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Abstract. We investigate intersections of a given subvariety X of Gl
m with cosets of

1-parameter subtori, on interpreting the context in terms of S-unit points over function

fields. On adopting a function field version of a method introduced recently by the second

author, extending to arbitrary dimensions previous work of the first and third author, we

prove that when the number of intersections is substantially higher than expected, one can

classify the relevant subtori. As a consequence, we obtain a classification of the cosets

of subtori such that there are many multiple intersections with X. This also allows a

new proof of a conjecture of Erdős and Rényi on lacunary polynomials. We finally show

how the methods yield results in the realm of Unlikely Intersections in Gl
m, and in the

last section, reinterpret some of the results in terms of Vojta’s conjecture with truncated

counting functions.

1 Introduction

In the recent paper [11], the second author succeeded in extending to the case of arbitrary

dimensions certain results on integral points obtained by the first and third author in

the case of surfaces. Such results concern estimates for the greatest common divisor of

rational functions evaluated at S-unit points. For instance, the paper [4] proves an upper

bound for gcd(u−1, v−1) for multiplicatively independent S-units u, v (e.g., proving it is

≪ϵ max(|u|, |v|)ϵ when u, v ∈ Z), whereas [11] in particular extends this kind of estimate

to arbitrary pairs of expressions in S-units (under natural necessary conditions).

The results in [4] were later formulated also in a version for function fields, e.g. in

[5], [6], [7], [8]. In these articles the Schmidt Subspace Theorem, crucial in the numerical

case, was replaced by an argument using Wronskians. This varied context (and proof)

not only allowed for sharper estimates but also admitted several applications not possible

in the former case of number fields.

In view of this, we have thought of formulating as well the improvements of [11] in the

case of function fields, and the present paper is a first output of this programme.
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We have decided to start just by testing the ‘simple’ case of S-units in C(t) with respect

to S = {0,∞}; in this case, the group of S-units consists exactly of the monomials ctm,

c ∈ C∗,m ∈ Z. Basic as it looks, this case already contains problems whose solution

appears far from obvious. For instance, here is an illustrative

Question: Given two coprime polynomials P,Q ∈ C[x1, . . . , xl], for which S-unit

points xi = ait
mi do they acquire a common factor of ‘substantial’ size?

We shall consider issues of this type. Similar questions had been asked by Schinzel

long ago, and treated e.g. in the third author’s appendix to [14] and in the paper [3]

by Bombieri, Masser and the third author; however, these works considered mainly only

the case of fixed coefficients ai, which, as we shall see, is an important limitation for

some applications. Instead, the present methods are not affected by the variation of

coefficients.1

Note that a substitution of the relevant shape, i.e. xi ↦→ ait
mi , means just that we

are restricting our regular functions on Gl
m to a certain 1-parameter algebraic coset (or

subgroup if ai = 1) of Gl
m. Thus the issue fits into the context of multiplicative tori and

their algebraic subgroups, which explains (part of) the title. 2

Among our results, we provide for instance a complete classification of the cases when

a given (but arbitrary) 1-parameter coset (of an algebraic subgroup) meets a given subva-

riety X of Gl
m, of codimension 2, in ‘many’ points. As alluded to above, our conclusions

have the advantage of being uniform in certain data; more precisely, the classification

essentially depends neither on the involved coefficients, nor on the ‘size’ of the algebraic

subgroup, but merely on the degree of the variety and the ambient dimension. See Propo-

sition 1.1 (which is the main tool for all the results) and Theorem 1.3.

These results may be applied to study when a polynomial in several variables without

multiple factors obtains several multiple roots after a substitution of the above type (i.e.

along a 1-parameter coset); see Corollary 1.4.

We shall then notice two types of applications.

• The first one, given in §3, concerns lacunary polynomials (also called fewnomials, by

which we mean polynomials with a bounded number of terms - but arbitrary coefficients

and degrees of the terms). As an instance we shall offer a completely new proof (with

respect to Schinzel’s original one) of a former conjecture of Erdős and Rényi predicting

lacunarity of g(t), when it is known that g(t)2 is lacunary (see Corollary 3.1).

• The second application concerns so-called Unlikely Intersections in algebraic tori.

Here we shall recover a result of [3], which also shall allow a quantitative improvement of

1The paper [3] contains also certain uniform results, obtained by a method different from the present

one, and anyway not made explicit.
2This interpretation also suggests the shape of possible analogues in the context of abelian varieties.
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some of the former assertions.

In the last section, we reinterpret Corollary 1.4 as a certain case of Vojta’s conjecture

with truncated counting functions, and derive an analogous result in Nevanlinna theory.

In this paper we have limited the techniques to the case of constant coefficients and

S-units of special shape. But the methods surely extend so as to remove both these

restrictions, which does not look possible with the other known methods in this context.

We hope to return to these topics in a future paper.

We now introduce just a bit of notation and give the main statements. Other state-

ments are deferred to the respective sections.

1.1 Notation

If v = (b1, . . . , bl) ∈ Zl we shall write xv := xb1
1 · · ·xbl

l .

For a subscheme Y ⊂ Gl
m we let deg Y be the degree of the closure of Y in the

natural embedding Gl
m ↪→ Pl. We agree that the degree of the empty subscheme is 0. For

instance, if T is a subtorus of codimension 1 defined by xa1
1 · · ·xal

l = 1, then its degree is

the maximum between the sums of the absolute values of the positive ones, or the negative

ones, of the ai.

Also, if X, Y are subvarieties of Gl
m, then in deg(X ∩ Y ) we shall count only those

components contained in Gl
m.

It is worth noticing that an automorphism of Gl
m, given by monoidal changes of co-

ordinates (as in [2]) may change the degree; we shall often remark this in the text when

relevant.

For a positive 0-cycle C =
∑

hiai, where hi ∈ N, ai ∈ Gl
m, we let

ρ(C) =
∑

max(0, hi − 1).

This of course expresses the multiplicities occurring in C.

For a subtorus H ⊂ Gl
m, we shall usually denote by aH the translate of H by a ∈ Gl

m.

For a regular function P on Gl
m we shall denote by PaH its restriction to aH. If H is

given a parametrisation xi =
∏d

j=1 t
aij
j (which always exists), we shall understand the

restriction as obtained just by substitution into P (clearing, if we want, the denominators

which arise, which are monomials). For instance, if H = U has dimension 1, and if

a = (a1, . . . , al), then aU may be parametrized as xi = ait
mi , and by PaU we mean

P (a1t
m1 , . . . , alt

ml) ∈ C[t±1]; if we want a polynomial we just multiply by a power of t,

which is immaterial in this context. (See also Remark 1.5 (i).)

In the sequel by ‘subtorus’ we shall refer to the ambient space Gl
m unless different

explicit mention is made.
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1.2 Some statements

The following proposition embodies the essentials of the method and is the basis for the

subsequent applications. It basically asserts that if a 1-parameter coset aU meets a given

subvariety X ⊂ Gl
m, of codimension 2, in too many points, then U must be contained in

a (certain) prescribed finite union of proper subtori of Gl
m. Then going on to each such

subtorus the dimension is decreased, which often allows for an induction process.

Proposition 1.1. Let P1, P2 be coprime polynomials in C[x1, . . . , xl] of respective

degrees d1, d2, and denote by X the subscheme of Gl
m defined by P1 = P2 = 0. Further,

let d ≥ max(l
√
2d1d2, d1 + d2) be a positive integer.

Then, for each subtorus U of dimension 1 and for each a ∈ Gl
m, either

(i) There exists a subtorus H of codimension 1 with degH ≤ d and U ⊂ H, or

(ii) deg(X ∩ aU) ≤ 4l2d1d2
d

degU .

Remark 1.2. (i) The strength of the result lies in its uniformity, in that the alterna-

tives and the estimate (ii) does not depend on the coefficients of P1, P2 nor on a. Note

especially that the number multiplying degU on the right of (ii) tends to 0 as d → ∞
(for fixed X).

(ii) Similar inequalities may be obtained, with the same proof, by using partial degrees

in place of total degree.

The following theorem is our first application, where again the dependence of the

bounds (i.e. not on coefficients) is a crucial point:

Theorem 1.3. Let P1, P2 be coprime polynomials in C[x1, . . . , xl] and denote by X

the subscheme of Gl
m defined by P1 = P2 = 0. Let 0 < ϵ < 1. There exists a finite set Φ

of subtori, each of degree ≤ c1ϵ
−c2, where c1, c2 > 0 are positive numbers depending only

on l and degX, with the following property.

For every translate aU of a subtorus U of dimension 1, if deg(X ∩ aU) ≥ ϵ degU ,

then there exists H ∈ Φ with U ⊂ H and dim(X ∩ aH) ≥ dimH − 1.

Note that when dim(X ∩ aH) ≥ dimH − 1, indeed we cannot hope that deg(X ∩ aU)

is small, in view of Bezout’s theorem (and since U ⊂ H). So the conclusion in a sense is

the correct one.

Here is a first corollary, to classify the cases where restriction along a 1-parameter sub-

group or coset produces many more multiple roots than expected (in turn an application

of this to lacunary polynomials will be stated and proved later in §3).

Corollary 1.4. Let P ∈ C[x1, . . . , xl] have no non-monomial multiple factors and

let 0 < ϵ < 1. There exists a finite set Φ of proper subtori, each of degree ≤ c1ϵ
−c2, where

c1, c2 > 0 are positive numbers depending only on l and degP , with the following property.
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For every translate aU of a subtorus U of dimension 1, if P |aU has ≥ ϵ degU nonzero

multiple roots (where a root of multiplicity m counts m− 1), then there exists H ∈ Φ with

U ⊂ H and P |aH having a multiple factor vanishing somewhere on aH.

Remark 1.5. (i) Here by PaU we mean P (a1t
m1 , . . . , alt

ml) ∈ C[t±1]. Suppose this is

not identically zero. Then we remark that an easy Vandermonde argument shows that

the multiplicity of any nonzero root in this Laurent polynomial is bounded in terms only

of l, degP (Hajos lemma, see e.g. [14]). Taking this into account, on changing ϵ by a

factor depending only on l, degP we can then simply count the number of multiple roots,

i.e. counting them with multiplicity 1, obtaining an equivalent statement.

(ii) Note that this entails that for a ‘generic’ subtorus U , in the sense of not being

contained in a proper finite union of subtori of Gl
m depending only on l, degP and ϵ, any

restriction PaU has a number of multiple roots bounded by ϵ degU . For instance one can

take P = x1 + . . .+ xl, and then we obtain that:

For integers 0 ≤ m1 < . . . < ml and nonzero a1, , . . . , al, if a1t
m1 + . . .+alt

ml has more

than ϵ ·ml nonzero multiple roots, then m1, . . . ,ml satisfy a nontrivial linear equation with

coefficients bounded by a function of l, ϵ only.

Here as above it is relevant that the coefficients a1, . . . , al do not affect the estimates.

(iii) The paper [1] gives a similar conclusion (with a different formulation) assuming

only that PU has at least one (nonzero) multiple root. At first sight this may look much

stronger; however the point is that the translation by a is absent in the latter statement.

Indeed, the proofs in [1] also use the height of the coefficients of P , and translation affects

this feature in the case a has large height.

This aspect greatly reduces the potential applications of [1] to the general theory of

lacunary polynomials in case the coefficients may be arbitrary; see also §3 below. (Note

also that by varying coefficients one can obtain several multiple roots without any special

conclusion.)

(iv) Alternatively, the conclusion of Corollary 1.4 leads also to: There exists a proper

Zariski closed subset Z ⊂ Gl
m, depending only on ϵ, l, and degP , such that for every

translate aU of a subtorus U of dimension 1, if P |aU has ≥ ϵ degU nonzero multiple

roots then aU ⊂ Z. This statement can be derived from Corollary 1.4 as follows. From

the corollary, it suffices to show that if H(∈ Φ) is a fixed proper subtorus of Gl
m, then

non-Zariski density holds for the union of the cosets aH such that P |aH has a multiple

factor vanishing somewhere on aH. After an automorphism of Gl
m and clearing monomial

factors, it suffices to consider the case where H is defined by x1 = · · · = xl′ = 1 and

P ∈ C[x1, . . . , xl] has no multiple factors. Then we need to show that the set

{(a1, . . . , al′) ∈ Gl′

m(C) | P (a1, . . . , al′ , xl′+1, . . . , xl) ∈ C[xl′+1, . . . , xl] has a multiple factor}
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is not Zariski dense in Gl′
m. This is well known, and geometrically follows from the general

fact (see [10, Th. 9.7.7], [17, Tag 0578]) that if X and Y are schemes, f : X → Y is

a morphism of finite type, Y is irreducible, and the generic fiber of f is geometrically

reduced, then the fiber Xy is geometrically reduced for all y in some nonempty open

subset U ⊂ Y . (Apply this to the closed subscheme defined by P and the projection onto

the first l′ coordinates.)

2 Main arguments

The main argument, introduced in the paper [11] in the number field case, appears in

the following proof. As mentioned above, a Wronskian replaces the use of the Subspace

Theorem.

Proof of Proposition 1.1 . Let us consider the complex vector space Vd of polynomials in

C[x1, . . . , xl] of degree ≤ d and lying in the ideal (of X) generated by P1, P2. We first

estimate k := dimVd. If Polh is the space of complex polynomials of degree ≤ h, we have

a linear map

Pold−d1 ⊕ Pold−d2 → Vd, (Q1, Q2) ↦→ Q1P1 +Q2P2.

If (Q1, Q2) is in the kernel of this map, then Q1 = BP2, Q2 = −BP1 for some polyno-

mial B of degree ≤ d−d1−d2, and conversely, hence the kernel has dimension
(
d−d1−d2+l

l

)
.

We deduce that the image has dimension ≥
(
d−d1+l

l

)
+
(
d−d2+l

l

)
−
(
d−d1−d2+l

l

)
, which is

then a lower bound for k = dimVd:

(2.1) k = dimVd ≥
(
d− d1 + l

l

)
+

(
d− d2 + l

l

)
−
(
d− d1 − d2 + l

l

)
.

Let f1, . . . , fk be a basis for Vd and let t → tm := (tm1 , . . . , tml) be a parametrisation

of U , for coprime integers m1, . . . ,ml. In particular, max |mi| ≤ degU ≤ 2max |mi|.
For a polynomial P in x1, . . . , xl we denote for this proof P̃ = P (atm) ∈ C[t, t−1]

and we let W = W (f̃1, . . . , f̃k) be the Wronskian of the f̃i, so that W = det(f̃
(j)
i ) is the

determinant whose rows are the first k derivatives of (f̃1, . . . , f̃k) with respect to t.

Let us consider the monomials of degree ≤ d (in x1, . . . , xl) evaluated at tm; we shall

obtain powers ta1 , . . . , tar , ordered by a1 < a2 < . . . < ar, where r is at most the number

of monomials of degree ≤ d, i.e. at most
(
d+l
l

)
. Note that if r is strictly less than this

number, then we fall into the alternative (i) of the proposition, so let us assume that

r =
(
d+l
l

)
.
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The Laurent polynomials f̃i will be linear combinations of these powers of t. If W = 0

then the f̃i are linearly dependent over C, and this implies that two monomials of degree

≤ d take equal values at tm; again, we fall into (i), and so let us assume W ̸= 0.

On changing t into t−1 if needed, we may assume that |a1| ≤ |ar|.

For ξ ∈ P1 let us denote by vξ the order function at ξ of a rational function of t.

Let us estimate v0(W ). By column operations we can suppose that the f̃i have distinct

valuations at 0; these valuations will lie among the ai. Then it is easy to see that

(2.2) v0(W ) ≥ a1 + a2 + . . .+ ak −
(
k

2

)
.

By a similar argument we see that

(2.3) v∞(W ) ≥ −(ar + ar−1 + . . .+ ar−k+1) +

(
k

2

)
.

Let now ξ ∈ Gm and let m = mξ be the minimum of the orders of P̃1, P̃2 at ξ. By

column operations we may assume that f̃i vanishes at ξ with order at least m+ i−1. But

then W vanishes at ξ of order at least kmξ.

Note that since all the fi lie in the ideal generated by P1, P2, this number shall be

positive for ξ in X ∩ aU , and actually ξ is counted in deg(X ∩ aU) with weight given by

mξ.

By the product formula, and since W ̸= 0, we have
∑

ξ∈P1
vξ(W ) = 0. In view of the

above, this yields

k
∑
ξ∈Gm

mξ ≤ (ar + ar−1 + . . .+ ar−k+1)− (a1 + a2 + . . .+ ak).

In turn, letting s = r − k, the right-hand side equals

(ak+1 + · · ·+ ar)− (a1 + · · ·+ as) = (ak+1 − a1) + (ak+2 − a2) + · · ·+ (ak+s − as),

which does not exceed 2s|ar| ≤ 2sdmax |mi| ≤ 2sd degU .

Let us estimate s = r − k. By equation (2.1) and since r =
(
d+l
l

)
, we have s ≤(

d+l
l

)
−
(
d−d1+l

l

)
−
(
d−d2+l

l

)
+
(
d−d1−d2+l

l

)
= g(d+l)−g(d+l−d2), where g(x) =

(
x
l

)
−
(
x−d1

l

)
=(

x−1
l−1

)
+ . . .+

(
x−d1
l−1

)
. So, g(x)− g(x− d2) =

∑d1
i=1(

(
x−i
l−1

)
−
(
x−d2−i
l−1

)
) =

∑d1
i=1

∑d2
j=1

(
x−i−j
l−2

)
.

Hence in particular s ≤ d1d2
(
d+l−2
l−2

)
and therefore

s

r
≤ l(l − 1)d1d2

(d+ l)(d+ l − 1)
≤ l2d1d2

d2
.

In particular, s/r ≤ 1/2 by our assumptions. Hence we finally obtain

(2.4) deg(X ∩ aU) ≤ 2ds

r − s
degU ≤ 4ds

r
degU ≤ 4l2d1d2

d
degU,

as required.
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Proof of Theorem 1.3. We argue by induction on l. The statement being empty for l = 1,

we now assume l ≥ 2.

We apply Proposition 1.1 with d = [4l
2 degP1 degP2

ϵ
]+1. If indeed deg(X∩aU) ≥ ϵ degU ,

the conclusion (i) of the proposition delivers a subtorusH of codimension 1 with degH ≤ d

and U ⊂ H.

We start by putting all such subtori, which form a finite set, inside our set Φ. Note

that the degree of such tori satisfies a bound of the stated shape.

A first case now occurs if X has codimension ≤ 1 inside aH, i.e. if dim(X ∩ aH) ≥
dimH − 1. Then we fall into a case of the conclusion and are done.

Suppose on the contrary that X has codimension 2 inside aH. In this case we

reparametrize H, i.e. we may identify H with the subtorus xl = 1 of Gl
m, after a suitable

automorphism of Gl
m expressed by substitutions xi → xvi , where the vi are integer vectors

in Zl such that the matrix of the vi is in GLl(Z) (see [2] or [20]).

The degree of H is essentially the height of vl; also, it is well known that the height

of some such matrix can be bounded by c3d
l (and even by c3d but we do not need this),

where c3 depends only on l.

From now on we view all varieties and subtori inside H, which is identified with Gl−1
m .

However this identification changes the degrees that we are using. Let us indicate with a

subscript degH the new degrees (they depend actually not only on H but on the matrix

which we have chosen). The new degrees are expressed in terms of multiplication by the

said matrix, so that they will be bounded above by the old degrees multiplied by c4d
c5 ,

where c4, c5 depend only on l. A converse inequality is also true, on using the matrix

inverse to the previous one.

Inside this new ambient space H, we also replace X with X ′ := a−1X ∩H, so that X ′

will be again defined (inH ∼= Gl−1
m ) by two polynomial equations (obtained on substituting

xi → xvi into the former ones and then setting xl = 1). By the present assumption X ′

will again have codimension ≥ 2 in Gl−1
m (so that the two polynomials are coprime). Also,

since deg(X ∩ aU) ≥ ϵ degU , we shall have deg(X ′ ∩ U) ≥ ϵ′ degH U , where the degree

of U is now computed inside H and where ϵ′ ≥ c6ϵ
c7 where c6, c7 > 0 depend only on

l, degX. This estimate immediately follows from the above observations.

It suffices now to apply induction to this situation. It is again immediately checked

that the dependence of the bounds for degrees remains of the stated shape, and the new

subtori can be put inside the set Φ.

Note that each H delivers a new finite set ΦH , but since there are only finitely many H

involved, depending only on d, the final set Φ can be taken as the union of the respective

ΦH .
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Remark 2.1. The proof may be turned into a completely explicit estimate for the

involved quantities. We have omitted these calculations, also in order to reduce the length

of the paper, and since the involved functions c1, c2 appear to be of iterated exponential

type, so of very fast growth.

Note that the set Φ may depend on X, but is contained in a finite set of subtori

depending only on l, ϵ, degX.

Proof of Corollary 1.4. We proceed by induction on l, the assertion being clear for l = 1;

we then assume l > 1 and the statement true up to l − 1.

As before, let U be parameterised as t ↦→ tm := (tm1 , . . . , tml) for coprime integers mi,

observing that max |mi| ≤ degU ≤ 2max |mi|.
We set Q(x) =

∑l
i=1mixiPi(x), where for this proof we abbreviate Fi =

∂
∂xi

F .

Note first that t d
dt
P (tm) = Q(tm).

We may assume at the outset that P has no monomial factors, which are irrelevant as

to the statement. Now assume first that P and Q are not coprime, and so have a common

irreducible factor R not divisible by any xi. Then we may write P = RS, where R and

S are coprime since P is assumed to have no multiple factors. Differentiating, we obtain

Q = R(
∑

i mixiSi) + (
∑

i mixiRi)S. We deduce that R divides
∑

imixiRi. However, the

latter polynomial has degree at most degR. Then for some constant c we must have

l∑
i=1

mixiRi = cR.

Let xb be a monomial appearing in R, with coefficient µ ̸= 0. Then xb appears in xiRi

with coefficient µbi. We infer that the sum
∑

i mibi is constant for all monomials appearing

in R. Since R by assumption contains at least two monomials, we deduce a linear relation∑l
i=1 mib

′
i = 0 with integer coefficients b′i not all zero and bounded in absolute value by

2 degR ≤ 2 degP . This means that U is contained in the finite union of proper subtori H

of Gl
m of codimension 1 and degree bounded by 2 degP . In this case we can parametrize

each such H (as in the previous proofs) and reduce to dimension l − 1, concluding the

proof by induction.

Hence let us now assume that P and Q are coprime.

That PaU has at least ϵ degU multiple nonzero roots (counted as in the statement)

amounts to P (atm) having at least that number of nonzero multiple roots. Differentiating

with respect to t we see that the scheme X defined by P and Q intersects aU in a scheme

of degree ≥ ϵ degU . But now we may apply Theorem 1.3, obtaining the existence of the

finite set Φ as in that statement.
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In particular, there is an H ∈ Φ such that U ⊂ H (and dim(X ∩ aH) ≥ dimH − 1,

but this this last condition will not be exploited). We consider the polynomial PaH ; by

parametrizing aH we can view PaH as a polynomial in l′ = dimH < l variables. (Here

after the parametrisation we may obtain Laurent polynomials rather than polynomials.

However, the denominator here is immaterial, and we can replace the Laurent polynomial

by its numerator). Now, either PaH has a multiple factor vanishing somewhere on aH

(i.e. a non-monomial multiple factor, once we view PaH as a polynomial in l′ variables),

and we are done, or we may apply induction.

This concludes the proof.

It will be noted that the variety X in the proof (to which Theorem 1.3 is applied)

depends on the torus U (indeed, Q depends on U). It is the uniformity provided by

the previous constructions which allows this kind of approach to work. (This is related

to Remark 1.5 (iii) above; indeed, the methods of the paper [1] would not fit with this

approach since the estimates therein depend on the height of the coefficients.)

3 An application to lacunary polynomials

We now illustrate an application to lacunary polynomials, obtaining in particular a com-

pletely new proof of what was a conjecture of Erdős and (independently) Rényi, first

confirmed by Schinzel [13]:

Corollary 3.1. Let g(t) ∈ C[t] be such that g2(t) has at most l terms. Then the

number of terms of g(t) is bounded by a function of l alone.

Schnizel’s result covered the case g(t)d with arbitrary fixed d, and the same holds for

the present method; we have limited to d = 2 for simplicity.

Proof. We shall prove by induction on l the following statement

Let P (x1, . . . , xl) ∈ C[x1, x
−1
1 , . . . , xl, x

−1
l ] be a Laurent polynomial having no non-

monomial multiple factor. Then if for some 1-dimensional sub-torus U ⊂ Gl
m and a point

a ∈ Gl
m, the Laurent polynomial PaU(t) is a perfect square g(t)2, up to a power of t, then

the number of terms of g(t) is bounded as a function of l and degP only (where degP is

defined to be the degree of the numerator of P ).

Clearly, our Corollary 3.1 immediately follows from the above statement by taking

P (x1, . . . , xl) = x1 + · · ·+ xl.

To prove our statement above, we use induction on l, observing that the statement is

trivial for l = 1.

10



We observe also that, writing P (x) =
∑

pmxm, we can suppose that the differences of

the exponent vectors m−m′ ∈ {− degP, . . . , degP}l appearing with non-zero coefficients

pm, pm′ generate the Q-vector space Ql. Indeed, if this were not the case, after multiplying

P by an appropriate monomial, we could apply the induction argument, reducing to the

same statement in fewer variables.

Let Φ be the set of codimension one subtori of degree at most degP . If U is a 1-

dimensional subtorus and two monomials xm of P restrict to the same monomial on U ,

then clearly U ⊂ H for some H ∈ Φ. Then under the above independence assumption on

the exponents of P , for a suitable positive number c, depending only on l and degP , the

lower bound

(3.5) degaU PaU > c degU,

holds for all 1-dimensional subtori U such that U ̸⊂ H for H ∈ Φ. Here, degaU PaU

denotes the degree of the subscheme P defines on aU (equivalently, the degree of the

numerator of the Laurent polynomial PaU after removing an appropriate power of t).

We shall apply Corollary 1.4 with ϵ = c
2
. With this choice of ϵ, we enlarge Φ by adding

to it the finite set of subtori of Gl
m provided by the conclusions of Corollary 1.4.

Since f(t) = PaU is assumed to be a square (up to a power of t), PaU has at least

(degaU PaU)/2 (nonzero) multiple roots. Hence if (3.5) holds, the conclusion of Corollary

1.4 delivers a subtorus H ∈ Φ such that U ⊂ H and PaH has a multiple factor vanishing

somewhere on aH. In any case, U ⊂ H for some H ∈ Φ, of degree bounded as a function

of l and degP .

Let us reparameterise H by new variables, say, z1, . . . , zr, r = dimH < l, so that zi =

xvi , where the vi are certain linearly independent integer vectors. In these coordinates

the zi will become monomials in t under the substitution xi ↦→ ait
mi (i.e. restricting to

aU); let us write zi ↦→ bit
ni . Also, PaH will become a Laurent polynomial in z1, . . . , zr

(the denominator being immaterial since it is well defined and nonzero on Gl
m), and let

Q(z1, . . . , zr) be the numerator. Let Q = Q2
1Q2 be a factorisation, where Q2 is squarefree.

If Q2 is a constant times a monomial, we are done since P (atm) is then obtained by

the substitution zi = bit
ni inside Q2

1 (up to a power of t), and the degree of the various Q1

which may appear is bounded as a function of l, degP , since each torus in Φ has degree

bounded in terms of l, degP only.

Otherwise, letting V be the subtorus of H parameterized by zi = tni , we have that

(Q2)bV will be a square, and we apply the induction argument.

Remark 3.2. It will be noted how Corollary 1.4 allows in fact conclusions which go

beyond the last statement; i.e., in a sense, for given l, we may parameterise completely

the identities of the shape a1t
m1 + a2t

m2 + . . .+ alt
ml = g(t)2h(t) such that the degree of

11



h(t) is ‘small’. It seems not obvious to us if/how the known previous proofs of Corollary

3.1 may be extended in this sense.

As to quantitative bounds, Schinzel’s first proof produced doubly exponential ones for

the number of terms of g(t) as a function of l. See [15] for a quantitative strengthening,

following however similar principles. It is not likely that the present approach would lead

to a better estimate, but our purpose here is mainly to show how the above general results

include this sort of conclusion as an application. (See also the paper [21] for extensions

to arbitrary compositions h(g(t)) in place of g(t)2 and see further [9] for more general

algebraic relations with lacunary polynomials, being treated with methods completely

different both from Schinzel’s and from the present ones; these last do not directly lead

to these more general cases, however have other advantages.)

4 An application to Unlikely Intersections in tori

In the paper [3] of Bombieri, Masser and the third author, in particular the following

situation was analysed. Let X be a subvariety of Gl
m, of dimension r say. If we take a

subtorus H of dimension s and a translate aH, we expect that dim(X ∩ aH) will not

exceed r+s− l. Because of this, the subvarieties of X of positive dimension ≥ r+s− l+1

and contained in such an intersection, were called anomalous. Also, those not contained

in any anomalous subvariety of larger dimension were called maximal anomalous.

Theorem 1 of [3] gives a kind of general complete description of the maximal anomalous

subvarieties, in particular proving that :

The maximal anomalous subvarieties correspond to intersections X ∩ aH where only

finitely many subtori H are involved. 3

In [3] it was also remarked (subsequent to the statement) that the degrees of these H

can be bounded by (effective) functions of l and degX only; this more precise uniformity

assertion, important in the present context, was not explicitly justified in the paper [3] but

it was remarked that it followed naturally (and easily) as a byproduct from the structure

of the proofs therein.

In this section we indicate how, in the case when X has codimension 2, such a result

may also be achieved using the above theorems, hence in a completely different way with

respect to [3]. 4

3For given H, it is not difficult to see that the maximal anomalous subvarieties are obtained alge-

braically, i.e. precisely for a running in a certain constructible subvariety of X; see [3] for details.
4Probably this alternative treatment can be given by the same method in the case of arbitrary codi-

mension.
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In §4.2 we shall also remark how this leads to a quantitative improvement of Theo-

rem 1.3, where the needed lower bound ϵ degU is replaced (for large degU) by (degU)1−l−1
,

which is a weaker requirement for large enough degU , hence for all but finitely many

subtori U .

4.1 A sketch of the argument

Since the result in question has already been proved in [3] we shall give merely a sketch

of the argument.

Suppose then thatX has dimension l−2 and Y ⊂ X∩aH is a(n irreducible) subvariety

of X of positive dimension ≥ s − 1, where s = dimH, and suppose Y is maximal with

these properties. We may assume that dimY = s− 1.

We may replace H with Gs
m after a parametrisation, similar to what has been done

previously several times. Then the ambient dimension is now s and the new variety is

a−1X ∩ H, which now has a component Y of positive dimension s − 1. Intersecting Y

with a ‘general’ subtorus U of H of dimension 1, by Bezout’s theorem we shall obtain at

least degU points in a projective closure Ps of Gs
m. If U is ‘very general’, at least, say,

half of these points will in fact lie in Gs
m.

But then we may apply Theorem 1.3 to X and U , with ϵ = 1/2, and we deduce that

there are a finite number of subtori of Gl
m, of degree bounded by c3(l, degX), whose union

contains U . Since however U is practically arbitrary in H, this entails that H itself is

contained in the union of the said subtori, concluding the argument.

4.2 A quantitative improvement

Finally, we show how such a result, whose proof we have just sketched (so it is indeed

independent of the results in [3]) leads to the quantitative improvement of Theorem 1.3

mentioned in the opening remarks of this section. More precisely, we sketch the proof of

the following

Theorem 4.1. Let P1, P2 be coprime polynomials in C[x1, . . . , xl] and denote by X

the subscheme of Gl
m defined by P1 = P2 = 0. There exists a finite set Φ of subtori, each

of degree ≤ c1, where c1 is a positive number depending only on l and degX, with the

following property.

For every translate aU of a subtorus U of dimension 1, if deg(X∩aU) ≥ (degU)1−l−1
,

then there exists H ∈ Φ with U ⊂ H and dim(X ∩ aH) ≥ dimH − 1.

Proof. Let us note that the result is very easy for bounded degU , since such tori

are finite in number. Hence in the sequel we may assume that degU is large enough in

terms of l and degX.

13



By easy Geometry of Numbers (applied to the lattice corresponding to U) we can find

a subtorus U ′ of dimension 2 containing U and of degree degU ′ ≪ (degU)
l−2
l−1 (see for

instance [22], Ch. 1). Here the implied constant depends only on l.

If X ∩aU ′ is finite then by Bezout’s theorem we obtain deg(X ∩aU ′) ≤ degX ·degU ′,

whereas deg(X ∩ aU ′) ≥ deg(X ∩ aU) ≥ (degU)1−l−1
by assumption.

Since l−2
l−1

< 1− 1
l
, and since we are assuming that degU is large, we obtain a contra-

diction, and hence we deduce that X ∩ aU ′ has positive dimension.

But then the intersection X ∩ aU ′ is anomalous (by definition) and the conclusion

of the previous subsection applies. On going to the maximal anomalous intersections, it

also follows that U ′, and therefore U , is contained in a finite union of proper subtori H

of Gl
m of degree bounded only in terms of l, degX. It also follows that dim(X ∩ aH) ≥

dimH − 1.

5 A relation to Vojta’s conjecture with truncated

counting functions

Silverman [16] has explained in detail the connection between the gcd estimates of [4] and

[11] and Vojta’s conjecture applied to blowups of projective varieties. Proposition 1.1, a

function field analogue of these estimates, admits a similar interpretation. We now show

that the multiplicity result of Corollary 1.4 can be reinterpreted precisely as a function

field version of certain cases of Vojta’s conjecture involving truncated counting functions,

and that it yields an analogous inequality in Nevanlinna theory which is closely related

to a general inequality of Noguchi, Winkelmann, and Yamanoi [12].

We first state the relevant version of Vojta’s conjecture over number fields [19, Con-

jecture 2.3] and refer to [19] for the definitions of the involved quantities (which will be

explicitly defined below in our restricted function field setting).

Conjecture 5.1 (Vojta’s conjecture with truncated counting functions). Let X be

a smooth projective variety over a number field k, D a normal crossings divisor on X,

KX a canonical divisor on X, A an ample divisor on X, and ϵ > 0. Then there exists a

proper Zariski closed subset Z ⊂ X such that for all points Q ∈ X(k) \ Z,

N
(1)
S (D,Q) ≥ hKX+D(Q)− ϵhA(Q).(5.6)

We now consider the analogous conjecture over the function field k = C(t) with

X = Pl, and begin by explaining the terms in (5.6) in this context.
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Let Q = [x0 : · · · : xl] ∈ Pl(C(t)). Recall that the height of Q is defined by

h(Q) = −
∑

ξ∈P1(C)

min{vξ(x0), . . . , vξ(xl)},

where, as before, vξ denotes the order of a rational function of t at ξ. If D is a hypersurface

in Pl defined by a homogeneous polynomial P ∈ C(t)[x0, . . . , xl], degP = d, and ξ ∈
P1(C), then define

λD,ξ(Q) = vξ(P (Q))− d min
0≤j≤l

{vξ(xj)},

hD(Q) =
∑

ξ∈P1(C)

λD,ξ(Q) = dh(Q),

where the last equality follows from the product formula. For a subset S ⊂ P1(C) we

define the proximity function and counting function associated to D, respectively, by

mS(D,Q) =
∑
ξ∈S

λD,ξ(Q),

NS(D,Q) =
∑

ξ∈P1(C)\S

λD,ξ(Q).

We define the n-truncated counting function associated to S and D by

N
(n)
S (D,Q) =

∑
ξ∈P1(C)\S

min{λD,ξ(Q), n}.

As we have done throughout, we now restrict to the case S = {0,∞}. Let P ∈
C[x1, . . . , xl] ⊂ C(t)[x1, . . . , xl] be nonconstant and let DP be the hypersurface in Pl

defined by (the homogenization of) P . Let H0, . . . , Hl be the coordinate hyperplanes of

Pl and let D = H0 + H1 + · · ·Hl + DP . Let U ⊂ Gl
m be a subtorus of dimension 1

parametrized by (tm1 , . . . , tml), a ∈ Gl
m(C), and Q = QaU = [1 : a1t

m1 : · · · : altml ] be the

projective point in Pl(C(t)) associated to aU . From the form of Q and the definitions, we

have

N
(1)
S (D,Q) = N

(1)
S (DP , Q)

(in the language of integral points, Q is S-integral with respect to H0, . . . , Hl). Note also

that since KPl
= −(H0 + · · ·+Hl),

hKPl+D(Q) = hDP
(Q).

Then assuming that D is a normal crossings divisor on Pl, inequality (5.6) of Vojta’s

conjecture (over function fields) gives

hDP
(Q)−N

(1)
S (DP , Q) = mS(DP , Q) +NS(DP , Q)−N

(1)
S (DP , Q) ≤ ϵh(Q),
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as long as Q lies outside of some proper closed subset Z ⊂ Pl. Equivalently, we can split

this into the two inequalities

mS(DP , Q) ≤ ϵh(Q),

NS(DP , Q)−N
(1)
S (DP , Q) ≤ ϵh(Q).(5.7)

The first inequality is known to hold in this context over both function fields and

number fields (assuming that D is a normal crossings divisor, or at least that some general

position condition is satisfied). For the second inequality, we find the easy formula

NS(DP , QaU)−N
(1)
S (DP , QaU) =

∑
ξ∈Gm

max{vξ(P |aU)− 1, 0}.

Thus, the left-hand side of (5.7) counts the nonzero multiple roots of P |aU as in Corol-

lary 1.4. Since h(QaU) = degU , Corollary 1.4 (combined with the exceptional set Z of

Remark 1.5(iv)) can be viewed as giving precisely a certain case of Vojta’s conjecture

with truncated counting functions, namely inequality (5.7) for points Q ∈ Pl(C(t)) with
S-unit coordinates (excluding points in some proper closed subset). Note that the normal

crossings condition on D turns out to be unnecessary for (5.7), except for the requirement

that DP must be reduced.

We now turn to analogous inequalities in Nevanlinna theory (see [18] for the analo-

gies with Diophantine approximation and the definitions and notation). Consider the

corresponding analytic parametrization of aU given by f = faU : C → Gl
m ⊂ Pl,

f(z) = [1 : a1e
m1z : · · · : alemlz]. Since ez is an entire function without zeros, it fol-

lows from Nevanlinna’s Second Main Theorem that for any ξ ∈ Gm,

mez(ξ, r) ≤exc ϵTez(r),

where the subscript exc means that the inequality holds for all r > 0 outside a set of finite

Lebesgue measure. From Nevanlinna’s First Main Theorem,

Tez(r) = mez(ξ, r) +Nez(ξ, r) +O(1),

and therefore, for any ϵ > 0,

(1− ϵ)Tez(r) +O(1) ≤exc Nez(ξ, r) ≤ Tez(r) +O(1).(5.8)

As before, let P ∈ C[x1, . . . , xl] be nonconstant and squarefree and let DP be the hyper-

surface in Pl defined by the homogenization of P . Since P (a1e
m1z, . . . , ale

mlz) = P |aU(ez),
we have

NfaU (DP , r)−N
(1)
faU

(DP , r) =
∑
ξ∈Gm

max{vξ(P |aU)− 1, 0}Nez(ξ, r) +O(1).(5.9)
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Moreover, it is elementary that

TfaU (r) = (degU)Tez(r) +O(1),

and, explicitly, Tez(r) = r
π
. Then in view of (5.8) and (5.9), we find an analogue in

Nevanlinna theory of the inequality (5.7). Corollary 1.4 and Remark 1.5(iv) imply that

for any ϵ > 0, there exists a proper Zariski closed subset Z ⊂ Gl
m such that if faU(C) ̸⊂ Z,

then

NfaU (DP , r)−N
(1)
faU

(DP , r) ≤ ϵTfaU (r) +O(1).

In summary, we have seen that the following three inequalities are essentially equiva-

lent: ∑
ξ∈Gm

max{vξ(P |aU)− 1, 0} ≤ ϵ degU

NS(DP , QaU)−N
(1)
S (DP , QaU) ≤ ϵh(QaU)

NfaU (DP , r)−N
(1)
faU

(DP , r) ≤ ϵTfaU (r).

The last two inequalities, however, admit different generalizations in a broader context,

as we now discuss. The methods used here are likely to lead to versions of the second

inequality for other characteristic 0 function fields, where S is an arbitrary finite set of

places and QaU is replaced by any S-integral point of Gl
m. On the other hand, analogous

methods in Nevanlinna theory are likely to lead to a version of the third inequality where

faU is replaced by an arbitrary (nonconstant) holomorphic map f : C → Gl
m. In this

direction, Noguchi, Winkelmann, and Yamanoi [12, Main Theorem (iii)] showed that if A

is a semiabelian variety, f : C → A is a holomorphic map with Zariski dense image, and

D is an effective reduced divisor on A, then

Nf (D, r)−N
(1)
f (D, r) ≤exc ϵTD̄,f (r),

where D̄ is the closure of D in a suitable compactification Ā of A. Since their result

assumes that f has Zariski dense image, their results do not apply to the situation con-

sidered in this section. In general, the methods here (adapted to Nevanlinna theory) may

be expected to lead to a refinement of Noguchi-Winkelmann-Yamanoi’s result in the case

A = Gl
m.
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