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ABSTRACT. We investigate intersections of a given subvariety X of G. with cosets of
1-parameter subtori, on interpreting the context in terms of S-unit points over function
fields. On adopting a function field version of a method introduced recently by the second
author, extending to arbitrary dimensions previous work of the first and third author, we
prove that when the number of intersections is substantially higher than expected, one can
classify the relevant subtori. As a consequence, we obtain a classification of the cosets
of subtori such that there are many multiple intersections with X. This also allows a

new proof of a conjecture of Erdés and Rényi on lacunary polynomials. We finally show
l

m?

how the methods yield results in the realm of Unlikely Intersections in G , and in the
last section, reinterpret some of the results in terms of Vojta’s conjecture with truncated

counting functions.

1 Introduction

In the recent paper [11], the second author succeeded in extending to the case of arbitrary
dimensions certain results on integral points obtained by the first and third author in
the case of surfaces. Such results concern estimates for the greatest common divisor of
rational functions evaluated at S-unit points. For instance, the paper [4] proves an upper
bound for ged(u — 1, v — 1) for multiplicatively independent S-units u, v (e.g., proving it is
< max(|ul, |v|) when u,v € Z), whereas [I1] in particular extends this kind of estimate
to arbitrary pairs of expressions in S-units (under natural necessary conditions).

The results in [4] were later formulated also in a version for function fields, e.g. in
[5], [6], [7], [8]. In these articles the Schmidt Subspace Theorem, crucial in the numerical
case, was replaced by an argument using Wronskians. This varied context (and proof)
not only allowed for sharper estimates but also admitted several applications not possible
in the former case of number fields.

In view of this, we have thought of formulating as well the improvements of [I1] in the

case of function fields, and the present paper is a first output of this programme.



We have decided to start just by testing the ‘simple’ case of S-units in C(¢) with respect
to S = {0,00}; in this case, the group of S-units consists exactly of the monomials ct™,
c € C',m € Z. Basic as it looks, this case already contains problems whose solution
appears far from obvious. For instance, here is an illustrative

Question: Given two coprime polynomials P,Q € Clxy,..., x|, for which S-unit

points x; = a;t™ do they acquire a common factor of ‘substantial’ size?

We shall consider issues of this type. Similar questions had been asked by Schinzel
long ago, and treated e.g. in the third author’s appendix to [14] and in the paper [3]
by Bombieri, Masser and the third author; however, these works considered mainly only
the case of fized coefficients a;, which, as we shall see, is an important limitation for
some applications. Instead, the present methods are not affected by the variation of
coefficients [

Note that a substitution of the relevant shape, i.e. x; — a;t™, means just that we
are restricting our regular functions on G, to a certain 1-parameter algebraic coset (or
subgroup if a; = 1) of G.,. Thus the issue fits into the context of multiplicative tori and
their algebraic subgroups, which explains (part of) the title. E|

Among our results, we provide for instance a complete classification of the cases when
a given (but arbitrary) 1-parameter coset (of an algebraic subgroup) meets a given subva-
riety X of G, of codimension 2, in ‘many’ points. As alluded to above, our conclusions
have the advantage of being wuniform in certain data; more precisely, the classification
essentially depends neither on the involved coefficients, nor on the ‘size’ of the algebraic
subgroup, but merely on the degree of the variety and the ambient dimension. See Propo-
sition [1.1] (which is the main tool for all the results) and Theorem [1.3]

These results may be applied to study when a polynomial in several variables without
multiple factors obtains several multiple roots after a substitution of the above type (i.e.

along a 1-parameter coset); see Corollary .

We shall then notice two types of applications.

e The first one, given in , concerns lacunary polynomials (also called fewnomials, by
which we mean polynomials with a bounded number of terms - but arbitrary coefficients
and degrees of the terms). As an instance we shall offer a completely new proof (with
respect to Schinzel’s original one) of a former conjecture of Erdés and Rényi predicting
lacunarity of g(t), when it is known that g(¢)? is lacunary (see Corollary |3.1)).

e The second application concerns so-called Unlikely Intersections in algebraic tori.

Here we shall recover a result of [3], which also shall allow a quantitative improvement of

!The paper [3] contains also certain uniform results, obtained by a method different from the present
one, and anyway not made explicit.
2This interpretation also suggests the shape of possible analogues in the context of abelian varieties.



some of the former assertions.
In the last section, we reinterpret Corollary as a certain case of Vojta’s conjecture

with truncated counting functions, and derive an analogous result in Nevanlinna theory.

In this paper we have limited the techniques to the case of constant coefficients and
S-units of special shape. But the methods surely extend so as to remove both these
restrictions, which does not look possible with the other known methods in this context.

We hope to return to these topics in a future paper.

We now introduce just a bit of notation and give the main statements. Other state-

ments are deferred to the respective sections.

1.1 Notation

Ifv= (b17 ey bl) € Zl we shall write xV := J,‘lljl .. -I?l_

For a subscheme Y C G! we let degY be the degree of the closure of Y in the
natural embedding G!, — P;. We agree that the degree of the empty subscheme is 0. For
instance, if 7" is a subtorus of codimension 1 defined by x}* - - -z} = 1, then its degree is
the maximum between the sums of the absolute values of the positive ones, or the negative
ones, of the a;.

Also, if XY are subvarieties of G! , then in deg(X NY) we shall count only those

components contained in G!.

It is worth noticing that an automorphism of G , given by monoidal changes of co-
ordinates (as in [2]) may change the degree; we shall often remark this in the text when

relevant.

For a positive 0-cycle C' = >~ h;a;, where h; € N, a; € G., we let

p(C) = max(0,h; — 1).
This of course expresses the multiplicities occurring in C'.

For a subtorus H C G, we shall usually denote by aH the translate of H by a € G .

For a regular function P on G! we shall denote by P,y its restriction to aH. If H is
d Qij
=1t
restriction as obtained just by substitution into P (clearing, if we want, the denominators

given a parametrisation x; = [] (which always exists), we shall understand the
which arise, which are monomials). For instance, if H = U has dimension 1, and if
a = (ai,...,q), then aU may be parametrized as x; = a;t™, and by P,y we mean
Plait™, ... ajt™) € C[t*!]; if we want a polynomial we just multiply by a power of ¢,
which is immaterial in this context. (See also Remark (1.5 (i).)

In the sequel by ‘subtorus’ we shall refer to the ambient space G. unless different

explicit mention is made.



1.2 Some statements

The following proposition embodies the essentials of the method and is the basis for the
subsequent applications. It basically asserts that if a 1-parameter coset all' meets a given
subvariety X C G! , of codimension 2, in too many points, then U must be contained in
a (certain) prescribed finite union of proper subtori of G! . Then going on to each such

subtorus the dimension is decreased, which often allows for an induction process.

PROPOSITION 1.1. Let Py, Py be coprime polynomials in Clxy,...,x;] of respective
degrees dy,dy, and denote by X the subscheme of G defined by P, = Py = 0. Further,
let d > max(l\/2d,dy, d; + dy) be a positive integer.

Then, for each subtorus U of dimension 1 and for each a € G, either

(i) There exists a subtorus H of codimension 1 with deg H < d and U C H, or

(i1) deg(X Nal) < 4l2flT”l2deg U.

REMARK 1.2. (i) The strength of the result lies in its uniformity, in that the alterna-
tives and the estimate (ii) does not depend on the coefficients of P;, P, nor on a. Note
especially that the number multiplying deg U on the right of (ii) tends to 0 as d — oo
(for fixed X).

(ii) Similar inequalities may be obtained, with the same proof, by using partial degrees

in place of total degree.

The following theorem is our first application, where again the dependence of the

bounds (i.e. not on coefficients) is a crucial point:

THEOREM 1.3. Let Py, Py be coprime polynomials in Clxy,..., ;] and denote by X
the subscheme of G!. defined by P, = P, = 0. Let 0 < ¢ < 1. There exists a finite set ®
of subtori, each of degree < c1e=, where c1,co > 0 are positive numbers depending only
on | and deg X, with the following property.

For every translate aU of a subtorus U of dimension 1, if deg(X Nnal) > edegU,
then there exists H € ® with U C H and dim(X NaH) > dim H — 1.

Note that when dim(X NaH) > dim H — 1, indeed we cannot hope that deg(X NnaU)
is small, in view of Bezout’s theorem (and since U C H). So the conclusion in a sense is

the correct one.

Here is a first corollary, to classify the cases where restriction along a 1-parameter sub-
group or coset produces many more multiple roots than expected (in turn an application

of this to lacunary polynomials will be stated and proved later in .

COROLLARY 1.4. Let P € Clxy,...,x;] have no non-monomial multiple factors and
let 0 < € < 1. There exists a finite set  of proper subtori, each of degree < c1€~*, where

c1,co > 0 are positive numbers depending only on | and deg P, with the following property.
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For every translate aU of a subtorus U of dimension 1, if P|ay has > edeg U nonzero
multiple roots (where a root of multiplicity m counts m —1), then there exists H € ® with

U C H and Plag having a multiple factor vanishing somewhere on aH.

REMARK 1.5. (i) Here by P,y we mean P(at™, ... ait™) € C[t*!]. Suppose this is
not identically zero. Then we remark that an easy Vandermonde argument shows that
the multiplicity of any nonzero root in this Laurent polynomial is bounded in terms only
of I,deg P (Hajos lemma, see e.g. [I4]). Taking this into account, on changing € by a
factor depending only on [, deg P we can then simply count the number of multiple roots,
i.e. counting them with multiplicity 1, obtaining an equivalent statement.

(ii) Note that this entails that for a ‘generic’ subtorus U, in the sense of not being
contained in a proper finite union of subtori of G, depending only on I, deg P and e, any
restriction P,y has a number of multiple roots bounded by edeg U. For instance one can
take P = x; + ...+ z;, and then we obtain that:

For integers 0 < my < ... < my and nonzero ay,,...,a;, if a,t"™ +...+aqt™ has more
than €-m; nonzero multiple roots, then mq, ..., m; satisfy a nontrivial linear equation with
coefficients bounded by a function of I, € only.

Here as above it is relevant that the coefficients aq, ..., a; do not affect the estimates.

(iii) The paper [I] gives a similar conclusion (with a different formulation) assuming
only that Py has at least one (nonzero) multiple root. At first sight this may look much
stronger; however the point is that the translation by a is absent in the latter statement.
Indeed, the proofs in [I] also use the height of the coefficients of P, and translation affects
this feature in the case a has large height.

This aspect greatly reduces the potential applications of [I] to the general theory of
lacunary polynomials in case the coefficients may be arbitrary; see also §3| below. (Note
also that by varying coefficients one can obtain several multiple roots without any special
conclusion.)

(iv) Alternatively, the conclusion of Corollary leads also to: There exists a proper
Zariski closed subset Z C G! , depending only on €1, and deg P, such that for every
translate aU of a subtorus U of dimension 1, if Play has > edegU nonzero multiple
roots then aUl C Z. This statement can be derived from Corollary as follows. From
the corollary, it suffices to show that if H(€ ®) is a fixed proper subtorus of G , then
non-Zariski density holds for the union of the cosets aH such that P|,y has a multiple
factor vanishing somewhere on aH. After an automorphism of G!, and clearing monomial
factors, it suffices to consider the case where H is defined by z; = -+ = 2y = 1 and
P € Clzy, ..., ;] has no multiple factors. Then we need to show that the set

{(ay,...,ap) € GL(C) | P(ay,... ,ap,xpyq,...,71) € Clzyiq,. .., 2] has a multiple factor}



is not Zariski dense in G!,. This is well known, and geometrically follows from the general
fact (see [10, Th. 9.7.7], [I7, Tag 0578]) that if X and Y are schemes, f : X — Y is
a morphism of finite type, Y is irreducible, and the generic fiber of f is geometrically
reduced, then the fiber X, is geometrically reduced for all ¥ in some nonempty open
subset U C Y. (Apply this to the closed subscheme defined by P and the projection onto

the first I coordinates.)

2 Main arguments

The main argument, introduced in the paper [II] in the number field case, appears in
the following proof. As mentioned above, a Wronskian replaces the use of the Subspace

Theorem.

Proof of Proposition . Let us consider the complex vector space V; of polynomials in
Clxy,...,7;) of degree < d and lying in the ideal (of X) generated by Py, P,. We first
estimate k := dim V};. If Polj, is the space of complex polynomials of degree < h, we have

a linear map
Polg_q, ® Polg_a, — Vg, (Q1,Q2) = Q1P + Q2P

If (@Q1,Q2) is in the kernel of this map, then @)y = BP,, Qs = —BP; for some polyno-

mial B of degree < d—d; —ds, and conversely, hence the kernel has dimension (didllfdﬁl).

We deduce that the image has dimension > (d*‘glﬂ) + (df‘iﬁl) - (didll*dﬁl), which is

then a lower bound for & = dim V:

d—dy+1 d—dy+1 d—d; —dy+1
(2.1) k:dimvdz( l1+)+( lﬁ)—( 11 2+).
Let fi,..., fx be a basis for V; and let ¢t — t™ := ("™, ..., t™) be a parametrisation
of U, for coprime integers my, ..., m,. In particular, max |m;| < degU < 2max |m,].

For a polynomial P in xy,...,2; we denote for this proof P = P(at™) e C[t,t™"]
and we let W = W(fl, o fk) be the Wronskian of the f;, so that W = det(fi(j)) is the

determinant whose rows are the first k& derivatives of ( fl, ey fk) with respect to t.
Let us consider the monomials of degree < d (in xy, ..., ;) evaluated at t™; we shall
obtain powers t*, ..., t% ordered by a; < as < ... < a,, where r is at most the number

of monomials of degree < d, i.e. at most (d;rl). Note that if r is strictly less than this

number, then we fall into the alternative (i) of the proposition, so let us assume that

r= ().



The Laurent polynomials f; will be linear combinations of these powers of ¢. If W = 0
then the fz are linearly dependent over C, and this implies that two monomials of degree

< d take equal values at t™; again, we fall into (i), and so let us assume W # 0.
On changing ¢ into ¢! if needed, we may assume that |a;| < |a,|.
For £ € P; let us denote by v¢ the order function at £ of a rational function of ¢.

Let us estimate vg(W). By column operations we can suppose that the ﬁ have distinct

valuations at 0; these valuations will lie among the a;. Then it is easy to see that

k
(22) ’U()(W>Za1+&2—|—...—|—ak—(2).
By a similar argument we see that
k
(2.3) V(W) > —(ap +ar—1 + ...+ ap_gy1) + (2)

Let now £ € Gy, and let m = m¢ be the minimum of the orders of P\, P, at £. By
column operations we may assume that ﬁ vanishes at £ with order at least m+17—1. But
then W vanishes at £ of order at least kme.

Note that since all the f; lie in the ideal generated by Py, P, this number shall be
positive for £ in X NaU, and actually £ is counted in deg(X Nal) with weight given by
M.

By the product formula, and since W # 0, we have > .y ve(W) = 0. In view of the
above, this yields

kzmgg(CLT+CLT,1+...+CLT,]€+1)—(CLl—l—CLQ—l—...—FCLk).

In turn, letting s = r — k, the right-hand side equals
(aps1+ -+ a,)— (a1 + - +as) = (ager — a1) + (agro — a2) + -+ + (arys — as),
which does not exceed 2s|a,| < 2sd max |m;| < 2sddegU.

Let us estimate s = r — k. By equation (2.1) and since r = (d;rl), we have s <
(41 = (4008 = (4028 4 (4 290%Y) — (d41) —g(d 1), where g(z) = (5) ~ (1) =
T— r—di dy T—1i z—da—1 dy d r—i—]
(1711) +.+( lfi ). So, g(x) — gz —do) = 3231, ((;7)) — ( li1 ) =2k 2 it ("57)-
Hence in particular s < dyds (d;r_lgz) and therefore

§ S l(l — 1)d1d2 S l2d1d2.
r— (d+0)d+1-1) d?
In particular, s/r < 1/2 by our assumptions. Hence we finally obtain

41%dydy

2ds

(2.4) deg(X nal) <

4d
degU < —SdegU < deg U,
r

r—s

as required. N



Proof of Theorem[1.3. We argue by induction on [. The statement being empty for [ = 1,
we now assume [ > 2.

We apply Propositionuwith d= [w] +1. If indeed deg(XNalU) > edeg U,
the conclusion (i) of the proposition delivers a subtorus H of codimension 1 with deg H < d
and U C H.

We start by putting all such subtori, which form a finite set, inside our set ®. Note
that the degree of such tori satisfies a bound of the stated shape.

A first case now occurs if X has codimension < 1 inside aH, i.e. if dim(X NaH) >

dim H — 1. Then we fall into a case of the conclusion and are done.

Suppose on the contrary that X has codimension 2 inside aH. In this case we
reparametrize H, i.e. we may identify H with the subtorus z; = 1 of G! , after a suitable
automorphism of G! expressed by substitutions z; — x¥i, where the v; are integer vectors
in Z! such that the matrix of the v; is in GLi(Z) (see [2] or [20]).

The degree of H is essentially the height of v;; also, it is well known that the height
of some such matrix can be bounded by c3d’ (and even by csd but we do not need this),
where c3 depends only on (.

From now on we view all varieties and subtori inside H, which is identified with G! .
However this identification changes the degrees that we are using. Let us indicate with a
subscript degy the new degrees (they depend actually not only on H but on the matrix
which we have chosen). The new degrees are expressed in terms of multiplication by the
said matrix, so that they will be bounded above by the old degrees multiplied by c,d®,
where ¢4, c5 depend only on [. A converse inequality is also true, on using the matrix

inverse to the previous one.

Inside this new ambient space H, we also replace X with X’ := a~'X N H, so that X’
will be again defined (in H = G!;1) by two polynomial equations (obtained on substituting
x; — XV into the former ones and then setting x; = 1). By the present assumption X'
will again have codimension > 2 in G';* (so that the two polynomials are coprime). Also,
since deg(X Nal) > edegU, we shall have deg(X' N U) > € degy U, where the degree
of U is now computed inside H and where ¢ > ¢4¢“” where cg,c; > 0 depend only on
[,deg X. This estimate immediately follows from the above observations.

It suffices now to apply induction to this situation. It is again immediately checked
that the dependence of the bounds for degrees remains of the stated shape, and the new
subtori can be put inside the set ®.

Note that each H delivers a new finite set ® 5, but since there are only finitely many H

involved, depending only on d, the final set ® can be taken as the union of the respective
Oy. O



REMARK 2.1. The proof may be turned into a completely explicit estimate for the
involved quantities. We have omitted these calculations, also in order to reduce the length
of the paper, and since the involved functions ¢y, co appear to be of iterated exponential
type, so of very fast growth.

Note that the set & may depend on X, but is contained in a finite set of subtori
depending only on [, ¢, deg X.

Proof of Corollary[1.4] We proceed by induction on [, the assertion being clear for [ = 1;
we then assume [ > 1 and the statement true up to [ — 1.

As before, let U be parameterised as ¢ +— t™ := (t™, ... t"™) for coprime integers m;,
observing that max |m;| < degU < 2max |m,].

We set Q(x) = Y24, myz; P(x), where for this proof we abbreviate F} = (%_F.

Note first that ¢S5 P(t™) = Q(t™).

We may assume at the outset that P has no monomial factors, which are irrelevant as
to the statement. Now assume first that P and () are not coprime, and so have a common
irreducible factor R not divisible by any z;. Then we may write P = RS, where R and
S are coprime since P is assumed to have no multiple factors. Differentiating, we obtain
Q = R(>_, mixiS;) + (O, mix; R;)S. We deduce that R divides ), m;xz;R;. However, the

latter polynomial has degree at most deg R. Then for some constant ¢ we must have

l
=1

Let xP be a monomial appearing in R, with coefficient ;1 # 0. Then xP appears in x; R;
with coefficient ub;. We infer that the sum ), m;b; is constant for all monomials appearing
in R. Since R by assumption contains at least two monomials, we deduce a linear relation
22:1 m;b; = 0 with integer coefficients b} not all zero and bounded in absolute value by
2deg R < 2deg P. This means that U is contained in the finite union of proper subtori H
of G!, of codimension 1 and degree bounded by 2 deg P. In this case we can parametrize
each such H (as in the previous proofs) and reduce to dimension [ — 1, concluding the

proof by induction.

Hence let us now assume that P and () are coprime.

That P,y has at least e deg U multiple nonzero roots (counted as in the statement)
amounts to P(at™) having at least that number of nonzero multiple roots. Differentiating
with respect to t we see that the scheme X defined by P and () intersects al in a scheme
of degree > edeg U. But now we may apply Theorem [1.3] obtaining the existence of the

finite set ® as in that statement.



In particular, there is an H € ® such that U C H (and dim(X NnaH) > dim H — 1,
but this this last condition will not be exploited). We consider the polynomial P,y; by
parametrizing aH we can view P,y as a polynomial in I’ = dim H < [ variables. (Here
after the parametrisation we may obtain Laurent polynomials rather than polynomials.
However, the denominator here is immaterial, and we can replace the Laurent polynomial
by its numerator). Now, either P,y has a multiple factor vanishing somewhere on aH
(i.e. a non-monomial multiple factor, once we view P,y as a polynomial in I’ variables),
and we are done, or we may apply induction.

This concludes the proof.

O

It will be noted that the variety X in the proof (to which Theorem is applied)
depends on the torus U (indeed, @ depends on U). It is the uniformity provided by
the previous constructions which allows this kind of approach to work. (This is related
to Remark (iii) above; indeed, the methods of the paper [I] would not fit with this

approach since the estimates therein depend on the height of the coefficients.)

3 An application to lacunary polynomials

We now illustrate an application to lacunary polynomials, obtaining in particular a com-
pletely new proof of what was a conjecture of Erdés and (independently) Rényi, first
confirmed by Schinzel [13]:

COROLLARY 3.1. Let g(t) € C[t] be such that g*(t) has at most | terms. Then the

number of terms of g(t) is bounded by a function of I alone.

Schnizel’s result covered the case g(t)¢ with arbitrary fixed d, and the same holds for

the present method; we have limited to d = 2 for simplicity.

Proor. We shall prove by induction on [ the following statement

Let P(zy,...,2;) € Clzy,27",...,2,2;"] be a Laurent polynomial having no non-
monomial multiple factor. Then if for some 1-dimensional sub-torus U C G.  and a point
a € G, the Laurent polynomial Pay(t) is a perfect square g(t)?, up to a power of t, then
the number of terms of g(t) is bounded as a function of I and deg P only (where deg P is
defined to be the degree of the numerator of P).

Clearly, our Corollary immediately follows from the above statement by taking
P(zy,...,o) =x1+ -+ + 2.

To prove our statement above, we use induction on [, observing that the statement is
trivial for [ = 1.
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We observe also that, writing P(x) = Y pmX™, we can suppose that the differences of
the exponent vectors m—m’ € {—deg P, ..., deg P}' appearing with non-zero coefficients
Pm, P generate the Q-vector space Q. Indeed, if this were not the case, after multiplying
P by an appropriate monomial, we could apply the induction argument, reducing to the
same statement in fewer variables.

Let @ be the set of codimension one subtori of degree at most deg P. If U is a 1-
dimensional subtorus and two monomials x™ of P restrict to the same monomial on U,
then clearly U C H for some H € ®. Then under the above independence assumption on
the exponents of P, for a suitable positive number ¢, depending only on [ and deg P, the

lower bound
(3.5) degay Pav > cdegU,

holds for all 1-dimensional subtori U such that U ¢ H for H € ®. Here, deg,; Pav
denotes the degree of the subscheme P defines on aU (equivalently, the degree of the
numerator of the Laurent polynomial P,y after removing an appropriate power of t).

We shall apply Corollary 1.4 with € = §. With this choice of ¢, we enlarge ® by adding
to it the finite set of subtori of G} provided by the conclusions of Corollary

Since f(t) = P,y is assumed to be a square (up to a power of t), P,y has at least
(deg,y; Pav)/2 (nonzero) multiple roots. Hence if holds, the conclusion of Corollary
delivers a subtorus H € ® such that U C H and P,y has a multiple factor vanishing
somewhere on aH. In any case, U C H for some H € ®, of degree bounded as a function
of [ and deg P.

Let us reparameterise H by new variables, say, z1,...,2,, r =dim H < [, so that z; =
xVi, where the v; are certain linearly independent integer vectors. In these coordinates
the z; will become monomials in ¢ under the substitution z; — a;t"™ (i.e. restricting to
al); let us write z; — b;t". Also, P,y will become a Laurent polynomial in zy,...,z,
(the denominator being immaterial since it is well defined and nonzero on G. ), and let
Q(z1,...,2) be the numerator. Let Q = Q3Q5 be a factorisation, where @, is squarefree.

If @7 is a constant times a monomial, we are done since P(at™) is then obtained by
the substitution z; = b;t™ inside Q? (up to a power of t), and the degree of the various @
which may appear is bounded as a function of [, deg P, since each torus in ¢ has degree
bounded in terms of [, deg P only.

Otherwise, letting V' be the subtorus of H parameterized by z; = ", we have that

(Q2)py will be a square, and we apply the induction argument. ]

REMARK 3.2. It will be noted how Corollary [I.4] allows in fact conclusions which go
beyond the last statement; i.e., in a sense, for given [, we may parameterise completely
the identities of the shape a;t™ + agt™ + ...+ a;t™ = g(¢)*h(t) such that the degree of
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h(t) is ‘small’. It seems not obvious to us if/how the known previous proofs of Corollary
may be extended in this sense.

As to quantitative bounds, Schinzel’s first proof produced doubly exponential ones for
the number of terms of g(¢) as a function of I. See [15] for a quantitative strengthening,
following however similar principles. It is not likely that the present approach would lead
to a better estimate, but our purpose here is mainly to show how the above general results
include this sort of conclusion as an application. (See also the paper [21I] for extensions
to arbitrary compositions h(g(t)) in place of g(t)? and see further [9] for more general
algebraic relations with lacunary polynomials, being treated with methods completely
different both from Schinzel’s and from the present ones; these last do not directly lead

to these more general cases, however have other advantages.)

4 An application to Unlikely Intersections in tori

In the paper [3] of Bombieri, Masser and the third author, in particular the following
!

m?

situation was analysed. Let X be a subvariety of G, , of dimension r say. If we take a
subtorus H of dimension s and a translate aH, we expect that dim(X N aH) will not
exceed 7+ s—1[. Because of this, the subvarieties of X of positive dimension > r+s—1[+1
and contained in such an intersection, were called anomalous. Also, those not contained

in any anomalous subvariety of larger dimension were called maximal anomalous.

Theorem 1 of [3] gives a kind of general complete description of the maximal anomalous

subvarieties, in particular proving that :

The maximal anomalous subvarieties correspond to intersections X N aH where only

finitely many subtori H are involved. ﬁ

In [3] it was also remarked (subsequent to the statement) that the degrees of these H
can be bounded by (effective) functions of | and deg X only; this more precise uniformity
assertion, important in the present context, was not explicitly justified in the paper [3] but
it was remarked that it followed naturally (and easily) as a byproduct from the structure

of the proofs therein.

In this section we indicate how, in the case when X has codimension 2, such a result
may also be achieved using the above theorems, hence in a completely different way with
respect to [3]. [f

3For given H, it is not difficult to see that the maximal anomalous subvarieties are obtained alge-

braically, i.e. precisely for a running in a certain constructible subvariety of X; see [3] for details.
4Probably this alternative treatment can be given by the same method in the case of arbitrary codi-

mension.
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In §4.2| we shall also remark how this leads to a quantitative improvement of Theo-
rem , where the needed lower bound e deg U is replaced (for large deg U) by (deg U)' =",
which is a weaker requirement for large enough deg U, hence for all but finitely many
subtori U.

4.1 A sketch of the argument

Since the result in question has already been proved in [3] we shall give merely a sketch

of the argument.

Suppose then that X has dimension [—2 and Y C XNaH is a(n irreducible) subvariety
of X of positive dimension > s — 1, where s = dim H, and suppose Y is maximal with
these properties. We may assume that dimyY = s — 1.

We may replace H with G after a parametrisation, similar to what has been done
previously several times. Then the ambient dimension is now s and the new variety is
a !X N H, which now has a component Y of positive dimension s — 1. Intersecting ¥
with a ‘general” subtorus U of H of dimension 1, by Bezout’s theorem we shall obtain at
least deg U points in a projective closure Py of G,. If U is ‘very general’, at least, say,
half of these points will in fact lie in G,.

But then we may apply Theorem to X and U, with e = 1/2, and we deduce that
there are a finite number of subtori of G, of degree bounded by c3(I, deg X)), whose union
contains U. Since however U is practically arbitrary in H, this entails that H itself is

contained in the union of the said subtori, concluding the argument.

4.2 A quantitative improvement

Finally, we show how such a result, whose proof we have just sketched (so it is indeed
independent of the results in [3]) leads to the quantitative improvement of Theorem
mentioned in the opening remarks of this section. More precisely, we sketch the proof of
the following

THEOREM 4.1. Let Py, Py be coprime polynomials in Clxy,..., ;] and denote by X
the subscheme of Gl defined by Py = P, = 0. There exists a finite set ® of subtori, each
of degree < c1, where ¢y is a positive number depending only on | and deg X, with the
following property.

For every translate aU of a subtorus U of dimension 1, if deg(X Nal) > (degU)""*",
then there exists H € ® with U C H and dim(X NaH) > dim H — 1.

PROOF. Let us note that the result is very easy for bounded deg U, since such tori
are finite in number. Hence in the sequel we may assume that degU is large enough in

terms of [ and deg X.
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By easy Geometry of Numbers (applied to the lattice corresponding to U) we can find
a subtorus U’ of dimension 2 containing U and of degree degU’ < (degU )% (see for
instance [22], Ch. 1). Here the implied constant depends only on I.

If X naU’ is finite then by Bezout’s theorem we obtain deg(X Nal’) < deg X -degU’,
whereas deg(X Nal’) > deg(X Nal) > (degU)""""" by assumption.

Since ﬁ:—f <1-— %
diction, and hence we deduce that X Nal’ has positive dimension.

, and since we are assuming that deg U is large, we obtain a contra-

But then the intersection X N alU’ is anomalous (by definition) and the conclusion
of the previous subsection applies. On going to the maximal anomalous intersections, it
also follows that U’, and therefore U, is contained in a finite union of proper subtori H
of G, of degree bounded only in terms of /,deg X. It also follows that dim(X NnaH) >
dim H — 1. O

5 A relation to Vojta’s conjecture with truncated

counting functions

Silverman [16] has explained in detail the connection between the ged estimates of [4] and
[T1] and Vojta’s conjecture applied to blowups of projective varieties. Proposition , a
function field analogue of these estimates, admits a similar interpretation. We now show
that the multiplicity result of Corollary can be reinterpreted precisely as a function
field version of certain cases of Vojta’s conjecture involving truncated counting functions,
and that it yields an analogous inequality in Nevanlinna theory which is closely related
to a general inequality of Noguchi, Winkelmann, and Yamanoi [12].

We first state the relevant version of Vojta’s conjecture over number fields [19, Con-
jecture 2.3] and refer to [19] for the definitions of the involved quantities (which will be

explicitly defined below in our restricted function field setting).

CONJECTURE 5.1 (Vojta’s conjecture with truncated counting functions). Let X be
a smooth projective variety over a number field k, D a normal crossings divisor on X,
Kx a canonical divisor on X, A an ample divisor on X, and € > 0. Then there exists a
proper Zariski closed subset Z C X such that for all points Q € X (k) \ Z,

(5.6) NP(D, Q) > hicyp(Q) — eha(Q).

We now consider the analogous conjecture over the function field £ = C(t) with
X =P, and begin by explaining the terms in (5.6]) in this context.

14



Let Q = [zo: -+ : 2y € P/(C(t)). Recall that the height of @ is defined by

hQ)=— Y min{ve(xo),. .. ve()},
£eP1(C)
where, as before, ve denotes the order of a rational function of ¢ at . If D is a hypersurface
in P, defined by a homogeneous polynomial P € C(t)[xo,...,x;], degP = d, and & €
P,(C), then define
Apg(Q) = ve(P(Q)) — d min {ve(z;)},

0<j<l

ho(@) = Y Ae(@Q) = dh(Q),
)

£eP1(C

where the last equality follows from the product formula. For a subset S C P;(C) we

define the proximity function and counting function associated to D, respectively, by

ms(D,Q) =Y Ae(Q),

£es

Ns(D.Q)= > ApelQ).

£eP1(C\S
We define the n-truncated counting function associated to S and D by
N(D,Q) = Y min{Ape(Q),n}.
£eP1(CN\S

As we have done throughout, we now restrict to the case S = {0,00}. Let P €
Clzy, ...,z € C(t)[x1,..., 7] be nonconstant and let Dp be the hypersurface in P,
defined by (the homogenization of) P. Let Hy, ..., H; be the coordinate hyperplanes of
P, and let D = Hy+ Hy +---H, + Dp. Let U C Gﬁn be a subtorus of dimension 1
parametrized by (t™ ..., t™) a € G! (C), and Q = Qay = [1 : a;t™ : - -+ : q;t™] be the
projective point in P;(C(t)) associated to all. From the form of @) and the definitions, we
have

NP(D,Q) = N (Dp, Q)

(in the language of integral points, @ is S-integral with respect to Hy, ..., H;). Note also
that since Kp, = —(Ho + --- + H)),

h/K]Pl +D (Q) = hDP (Q)

Then assuming that D is a normal crossings divisor on P, inequality (5.6)) of Vojta’s
conjecture (over function fields) gives

hpp(Q) = N (Dp, Q) = ms(Dp, Q) + Ns(Dp, Q) — N$ (Dp, Q) < eh(Q),
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as long as () lies outside of some proper closed subset Z C P;. Equivalently, we can split

this into the two inequalities

mg(Dp, Q) < eh(Q),
(5.7) Ns(Dp,Q) = N§(Dp, Q) < eh(Q).

The first inequality is known to hold in this context over both function fields and
number fields (assuming that D is a normal crossings divisor, or at least that some general

position condition is satisfied). For the second inequality, we find the easy formula

Ns(Dp, Qav) = N (Dp, Qav) = Y max{ve(Play) — 1,0}.
£€Gm

Thus, the left-hand side of counts the nonzero multiple roots of P,y as in Corol-
lary [1.4 Since h(Qar) = degU, Corollary (combined with the exceptional set Z of
Remark (iv)) can be viewed as giving precisely a certain case of Vojta’s conjecture
with truncated counting functions, namely inequality for points @ € P;(C(t)) with
S-unit coordinates (excluding points in some proper closed subset). Note that the normal
crossings condition on D turns out to be unnecessary for , except for the requirement
that Dp must be reduced.

We now turn to analogous inequalities in Nevanlinna theory (see [18] for the analo-
gies with Diophantine approximation and the definitions and notation). Consider the
corresponding analytic parametrization of all given by f = far : C — Gl C P,
f(z) =[1:ae™* - qe™?]. Since €* is an entire function without zeros, it fol-

lows from Nevanlinna’s Second Main Theorem that for any £ € G,

Mez (&, 1) <exe €1e=(T),

where the subscript exc means that the inequality holds for all » > 0 outside a set of finite

Lebesgue measure. From Nevanlinna’s First Main Theorem,
Te-(r) = me=(§; 1) + Ne=(€,7) + O(1),
and therefore, for any € > 0,
(5.8) (1= e)Te=(r) + O(1) <exe Nez (€, 1) < Tox (1) + O(1).

As before, let P € C[xzy,...,x;] be nonconstant and squarefree and let Dp be the hyper-
surface in P, defined by the homogenization of P. Since P(a1e™?, ..., a;e"™?) = Play(e?),

we have

(5.9) Ntu (Dp, 1) = N (Dp,7) = Y max{ve(Plap) — 1,0} Ne=(€,7) + O(1).
£€Gm
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Moreover, it is elementary that
Ty, (r) = (deg U)Te:(r) + O(1),

and, explicitly, Te-(r) = Z. Then in view of (5.8) and (5.9), we find an analogue in
Nevanlinna theory of the inequality (5.7). Corollary and Remark [1.5(iv) imply that
for any € > 0, there exists a proper Zariski closed subset Z C G! such that if fo/(C) ¢ Z,
then

Ny (Dp,1) = N (Dp, 1) < €Ty, (r) + O(1).

In summary, we have seen that the following three inequalities are essentially equiva-

lent:

Z max{ve(Play) — 1,0} < edegU
£eGm
Ns(Dp, Qav) — Né”(Dp, Qav) < €h(Qav)
Nt (Dp,7) = N (Dp,7) < €Ty, (r).

The last two inequalities, however, admit different generalizations in a broader context,
as we now discuss. The methods used here are likely to lead to versions of the second
inequality for other characteristic 0 function fields, where S is an arbitrary finite set of
places and Q. is replaced by any S-integral point of G! . On the other hand, analogous
methods in Nevanlinna theory are likely to lead to a version of the third inequality where
fav is replaced by an arbitrary (nonconstant) holomorphic map f : C — G! . In this
direction, Noguchi, Winkelmann, and Yamanoi [I2, Main Theorem (iii)] showed that if A
is a semiabelian variety, f : C — A is a holomorphic map with Zariski dense image, and

D is an effective reduced divisor on A, then
Ny(D,r) = NW(D,r) <exe €T (1),

where D is the closure of D in a suitable compactification A of A. Since their result
assumes that f has Zariski dense image, their results do not apply to the situation con-
sidered in this section. In general, the methods here (adapted to Nevanlinna theory) may
be expected to lead to a refinement of Noguchi-Winkelmann-Yamanoi’s result in the case
A=G.

Acknowledgements. Part of this work was written in Princeton during a visit of the
third author to the Institute for Advanced Study. The author is grateful to the Institute
for its hospitality and support. This work is part of the project P.R.I.LN. 2017 “Geomet-
ric, Algebraic and Analytic Methods in Arithmetic” funded by the Italian Ministry for
university and scientific research. The second author was supported in part by NSF grant
DMS-2001205.

17



References

1]

2]

3]

[7]

8]

[9]

[10]

[11]

- F. Amoroso, M. Sombra, U. Zannier, Unlikely intersections and multiple
roots of sparse polynomials, Math. Z. (2017), 1065-1081.

- E. Bombieri, W. Gubler, Heights in Diophantine Geometry, New Mathe-
matical Monographs 4, Cambridge University Press 2006.

- E. Bombieri, D. Masser, U. Zannier, Anomalous Subvarieties: Structure
Theorems and Applications, Int. Math. Research Notes 2007.

- P. Corvaja, U. Zannier, A lower bound for the height of a rational function
at S-unit points, Monatshefte f. Math. 144 (2004), 203-224.

- P. Corvaja, U. Zannier, Some cases of Vojta’s conjecture for integral points
over function fields, Journal Alg. Geom 17 (2008), 295-333. Addendum in
Asian J. of Math. 14 (2010), 581-584.

- P. Corvaja, U. Zannier, Greatest common divisors of u—1,u—1 in positive
characteristic and rational points on curves over finite fields. J. Eur. Math.
Soc. (JEMS) 15 (2013), no. 5, 192-1942

- P. Corvaja, U. Zannier, An abcd theorem over function fields and appli-
cations. Bull. Soc. Math. France 139 (2011), no. 4, 437-454.

- P. Corvaja, U. Zannier, Algebraic hyperbolicity of ramified covers of G2,
(and integral points on affine subsets of P5). J. Differential Geom. 93 (2013),
no. 3, 355-377.

- C. Fuchs, V. Mantova, U. Zannier, On fewnomials, integral points, and
a toric version of Bertini’s theorem, Journal Am. Math. Soc 31 (2018),
107-134.

- A. Grothendieck, Eléments de géométrie algébrique. IV. Etude locale des
schémas et des morphismes de schémas. II1., Inst. Hautes Etudes Sci. Publ.
Math., No. 28 (1966).

- A. Levin, Greatest common divisors and Vojta’s conjecture for blowups
of algebraic tori, Invent. Math. 215 (2019), no. 2, 493-533.

18



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

- J. Noguchi, J. Winkelmann and K. Yamanoi, The second main theorem

for holomorphic curves into semiabelian varieties II, Forum Mathematicum
20 (2002), no. 3, 469-503.

- A. Schinzel, On the number of terms of powers of a polynomial, Acta
Arith. XLIX (1987), 55-70.

- A. Schinzel, Polynomials with Special Regard to Reducibility, Ency. Math.
Appl. 77 Cambridge University Press, Cambridge (2000).

- A.Schinzel, U. Zannier, On the number of terms of a power of a poly-
nomial. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 20 (2009), no. 1,
9-98.

- J. H. Silverman, Generalized greatest common divisors, divisibility se-
quences, and Vojta’s conjecture for blowups, Monatsh. Math. 145 (2005),
333-350.

- The Stacks project, https://stacks.math.columbia.edu.

- P. Vojta, Diophantine approximations and value distribution theory, Lec-
ture Notes in Mathematics, 1239. Springer-Verlag, Berlin, 1987.

- P. Vojta, A more general abc conjecture, Internat. Math. Res. Notices
(1998), no. 21, 1103-1116.

- U. Zannier, Lecture Notes on Diophantine Analysis, Edizioni della Nor-
male (2008).

- U. Zannier, On composite lacunary polynomials and the proof of a con-
jecture of Schinzel, Inv. Math. 174 (2008), 127-138.

- U. Zannier, Some Problems of Unlikely Intersections in Arithmetic and
Geometry, Princeton U. Press (2012)

19



PIETRO CORVAJA

DIPARTIMENTO DI SCIENZE MATEMATICHE, INFORMATICHE E FISICHE
UNIVERSITA DI UDINE

VIA DELLE SCIENZE, 206

33100 UDINE

ITaLy

E-mail address: pietro.corvaja@uniud.it

AARON LEVIN

DEPARTMENT OF MATHEMATICS
MICHIGAN STATE UNIVERSITY
EAsT LANsING, MI 48824

USA

E-mail address: adlevin@math.msu.edu
UMBERTO ZANNIER

ScuoLA NORMALE SUPERIORE
PiazzAa DE1 CAVALIERI, 7

56126 Pisa
ITALY

E-mail address: u.zannier@sns.it

20



	Introduction
	Notation
	Some statements

	Main arguments
	An application to lacunary polynomials
	An application to Unlikely Intersections in tori
	A sketch of the argument
	A quantitative improvement

	A relation to Vojta's conjecture with truncated counting functions

