two 2018 Lombok, Indonesia, earthquakes of M,, 6.8
and 6.9.

Our landslide density heatmap approach is similar to other
density maps; however instead of counting individual land-
slides, we calculate the density of individually detected pix-
els over a fixed area. That means that the landslide density is
calculated at the sub-landslide scale. One major advantage of
our heatmap approach with SAR change detection in GEE is
that the processing can be done within a short period of time
(normally within a few minutes) once the post-event SAR
imagery is available in GEE. The results can be easily in-
terpreted and can highlight areas with the highest amount of
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Figure 7. Simulated rapid response heatmap for Huong Phung, Vietnam. (a) Heatmap draped over the NASADEM hillshade of the topogra-
phy with red colors corresponding to areas with high potential landslide density. Heatmap made from stacks consisting of 229 pre-event SAR
images collected between 1 October 2016 and 17 October 2020 and 4 post-event SAR images collected between 19 October and 1 Novem-
ber 2020. Heatmap radius set to 1 km. DEM mask is used to remove low topographic slopes < 10° and convex curvature > —0.005 m~L
Blue and magenta rectangles show zoomed-in areas in figures (b)—(e). Pre-event (b, c¢) and post-event (d, e) Sentinel-2 optical images for

high-landslide-density and low-landslide-density zones identified with the heatmap. High-density zones in (¢) and (e) appear to correspond
to deforestation.
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Figure 8. Simulated rapid response heatmap for Quang Nam, Vietnam. (a—d) Pre- and post-event Sentinel-2 optical images for high-
landslide-density and low-landslide-density zones identified with the heatmap. (e) Heatmap draped over the NASADEM hillshade of the
topography with red colors corresponding to areas with high potential landslide density. Heatmap made from stacks consisting of 253 pre-
event SAR images collected between 1 October 2016 and 27 October 2020 and 4 post-event SAR images collected between 29 October
and 7 November 2020. Heatmap radius set to 1 km. DEM mask is used to remove low topographic slopes < 10° and convex curvature
> —0.005m™~!. Blue and magenta rectangles show zoomed-in areas in (a)—(d).

change detection. Furthermore, this method can be easily in-
tegrated with population density or land use maps to further
prioritize rescue missions after a significant landslide event.
For the landslide EOIs we examined, we found our heatmap
approach was able to highlight areas with high landslide den-
sity for the real-time (Haiti) and simulated (Japan and Viet-
nam) rapid response scenarios.

5.3 Challenges with rapid response landslide detection

Despite the overall success of our case studies, we acknowl-
edge there are many challenges when attempting to detect
landslides for rapid response. In this section, we focus on the
challenges and possible sources of error in the rapid response
products. The main challenges of rapid response include the
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Figure 9. Real-time rapid response heatmap for the 2021 earthquake-triggered landslides in Haiti. (a) Landslide heatmap draped over the
NASADEM hillshade of the topography with red colors corresponding to areas with high potential landslide density. Heatmap made from
stacks consisting of 104 descending pre-event SAR images collected between 1 August 2017 and 13 August 2021 and 1 descending post-
event SAR image collected on 15 August 2021. Heatmap radius set to 3 km. DEM mask is used to remove low topographic slopes < 10°.
Dark circles show the USGS landslide inventory (Martinez et al., 2021a). (b) Post-event Sentinel-2 optical imagery showing high cloud cover
on the day of the earthquake. (a, b) Black star shows the My, 7.2 earthquake epicenter, and contours show the peak ground acceleration data
as a percentage of gravity (g) provided by the USGS (see “Code and data availability”).

following: (1) uncertain location and size of AOI, (2) SAR
backscatter intensity changes that do not correspond to true
landslides, and (3) computational limitations in GEE.

5.3.1 Identifying the AOI and EOI

One major consideration for rapid response is correctly iden-
tifying the correct AOI and EOI for the investigation. This
is not a straightforward endeavor, and our work here has
certainly benefited from performing retrospective analyses
with known EOIs and AOIs (except for Haiti). For rapid re-
sponse, prompt identification of the location and the scale of
an event soon after a disaster is difficult, and therefore the
location and the size of AOI are likely to be somewhat un-
known. To help identify the AOI and EOI for rapid response
in real time, we recommend consulting the International
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Charter Space and Major Disasters (https://disasterscharter.
org/, last access: 4 March 2022) and/or blogs such as The
Landslide Blog (https://blogs.agu.org/landslideblog/, last ac-
cess: 4 March 2022). Furthermore, depending on the event,
additional information can also be used to identify the
AOL. For example, for rainfall-triggered landslides, satellite-
based precipitation estimates, such as those provided by
the Global Precipitation Measurement (GPM) mission or
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF), can be useful in identifying regions with
higher landslide susceptibility (these products are also avail-
able in GEE). There are also freely available global land-
slide models that aim to identify likely landslide areas in
near real time. Kirschbaum and Stanley (2018) identified
potential landslide areas with the Landslide Hazard As-
sessment for Situational Awareness (LHASA) model, which
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combines satellite-based precipitation estimates from GPM
with a global landslide susceptibility map. A second version
upgraded LHASA from categorical to probabilistic outputs
(Stanley et al., 2021). LHASA version 2.0 also estimates the
potential exposure of population and roads to landslide disas-
ters (Emberson et al., 2020). These exposure estimates could
conceivably be used to identify the locations where land-
slides are most likely to have severe impacts. Our heatmap
approach could benefit from guidance and comparison with
predictions or “nowcasts” from LHASA. For earthquake-
triggered landslides, the users can incorporate ShakeMaps
and Ground Failure earthquake products produced by the
US Geological Survey and set the AOI to cover the regions
with high predicted ground failure or with high peak ground
acceleration. We implemented this strategy successfully for
the 2021 Haiti event. Additionally, consideration of popula-
tion density or township maps can be used to help determine
an AOL

5.3.2 Challenges using the landslide heatmap

We found our heatmap approach can be used to identify
areas with high landslide density. In order to construct a
heatmap, we had to select an I, threshold (ITy 1), kernel
density shape, and kernel density radius. We found that an
Ita > the 99th percentile of the entire AOI characterized
the true landslides in all case studies. However, because the
It 1 is based on the 99th-percentile value of the entire AOI,
by definition the heatmap will always highlight some pixels
(e.g., false positives) even if there is no landslide event. In
many cases, these false positives will be related to natural
and human-made ground surface change, including but not
limited to deformation from mining, construction, deforesta-
tion, agriculture, flooding, snow cover, and changes in reser-
voir water levels. We observed numerous places where SAR
backscatter coefficient change is not related to landslides
(Figs. 2c and d, 4, 6¢ and d). The DEM mask helps remove
some, but not all, of these false positives. Land use/cover
maps have also been successfully implemented to help re-
duce false positives (e.g., Adriano et al., 2020) but have not
been applied in our work. If there is no actual ground defor-
mation in the AOI, we expect the 99th-percentile pixels to
be randomly distributed, and therefore the heatmap will not
highlight a specific region. We are not able to directly assess
the number of false negatives with the heatmap because this
approach is not used to map individual landslide polygons.
To further explore potential issues with our heatmap ap-
proach, we constructed a heatmap for our Hokkaido AOI
during a period of time with no known landslide events just
prior to the Iburi earthquake (Fig. 10). We set the pre-event
time period from 1 August 2015 to 5 June 2018 and the post-
event time period from 6-21 June 2018. Our heatmap de-
tected a large area near the center of the AOI. Upon further
inspection, we found this change in backscatter intensity was
related to the filling of a large reservoir. The reservoir was
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Figure 10. Heatmap made during a period with no major landslide
events in Hokkaidd, Japan. (a) Heatmap draped over the NASA-
DEM hillshade with red colors corresponding to areas with high
density of ground surface change. Heatmap made from stacks con-
sisting of 127 pre-event SAR images collected between 1 Au-
gust 2015 and 6 June 2018 and 5 post-event SAR images collected
between 6-21 June 2018. Heatmap radius set to 1 km. High-density
region in heatmap corresponds to true ground surface change related
to infilling of a large reservoir. Because the reservoir perimeter has
slopes > 10°, it was not masked out of our analyses. (b, ¢) Pre- and
post-image Sentinel-2 optical images showing the infilling of the
IeServoir.

not entirely masked out of our heatmap because the edges
of the reservoir area have slopes > 10°. While we expect
false positives to exist using this method, we show that over-
all, the high density of ground surface change after a known
landslide-triggering event points to the overarching spatial
distribution of landslides.

5.3.3 Computation limits in GEE

Although GEE enables analyses of large quantities of data,
it is a shared cloud computing resource and as such has user
limits. GEE restricts the total number of simultaneous pro-
cessing requests and the maximum duration of requests and
computational memory (Gorelick et al., 2017). Thus, com-
putational issues can arise in GEE when trying to process
extremely large datasets (> 500 images) over large areas
(> 3500km?). To overcome these issues, we suggest start-
ing with small AOIs and then enlarging the AOI or using
multiple AOIs instead of one large single AOI. Additionally,
for events that occur after 2021, there are a large number of
pre-event data that may be redundant and only increase com-
putational time. Thus, we suggest limiting the pre-event time
period to < 4 years.

5.4 Satellite acquisition frequency and landslide
detection

Given the relationship established in Sect. 4.1 between the
number of images used in our pre- and post-event stacks and
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landslide event. (a) AUC score as a function of the number of SAR images used in the post-event stack. Dashed and solid black lines show
exponential fit models with and without fall-winter SAR images, respectively. The rate of AUC increase decays exponentially with the
number of images in the stack. Numbers next to black circles correspond to the number of days since the landslide event. The two fall-
winter-labeled SAR images fall off the best-fit line, which we infer is due to seasonal differences in SAR backscatter intensity. (b) AUC
score as a function of days since the Hiroshima landslide-triggering event. The dashed line shows the AUC score fit model, and the black
line shows a model fit excluding fall-winter images. The light orange rectangle highlights the 2-week-long rapid response time period. The
red lines indicate the predicted AUC score time series by assuming a satellite revisit time that is twice or half the S1 satellites for this region.

The color scale corresponds to the number of images used in the post-event stack.

the AUC (Fig. 3), we explored how the satellite revisit fre-
quency, as well as hypothetical changes in revisit frequency,
could impact landslide detection. To better understand the
relationship between the number of images and landslide de-
tection success, we used all of the available pre-event images
and continued to increase the Tpos duration following the
rainfall event to determine when we would achieve the max-
imum AUC for the Hiroshima case study (Fig. 11). The goal
of this exercise was to determine how many post-event SAR
images are needed for the best landslide identification shown
in Sect. 4.1. This information is critical for understanding the
level of potential SAR detection success to expect for future
landslide events when no external landslide inventory exists.
We found that the AUC continues to increase with post-event
time, and thus the number of images acquired increases too.
The AUC is > 0.7 in just 28d (6 post-event SAR images)
after the event and reaches a maximum of 0.8342 at 684d
(136 post-event images) after the event. This increase in the
AUC can be approximated as an increasing form of expo-
nential decay, with a rapid increase in the AUC shortly after
the event followed by a slower increase in the AUC several
months after the event (Fig. 11a). By plotting the AUC scores
with time, we found that the AUC scores increase roughly
linearly with log time (Fig. 11b). Finally, using our AUC
score model fits, we simulated the AUC score for hypotheti-
cal changes in the satellite revisit time. Our findings suggest
that if the satellite revisit was twice the current revisit time,
the modeled AUC score would be ~ 0.7 just 1 week after the
EOI, while if the revisit time was half the current revisit the
modeled AUC score would be ~ 0.65 (red lines in Fig. 11b).
While this finding suggests that, in general, more frequently
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acquired SAR data will lead to improved ability to detect sur-
face change, the level of improvement may change depend-
ing on site-specific influences.

Although we found that the AUC score increases follow-
ing the EOIL, the rate of AUC increase is temporarily reduced
between 56 and 183 d after the event (Fig. 11a). We infer
that this change in the rate of AUC increase is due to sea-
sonal changes in vegetation. The image stacks made between
56 and 183 d after the event contain a relatively high number
of images collected in fall and winter (between November
2018 and February 2019) when vegetation cover is likely re-
duced relative to the average yearly vegetation cover repre-
sented in the long-term pre-event stack. The change in the
rate of AUC increase is clearly shown by examining the fit-
ted lines in Fig. 11a. The rate of the AUC score increase re-
turns back to the overall trend after the spring season, possi-
bly due to the growth of vegetation. Seasonal changes in land
cover must be taken into account when using SAR intensity
change to identify landslides as these seasonal changes can
result in false positives or obscure true positives (Jung and
Yun, 2020). We are able to overcome seasonal changes by
using a large quantity of data to effectively smooth over sea-
sonality, but different strategies may be employed in cases
where data are limited (i.e., examine data all from the same
season).

5.5 Future work
We only explored SAR backscatter intensity change with the

C-band Sentinel-1 satellites because these are the only SAR
data freely available in GEE. However, our methodology can
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also be applied to SAR satellites operating with different
radar wavelengths and different pixel resolutions (e.g., X-
and L-bands). Recent work by Adriano et al. (2020) used
SAR intensity change detection with data from the JAXA
ALOS-2 satellite to identify landslides for the same EOI in
Hiroshima Prefecture. ALOS-2 PALSAR-2 data have an L-
band radar (~ 24 cm radar wavelength), which better pene-
trates through dense vegetation. Unfortunately, we were not
able to make a direct comparison with their dataset due to
data availability. Similarly, Jung and Yun (2020) and Bur-
rows et al. (2020) also used ALOS-2 data with SAR inten-
sity change, as well as coherence change methods, to de-
tect landslides after the 2018 Hokkaido landslide event. Jung
and Yun (2020) found that a multi-temporal intensity cor-
relation method provided the best landslide detection in the
vegetated mountains of Japan. ALOS-2 is collected relatively
infrequently worldwide and is not freely available, which
limits the use of our multi-temporal and open-source SAR
backscatter change approach with these data. The NASA-
ISRO SAR (NISAR) mission, which is currently expected
to launch in January 2023, will operate with an L-band
(~24cm) SAR sensor and is designed to fly by the same
location every 12d. As L-band data can generally produce
improved results in vegetated regions (Yun et al., 2015; Jung
and Yun, 2020; Burrows et al., 2020), we expect an im-
provement in our multi-temporal stacking SAR backscatter
change approach to detecting natural hazards using images
from the NISAR mission. Similarly to the Sentinel program
the NISAR products will be publicly available. If GEE also
ingests the NISAR products, the same GEE scripts provided
in this study can be used for the NISAR images.

Although we were able to successfully identify many land-
slides, we expect that SAR backscatter intensity change for
landslide detection may require different strategies in differ-
ent environments. For example, landslides that occur in re-
gions with different types of land cover or in regions that
have significant seasonal changes (e.g., snowfall, vegetation
cover) may require all pre-event and post-event data to be
from the same season. Also, SAR data collection is not the
same in all places around the world. For areas that have more
frequent S1 data collection, we expect better ability to rapidly
identify landslides, while the opposite is true for regions with
less data collection. For our future work, we will use our
GEE approach to explore how multi-temporal backscatter
intensity change stacking identification methods perform in
different environments and in different climates given each
will have different quantities of available S1 data. We will
also test if the recently released GEE package for border
noise correction, speckle filtering, and radiometric terrain
normalization can improve our landslide detection capability
(Mullissa et al., 2021). Nonetheless, our methodology pre-
sented throughout this paper, including stacking strategies
and Iy, values, provides a good starting point for all land-
slide events worldwide.
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6 Conclusions

In this paper, we developed a new methodology to rapidly de-
tect landslides (and other ground surface changes) and gen-
erate landslide density heatmaps using freely available SAR
data, topographic data, and open-source tools on the Google
Earth Engine platform. Our approach does not require spe-
cialized SAR processing software, and furthermore, it does
not require the user to download large volumes of data to
a local system. We found that the log ratio of two multi-
temporal SAR backscatter intensity image stacks, composed
of pre- and post-landslide event data, can detect areas with
high landslide density for rapid response (within 2 weeks
of a landslide event). We found the best strategy to detect
landslides was to combine all available SAR images acquired
on ascending and descending satellite flight paths with topo-
graphic data to mask out areas that were unlikely to experi-
ence landsliding and to construct landslide density heatmaps.
We also found that landslide detection capability increases
rapidly over the first 2 months and then continues to in-
crease slowly with more image acquisitions. This finding
implies that satellites with higher repeat acquisitions may
provide more accurate landslide identification that can as-
sist with rapid response. Alternatively, SAR data operating
with longer radar wavelengths will help reduce noise and
could improve landslide detection, especially for rapid re-
sponse. Future SAR missions, like the L-band NASA-ISRO
NISAR mission, which is currently expected to launch in
January 2023, will also provide publicly available data. If
Google Earth Engine ingests the NISAR data, our method-
ology could be used for Sentinel-1 and NISAR, which will
undoubtedly improve the ability to detect and monitor natu-
ral hazards.
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Appendix A: Additional figures
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Figure Al. Detected landslides based on I, threshold values (ITr H). Sentinel-2 (S2) post-event optical imagery and 99th-, 90th-, and
80th-percentile thresholds for detecting landslides for (a—d) Hokkaido, Japan; (e~h) Huong Phung, Vietnam; and (i-1) Quang Nam, Vietnam.
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Figure A2. Kernel density function of /., values for the 2018 Hi-
roshima landslide event. Blue line shows I, distribution for
the full AOI including both landslide and non-landslide areas.
Red line shows I, distribution for the true landslides mapped
by GSI-AJG. ;4o calculated using combined ascending and de-
scending stacks from 142 pre-event SAR images collected between
1 May 2015 and 29 June 2018 and 133 post-event SAR images col-
lected between 9 July 2018 and 29 May 2020. This plot corresponds
to our best-case landslide detection described in Sect. 4.1.
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Code and data availability. The data used in this paper were
provided by the National Aeronautics and Space Admin-
istration (NASA) and the European Space Agency (ESA)
Copernicus program and accessed in Google Earth Engine
(https://earthengine.google.com/; Google Earth Engine, 2022). The
Geospatial Information Authority of Japan (GSI) and Association of
Japanese Geographers (AJG) 2018 Hiroshima landslide inventory
is available at https://ajg-disaster.blogspot.com/2018/07/3077 .html
(last access: 4 March 2022). The 2018 Hokkaido Iland-
slide inventory from Zhang et al. (2018) is available
at  https://doi.org/10.5281/zenodo.2577300  (Zhang et al.,
2019b). The 2021 Haiti landslide inventory from the
USGS is available at https://doi.org/10.5066/P99MYPXK
(Martinez et al., 2021b). Other landslide and remote
sensing data for the Haiti earthquake are available at
https://maps.disasters.nasa.gov/arcgis/apps/MinimalGallery/
index.html?appid=3b785d8e1{f943e59a9810f67181b8d3 (NASA,
2022) blackboxPlease confirm change.. Additional Haiti earth-
quake data are available at https://earthquake.usgs.gov/earthquakes/
eventpage/us6000f65h/executive (USGS, 2022) blackboxPlease
confirm change..
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Google Earth Engine code for landslide detection in Google
Earth Engine is available at https://github.com/alhandwerger/GEE_
scripts_for_Handwerger_et_al_2022_NHESS (Handwerger, 2022).
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